1
|
Sutovsky P, Zigo M, Tirpak F, Oko R. Paternal contributions to mammalian zygote - Beyond sperm-oocyte fusion. Curr Top Dev Biol 2025; 162:387-446. [PMID: 40180516 DOI: 10.1016/bs.ctdb.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Contrary to a common misconception that the fertilizing spermatozoon acts solely as a vehicle for paternal genome delivery to the zygote, this chapter aims to illustrate how the male gamete makes other essential contributions , including the sperm borne-oocyte activation factors, centrosome components, and components of the sperm proteome and transcriptome that help to lay the foundation for pregnancy establishment and maintenance to term, and the newborn and adult health. Our inquiry starts immediately after sperm plasma membrane fusion with its oocyte counterpart, the oolemma. Parallel to and following sperm incorporation in the egg cytoplasm, some of the sperm structures (perinuclear theca) are dissolved and spent to induce development, others (nucleus, centriole) are transformed into zygotic structures enabling it, and yet others (mitochondrial and fibrous sheath, axonemal microtubules and outer dense fibers) are recycled as to not stand in its way. Noteworthy advances in this research include the identification of several sperm-borne oocyte activating factor candidates, the role of autophagy in the post-fertilization sperm mitochondrion degradation, new insight into zygotic centrosome origins and function, and the contributions of sperm-delivered RNA cargos to early embryo development. In concluding remarks, the unresolved issues, and clinical and biotechnological implications of sperm-vectored paternal inheritance are discussed.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States; Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, United States.
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Filip Tirpak
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
2
|
Sutovsky P, Zelenkova N, Postlerova P, Zigo M. Proteostasis as a Sentry for Sperm Quality and Male Fertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:273-303. [PMID: 40301261 DOI: 10.1007/978-3-031-82990-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
In the last two decades, a school of thought emerged that perceives male reproductive health, testicular function, and sperm output as a sentry for general, somatic health. Large-scale epidemiologic studies have already linked the reduced sperm count to increased risk of chronic somatic disease (e.g., cancer, cardiovascular, neurological and bone diseases), yet most of these studies have not taken full advantage of advanced andrological analysis. Altered proteostasis, i.e., the disbalance between protein synthesis and turnover, is a common denominator of many diseases, including but not limited to cancer and neurodegenerative diseases. This chapter introduces the concept of cellular proteostasis as a measure of sperm structural and functional integrity and an endpoint of varied impacts on spermiogenesis and sperm maturation, including heritability, general health, lifestyle, and occupational and environmental reprotoxic exposure. Special consideration is given to small molecule protein modifiers, sperm-binding seminal plasma proteins, zinc-interacting proteins, and redox proteins responsible for the maintenance of protein structure and the protection of spermatozoa from oxidative damage. While the main focus is on human male infertility, serious consideration is given to relevant animal models, and in particular to male food animals with extensive records of fertility from artificial insemination services. Altogether, the proteostatic biomarker discovery and validation studies set the stage for the integration of proteomics of sperm proteostasis with genomic and high throughput phenomic approaches to benefit both human and animal reproductive medicine.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA.
| | - Natalie Zelenkova
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Pavla Postlerova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Lei H, Xu H, Wu Y. Role of UCHL3 in health and disease. Biochem Biophys Res Commun 2024; 734:150626. [PMID: 39226739 DOI: 10.1016/j.bbrc.2024.150626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Ubiquitin C-terminal hydrolase 3 (UCHL3) is a cysteine protease that plays a crucial role in cell cycle regulation, DNA repair, and apoptosis by carrying out deubiquitination and deneddylation activities. It has emerged as a promising therapeutic target for certain cancers due to its ability to stabilize oncoproteins. The dysregulation of UCHL3 also has been associated with neurodegenerative diseases, underscoring its significance in maintaining protein homeostasis within cells. Research on UCHL3, including studies on Uchl3 knockout mice, has revealed its involvement in learning deficits, cellular stress responses, and retinal degeneration. This review delves into the cellular processes controlled by UCHL3 and its role in health and disease progression, as well as the development of UCHL3 inhibitors. Further investigation into the molecular mechanisms and physiological functions of UCHL3 is crucial for a comprehensive understanding of its impact on health and disease.
Collapse
Affiliation(s)
- Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Hanzhang Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Pathophysiology, Research Unit of Stress and Cancer, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Jiao Tong University, Research Units of Stress and Tumor (2019RU043), Chinese Academy of Medical Sciences, Sch Med, Shanghai 200025, China.
| |
Collapse
|
4
|
Codognoto VM, de Souza FF, Cataldi TR, Labate CA, de Camargo LS, Scott C, da Rosa Filho RR, de Carvalho NAT, Oba E. Uterine secretome: What do the proteins say about maternal-fetal communication in buffaloes? J Proteomics 2024; 290:105023. [PMID: 37838095 DOI: 10.1016/j.jprot.2023.105023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
The aim was to compare the UF proteomics of pregnant and non-pregnant buffalo during early pregnancy. Forty-four females were submitted to hormonal estrus synchronization and randomly divided into two groups: pregnant (n = 30) and non-pregnant (n = 14). The pregnant group was artificially inseminated and divided into a further two groups: P12 (n = 15) and P18 (n = 15). Conceptus and uterine fluid samples were collected during slaughter at, respectively, 12 and 18 days after insemination. Of all the inseminated females, only eight animals in each group were pregnant, which reduced the sample of the groups to P12 (n = 8) and P18 (n = 8). The non-pregnant group was also re-divided into two groups at the end of synchronization: NP12 (n = 7) and NP18 (n = 7). The UF samples were processed for proteomic analysis. The results were submitted to multivariate and univariate analysis. A total of 1068 proteins were found in the uterine fluid in both groups. Our results describe proteins involved in the conceptus elongation and maternal recognition of pregnancy, and their action was associated with cell growth, endometrial remodeling, and modulation of immune and antioxidant protection, mechanisms necessary for embryonic maintenance in the uterine environment. SIGNIFICANCE: Uterine fluid is a substance synthesized and secreted by the endometrium that plays essential roles during pregnancy in ruminants, contributing significantly to embryonic development. Understanding the functions that the proteins present in the UF perform during early pregnancy, a period marked by embryonic implantation, and maternal recognition of pregnancy is of fundamental importance to understanding the mechanisms necessary for the maintenance of pregnancy. The present study characterized and compared the UF proteome at the beginning of pregnancy in pregnant and non-pregnant buffaloes to correlate the functions of the proteins and the stage of development of the conceptus and unravel their processes in maternal recognition of pregnancy. The proteins found were involved in cell growth and endometrial remodeling, in addition to acting in the immunological protection of the conceptus and performing antioxidant actions necessary for establishing a pregnancy.
Collapse
Affiliation(s)
- Viviane Maria Codognoto
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Fabiana Ferreira de Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Thais Regiani Cataldi
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Carlos Alberto Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Laíza Sartori de Camargo
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Caroline Scott
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Roberto Rodrigues da Rosa Filho
- Department of Animal Reproduction - School of Veterinary Medicine and Animal Science, University of São Paulo, campus São Paulo, São Paulo, Brazil
| | - Nélcio Antonio Tonizza de Carvalho
- Research and Development Unit of Registro / Diversified Animal Science Research Center / Institute of Animal Science, Registro, São Paulo, Brazil
| | - Eunice Oba
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil.
| |
Collapse
|
5
|
Shi S, Chu G, Zhang L, Yuan H, Madaniyati M, Zhou X, Wang L, Cai C, Pang W, Gao L, Yang G. Deubiquitinase UCHL1 regulates estradiol synthesis by stabilizing voltage-dependent anion channel 2. J Biol Chem 2023; 299:105316. [PMID: 37797697 PMCID: PMC10656229 DOI: 10.1016/j.jbc.2023.105316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
Lack of estradiol production by granulosa cells blocks follicle development, causes failure of estrous initiation, and results in an inability to ovulate. The ubiquitin-proteasome system plays a critical role in maintaining protein homeostasis and stability of the estrous cycle, but knowledge of deubiquitination enzyme function in estradiol synthesis is limited. Here, we observe that the deubiquitinase ubiquitin C-terminal hydrolase 1 (UCHL1) is more significant in estrous sows and high litter-size sows than in nonestrous sows and low-yielding sows. Overexpression of UCHL1 promotes estradiol synthesis in granulosa cells, and interference with UCHL1 has the opposite effect. UCHL1 binds, deubiquitinates, and stabilizes voltage-dependent anion channel 2 (VDAC2), promoting the synthesis of the estradiol precursor pregnenolone. Cysteine 90 (C90) of UCHL1 is necessary for its deubiquitination activity, and Lys45 and Lys64 in VDAC2 are essential for its ubiquitination and degradation. In vivo, compared with WT and sh-NC-AAV groups, the estrus cycle of female mice is disturbed, estradiol level is decreased, and the number of antral follicles is decreased after the injection of sh-UCHL1-AAV into ovarian tissue. These findings suggest that UCHL1 promotes estradiol synthesis by stabilizing VDAC2 and identify UCHL1 as a candidate gene affecting reproductive performance.
Collapse
Affiliation(s)
- Shengjie Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China
| | - Guiyan Chu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China
| | - Lutong Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China
| | - Huan Yuan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China
| | - Mielie Madaniyati
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China
| | - Xiaoge Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China
| | - Liguang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China
| | - Chuanjiang Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Weijun Pang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China
| | - Lei Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China.
| |
Collapse
|
6
|
Soley JT, du Plessis L, Sutovsky M, Sutovsky P. Steps of spermiogenesis in the ostrich (Struthio camelus). Cell Tissue Res 2023; 394:209-227. [PMID: 37430159 DOI: 10.1007/s00441-023-03807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Few studies describe the sequence of morphological events that characterize spermiogenesis in birds. In this paper, the clearly observable steps of spermiogenesis are described and illustrated for the first time in a commercially important ratite, the ostrich, based on light microscopy of toluidine blue-stained plastic sections. Findings were supplemented and supported by ultrastructural observations, PNA labeling of acrosome development, and immunocytochemical labeling of isolated spermatogenic cells. Spermiogenesis in the ostrich followed the general pattern described in non-passerine birds. Eight steps were identified based on changes in nuclear shape and contents, positioning of the centriolar complex, and acrosome development. Only two steps could be recognized with certainty during development of the round spermatid which contributed to the fewer steps recorded for the ostrich compared to that described in some other bird species. The only lectin that displayed acrosome reactivity was PNA and only for the first three steps of spermiogenesis. This suggests that organizational and/or compositional changes may occur in the acrosome during development and merits further investigation. Immunological labeling provided additional evidence to support the finding of previous studies that the tip of the nucleus in the ostrich is shaped by the forming acrosome and not by the microtubular manchette. To our knowledge, this is the first complete description of spermiogenesis in ostrich and one of few in any avian species. In addition to comparative reproduction and animal science, this work has implications for evolutionary biology as the reported germ cell features provide a bridge between reptile and ratite-avian spermatogenesis.
Collapse
Affiliation(s)
- J T Soley
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - L du Plessis
- Electron Microscope Unit, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - M Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - P Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Departments of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
7
|
Yang D, Lu Q, Peng S, Hua J. Ubiquitin C-terminal hydrolase L1 (UCHL1), a double-edged sword in mammalian oocyte maturation and spermatogenesis. Cell Prolif 2023; 56:e13347. [PMID: 36218038 PMCID: PMC9890544 DOI: 10.1111/cpr.13347] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Recent studies have shown that ubiquitin-mediated cell apoptosis can modulate protein interaction and involve in the progress of oocyte maturation and spermatogenesis. As one of the key regulators involved in ubiquitin signal, ubiquitin C-terminal hydrolase L1 (UCHL1) is considered a molecular marker associated with spermatogonia stem cells. However, the function of UCHL1 was wildly reported to regulate various bioecological processes, such as Parkinson's disease, lung cancer, breast cancer and colon cancer, how UCHL1 affects the mammalian reproductive system remains an open question. METHODS We identified papers through electronic searches of PubMed database from inception to July 2022. RESULTS Here, we summarize the important function of UCHL1 in controlling mammalian oocyte development, regulating spermatogenesis and inhibiting polyspermy, and we posit the balance of UCHL1 was essential to maintaining reproductive cellular and tissue homeostasis. CONCLUSION This study considers the 'double-edged sword' role of UCHL1 during gametogenesis and presents new insights into UCHL1 in germ cells.
