1
|
Cao H, Gao H, Li Y, Li L, Liu S, Jin T, Wang Y, Gong Y, Yuan S, Dong W. Zinc finger DHHC-type palmitoyltransferase 13-mediated S-palmitoylation of GNA13 from Sertoli cell-derived extracellular vesicles inhibits autophagy in spermatogonial stem cells. Cell Commun Signal 2025; 23:178. [PMID: 40205436 PMCID: PMC11983822 DOI: 10.1186/s12964-025-02177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Extracellular vesicles (EVs) originating from testicular somatic cells act as pivotal intermediaries in cell signaling crosstalk between spermatogenic cells and the testicular microenvironment. The intricate balance between palmitoylation and depalmitoylation governs the positioning of protein cargos on the membrane, thereby influencing cellular activities by concentrating these proteins in EVs for delivery to recipient cells. Here, we reveal that GNA13 undergoes specific S-palmitoylation at Cys14 and Cys18 residues in Sertoli cells (SCs), a modification essential for its localization to the plasma membrane. We identify DHHC13, a member of the zinc finger DHHC-type palmitoyltransferase family that catalyzes protein S-palmitoylation, as the enzyme responsible for this critical post-translational modification. Additionally, GNA13 palmitoylation is indispensable for its selective enrichment in EVs emanating from SCs. Intriguingly, we discovered the presence of palmitoylated GNA13 in SC-derived EVs significantly downregulates autophagy levels in spermatogonial stem cells (SSCs), and the inhibition of GNA13 palmitoylation attenuates its interaction with ARHGEF12 which leads to diminished RhoA activity and consequent elevation of autophagy in SSCs. Our results illuminate the crucial role of DHHC13-mediated GNA13 S-palmitoylation in modulating autophagy levels in SSCs through SCs-derived EVs, suggesting that PM-GNA13-EV may serve as a potential candidate for further exploration in addressing fertility-related challenges during spermatogenesis.
Collapse
Affiliation(s)
- Heran Cao
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Huihui Gao
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Li
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| | - Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| | - Ye Gong
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
2
|
Pang X, Gu L, Han QY, Xing JQ, Zhao M, Huang SY, Yi JX, Pan J, Hong H, Xue W, Zhou XQ, Su ZH, Zhang XR, Sun LM, Jiang SZ, Luo D, Chen L, Wang ZJ, Yu Y, Xia T, Zhang XM, Li AL, Zhou T, Cai H, Li T. RGS22 maintains the physiological function of ependymal cells to prevent hydrocephalus. SCIENCE CHINA. LIFE SCIENCES 2025; 68:441-453. [PMID: 39400871 DOI: 10.1007/s11427-024-2720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/30/2024] [Indexed: 10/15/2024]
Abstract
Ependymal cells line the wall of cerebral ventricles and ensure the unidirectional cerebrospinal fluid (CSF) flow by beating their motile cilia coordinately. The ependymal denudation or ciliary dysfunction causes hydrocephalus. Here, we report that the deficiency of regulator of G-protein signaling 22 (RGS22) results in severe congenital hydrocephalus in both mice and rats. Interestingly, RGS22 is specifically expressed in ependymal cells within the brain. Using conditional knock-out mice, we further demonstrate that the deletion of Rgs22 exclusively in nervous system is sufficient to induce hydrocephalus. Mechanistically, we show that Rgs22 deficiency leads to the ependymal denudation and impaired ciliogenesis. This phenomenon can be attributed to the excessive activation of lysophosphatidic acid receptor (LPAR) signaling under Rgs22-/- condition, as the LPAR blockade effectively alleviates hydrocephalus in Rgs22-/- rats. Therefore, our findings unveil a previously unrecognized role of RGS22 in the central nervous system, and present RGS22 as a potential diagnostic and therapeutic target for hydrocephalus.