Collapse
Affiliation(s)
- Donghui Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| | - Qizhong Lu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Collaborative Innovation Center of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
8
|
Gouletsou PG, Tsangaris GT, Katsarou EI, Bourganou MV, Barbagianni MS, Venianaki AP, Bouroutzika E, Anagnostopoulos AK, Fthenakis GC, Katsafadou AI. Proteomics Evaluation of Semen of Clinically Healthy Beagle-Breed Dogs. Vet Sci 2022; 9:vetsci9120697. [PMID: 36548858 PMCID: PMC9785154 DOI: 10.3390/vetsci9120697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The objectives of the present work were to evaluate the semen of dogs by means of proteomics methods and to compare with proteomics results of the blood of the animals, in order to increase available knowledge on the topic and present relevant reference values for semen samples. Semen samples were collected from five Beagle-breed dogs. Reproductive assessment of the animals by means of clinical, ultrasonographic and seminological examinations confirmed their reproductive health. The sperm-rich fraction and the prostatic fraction of semen were processed for proteomics evaluation. LC-MS/MS analysis was performed by means of a LTQ Orbitrap Elite system. The technology combines high separation capacity and strong qualitative ability of proteins in biological samples that require deep proteome coverage. Protein classification was performed based on their functional annotations using Gene Ontology (GO). In blood plasma, semen sperm-rich fraction, and semen prostatic fraction, 59, 42 and 43 proteins, respectively, were detected. Two proteins were identified simultaneously in plasma and the semen sperm-rich fraction, 11 proteins in plasma and the semen prostatic fraction, and three proteins in the semen sperm-rich and prostatic fractions. In semen samples, most proteins were related to cell organization and biogenesis, metabolic processes or transport of ions and molecules. Most proteins were located in the cell membrane, the cytosol or the nucleus. Finally, most proteins performed functions related to binding or enzyme regulation. There were no differences between the semen sperm-rich fraction and prostatic fractions in terms of the clustering of proteins. In conclusion, a baseline reference for proteins in the semen of Beagle-breed dogs is provided. These proteins are involved mostly in supporting spermatozoan maturation, survival and motility, enhancing the reproductive performance of male animals. There appears potential for the proteomics examination of semen to become a tool in semen evaluation. This analysis may potentially identify biomarkers for reproductive disorders. This can be particularly useful in stud animals, also given its advantage as a non-invasive method.
Collapse
Affiliation(s)
| | - George Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | | | - Maria V. Bourganou
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece
| | | | | | - Efterpi Bouroutzika
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | | | | | - Angeliki I. Katsafadou
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece
- Correspondence:
| |
Collapse
|
9
|
Proteomic analysis of rabbit fresh and cryopreserved semen provides an important insight into molecular mechanisms of cryoinjuries to spermatozoa. Theriogenology 2022; 191:77-95. [DOI: 10.1016/j.theriogenology.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
|
10
|
Wang J, Zhou Q, Ding J, Yin T, Ye P, Zhang Y. The Conceivable Functions of Protein Ubiquitination and Deubiquitination in Reproduction. Front Physiol 2022; 13:886261. [PMID: 35910557 PMCID: PMC9326170 DOI: 10.3389/fphys.2022.886261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
Protein ubiquitination with general existence in virtually all eukaryotic cells serves as a significant post-translational modification of cellular proteins, which leads to the degradation of proteins via the ubiquitin-proteasome system. Deubiquitinating enzymes (DUBs) can reverse the ubiquitination effect by removing the ubiquitin chain from the target protein. Together, these two processes participate in regulating protein stability, function, and localization, thus modulating cell cycle, DNA repair, autophagy, and transcription regulation. Accumulating evidence indicates that the ubiquitination/deubiquitination system regulates reproductive processes, including the cell cycle, oocyte maturation, oocyte-sperm binding, and early embryonic development, primarily by regulating protein stability. This review summarizes the extensive research concerning the role of ubiquitin and DUBs in gametogenesis and early embryonic development, which helps us to understand human pregnancy further.
Collapse
Affiliation(s)
- Jiayu Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Qi Zhou
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jinli Ding
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Zhang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Zhang M, Chiozzi RZ, Skerrett-Byrne DA, Veenendaal T, Klumperman J, Heck AJR, Nixon B, Helms JB, Gadella BM, Bromfield EG. High Resolution Proteomic Analysis of Subcellular Fractionated Boar Spermatozoa Provides Comprehensive Insights Into Perinuclear Theca-Residing Proteins. Front Cell Dev Biol 2022; 10:836208. [PMID: 35252197 PMCID: PMC8894813 DOI: 10.3389/fcell.2022.836208] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
The perinuclear theca (PT) is a highly condensed, largely insoluble protein structure that surrounds the nucleus of eutherian spermatozoa. Recent reports have indicated that the PT unexpectedly houses several somatic proteins, such as core histones, which may be important post-fertilization during re-modelling of the male pronucleus, yet little is known regarding the overall proteomic composition of the PT. Here, we report the first in depth, label-free proteomic characterization of the PT of boar spermatozoa following the implementation of a long-established subcellular fractionation protocol designed to increase the detection of low abundance proteins. A total of 1,802 proteins were identified, a result that represents unparalleled depth of coverage for the boar sperm proteome and exceeds the entire annotated proteome of the Sus scrofa species so far. In the PT structure itself, we identified 813 proteins and confirmed the presence of previously characterized PT proteins including the core histones H2A, H2B, H3 and H4, as well as Ras-related protein Rab-2A (RAB2A) and Rab-2B (RAB2B) amongst other RAB proteins. In addition to these previously characterized PT proteins, our data revealed that the PT is replete in proteins critical for sperm-egg fusion and egg activation, including: Izumo family members 1–4 (IZUMO1-4) and phosphoinositide specific phospholipase ζ (PLCZ1). Through Ingenuity Pathway Analysis, we found surprising enrichment of endoplasmic reticulum (ER) proteins and the ER-stress response in the PT. This is particularly intriguing as it is currently held that the ER structure is lost during testicular sperm maturation. Using the String and Cytoscape tools to visualize protein-protein interactions revealed an intricate network of PT protein complexes, including numerous proteasome subunits. Collectively, these data suggest that the PT may be a unique site of cellular homeostasis that houses an abundance of protein degradation machinery. This fits with previous observations that the PT structure dissociates first within the oocyte post-fertilization. It remains to be explored whether proteasome subunits within the PT actively assist in the protein degradation of paternal cell structures post-fertilization and how aberrations in PT protein content may delay embryonic development.
Collapse
Affiliation(s)
- Min Zhang
- Department of Biomolecular Health Sciences and Department of Farm and Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Netherlands Proteomics Centre, Utrecht, Netherlands
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - David A. Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Tineke Veenendaal
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Netherlands Proteomics Centre, Utrecht, Netherlands
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - J. Bernd Helms
- Department of Biomolecular Health Sciences and Department of Farm and Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Bart M. Gadella
- Department of Biomolecular Health Sciences and Department of Farm and Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- *Correspondence: Bart M. Gadella,
| | - Elizabeth G. Bromfield
- Department of Biomolecular Health Sciences and Department of Farm and Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
12
|
Zhu T, Xu L, Peng J, Chen M, Xu H. Molecular characteristics and immune function of ubiquitin C-terminal hydrolase-L3 in Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2022; 121:295-304. [PMID: 35032678 DOI: 10.1016/j.fsi.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Ubiquitin C-terminal hydrolase-L3 (UCHL3) is a deubiquitinating enzyme involved in the repair mechanism of homologous recombinations of DNA double strand breaks (DBS). However, the role of UCHL3 in crustacean immune regulation has not been studied. In this experiment, we cloned and analyzed the expression profile of the UCHL3 gene from Macrobrachium nipponense (MnUCHL3). The obtained full-length cDNA of the MnUCHL3 transcript was 1192 bp, and it had a 687 bp open reading frame encoding a 228 amino acid protein, and the structure of UCHL3 is highly similar to that of other invertebrates. Real-time PCR results indicated that MnUCHL3 was expressed in all detected tissues, with the highest expression levels in the hepatopancreas, and the expression of MnUCHL3 in the gill and hepatopancreas was downregulated to different degrees within 48 h after the infection of viruses and bacteria. Furthermore, knockdown of MnUCHL3 expression by double-stranded RNA (dsRNA) injection in Aeromonas hydrophila-infected prawns increased prawn mortality and bacterial growth. In addition, overexpression of MnUCHL3 in HEK293T cells in vitro suggested that MnUCHL3 could activate the NF-κB signal path and the expression levels of NF-κB signaling cascade members and AMPs, exhibiting remarkable downregulation in the MnUCHL3-silenced group. The above experimental conclusions revealed that UCHL3 gene might be involved in the innate immune response to bacterial infection by regulating the synthesis of a series of AMPs, and these results might provide new insights into UCHL3 in invertebrates.
Collapse
Affiliation(s)
- Tingyao Zhu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Liaoyi Xu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Jiacheng Peng
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Ming Chen
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Haisheng Xu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China; South Taihu Lake Modern Agricultural Science and Technology Extension Center of Huzhou, Zhejiang University, 768, Luwang Road, Huzhou, 313000, Zhejiang Province, China.
| |
Collapse
|
13
|
Arunkumar R, Kumaresan A, Sinha MK, Elango K, Ebenezer Samuel King JP, Nag P, Karuthadurai T, Baithalu RK, Mohanty TK, Kumar R, Datta TK. The cryopreservation process induces alterations in proteins associated with bull sperm quality: The equilibration process could be a probable critical control point. Front Endocrinol (Lausanne) 2022; 13:1064956. [PMID: 36568066 PMCID: PMC9787546 DOI: 10.3389/fendo.2022.1064956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
The present study quantitatively characterized the proteomic changes in bull spermatozoa induced by the cryopreservation process. We performed high-throughput comparative global proteomic profiling of freshly ejaculated (before cryopreservation), equilibrated (refrigerated storage; during cryopreservation), and frozen (ultralow temperature; after cryopreservation) bull spermatozoa. Using the liquid chromatography-mass spectrometry (LC-MS/MS) technique, a total of 1,692, 1,415, and 1,286 proteins were identified in fresh, equilibrated, and cryopreserved spermatozoa, respectively. When the proteome of fresh spermatozoa was compared with equilibrated spermatozoa, we found that 166 proteins were differentially expressed. When equilibrated spermatozoa were compared with cryopreserved spermatozoa, we found that 147 proteins were differentially expressed between them. Similarly, we found that 156 proteins were differentially expressed between fresh and cryopreserved spermatozoa. Among these proteins, the abundance of 105 proteins was lowered during the equilibration process itself, while the abundance of 43 proteins was lowered during ultralow temperature preservation. Remarkably, the equilibration process lowered the abundance of sperm proteins involved in energy metabolism, structural integrity, and DNA repair and increased the abundance of proteins associated with proteolysis and protein degradation. The abundance of sperm proteins associated with metabolism, cGMP-PKG (cyclic guanosine 3',5'-monophosphate-dependent protein kinase G) signaling, and regulation of the actin cytoskeleton was also altered during the equilibration process. Collectively, the present study showed that the equilibration step in the bull sperm cryopreservation process was the critical point for sperm proteome, during which a majority of proteomic alterations in sperm occurred. These findings are valuable for developing efficient protocols to minimize protein damage and to improve the quality and fertility of cryopreserved bull spermatozoa.
Collapse
Affiliation(s)
- Ramasamy Arunkumar
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
- *Correspondence: Arumugam Kumaresan, ;
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Kamaraj Elango
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | | | - Pradeep Nag
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Thirumalaisamy Karuthadurai
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Rubina Kumari Baithalu
- Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, India
| | - Tushar Kumar Mohanty
- Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, India
| | - Rakesh Kumar
- Animal Genomics Laboratory, Indian Council for Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Genomics Laboratory, Indian Council for Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, India
| |
Collapse
|
14
|
Influence of the Season and Region Factor on Phosphoproteome of Stallion Epididymal Sperm. Animals (Basel) 2021; 11:ani11123487. [PMID: 34944263 PMCID: PMC8697920 DOI: 10.3390/ani11123487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Epididymal maturation can be defined as a scope of changes occurring during epididymal transit that prepare spermatozoa to undergo capacitation. One of the most common post-translational modifications involved in the sperm maturation process and their ability to fertilise an oocyte is the phosphorylation of sperm proteins. The aim of this study was to compare tyrosine, serine, and threonine phosphorylation patterns of sperm proteins isolated from three subsequent segments of the stallion epididymis, during and out of the breeding season. Intensities of phosphorylation signals and phosphoproteins profiles varied in consecutive regions of the epididymis. However, significant differences in the phosphorylation status were demonstrated in case of endoplasmic reticulum chaperone BiP (75 and 32 kDa), protein disulfide-isomerase A3 (50 kDa), nesprin-1 (23 kDa), peroxiredoxin-5 (17 kDa), and protein bicaudal D homolog (15 kDa) for season x type of phosphorylated residues variables. Significant differences in the phosphorylation status were also demonstrated in case of endoplasmic reticulum chaperone BiP and albumin (61 kDa), protein disulfide-isomerase A3 (50 kDa), and protein bicaudal D homolog (15 kDa) for region x type of phosphorylated residues variables.
Collapse
|
15
|
UCH-L1 inhibitor LDN-57444 hampers mouse oocyte maturation by regulating oxidative stress and mitochondrial function and reducing ERK1/2 expression. Biosci Rep 2021; 40:226606. [PMID: 33030206 PMCID: PMC7601359 DOI: 10.1042/bsr20201308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022] Open
Abstract
Oocyte maturation is a prerequisite for successful fertilization and embryo development. Incomplete oocyte maturation can result in infertility. Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) has been found to be implicated in oocyte maturation and embryo development. However, the cellular and molecular mechanisms of UCH-L1 underlying oocyte maturation have not been fully elucidated. In the present study, we observed that the introduction of UCH-L1 inhibitor LDN-57444 suppressed first polar body extrusion during mouse oocyte maturation. The inhibition of UCH-L1 by LDN-57444 led to the notable increase in reactive oxygen species (ROS) level, conspicuous reduction in glutathione (GSH) content and mitochondrial membrane potential (MMP), and blockade of spindle body formation. As a conclusion, UCH-L1 inhibitor LDN-57444 suppressed mouse oocyte maturation by improving oxidative stress, attenuating mitochondrial function, curbing spindle body formation and down-regulating extracellular signal-related kinases (ERK1/2) expression, providing a deep insight into the cellular and molecular basis of UCH-L1 during mouse oocyte maturation.
Collapse
|
16
|
Komsky-Elbaz A, Kalo D, Roth Z. Carryover effect of atrazine and its metabolite-from treated bovine spermatozoa to the embryo's transcriptome†. Biol Reprod 2021; 104:1162-1180. [PMID: 33624745 DOI: 10.1093/biolre/ioab027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/14/2021] [Accepted: 02/15/2021] [Indexed: 01/20/2023] Open
Abstract
Atrazine (ATZ) is an extensively used herbicide and ubiquitous environmental contaminant. ATZ and its metabolite, diaminochlorotriazine (DACT), cause several cellular and functional alterations in spermatozoa. We aimed to examine the effect of ATZ/DACT on spermatozoon DNA integrity, fertilization competence, embryonic development, and transcriptome profile of in vitro-produced embryos derived from fertilization with pre-exposed sperm. Bovine spermatozoa exposed to ATZ (0.1 or 1 μM) or DACT (1 or 10 μM) during in vitro capacitation were used for in vitro fertilization of untreated oocytes. Cleavage and blastocyst-formation rates were evaluated 42 h and 7 days postfertilization, respectively. The association between DNA fragmentation and apoptosis (annexin V kit) was determined. Fertilization competence of annexin-positive (AV+) and annexin-negative (AV-) spermatozoa was examined. Microarray analysis was performed for 7-day blastocysts. Intracytoplasmic sperm injection was performed with control (AV+, AV-) and DACT (AV+, AV-) spermatozoa. Cleavage rates did not differ between groups and blastocyst formation tended to be higher for AV- vs. AV+ in both control and DACT groups, suggesting that acrosome reaction, rather than DNA fragmentation, underlies the reduced cleavage. Transcriptomic analysis revealed 139 and 230 differentially expressed genes in blastocysts derived from ATZ- and DACT-exposed spermatozoa, respectively, relative to controls. Proteomic analysis shown differential expression of proteins in ATZ- or DACT-treated spermatozoa, in particular proteins related to cellular processes and biological pathways. Therefore, we assume that factors delivered by the spermatozoa, regardless of DNA fragmentation, are also involved. Overall, the current study reveals a deleterious carryover effect of ATZ/DACT from the spermatozoa to the developing embryo.
Collapse
Affiliation(s)
- A Komsky-Elbaz
- Department of Animal Sciences, The Hebrew University, Rehovot, Israel.,Animal Sperm Research Center, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Center of Excellence in Agriculture and Environmental Health, Jerusalem, Israel
| | - D Kalo
- Department of Animal Sciences, The Hebrew University, Rehovot, Israel.,Animal Sperm Research Center, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Center of Excellence in Agriculture and Environmental Health, Jerusalem, Israel
| | - Z Roth
- Department of Animal Sciences, The Hebrew University, Rehovot, Israel.,Animal Sperm Research Center, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Center of Excellence in Agriculture and Environmental Health, Jerusalem, Israel
| |
Collapse
|
17
|
van Tilburg GBA, Murachelli AG, Fish A, van der Heden van Noort GJ, Ovaa H, Sixma TK. K27-Linked Diubiquitin Inhibits UCHL3 via an Unusual Kinetic Trap. Cell Chem Biol 2020; 28:191-201.e8. [PMID: 33238157 DOI: 10.1016/j.chembiol.2020.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/25/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
Functional analysis of lysine 27-linked ubiquitin chains (K27Ub) is difficult due to the inability to make them through enzymatic methods and due to a lack of model tools and substrates. Here we generate a series of ubiquitin (Ub) tools to study how the deubiquitinase UCHL3 responds to K27Ub chains in comparison to lysine 63-linked chains and mono-Ub. From a crystal structure of a complex between UCHL3 and synthetic K27Ub2, we unexpectedly discover that free K27Ub2 and K27Ub2-conjugated substrates are natural inhibitors of UCHL3. Using our Ub tools to profile UCHL3's activity, we generate a quantitative kinetic model of the inhibitory mechanism and we find that K27Ub2 can inhibit UCHL3 covalently, by binding to its catalytic cysteine, and allosterically, by locking its catalytic loop tightly in place. Based on this inhibition mechanism, we propose that UCHL3 and K27Ub chains likely sense and regulate each other in cells.
Collapse
Affiliation(s)
- Gabriëlle B A van Tilburg
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Andrea G Murachelli
- Department of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Alexander Fish
- Department of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Gerbrand J van der Heden van Noort
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| | - Huib Ovaa
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Titia K Sixma
- Department of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Hao L, Song D, Zhuang M, Shi Y, Yu L, He Y, Wang J, Zhang T, Sun Z. Gene UCHL1 expresses specifically in mouse uterine decidual cells in response to estrogen. Histochem Cell Biol 2020; 154:275-286. [PMID: 32451617 DOI: 10.1007/s00418-020-01880-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2020] [Indexed: 12/01/2022]
Abstract
UCHL1 is expressed specifically in the brain and gonads of almost all studied model organisms including Drosophila, zebrafish, amphibians, and mammals, suggesting a high degree of evolutionary conservation in its structure and function. Although UCHL1 has been involved in spermatogenesis in mice, its specific expression in mammal placenta remains elusive. Our previous work has revealed that UCHL1 is highly expressed in oocytes, and has been involved in mouse ovarian follicular development. Here, we further examined UCHL1 expression change in endometria during early natural pregnancy, with different stages of the estrous cycle and pseudopregnancy as control. The UCHL1 gene deletion model showed that UCHL1 protein is associated with endometrial development, and its deletion leads to infertility. Notably, we demonstrate evidence showing the distinct expression pattern of UCHL1: weak expression over the uterine endometria, strong expression in decidualized stromal cells at the implantation site with a peak at pregnancy D6, and a shift with primary decidualization to secondary decidualized zones. Using the delayed implantation, the delayed implantation activation, and the artificial decidualization models, we have demonstrated that strong expression of UCHL1 occurred in response to decidualization and estrogen stimulation. These observations suggest that during the early proliferation and differentiation of mouse uterine decidua, UCHL1 expression is up-regulated, and formed an unique intracellular distribution mode. Therefore, we proposed that UCHL1 is involved in decidualization, and possibly in response to estrogen regulation.
Collapse
Affiliation(s)
- Lishuang Hao
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China.,Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People's Republic of China.,Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, 200082, China
| | - Di Song
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China
| | - Mengfei Zhuang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People's Republic of China
| | - Yan Shi
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China
| | - Lin Yu
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yaping He
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jian Wang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China
| | - Tingting Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People's Republic of China.
| | - Zhaogui Sun
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
19
|
Gross N, Peñagaricano F, Khatib H. Integration of whole-genome DNA methylation data with RNA sequencing data to identify markers for bull fertility. Anim Genet 2020; 51:502-510. [PMID: 32323873 DOI: 10.1111/age.12941] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
Predicting bull fertility prior to breeding is a current challenge for the dairy industry. The use of molecular biomarkers has been previously assessed. However, the integration of this information has not been performed to extract biologically relevant markers. The goal of this study was to integrate DNA methylation data with previously published RNA-sequencing results in order to identify candidate markers for sire fertility. A total of 1765 differentially methylated cytosines were found between high- and low-fertility sires. Ten genes associated with 11 differentially methylated cytosines were found in a previous study of gene expression between high- and low-fertility sires. Additionally, two of these genes code for proteins found exclusively in bull seminal plasma. Collectively, our results reveal 10 genes that could be used in the future as a panel for predicting bull fertility.
Collapse
Affiliation(s)
- Nicole Gross
- Department of Animal Sciences, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Hasan Khatib
- Department of Animal Sciences, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
20
|
Kerns K, Sharif M, Zigo M, Xu W, Hamilton LE, Sutovsky M, Ellersieck M, Drobnis EZ, Bovin N, Oko R, Miller D, Sutovsky P. Sperm Cohort-Specific Zinc Signature Acquisition and Capacitation-Induced Zinc Flux Regulate Sperm-Oviduct and Sperm-Zona Pellucida Interactions. Int J Mol Sci 2020; 21:ijms21062121. [PMID: 32204514 PMCID: PMC7139966 DOI: 10.3390/ijms21062121] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 01/19/2023] Open
Abstract
Building on our recent discovery of the zinc signature phenomenon present in boar, bull, and human spermatozoa, we have further characterized the role of zinc ions in the spermatozoa’s pathway to fertilization. In boar, the zinc signature differed between the three major boar ejaculate fractions, the initial pre-rich, the sperm-rich, and the post-sperm-rich fraction. These differences set in the sperm ejaculatory sequence establish two major sperm cohorts with marked differences in their sperm capacitation progress. On the subcellular level, we show that the capacitation-induced Zn-ion efflux allows for sperm release from oviductal glycans as analyzed with the oviductal epithelium mimicking glycan binding assay. Sperm zinc efflux also activates zinc-containing enzymes and proteases involved in sperm penetration of the zona pellucida, such as the inner acrosomal membrane matrix metalloproteinase 2 (MMP2). Both MMP2 and the 26S proteasome showed severely reduced activity in the presence of zinc ions, through studies using by gel zymography and the fluorogenic substrates, respectively. In the context of the fertilization-induced oocyte zinc spark and the ensuing oocyte-issued polyspermy-blocking zinc shield, the inhibitory effect of zinc on sperm-borne enzymes may contribute to the fast block of polyspermy. Altogether, our findings establish a new paradigm on the role of zinc ions in sperm function and pave the way for the optimization of animal semen analysis, artificial insemination (AI), and human male-factor infertility diagnostics.