Collapse
Affiliation(s)
- Xue Pang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Lin Gu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Qiu-Ying Han
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Jia-Qing Xing
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Ming Zhao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Shao-Yi Huang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Jun-Xi Yi
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Jie Pan
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Hao Hong
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Wen Xue
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Xue-Qing Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Zhi-Hui Su
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Xin-Ran Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Li-Ming Sun
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Shao-Zhen Jiang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dan Luo
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ling Chen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Zheng-Jie Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Yu Yu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Tian Xia
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Xue-Min Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ai-Ling Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Hong Cai
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China.
| | - Tao Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China.
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Zabihi MR, Norouzkhani N, Karkhah S, Akhoondian M. Identification of a valuable gene network for the diagnosis and treatment of non-obstructive azoospermia: in-silico analyses - experimental research. Ann Med Surg (Lond) 2023; 85:5941-5951. [PMID: 38098601 PMCID: PMC10718319 DOI: 10.1097/ms9.0000000000001358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 09/17/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Non-obstructive azoospermia (NOA) is an etiology of infertility in men. NOA may have various classifications; however, hypogonadotropic hypogonadism can be regarded as a class of NOA associated with genetic factors. Former studies have shown that noncoding RNA (ncRNA) plays an essential role in NOA incidence, but few studies have been performed on the NOA-related ncRNA interaction network. In the current study, genes, NOA-related microRNA (miRNA), and circular RNA (circRNA) were found by bioinformatics methods to offer a new perspective on NOA treatment. Methods The gonadotropin-releasing hormone receptor (GnRHR)-related protein-protein interaction (PPI) network was extracted by searching in 'string-database'. GO, KEGG, and Enrichr databases were used to identify pathways, molecular function, and biological processing. Four databases, including TargetScan, mirDIP, miRmap, and miRWalk, were used to extract miRNAs. At last, the circ2GO, circBase, and literature were used to identify circRNAs and their genes. Results The current study identified the four proteins associated with the GnRHR signaling; eight shared miRNAs that affect the expression of found proteins and 25 circRNAs and their origin genes that regulate the miRNAs' function. Conclusion The two miRNAs, hsa-miR-134-3p and hsa-miR-513C-3p, the three genes, VCAN, NFATC3, and PRDM5, and their associated circRNAs can perform as a valuable gene network in the diagnosis and treatment of NOA pathogenesis.
Collapse
Affiliation(s)
- Mohammad Reza Zabihi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran
| | - Narges Norouzkhani
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad
| | - Samad Karkhah
- Department of Medical-Surgical Nursing, School of Nursing and Midwifery
- Burn and Regenerative Medicine Research Center
| | - Mohammad Akhoondian
- Department of Physiology, School of Medicine, Cellular and The Molecular Research Center, Guilan University of Medical Science, Rasht, Iran
| |
Collapse
|
4
|
Gupta V, Ben-Mahmoud A, Ku B, Velayutham D, Jan Z, Yousef Aden A, Kubbar A, Alshaban F, Stanton LW, Jithesh PV, Layman LC, Kim HG. Identification of two novel autism genes, TRPC4 and SCFD2, in Qatar simplex families through exome sequencing. Front Psychiatry 2023; 14:1251884. [PMID: 38025430 PMCID: PMC10644705 DOI: 10.3389/fpsyt.2023.1251884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
This study investigated the genetic underpinnings of autism spectrum disorder (ASD) in a Middle Eastern cohort in Qatar using exome sequencing. The study identified six candidate autism genes in independent simplex families, including both four known and two novel autosomal dominant and autosomal recessive genes associated with ASD. The variants consisted primarily of de novo and homozygous missense and splice variants. Multiple individuals displayed more than one candidate variant, suggesting the potential involvement of digenic or oligogenic models. These variants were absent in the Genome Aggregation Database (gnomAD) and exhibited extremely low frequencies in the local control population dataset. Two novel autism genes, TRPC4 and SCFD2, were discovered in two Qatari autism individuals. Furthermore, the D651A substitution in CLCN3 and the splice acceptor variant in DHX30 were identified as likely deleterious mutations. Protein modeling was utilized to evaluate the potential impact of three missense variants in DEAF1, CLCN3, and SCFD2 on their respective structures and functions, which strongly supported the pathogenic natures of these variants. The presence of multiple de novo mutations across trios underscored the significant contribution of de novo mutations to the genetic etiology of ASD. Functional assays and further investigations are necessary to confirm the pathogenicity of the identified genes and determine their significance in ASD. Overall, this study sheds light on the genetic factors underlying ASD in Qatar and highlights the importance of considering diverse populations in ASD research.