Collapse
Affiliation(s)
- Karl Kerns
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300, USA; (K.K.); (M.Z.); (L.E.H.); (M.S.); (M.E.)
| | - Momal Sharif
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (M.S.); (D.M.)
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300, USA; (K.K.); (M.Z.); (L.E.H.); (M.S.); (M.E.)
| | - Wei Xu
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3 N6, Canada; (W.X.); (R.O.)
| | - Lauren E. Hamilton
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300, USA; (K.K.); (M.Z.); (L.E.H.); (M.S.); (M.E.)
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3 N6, Canada; (W.X.); (R.O.)
| | - Miriam Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300, USA; (K.K.); (M.Z.); (L.E.H.); (M.S.); (M.E.)
| | - Mark Ellersieck
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300, USA; (K.K.); (M.Z.); (L.E.H.); (M.S.); (M.E.)
| | - Erma Z. Drobnis
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65211-5300, USA;
| | - Nicolai Bovin
- Shemyakin Institute of Bioorganic Chemistry, Moscow 117997, Russia;
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3 N6, Canada; (W.X.); (R.O.)
| | - David Miller
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (M.S.); (D.M.)
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300, USA; (K.K.); (M.Z.); (L.E.H.); (M.S.); (M.E.)
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65211-5300, USA;
- Correspondence: ; Tel.: +1-573-882-3329
| |
Collapse
|
21
|
Zigo M, Maňásková-Postlerová P, Zuidema D, Kerns K, Jonáková V, Tůmová L, Bubeníčková F, Sutovsky P. Porcine model for the study of sperm capacitation, fertilization and male fertility. Cell Tissue Res 2020; 380:237-262. [PMID: 32140927 DOI: 10.1007/s00441-020-03181-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Mammalian fertilization remains a poorly understood event with the vast majority of studies done in the mouse model. The purpose of this review is to revise the current knowledge about semen deposition, sperm transport, sperm capacitation, gamete interactions and early embryonic development with a focus on the porcine model as a relevant, alternative model organism to humans. The review provides a thorough overview of post-ejaculation events inside the sow's reproductive tract including comparisons with humans and implications for human fertilization and assisted reproductive therapy (ART). Porcine methodology for sperm handling, preservation, in vitro capacitation, oocyte in vitro maturation, in vitro fertilization and intra-cytoplasmic sperm injection that are routinely used in pig research laboratories can be successfully translated into ART to treat human infertility. Last, but not least, new knowledge about mitochondrial inheritance in the pig can provide an insight into human mitochondrial diseases and new knowledge on polyspermy defense mechanisms could contribute to the development of new male contraceptives.
Collapse
Affiliation(s)
- Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Pavla Maňásková-Postlerová
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czech Republic.,Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16521, Prague, Czech Republic
| | - Dalen Zuidema
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Karl Kerns
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Věra Jonáková
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czech Republic
| | - Lucie Tůmová
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16521, Prague, Czech Republic
| | - Filipa Bubeníčková
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16521, Prague, Czech Republic
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.,Department of Obstetrics, Gynecology & Women's Health, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
22
|
Kelsey KM, Zigo M, Thompson WE, Kerns K, Manandhar G, Sutovsky M, Sutovsky P. Reciprocal surface expression of arylsulfatase A and ubiquitin in normal and defective mammalian spermatozoa. Cell Tissue Res 2020; 379:561-576. [PMID: 31897834 DOI: 10.1007/s00441-019-03144-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/14/2019] [Indexed: 01/03/2023]
Abstract
Defective mammalian spermatozoa are marked on their surface by proteolytic chaperone ubiquitin. To identify potential ubiquitinated substrates in the defective spermatozoa, we resolved bull sperm protein extracts on a two-dimensional gel and isolated a 64-65-kDa spot (p64) corresponding to one of the major ubiquitin-immunoreactive bands observed in the one-dimensional Western blots. Immune serum raised against this protein recognized a prominent, possibly glycosylated band/spot in the range of 55-68 kDa, consistent with the original spot used for immunization. Internal sequences obtained by Edman degradation of this spot matched the sequence of arylsulfatase A (ARSA), the sperm acrosomal enzyme thought to be important for fertility. By immunofluorescence, a prominent signal was detected on the acrosomal surface (boar and bull) and on the sperm tail principal piece (bull). A second immune serum raised against a synthetic peptide corresponding to an immunogenic internal sequence (GTGKSPRRTL) of the porcine ARSA also labeled sperm acrosome and principal piece. Both sera showed diminished immunoreactivity in the defective bull spermatozoa co-labeled with an anti-ubiquitin antibody. Western blotting and image-based flow cytometry (IBFC) confirmed a reduced ARSA immunoreactivity in the immotile sperm fraction rich in ubiquitinated spermatozoa. Larger than expected ARSA-immunoreactive bands were found in sperm protein extracts immunoprecipitated with anti-ubiquitin antibodies and affinity purified with matrix-bound, recombinant ubiquitin-binding UBA domain. These bands did not show the typical pattern of ARSA glycosylation but overlapped with bands preferentially binding the Lens culinaris agglutinin (LCA) lectin. By both epifluorescence microscopy and IBFC, the LCA binding was increased in the ubiquitinated spermatozoa with diminished ARSA immunoreactivity. ARSA was also found in the epididymal fluid suggesting that in addition to intrinsic ARSA expression in the testis, epididymal spermatozoa take up ARSA on their surface during the epididymal passage. We conclude that sperm surface ARSA is one of the ubiquitinated sperm surface glycoproteins in defective bull spermatozoa. Defective sperm surface thus differs from normal sperm surface by increased ubiquitination, reduced ARSA binding, and altered glycosylation.
Collapse
Affiliation(s)
- Kathleen M Kelsey
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA.
| | - Winston E Thompson
- Departments of Obstetrics & Gynecology and Reproductive Health Program, Morehouse School of Medicine, 720 Westview Dr SW, Atlanta, GA, 30310, USA
| | - Karl Kerns
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA
| | - Gaurishankar Manandhar
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Miriam Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA
- Departments of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
23
|
Zuidema D, Sutovsky P. The domestic pig as a model for the study of mitochondrial inheritance. Cell Tissue Res 2019; 380:263-271. [DOI: 10.1007/s00441-019-03100-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
|
24
|
Review: Sperm-oocyte interactions and their implications for bull fertility, with emphasis on the ubiquitin-proteasome system. Animal 2018; 12:s121-s132. [PMID: 29477154 DOI: 10.1017/s1751731118000253] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fertilization is an intricate cascade of events that irreversibly alter the participating male and female gamete and ultimately lead to the union of paternal and maternal genomes in the zygote. Fertilization starts with sperm capacitation within the oviductal sperm reservoir, followed by gamete recognition, sperm-zona pellucida interactions and sperm-oolemma adhesion and fusion, followed by sperm incorporation, oocyte activation, pronuclear development and embryo cleavage. At fertilization, bull spermatozoon loses its acrosome and plasma membrane components and contributes chromosomes, centriole, perinuclear theca proteins and regulatory RNAs to the zygote. While also incorporated in oocyte cytoplasm, structures of the sperm tail, including mitochondrial sheath, axoneme, fibrous sheath and outer dense fibers are degraded and recycled. The ability of some of these sperm contributed components to give rise to functional zygotic structures and properly induce embryonic development may vary between bulls, bearing on their reproductive performance, and on the fitness, health, fertility and production traits of their offspring. Proper functioning, recycling and remodeling of gamete structures at fertilization is aided by the ubiquitin-proteasome system (UPS), the universal substrate-specific protein recycling pathway present in bovine and other mammalian oocytes and spermatozoa. This review is focused on the aspects of UPS relevant to bovine fertilization and bull fertility.
Collapse
|
25
|
Casares-Crespo L, Fernández-Serrano P, Vicente JS, Marco-Jiménez F, Viudes-de-Castro MP. Rabbit seminal plasma proteome: The importance of the genetic origin. Anim Reprod Sci 2017; 189:30-42. [PMID: 29274750 DOI: 10.1016/j.anireprosci.2017.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/29/2017] [Accepted: 12/10/2017] [Indexed: 12/14/2022]
Abstract
The present study was conducted to characterise rabbit seminal plasma proteins (SP proteins) focusing on the influence of the genetic origin and seasonality. In addition, β-NGF protein quantity in SP was determined. Semen samples were recovered from January to December 2014 using 6 males belonging to genotype A and six from genotype R. For each genotype, one pooled sample at the beginning, middle and end of each season was selected to develop the experiment. A total of 24 pools (3 for each season and genetic line) were analysed. SP proteins of the two experimental groups were recovered and subjected to in-solution digestion nano LC-MS/MS and bioinformatics analysis. The resulting library included 402 identified proteins validated with ≥95% Confidence (unused Score ≥ 1.3). These data are available via ProteomeXchange with identifier PXD006308. Only 6 proteins were specifically implicated in reproductive processes according to Gene Ontology annotation. Twenty-three proteins were differentially expressed between genotypes, 11 over-expressed in genotype A and 12 in genotype R. Regarding the effect of season on rabbit SP proteome, results showed that there is no clear pattern of protein variation throughout the year. Similar β-NGF relative quantity was observed between seasons and genotypes. In conclusion, this study generates the largest library of SP proteins reported to date in rabbits and provides evidence that genotype is related to a specific abundance of SP proteins.