Collapse
Affiliation(s)
- Vijay Gupta
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Afif Ben-Mahmoud
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Dinesh Velayutham
- College of Health & Life Sciences, Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Zainab Jan
- College of Health & Life Sciences, Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Abdi Yousef Aden
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Ahmad Kubbar
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Fouad Alshaban
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
- College of Health & Life Sciences, Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Lawrence W. Stanton
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
- College of Health & Life Sciences, Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Puthen Veettil Jithesh
- College of Health & Life Sciences, Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Lawrence C. Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, United States
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Hyung-Goo Kim
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
- College of Health & Life Sciences, Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
5
|
Wu QW, Kapfhammer JP. CRISPR-Cas13-Mediated Knockdown of Regulator of G-Protein Signaling 8 (RGS8) Does Not Affect Purkinje Cell Dendritic Development. Front Cell Dev Biol 2022; 10:854273. [PMID: 35712654 PMCID: PMC9193279 DOI: 10.3389/fcell.2022.854273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/10/2022] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas13 technology is rapidly evolving as it is a very specific tool for RNA editing and interference. Since there are no significant off-target effects via the Cas13-mediated method, it is a promising tool for studying gene function in differentiating neurons. In this study, we designed two crRNA targeting regulator of G-protein signaling 8 (RGS8), which is a signaling molecule associated with spinocerebellar ataxias. Using CRISPR-Cas13 technology, we found that both of crRNAs could specifically achieve RGS8 knockdown. By observing and comparing the dendritic growth of Purkinje cells, we found that CRISPR-Cas13-mediated RGS8 knockdown did not significantly affect Purkinje cell dendritic development. We further tested the role of RGS8 by classical RNAi. Again, the results of the RNAi-mediated RGS8 knockdown showed that reduced RGS8 expression did not significantly affect the dendritic growth of Purkinje cells. This is the first example of CRISPR-Cas13-mediated gene function study in Purkinje cells and establishes CRISPR-Cas13-mediated knockdown as a reliable method for studying gene function in primary neurons.
Collapse
|
6
|
Fraser L, Paukszto Ł, Mańkowska A, Brym P, Gilun P, Jastrzębski JP, Pareek CS, Kumar D, Pierzchała M. Regulatory Potential of Long Non-Coding RNAs (lncRNAs) in Boar Spermatozoa with Good and Poor Freezability. Life (Basel) 2020; 10:life10110300. [PMID: 33233438 PMCID: PMC7700223 DOI: 10.3390/life10110300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are suggested to play an important role in the sperm biological processes. We performed de novo transcriptome assembly to characterize lncRNAs in spermatozoa, and to investigate the role of the potential target genes of the differentially expressed lncRNAs (DElncRNAs) in sperm freezability. We detected approximately 4007 DElncRNAs, which were differentially expressed in spermatozoa from boars classified as having good and poor semen freezability (GSF and PSF, respectively). Most of the DElncRNAs were upregulated in boars of the PSF group and appeared to significantly affect the sperm's response to the cryopreservation conditions. Furthermore, we predicted that the potential target genes were regulated by DElncRNAs in cis or trans. It was found that DElncRNAs of both freezability groups had potential cis- and trans-regulatory effects on different protein-coding genes, such as COX7A2L, TXNDC8 and SOX-7. Gene Ontology (GO) enrichment revealed that the DElncRNA target genes are associated with numerous biological processes, including signal transduction, response to stress, cell death (apoptosis), motility and embryo development. Significant differences in the de novo assembled transcriptome expression profiles of the DElncRNAs between the freezability groups were confirmed by quantitative real-time PCR analysis. This study reveals the potential effects of protein-coding genes of DElncRNAs on sperm functions, which could contribute to further research on their relevance in semen freezability.