Collapse
Affiliation(s)
- Lucía Casares-Crespo
- Animal Technology and Research Center (CITA), Instituto Valenciano de Investigaciones Agrarias (IVIA), Polígono La Esperanza n° 100, 12400 Segorbe, Castellón, Spain
| | - Paula Fernández-Serrano
- Animal Technology and Research Center (CITA), Instituto Valenciano de Investigaciones Agrarias (IVIA), Polígono La Esperanza n° 100, 12400 Segorbe, Castellón, Spain
| | - José S Vicente
- Institute of Science and Animal Technology (ICTA), Universitat Politècnica de València, 46022 Valencia, Spain
| | - Francisco Marco-Jiménez
- Institute of Science and Animal Technology (ICTA), Universitat Politècnica de València, 46022 Valencia, Spain
| | - María Pilar Viudes-de-Castro
- Animal Technology and Research Center (CITA), Instituto Valenciano de Investigaciones Agrarias (IVIA), Polígono La Esperanza n° 100, 12400 Segorbe, Castellón, Spain.
| |
Collapse
|
26
|
Li P, Guo W, Yue H, Li C, Du H, Qiao X, Liu Z, Zhou Q, Wei Q. Variability in the protein profiles in spermatozoa of two sturgeon species. PLoS One 2017; 12:e0186003. [PMID: 29077704 PMCID: PMC5659609 DOI: 10.1371/journal.pone.0186003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/22/2017] [Indexed: 11/19/2022] Open
Abstract
Conventional sperm analysis (i.e., motility and fertility) has been used to evaluate sperm quality. Understanding the quality of sperm on the molecular level in the sturgeons, Acipenser baerii and A. schrenckii, is essential for the improvement of the conservation of genetic resources and farming performance. In this study, we used the iTRAQ proteomics approach to perform proteomic profiling of spermatozoa associated with sperm quality in sturgeons (Data are available via ProteomeXchange with identifier PXD006108). The results showed 291 and 359 differentially expressed proteins in A. baerii and A. schrenckii, respectively, of which 72 were common to both species and all were upregulated in high quality compared with low quality samples. The differentially expressed proteins were mainly categorized into the generation of precursor metabolites and energy and oxidation, and they were localized to the mitochondria. Three distinguishing pathways, Arginine and proline metabolism, Pyruvate metabolism and the Citrate cycle (TCA cycle) were found to play an important role in energy metabolism, and some substrates could be used in the sperm medium for storage and cryopreservation. The quantity levels of two proteins, CKMT1 and LDHB, were verified by western blot analysis. Moreover, other potential biomarkers involved in oxidation reduction, ubiquitin-proteasome-dependent proteolysis, chaperones and binding activity were also discussed. Our study is the first to use the iTRAQ-based proteomics approach to analyse the sturgeon spermatozoa proteome, and the results that we obtained are valuable for the prediction of sperm quality and reproduction management in these threatened species.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší, Vodňany, Czech Republic
| | - Wei Guo
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší, Vodňany, Czech Republic
| | - Huamei Yue
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Chuangju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xinmei Qiao
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Zhigang Liu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Qiong Zhou
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- * E-mail:
| |
Collapse
|
27
|
Use of focused ultrasonication in activity-based profiling of deubiquitinating enzymes in tissue. Anal Biochem 2016; 515:9-13. [PMID: 27663132 DOI: 10.1016/j.ab.2016.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/31/2016] [Accepted: 09/19/2016] [Indexed: 11/23/2022]
Abstract
To develop a reproducible tissue lysis method that retains enzyme function for activity-based protein profiling, we compared four different methods to obtain protein extracts from bovine lung tissue: focused ultrasonication, standard sonication, mortar & pestle method, and homogenization combined with standard sonication. Focused ultrasonication and mortar & pestle methods were sufficiently effective for activity-based profiling of deubiquitinases in tissue, and focused ultrasonication also had the fastest processing time. We used focused-ultrasonicator for subsequent activity-based proteomic analysis of deubiquitinases to test the compatibility of this method in sample preparation for activity-based chemical proteomics.
Collapse
|
28
|
Luo K, Li L, Li Y, Wu C, Yin Y, Chen Y, Deng M, Nowsheen S, Yuan J, Lou Z. A phosphorylation-deubiquitination cascade regulates the BRCA2-RAD51 axis in homologous recombination. Genes Dev 2016; 30:2581-2595. [PMID: 27941124 PMCID: PMC5204351 DOI: 10.1101/gad.289439.116] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/30/2016] [Indexed: 11/24/2022]
Abstract
Homologous recombination (HR) is one of the major DNA double-strand break (DSB) repair pathways in mammalian cells. Defects in HR trigger genomic instability and result in cancer predisposition. The defining step of HR is homologous strand exchange directed by the protein RAD51, which is recruited to DSBs by BRCA2. However, the regulation of the BRCA2-RAD51 axis remains unclear. Here we report that ubiquitination of RAD51 hinders RAD51-BRCA2 interaction, while deubiquitination of RAD51 facilitates RAD51-BRCA2 binding and RAD51 recruitment and thus is critical for proper HR. Mechanistically, in response to DNA damage, the deubiquitinase UCHL3 is phosphorylated and activated by ATM. UCHL3, in turn, deubiquitinates RAD51 and promotes the binding between RAD51 and BRCA2. Overexpression of UCHL3 renders breast cancer cells resistant to radiation and chemotherapy, while depletion of UCHL3 sensitizes cells to these treatments, suggesting a determinant role of UCHL3 in cancer therapy. Overall, we identify UCHL3 as a novel regulator of DNA repair and reveal a model in which a phosphorylation-deubiquitination cascade dynamically regulates the BRCA2-RAD51 pathway.
Collapse
Affiliation(s)
- Kuntian Luo
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Lei Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yunhui Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Chenming Wu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yujiao Yin
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuping Chen
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Min Deng
- Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic School of Medicine, Rochester, Minnesota 55905, USA
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA.,Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
29
|
Gaitán-Espitia JD, Sánchez R, Bruning P, Cárdenas L. Functional insights into the testis transcriptome of the edible sea urchin Loxechinus albus. Sci Rep 2016; 6:36516. [PMID: 27805042 PMCID: PMC5090362 DOI: 10.1038/srep36516] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/13/2016] [Indexed: 11/21/2022] Open
Abstract
The edible sea urchin Loxechinus albus (Molina, 1782) is a keystone species in the littoral benthic systems of the Pacific coast of South America. The international demand for high-quality gonads of this echinoderm has led to an extensive exploitation and decline of its natural populations. Consequently, a more thorough understanding of L. albus gonad development and gametogenesis could provide valuable resources for aquaculture applications, management, conservation and studies about the evolution of functional and structural pathways that underlie the reproductive toolkit of marine invertebrates. Using a high-throughput sequencing technology, we explored the male gonad transcriptome of this highly fecund sea urchin. Through a de novo assembly approach we obtained 42,530 transcripts of which 15,544 (36.6%) had significant alignments to known proteins in public databases. From these transcripts, approximately 73% were functionally annotated allowing the identification of several candidate genes that are likely to play a central role in developmental processes, nutrient reservoir activity, sexual reproduction, gamete generation, meiosis, sex differentiation, sperm motility, male courtship behavior and fertilization. Additionally, comparisons with the male gonad transcriptomes of other echinoderms revealed several conserved orthologous genes, suggesting that similar functional and structural pathways underlie the reproductive development in this group and other marine invertebrates.
Collapse
Affiliation(s)
- Juan Diego Gaitán-Espitia
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Casilla 567 Valdivia, Chile
- CSIRO Oceans & Atmosphere, GPO Box 1538, Hobart 7001, TAS, Australia
| | - Roland Sánchez
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Casilla 567 Valdivia, Chile
| | - Paulina Bruning
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Casilla 567 Valdivia, Chile
| | - Leyla Cárdenas
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Casilla 567 Valdivia, Chile
| |
Collapse
|
30
|
Wang M, Yu T, Hu L, Cheng Z, Li M. Ubiquitin Carboxy-Terminal HydrolaseL3 Correlates with Human Sperm Count, Motility and Fertilization. PLoS One 2016; 11:e0165198. [PMID: 27780264 PMCID: PMC5079596 DOI: 10.1371/journal.pone.0165198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/08/2016] [Indexed: 11/19/2022] Open
Abstract
Ubiquitin C-terminal hydrolase L3 (UCHL3) belongs to the group of deubiquitinating enzymes and plays a part in apoptosis of germ cells and the differentiation of spermatocytes into spermatids. However, the exact role of UCHL3 in human spermatogenesis and sperm function remains unknown. Here we examined the level and activity of UCHL3 in spermatozoa from men with asthenozoospermia (A), oligoasthenozoospermia (OA) or normozoospermia (N). Immunofluorescence indicated that UCHL3 was mainly localized in the acrosome and throughout the flagella, and western blotting revealed a lower level in A or OA compared with N (p < 0.05). The catalytic activity of UCHL3 was decreased in spermatozoa from A or OA (p < 0.05, p < 0.001, respectively). The level and activity of UCHL3 were positively correlated with sperm count, concentration and motility. The UCHL3 level was positively correlated with the normal fertilization rate (FR) and percentage of embryos suitable for transfer/cryopreservation of in vitro fertilization (IVF). The UCHL3 activity was also positively correlated with FR, the percentage of embryos suitable for transfer/cryopreservation and high-quality embryos rate of IVF. Aforementioned correlations were not manifested in intra-cytoplasmic sperm injection (ICSI). These findings suggest that UCHL3 may play a role in male infertility.
Collapse
Affiliation(s)
- Meijiao Wang
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
- Key Medical Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tinghe Yu
- Key Medical Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lina Hu
- Key Medical Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Center of Reproductive Medicine of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhi Cheng
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Min Li
- Center of Reproductive Medicine of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
31
|
Proteasome Inhibition Contributed to the Cytotoxicity of Arenobufagin after Its Binding with Na, K-ATPase in Human Cervical Carcinoma HeLa Cells. PLoS One 2016; 11:e0159034. [PMID: 27428326 PMCID: PMC4948917 DOI: 10.1371/journal.pone.0159034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 06/27/2016] [Indexed: 11/25/2022] Open
Abstract
Although the possibility of developing cardiac steroids/cardiac glycosides as novel cancer therapeutic agents has been recognized, the mechanism of their anticancer activity is still not clear enough. Toad venom extract containing bufadienolides, which belong to cardiac steroids, has actually long been used as traditional Chinese medicine in clinic for cancer therapy in China. The cytotoxicity of arenobufagin, a bufadienolide isolated from toad venom, on human cervical carcinoma HeLa cells was checked. And, the protein expression profile of control HeLa cells and HeLa cells treated with arenobufagin for 48 h was analyzed using two-dimensional electrophoresis, respectively. Differently expressed proteins in HeLa cells treated with arenobufagin were identified and the pathways related to these proteins were mapped from KEGG database. Computational molecular docking was performed to verify the binding of arenobufagin and Na, K-ATPase. The effects of arenobufagin on Na, K-ATPase activity and proteasome activity of HeLa cells were checked. The protein-protein interaction network between Na, K-ATPase and proteasome was constructed and the expression of possible intermediate proteins ataxin-1 and translationally-controlled tumor protein in HeLa cells treated with arenobufagin was then checked. Arenobufagin induced apoptosis and G2/M cell cycle arrest in HeLa cells. The cytotoxic effect of arenobufagin was associated with 25 differently expressed proteins including proteasome-related proteins, calcium ion binding-related proteins, oxidative stress-related proteins, metabolism-related enzymes and others. The results of computational molecular docking revealed that arenobufagin was bound in the cavity formed by the transmembrane alpha subunits of Na, K-ATPase, which blocked the pathway of extracellular Na+/K+ cation exchange and inhibited the function of ion exchange. Arenobufagin inhibited the activity of Na, K-ATPase and proteasome, decreased the expression of Na, K-ATPase α1 and α3 subunits and increased the expression of WEE1 in HeLa cells. Antibodies against Na, K-ATPase α1 and α3 subunits alone or combinated with arenobufagin also inhibited the activity of proteasome. Furthermore, the expression of the possible intermediate proteins ataxin-1 and translationally-controlled tumor protein was increased in HeLa cells treated with arenobufagin by flow cytometry analysis, respectively. These results indicated that arenobufagin might directly bind with Na, K-ATPase α1 and α3 subunits and the inhibitive effect of arenobufagin on proteasomal activity of HeLa cells might be related to its binding with Na, K-ATPase.
Collapse
|
32
|
Chandrasekaran AP, Suresh B, Kim HH, Kim KS, Ramakrishna S. Concise Review: Fate Determination of Stem Cells by Deubiquitinating Enzymes. Stem Cells 2016; 35:9-16. [PMID: 27341175 DOI: 10.1002/stem.2446] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/05/2016] [Indexed: 12/22/2022]
Abstract
Post-translational modification by ubiquitin molecules is a key regulatory process for stem cell fate determination. Ubiquitination and deubiquitination are the major cellular processes used to balance the protein turnover of several transcription factors that regulate stem cell differentiation. Deubiquitinating enzymes (DUBs), which facilitate the processing of ubiquitin, significantly influence stem cell fate choices. Specifically, DUBs play a critical regulatory role during development by directing the production of new specialized cells. This review focuses on the regulatory role of DUBs in various cellular processes, including stem cell pluripotency and differentiation, adult stem cell signaling, cellular reprogramming, spermatogenesis, and oogenesis. Specifically, the identification of interactions of DUBs with core transcription factors has provided new insight into the role of DUBs in regulating stem cell fate determination. Thus, DUBs have emerged as key pharmacologic targets in the search to develop highly specific agents to treat various illnesses. Stem Cells 2017;35:9-16.
Collapse
Affiliation(s)
| | - Bharathi Suresh
- Department of Pharmacology and Brain Korea 21 plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyongbum Henry Kim
- Department of Pharmacology and Brain Korea 21 plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,College of Medicine, Hanyang University, Seoul, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,College of Medicine, Hanyang University, Seoul, South Korea
| |
Collapse
|
33
|
Hennings JM, Zimmer RL, Nabli H, Davis JW, Sutovsky P, Sutovsky M, Sharpe-Timms KL. Improved Murine Blastocyst Quality and Development in a Single Culture Medium Compared to Sequential Culture Media. Reprod Sci 2015; 23:310-7. [PMID: 26668049 DOI: 10.1177/1933719115618281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Validate single versus sequential culture media for murine embryo development. DESIGN Prospective laboratory experiment. SETTING Assisted Reproduction Laboratory. ANIMALS Murine embryos. INTERVENTIONS Thawed murine zygotes cultured for 3 or 5 days (d3 or d5) in single or sequential embryo culture media developed for human in vitro fertilization. MAIN OUTCOME MEASURES On d3, zygotes developing to the 8 cell (8C) stage or greater were quantified using 4',6-diamidino-2-phenylindole (DAPI), and quality was assessed by morphological analysis. On d5, the number of embryos reaching the blastocyst stage was counted. DAPI was used to quantify total nuclei and inner cell mass nuclei. Localization of ubiquitin C-terminal hydrolase L1 (UCHL1) and ubiquitin C-terminal hydrolase L3 (UCHL3) was reference points for evaluating cell quality. RESULTS Comparing outcomes in single versus to sequential media, the odds of embryos developing to the 8C stage on d3 were 2.34 time greater (P = .06). On d5, more embryos reached the blastocyst stage (P = <.0001), hatched, and had significantly more trophoblast cells (P = .005) contributing to the increased total cell number. Also at d5, localization of distinct cytoplasmic UCHL1 and nuclear UCHL3 was found in high-quality hatching blastocysts. Localization of UCHL1 and UCHL3 was diffuse and inappropriately dispersed throughout the cytoplasm in low-quality nonhatching blastocysts. CONCLUSIONS Single medium yields greater cell numbers, an increased growth rate, and more hatching of murine embryos. Cytoplasmic UCHL1 and nuclear UHCL3 localization patterns were indicative of embryo quality. Our conclusions are limited to murine embryos but one might speculate that single medium may also be more beneficial for human embryo culture. Human embryo studies are needed.
Collapse
Affiliation(s)
- Justin M Hennings
- Division of Reproductive and Perinatal Research, Department of Obstetrics, Gynecology and Women's Health, School of Medicine, Columbia, MO, USA Division of Animal Sciences, College of Agriculture, Food and Natural Resources, Columbia, MO, USA
| | - Randall L Zimmer
- Division of Reproductive and Perinatal Research, Department of Obstetrics, Gynecology and Women's Health, School of Medicine, Columbia, MO, USA
| | - Henda Nabli
- Division of Reproductive and Perinatal Research, Department of Obstetrics, Gynecology and Women's Health, School of Medicine, Columbia, MO, USA
| | - J Wade Davis
- Department of Health Management and Informatics, School of Medicine, The University of Missouri, Columbia, MO, USA Department of Statistics, College of Arts and Sciences, The University of Missouri, Columbia, MO, USA Biostatistics and Research Design, Galena Hall, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Reproductive and Perinatal Research, Department of Obstetrics, Gynecology and Women's Health, School of Medicine, Columbia, MO, USA Division of Animal Sciences, College of Agriculture, Food and Natural Resources, Columbia, MO, USA
| | - Miriam Sutovsky
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, Columbia, MO, USA
| | - Kathy L Sharpe-Timms
- Division of Reproductive and Perinatal Research, Department of Obstetrics, Gynecology and Women's Health, School of Medicine, Columbia, MO, USA Division of Animal Sciences, College of Agriculture, Food and Natural Resources, Columbia, MO, USA
| |
Collapse
|
34
|
Casillas F, Ducolomb Y, Lemus AE, Cuello C, Betancourt M. Porcine embryo production following in vitro fertilization and intracytoplasmic sperm injection from vitrified immature oocytes matured with a granulosa cell co-culture system. Cryobiology 2015; 71:299-305. [DOI: 10.1016/j.cryobiol.2015.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/23/2015] [Accepted: 08/03/2015] [Indexed: 11/15/2022]
|
35
|
López-Úbeda R, García-Vázquez FA, Romar R, Gadea J, Muñoz M, Hunter RHF, Coy P. Oviductal Transcriptome Is Modified after Insemination during Spontaneous Ovulation in the Sow. PLoS One 2015; 10:e0130128. [PMID: 26098421 PMCID: PMC4476686 DOI: 10.1371/journal.pone.0130128] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/18/2015] [Indexed: 12/12/2022] Open
Abstract
Gene Expression Microarray technology was used to compare oviduct transcriptome between inseminated and non-inseminated pigs during spontaneous oestrus. We used an in vivo model approaching the study from a physiological point of view in which no hormonal treatment (animals were in natural oestrus) and no artificial sperm selection (selection was performed within the female genital) were imposed. It is therefore emphasised that no surgical introduction of spermatozoa and no insemination at a site other than the physiological one were used. This approach revealed 17 genes that were two-fold or more up-regulated in oviducts exposed to spermatozoa and/or developing embryos and 9 genes that were two-fold or more down-regulated. Functional analysis of the genes revealed that the top canonical pathways affected by insemination were related to the inflammatory response and immune system (Network 1) to molecular transport, protein trafficking and developmental disorder (Network 2) and to cell-to-cell signalling and interaction (Network 3). Some of the genes in network 1 had been previously detected in the oviduct of human and animals, where they were over-expressed in the presence of spermatozoa or pre-implantation embryos (C3, IGHG1, ITIH4, TNF and SERPINE1) whereas others were not previously reported (SAA2, ALOX12, CD1D and SPP1). Genes in Network 2 included RAB1B and TOR3A, the latter being described for the first time in the oviduct and clearly expressed in the epithelial cells of the mucosa layer. Network 3 integrated the genes with the highest down-regulation level (CYP51, PTH1R and TMOD3). Data in the present study indicate a change in gene expression during gamete encounter at the site of fertilization after a natural sperm selection within the female genital tract. These changes would indicate a modification of the environment preparing the oviduct for a successful fertilization and for an adequate embryo early development.
Collapse
Affiliation(s)
- Rebeca López-Úbeda
- Department of Physiology, Veterinary Faculty, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | - Francisco A. García-Vázquez
- Department of Physiology, Veterinary Faculty, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain
| | - Raquel Romar
- Department of Physiology, Veterinary Faculty, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain
| | - Joaquín Gadea
- Department of Physiology, Veterinary Faculty, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain
| | - Marta Muñoz
- Centro de Biotecnología Animal—SERIDA, Deva, Gijón, Asturias, Spain
| | | | - Pilar Coy
- Department of Physiology, Veterinary Faculty, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain
- * E-mail:
| |
Collapse
|
36
|
Beek J, Maes D, Nauwynck H, Piepers S, Van Soom A. A critical assessment of the effect of serine protease inhibitors on porcine fertilization and quality parameters of porcine spermatozoa in vitro. Reprod Biol 2015; 15:9-19. [PMID: 25726372 DOI: 10.1016/j.repbio.2014.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 12/02/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
Abstract
Proteases play an important role during mammalian fertilization. Their function is frequently investigated using specific inhibitors. We analyzed four serine protease inhibitors [4-(2-aminoethyl) benzene sulfonyl fluoride hydrochloride (AEBSF), soybean trypsin inhibitor from glycine max (STI), Nα-tosyl-L-lysine-chloromethyl ketone hydrochloride (TLCK) and N(p)-tosyl-L-phenylalanine-chloromethyl ketone (TPCK)] for their in vitro effect on fertilization and sperm quality in pigs. Inhibitor concentrations were chosen based on the reduction of fertilization rate during preliminary dose-response experiments with cryopreserved epididymal spermatozoa. The inhibitor effects on in vitro fertilization (IVF) and sperm parameters (membrane and acrosomal integrity, motility and mitochondrial membrane potential - MMP) were evaluated using diluted fresh semen. AEBSF (100 μM), TLCK (100 μM) and TPCK (100 μM) decreased total fertilization and polyspermy rates by at least 50%. STI (5 μM) lowered total fertilization rates but not the level of polyspermy. AEBSF and TPCK reduced fertilization parameters to a similar degree using cryopreserved epididymal spermatozoa (dose-response experiment) or diluted fresh semen. Inhibition by STI was more pronounced using cryopreserved epididymal spermatozoa, whereas TLCK inhibited IVF only with diluted fresh semen. AEBSF and STI had no effect on sperm parameters, and TLCK significantly reduced motility. TPCK diminished MMP and motility and affected membrane and acrosomal integrity in a negative way. In summary, serine protease inhibitors differed in the way they reduce the fertilization rate. These results emphasize the necessity of inhibitor testing before they can be applied in fertilization studies. AEBSF and STI can be used in the future IVF studies without compromising sperm quality.
Collapse
Affiliation(s)
- J Beek
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium.
| | - D Maes
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - H Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - S Piepers
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - A Van Soom
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| |
Collapse
|
37
|
Yi YJ, Sutovsky M, Song WH, Sutovsky P. Protein deubiquitination during oocyte maturation influences sperm function during fertilisation, antipolyspermy defense and embryo development. Reprod Fertil Dev 2015; 27:1154-67. [DOI: 10.1071/rd14012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/08/2014] [Indexed: 01/08/2023] Open
Abstract
Ubiquitination is a covalent post-translational modification of proteins by the chaperone protein ubiquitin. Upon docking to the 26S proteasome, ubiquitin is released from the substrate protein by deubiquitinating enzymes (DUBs). We hypothesised that specific inhibitors of two closely related oocyte DUBs, namely inhibitors of the ubiquitin C-terminal hydrolases (UCH) UCHL1 (L1 inhibitor) and UCHL3 (L3 inhibitor), would alter porcine oocyte maturation and influence sperm function and embryo development. Aberrant cortical granule (CG) migration and meiotic spindle defects were observed in oocytes matured with the L1 or L3 inhibitor. Embryo development was delayed or blocked in oocytes matured with the general DUB inhibitor PR-619. Aggresomes, the cellular stress-inducible aggregates of ubiquitinated proteins, formed in oocytes matured with L1 inhibitor or PR-619, a likely consequence of impaired protein turnover. Proteomic analysis identified the major vault protein (MVP) as the most prominent protein accumulated in oocytes matured with PR-619, suggesting that the inhibition of deubiquitination altered the turnover of MVP. The mitophagy/autophagy of sperm-contributed mitochondria inside the fertilised oocytes was hindered by DUB inhibitors. It is concluded that DUB inhibitors alter porcine oocyte maturation, fertilisation and preimplantation embryo development. By regulating the turnover of oocyte proteins and mono-ubiquitin regeneration, the DUBs may promote the acquisition of developmental competence during oocyte maturation.