Collapse
Affiliation(s)
- Leyland Fraser
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
- Correspondence:
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (Ł.P.); (J.P.J.)
| | - Anna Mańkowska
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Paweł Brym
- Department of Animal Genetics, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Przemysław Gilun
- Department of Local Physiological Regulations, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Bydgoska 7, 10-243 Olsztyn, Poland;
| | - Jan P. Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (Ł.P.); (J.P.J.)
| | - Chandra S. Pareek
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus, University, 87-100 Toruń, Poland;
| | - Dibyendu Kumar
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA;
| | - Mariusz Pierzchała
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland;
| |
Collapse
|
7
|
Zhao Q, Chen J, Zhang X, Xu Z, Lin Z, Li H, Lin W, Xie Q. Genome-Wide Association Analysis Reveals Key Genes Responsible for Egg Production of Lion Head Goose. Front Genet 2020; 10:1391. [PMID: 32047514 PMCID: PMC6997537 DOI: 10.3389/fgene.2019.01391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/19/2019] [Indexed: 11/13/2022] Open
Abstract
The lion head goose is one of the most important agricultural resources in China; however, its breeding process is relatively slow. In the present study, a genome-wide association study was performed for the genetic selection of egg production characters in lion head geese. We detected 30 single-nucleotide polymorphisms located in or near 30 genes that might be associated with egg production character, and quantitative real-time polymerase chain reaction was used to verify their expression level in lion head geese. The results showed that the expression levels of CRTC1 (encoding CREB-regulated transcription coactivator 1), FAAH2 (encoding fatty acid amide hydrolase 2), GPC3 (encoding glypican 3), and SERPINC1 (encoding serpin family C member 1) in high egg production population were significantly lower than those in the low egg production populations (*P < 0.05). The expression levels of CLPB (encoding caseinolytic peptidase B protein homolog), GNA12 (encoding guanine nucleotide-binding protein subunit alpha-12), and ZMAT5 (encoding zinc finger, matrin type 5) in the high egg production population were significantly higher than those in the low egg production populations (*P < 0.05). The expression of BMP4 (encoding bone morphogenetic protein 4), FRMPD3 (encoding FERM and PDZ domain containing 3), LIF (encoding leukemia inhibitory factor), and NFYC (encoding nuclear transcription factor Y subunit gamma) in the high egg production population were very significantly lower than those in the low egg production population (**P < 0.01). Our findings provide an insight into the economic traits of lion head goose. These candidate genes might be valuable for future breeding improvement.