Collapse
|
38
|
Sakatani M, Yamanaka K, Balboula AZ, Takenouchi N, Takahashi M. Heat stress during in vitro fertilization decreases fertilization success by disrupting anti-polyspermy systems of the oocytes. Mol Reprod Dev 2014; 82:36-47. [DOI: 10.1002/mrd.22441] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/01/2014] [Indexed: 02/04/2023]
Affiliation(s)
- Miki Sakatani
- Livestock and Grassland Research Division; Kyushu Okinawa Agricultural Research Center; NARO; Kumamoto Japan
| | - Kenichi Yamanaka
- Livestock and Grassland Research Division; Kyushu Okinawa Agricultural Research Center; NARO; Kumamoto Japan
- Faculty of Agriculture; Saga University; Saga Japan
| | - Ahmed Z. Balboula
- Livestock and Grassland Research Division; Kyushu Okinawa Agricultural Research Center; NARO; Kumamoto Japan
- Faculty of Veterinary Medicine; Mansoura University; Mansoura Egypt
| | - Naoki Takenouchi
- Livestock and Grassland Research Division; Kyushu Okinawa Agricultural Research Center; NARO; Kumamoto Japan
| | - Masashi Takahashi
- Livestock and Grassland Research Division; Kyushu Okinawa Agricultural Research Center; NARO; Kumamoto Japan
- Research Faculty of Agriculture; Hokkaido University; Hokkaido Japan
| |
Collapse
|
39
|
Niksirat H, Andersson L, James P, Kouba A, Kozák P. Proteomic profiling of the signal crayfish Pacifastacus leniusculus egg and spermatophore. Anim Reprod Sci 2014; 149:335-44. [DOI: 10.1016/j.anireprosci.2014.07.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 12/11/2022]
|
40
|
WANG HAILONG, LI YAN, YANG LIJUAN, YU BAOFENG, YAN PING, PANG MIN, LI XIAOBING, YANG HONG, ZHENG GUOPING, XIE JUN, GUO RUI. Mass spectrometry-based, label-free quantitative proteomics of round spermatids in mice. Mol Med Rep 2014; 10:2009-2024. [PMID: 25109358 PMCID: PMC4148364 DOI: 10.3892/mmr.2014.2460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/10/2014] [Indexed: 01/17/2023] Open
Abstract
Round haploid spermatids are formed at the completion of meiosis. These spermatids then undergo morphological and cytological changes during spermiogenesis. Although sperm proteomes have been extensively studied, relatively few studies have specifically investigated the proteome of round spermatids. We developed a label-free quantitative method in combination with 2D-nano-LC-ESI-MS/MS to investigate the proteome of round spermatids in mice. Analysis of the proteomic data identified 2,331 proteins in the round spermatids. Functional classification of the proteins based on Gene Ontology terms and enrichment analysis further revealed the following: 504 of the identified proteins are predicted to be involved in the generation of precursor metabolites and energy; 343 proteins in translation and protein targeting; 298 proteins in nucleotide and nucleic acid metabolism; 275 and 289 proteins in transport and cellular component organization, respectively. A number of the identified proteins were associated with cytoskeleton organization (183), protein degradation (116) and response to stimulus (115). KEGG pathway analysis identified 68 proteins that are annotated as components of the ribosomal pathway and 17 proteins were related to aminoacyl-tRNA biosynthesis. The round spermatids also contained 28 proteins involved in the proteasome pathway and 40 proteins in the lysosome pathway. A total of 60 proteins were annotated as parts of the spliceosome pathway, in which heterogeneous nuclear RNA is converted to mRNA. Approximately 94 proteins were identified as actin‑binding proteins, involved in the regulation of the actin cytoskeleton. In conclusion, using a label-free shotgun proteomic approach, we identified numerous proteins associated with spermiogenesis in round spermatids.
Collapse
Affiliation(s)
- HAILONG WANG
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - YAN LI
- Fan-Xing Biological Technology Co., Ltd., Beijing 010000, P.R. China
| | - LIJUAN YANG
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - BAOFENG YU
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - PING YAN
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - MIN PANG
- Respiratory Department, The First Affiliated Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - XIAOBING LI
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - HONG YANG
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - GUOPING ZHENG
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Centre for Transplantation and Renal Research, The University of Sydney at Westmead Millennium Institute, Sydney, NSW 2145, Australia
| | - JUN XIE
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - RUI GUO
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
41
|
Deubiquitinating enzymes in oocyte maturation, fertilization and preimplantation embryo development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:89-110. [PMID: 25030761 DOI: 10.1007/978-1-4939-0817-2_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Post-translational modifications of cellular proteins by ubiquitin and ubiquitin-like protein modifiers are important regulatory events involved in diverse aspects of gamete and embryo physiology including oocyte maturation, fertilization and development of embryos to term. Deubiquitinating enzymes (DUBs) regulate proteolysis by reversing ubiquitination, which targets proteins to the 26S proteasome. The ubiquitin C-terminal hydrolases (UCHs) comprise are DUBs that play a role in the removal of multi-ubiquitin chains. We review here the roles of UCHs in oocytes maturation, fertilization and development in mouse, bovine, porcine and rhesus monkeys. Oocyte UCHs contributes to fertilization and embryogenesis by regulating the physiology of the oocyte and blastomere cortex as well as oocyte spindle. Lack of UCHs in embryos reduces fertilization, while mutant embryos fail to undergo compaction and blastocyst formation. In addition to advancing our understanding of reproductive process, research on the role of deubiquitinating enzymes will allow us to better understand and treat human infertility, and to optimize reproductive performance in agriculturally important livestock species.
Collapse
|
42
|
Kim Y, Jo H, Lim CJ. Deubiquitinating activity of Sdu1, a putative member of the PPPDE peptidase family, in Schizosaccharomyces pombe. Can J Microbiol 2013; 59:789-96. [DOI: 10.1139/cjm-2013-0453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Schizosaccharomyces pombe sdu+ gene encoding a putative member of the PPPDE (Permuted Papain fold Peptidases of DsRNA viruses and Eukaryotes) superfamily was cloned into an Escherichia coli – yeast shuttle vector pRS316, resulting in the recombinant plasmid pYSTP. The determined nucleotide sequence carries 1207 bp, which would encode a protein of 201 amino acid residues. The S. pombe cells harboring pYSTP contained higher sdu1+ mRNA and deubiquitinating activity levels than the vector control cells, indicating that the sdu1+ gene is functioning. They exhibited a better growth in normal rich medium than the vector control cells. When shifted into the fresh medium containing hydrogen peroxide, menadione, or sodium nitroprusside, the S. pombe cells harboring pYSTP were able to grow reasonably well, while the growth of the vector control cells was arrested. The reactive oxygen species and total glutathione levels of the S. pombe cells harboring pYSTP were lower and higher than those of the vector control cells under the same stressful conditions, respectively. They exhibited a lower nitric oxide level than the vector control cells when subjected to sodium nitroprusside. Taken together, the sdu1+ gene encodes an actual protein having deubiquitinating activity and is involved in the response against oxidative and nitrosative stresses in S. pombe.
Collapse
Affiliation(s)
- Yunsik Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 192-1 Hyoja-2-dong, Chuncheon 200-701, Korea
| | - Hannah Jo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 192-1 Hyoja-2-dong, Chuncheon 200-701, Korea
| | - Chang-Jin Lim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 192-1 Hyoja-2-dong, Chuncheon 200-701, Korea
| |
Collapse
|
43
|
Kuang Z, Yao Y, Shi Y, Gu Z, Sun Z, Tso J. Winter hibernation and UCHL1-p34cdc2 association in toad oocyte maturation competence. PLoS One 2013; 8:e78785. [PMID: 24194953 PMCID: PMC3806854 DOI: 10.1371/journal.pone.0078785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/21/2013] [Indexed: 11/18/2022] Open
Abstract
Currently, it is believed that toad oocyte maturation is dependent on the physiological conditions of winter hibernation. Previous antibody-blocking experiments have demonstrated that toad ubiquitin carboxyl-terminal hydrolase L1 (tUCHL1) is necessary for germinal vesicle breakdown during toad oocyte maturation. In this paper, we first supply evidence that tUCHL1 is highly evolutionarily conserved. Then, we exclude protein availability and ubiquitin carboxyl-terminal hydrolase enzyme activity as factors in the response of oocytes to winter hibernation. In the context of MPF (maturation promoting factor) controlling oocyte maturation and to further understand the role of UCHL1 in oocyte maturation, we performed adsorption and co-immunoprecipitation experiments using toad oocyte protein extracts and determined that tUCHL1 is associated with MPF in toad oocytes. Recombinant tUCHL1 absorbed p34(cdc2), a component of MPF, in obviously larger quantities from mature oocytes than from immature oocytes, and p13(suc1) was isolated from tUCHL1 with a dependence on the ATP regeneration system, suggesting that still other functions may be involved in their association that require phosphorylation. In oocytes from hibernation-interrupted toads, the p34(cdc2) protein level was significantly lower than in oocytes from toads in artificial hibernation, providing an explanation for the different quantities isolated by recombinant tUCHL1 pull-down and, more importantly, identifying a mechanism involved in the toad oocyte's dependence on a low environmental temperature during winter hibernation. Therefore, in toads, tUCHL1 binds p34(cdc2) and plays a role in oocyte maturation. However, neither tUCHL1 nor cyclin B1 respond to low temperatures to facilitate oocyte maturation competence during winter hibernation.
Collapse
Affiliation(s)
- Zhichao Kuang
- Institute of Reproduction & Development, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuwei Yao
- Institute of Reproduction & Development, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Shi
- Key Laboratory of Contraceptive Drugs and Devices of National Population and Family Planning Commission of China, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Zheng Gu
- Key Laboratory of Contraceptive Drugs and Devices of National Population and Family Planning Commission of China, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Zhaogui Sun
- Institute of Reproduction & Development, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Contraceptive Drugs and Devices of National Population and Family Planning Commission of China, Shanghai Institute of Planned Parenthood Research, Shanghai, China
- * E-mail:
| | - Jiake Tso
- Key Laboratory of Contraceptive Drugs and Devices of National Population and Family Planning Commission of China, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| |
Collapse
|
44
|
Zigo M, Jonáková V, Šulc M, Maňásková-Postlerová P. Characterization of sperm surface protein patterns of ejaculated and capacitated boar sperm, with the detection of ZP binding candidates. Int J Biol Macromol 2013; 61:322-8. [PMID: 23916641 DOI: 10.1016/j.ijbiomac.2013.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 10/26/2022]
Abstract
Complementary molecules on the surface of both gametes are responsible for the interaction of sperm protein receptors with zona pellucida (ZP) saccharide structures, and many primary sperm receptors for ZP glycoproteins have been disclosed in various mammals. For our study, proteins were obtained from the surface of ejaculated and in vitro capacitated boar sperm. The isolated proteins were characterized by 1D- and 2D-electrophoretic protein profiles, and by glycoprotein staining. Our results show quantitative and qualitative differences in protein and glycoprotein patterns between ejaculated and capacitated sperm. Far-western blotting with ZP glycoproteins identified 17 interactions in the subproteome of the ejaculated sperm and 14 interactions in the subproteome of the capacitated sperm. High-molecular-mass proteins, coincident with binding to ZP, were sequence-identified. Angiotensin-converting enzyme (ACE), polycystic kidney disease receptor and egg jelly receptor (PKDREJ), and acrosin precursor were successfully identified. This is the first time PKDREJ has been identified on the surface of boar spermatozoa.
Collapse
Affiliation(s)
- Michal Zigo
- Laboratory of Reproductive Biology, Institute of Biotechnology, The Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic.
| | | | | | | |
Collapse
|
45
|
Feng L, Zhang D, Fan C, Ma C, Yang W, Meng Y, Wu W, Guan S, Jiang B, Yang M, Liu X, Guo D. ER stress-mediated apoptosis induced by celastrol in cancer cells and important role of glycogen synthase kinase-3β in the signal network. Cell Death Dis 2013; 4:e715. [PMID: 23846217 PMCID: PMC3730400 DOI: 10.1038/cddis.2013.222] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 01/13/2023]
Abstract
HeLa cells treated with celastrol, a natural compound with inhibitive effect on proteasome, exhibited increase in apoptotic rate and characteristics of apoptosis. To clarify the signal network activated by celastrol to induce apoptosis, both the direct target proteins and undirect target proteins of celastrol were searched in the present study. Proteasome catalytic subunit β1 was predicted by computational analysis to be a possible direct target of celastrol and confirmed by checking direct effect of celastrol on the activity of recombinant human proteasome subunit β1 in vitro. Undirect target-related proteins of celastrol were searched using proteomic studies including two-dimensional electrophoresis (2-DE) analysis and iTRAQ-based LC-MS analysis. Possible target-related proteins of celastrol such as endoplasmic reticulum protein 29 (ERP29) and mitochondrial import receptor Tom22 (TOM22) were found by 2-DE analysis of total cellular protein expression profiles. Further study showed that celastrol induced ER stress and ER stress inhibitor could ameliorate cell death induced by celastrol. Celastrol induced translocation of Bax into the mitochondria, which might be related to the upregulation of BH-3-only proteins such as BIM and the increase in the expression level of TOM22. To further search possible target-related proteins of celastrol in ER and ER-related fractions, iTRAQ-based LC-MS method was use to analyze protein expression profiles of ER/microsomal vesicles-riched fraction of cells with or without celastrol treatment. Based on possible target-related proteins found in both 2-DE analysis and iTRAQ-based LC-MS analysis, protein–protein interaction (PPI) network was established using bioinformatic analysis. The important role of glycogen synthase kinase-3β (GSK3β) in the signal cascades of celastrol was suggested. Pretreatment of LiCL, an inhibitor of GSK3β, could significantly ameliorate apoptosis induced by celastrol. On the basis of the results of the present study, possible signal network of celastrol activated by celastrol leading to apoptosis was predicted.
Collapse
Affiliation(s)
- L Feng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Asadpor U, Totonchi M, Sabbaghian M, Hoseinifar H, Akhound MR, Zari Moradi S, Haratian K, Sadighi Gilani MA, Gourabi H, Mohseni Meybodi A. Ubiquitin-specific protease (USP26) gene alterations associated with male infertility and recurrent pregnancy loss (RPL) in Iranian infertile patients. J Assist Reprod Genet 2013; 30:923-31. [PMID: 23779098 DOI: 10.1007/s10815-013-0027-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 05/31/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE The human X chromosome is enriched with testis-specific genes that may be crucial for male fertility. Mutations in USP26 gene have been proposed to be associated with male infertility. Moreover, the importance of the ubiquitin pathway during different stages of mammalian fertilization and even embryo development has been addressed. Some mutations and haplotypes on this gene have been proposed to be associated with male infertility. In this study, five different mutations on USP26 were investigated: 1737 G > A, 1090 C > T, 370-371ins ACA, 494 T > C and 1423 C > T. METHODS The study included 166 infertile men with non-obstructive azoospermia, 72 male partners of couples who had previously experienced ≥3 clinical first trimester spontaneous abortions and 60 fertile men. Besides family history of reproduction, hormonal evaluation and semen analysis were performed. DNA was extracted from blood samples. PCR-SSCP, PCR-RFLP and PCR Product Cloning methods were used and resumed by sequencing to insure about the mutations. Moreover, USP26 gene expression was studied by Real-Time PCR after RNA extraction followed by cDNA synthesis from 24 testis biopsies in obstructive and non-obstructive azoospermia patients. RESULTS The results indicate that there is a haplotype between three observed mutations in Iranian population include: 370-371insACA, 1423C > T and 494 T > C. This haplotype was seen in control group as well. Surprisingly, total frequency of mutations in men with history of idiopathic RPL and azoospermic cases were significantly higher than that of in control groups (p < 0.05). Serum testosterone concentrations and testicular volume did not differ in the mutation positive group compared with the non-mutation group. About the USP26 gene expression, there is a significant difference between the expression levels of obstructive azoospermia, complete maturation arrest samples and SCO samples (P < 0.05). CONCLUSIONS According to our results, the USP26 gene may play an important role in male reproduction. The alterations of this gene may be involved in male infertility and RPL in Iranian population and may negatively affect testicular function.
Collapse
Affiliation(s)
- U Asadpor
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Among its many functions, the ubiquitin-proteasome system regulates substrate-specific proteolysis during the cell cycle, apoptosis, and fertilization and in pathologies such as Alzheimer's disease, cancer, and liver cirrhosis. Proteasomes are present in human and boar spermatozoa, but little is known about the interactions of proteasomal subunits with other sperm proteins or structures. We have created a transgenic boar with green fluorescent protein (GFP) tagged 20S proteasomal core subunit α-type 1 (PSMA1-GFP), hypothesizing that the PSMA1-GFP fusion protein will be incorporated into functional sperm proteasomes. Using direct epifluorescence imaging and indirect immunofluorescence detection, we have confirmed the presence of PSMA1-GFP in the sperm acrosome. Western blotting revealed a protein band corresponding to the predicted mass of PSMA1-GFP fusion protein (57 kDa) in transgenic spermatozoa. Transgenic boar fertility was confirmed by in vitro fertilization, resulting in transgenic blastocysts, and by mating, resulting in healthy transgenic offspring. Immunoprecipitation and proteomic analysis revealed that PSMA1-GFP copurifies with several acrosomal membrane-associated proteins (e.g., lactadherin/milk fat globule E8 and spermadhesin alanine-tryptophan-asparagine). The interaction of MFGE8 with PSMA1-GFP was confirmed through cross-immunoprecipitation. The identified proteasome-interacting proteins may regulate sperm proteasomal activity during fertilization or may be the substrates of proteasomal proteolysis during fertilization. Proteomic analysis also confirmed the interaction/coimmunoprecipitation of PSMA1-GFP with 13/14 proteasomal core subunits. These results demonstrate that the PSMA1-GFP was incorporated in the assembled sperm proteasomes. This mammal carrying green fluorescent proteasomes will be useful for studies of fertilization and wherever the ubiquitin-proteasome system plays a role in cellular function or pathology.
Collapse
|
48
|
Beek J, Nauwynck H, Maes D, Van Soom A. Inhibitors of zinc-dependent metalloproteases hinder sperm passage through the cumulus oophorus during porcine fertilization in vitro. Reproduction 2012; 144:687-97. [PMID: 23081896 DOI: 10.1530/rep-12-0311] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, we report for the first time on a possible contribution of metalloproteases in sperm passage through the cumulus matrix in pigs. The presence of 20 μM 1,10-phenanthroline (1,10-PHEN), inhibitor of zinc-dependent metalloproteases, strongly inhibited the degree of sperm penetration in cumulus-intact (CI), but not in cumulus-free (CF), porcine oocytes during IVF. The inhibitory effect of 1,10-PHEN was due to the chelation of metal ions as a non-chelating analog (1,7-PHEN) did not affect IVF rates. Furthermore, incubation with 1,10-PHEN did not affect sperm binding to the zona pellucida nor sperm motility, membrane integrity, or acrosomal status. These findings led to the assumption that 1,10-PHEN interacts with a sperm- or cumulus-derived metalloprotease. Metalloproteases are key players in physiological processes involving degradation or remodeling of extracellular matrix. In vivo, their proteolytic activity is regulated by tissue inhibitors of metalloproteases (TIMP1-TIMP4). We tested the effect of TIMP3 on fertilization parameters after porcine IVF. Similar to 1,10-PHEN, TIMP3 inhibited total fertilization rate of CI but not CF oocytes and did not influence sperm quality parameters. Although the inhibitory effect was stronger in CI oocytes, TIMP3 also reduced the degree of sperm penetration in CF oocytes, suggesting the involvement of a metalloprotease in a subsequent step during fertilization. In conclusion, our results indicate the involvement of TIMP3-sensitive, zinc-dependent metalloprotease activity in sperm passage through the cumulus oophorus in pigs. The results should provide the basis for further biochemical research toward the localization and identification of the metalloprotease involved.
Collapse
Affiliation(s)
- J Beek
- Department Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium.
| | | | | | | |
Collapse
|
49
|
Meslin C, Mugnier S, Callebaut I, Laurin M, Pascal G, Poupon A, Goudet G, Monget P. Evolution of genes involved in gamete interaction: evidence for positive selection, duplications and losses in vertebrates. PLoS One 2012; 7:e44548. [PMID: 22957080 PMCID: PMC3434135 DOI: 10.1371/journal.pone.0044548] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 08/07/2012] [Indexed: 11/29/2022] Open
Abstract
Genes encoding proteins involved in sperm-egg interaction and fertilization exhibit a particularly fast evolution and may participate in prezygotic species isolation [1], [2]. Some of them (ZP3, ADAM1, ADAM2, ACR and CD9) have individually been shown to evolve under positive selection [3], [4], suggesting a role of positive Darwinian selection on sperm-egg interaction. However, the genes involved in this biological function have not been systematically and exhaustively studied with an evolutionary perspective, in particular across vertebrates with internal and external fertilization. Here we show that 33 genes among the 69 that have been experimentally shown to be involved in fertilization in at least one taxon in vertebrates are under positive selection. Moreover, we identified 17 pseudogenes and 39 genes that have at least one duplicate in one species. For 15 genes, we found neither positive selection, nor gene copies or pseudogenes. Genes of teleosts, especially genes involved in sperm-oolemma fusion, appear to be more frequently under positive selection than genes of birds and eutherians. In contrast, pseudogenization, gene loss and gene gain are more frequent in eutherians. Thus, each of the 19 studied vertebrate species exhibits a unique signature characterized by gene gain and loss, as well as position of amino acids under positive selection. Reflecting these clade-specific signatures, teleosts and eutherian mammals are recovered as clades in a parsimony analysis. Interestingly the same analysis places Xenopus apart from teleosts, with which it shares the primitive external fertilization, and locates it along with amniotes (which share internal fertilization), suggesting that external or internal environmental conditions of germ cell interaction may not be the unique factors that drive the evolution of fertilization genes. Our work should improve our understanding of the fertilization process and on the establishment of reproductive barriers, for example by offering new leads for experiments on genes identified as positively selected.
Collapse
Affiliation(s)
- Camille Meslin
- UMR85 Physiologie de la Reproduction et des Comportements, INRA, Nouzilly, France
- UMR6175, CNRS, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- IFCE, Nouzilly, France
| | - Sylvie Mugnier
- Département Agronomie Agro-équipement Élevage Environnement, AgroSup Dijon, Dijon, France
| | | | - Michel Laurin
- UMR 7207, CNRS/MNHN/UPMC, Muséum National d’Histoire Naturelle, Paris, France
| | - Géraldine Pascal
- UMR85 Physiologie de la Reproduction et des Comportements, INRA, Nouzilly, France
- UMR6175, CNRS, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- IFCE, Nouzilly, France
| | - Anne Poupon
- UMR85 Physiologie de la Reproduction et des Comportements, INRA, Nouzilly, France
- UMR6175, CNRS, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- IFCE, Nouzilly, France
| | - Ghylène Goudet
- UMR85 Physiologie de la Reproduction et des Comportements, INRA, Nouzilly, France
- UMR6175, CNRS, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- IFCE, Nouzilly, France
| | - Philippe Monget
- UMR85 Physiologie de la Reproduction et des Comportements, INRA, Nouzilly, France
- UMR6175, CNRS, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- IFCE, Nouzilly, France
| |
Collapse
|
50
|
Souza CEA, Rego JPA, Lobo CH, Oliveira JTA, Nogueira FC, Domont GB, Fioramonte M, Gozzo FC, Moreno FB, Monteiro-Moreira ACO, Figueiredo JR, Moura AA. Proteomic analysis of the reproductive tract fluids from tropically-adapted Santa Ines rams. J Proteomics 2012; 75:4436-56. [DOI: 10.1016/j.jprot.2012.05.039] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/18/2012] [Accepted: 05/22/2012] [Indexed: 01/13/2023]
|