Collapse
Affiliation(s)
- Qiqi Zhao
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China
| | - Junpeng Chen
- Shantou Baisha Research Institute of Original Species of Poultry and Stock, Shantou, China
| | - Xinheng Zhang
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China
| | - Zhouyi Xu
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China
| | - Zhenping Lin
- Shantou Baisha Research Institute of Original Species of Poultry and Stock, Shantou, China
| | - Hongxin Li
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China
| |
Collapse
|
8
|
Zheng YX, Zhang XX, Hernandez JA, Mahmmod YS, Huang WY, Li GF, Wang YP, Zhou X, Li XM, Yuan ZG. Transcriptomic analysis of reproductive damage in the epididymis of male Kunming mice induced by chronic infection of Toxoplasma gondii PRU strain. Parasit Vectors 2019; 12:529. [PMID: 31703718 PMCID: PMC6839085 DOI: 10.1186/s13071-019-3783-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Some researchers have reported that Toxoplasma gondii can cause serious reproductive impairment in male animals. Specifically, T. gondii destroy the quality of sperm in the epididymis, which affects their sexual ability. However, among such studies, none have investigated the male reproductive transcriptome. Therefore, to investigate the relationship between T. gondii and sperm maturation, we infected mice with T. gondii prugniaud (PRU) strain and performed transcriptome sequencing of the epididymis. RESULTS Compared with the control group, 431 upregulated and 229 downregulated differentially expressed genes (DEGs) were found (P-value < 0.05, false discovery rate (FDR) < 0.05 and |log2 (fold change)| ≥ 1). According to results of a bioinformatics analysis, Gene Ontology (GO) function is divided into three categories: cellular component, molecular function and biological process. Upon performing GO analysis, we found that some DEGs correlated with an integral part of membrane, protein complex, cell surface, ATP binding, immune system process, signal transduction and metabolic process which are responsible for the epididymal injury. DEGs were mapped to 101 unique KEGG pathways. Pathways such as cytokine-cytokine receptor interaction, glycolysis/gluconeogenesis and apoptosis are closely related to sperm quality. Moreover, Tnfsf10 and spata18 can damage the mitochondria in sperm, which decreases sperm motility and morphology. CONCLUSIONS We sequenced the reproductive system of male mice chronically infected with T. gondii, which provides a new direction for research into male sterility caused by Toxoplasma infection. This work provides valuable information and a comprehensive database for future studies of the interaction between T. gondii infection and the male reproductive system.
Collapse
Affiliation(s)
- Yu-Xiang Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, People's Republic of China
| | - Xiu-Xiang Zhang
- College of plant, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jorge A Hernandez
- College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610-0136, USA
| | - Yasser S Mahmmod
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia Province, 44511, Egypt.,IRTA, Centre for Research into Animal Health (CReSA-IRTA), Campus of Autonomous University of Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Wan-Yi Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, People's Republic of China
| | - Gui-Feng Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, People's Republic of China
| | - Ya-Pei Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, People's Republic of China
| | - Xue Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, People's Republic of China
| | - Xiu-Ming Li
- College of Animal Science and Technology, Heilongjiang BaYi Agricultural University, Daqing, 163319, People's Republic of China.
| | - Zi-Guo Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China. .,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
9
|
Zhang T, Wu J, Liao C, Ni Z, Zheng J, Yu F. System analysis of teratozoospermia mRNA profile based on integrated bioinformatics tools. Mol Med Rep 2018; 18:1297-1304. [PMID: 29901159 PMCID: PMC6072217 DOI: 10.3892/mmr.2018.9112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/20/2018] [Indexed: 12/13/2022] Open
Abstract
mRNA has an important role in spermatogenesis and the maintenance of fertility, and may act as a potential biomarker for the clinical diagnosis of infertility. In the present study, potential biomarkers associated with teratozoospermia were screened through systemic bioinformatics analysis. Initially, genome-wide expression profiles were downloaded from the Gene Expression Omnibus and primary analysis was conducted using R software, which included preprocessing of raw microarray data, transformation between probe ID and gene symbol and identification of differentially expressed genes. Subsequently, a functional enrichment analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery to investigate the biological processes involved in the development of teratozoospermia. Finally, a protein-protein interaction network of notable differentially expressed genes was constructed and cross-analysis performed for multiple datasets, to obtain a potential biomarker for teratozoospermia. It was observed that G protein subunit β 3, G protein subunit α o1 and G protein subunit g transducin 1 were upregulated and enriched using Kyoto Encyclopedia of Genes and Genomes (KEGG) in the network and in cross analysis. Furthermore, ribosomal protein S3 (RPS3), RPS5, RPS6, RPS16 and RPS23 were downregulated and enriched using KEGG in teratozoospermia. In conclusion, the results of the present study identified several mRNAs involved in sperm morphological development, which may aid in the understanding and treatment of infertility.
Collapse
Affiliation(s)
- Tiancheng Zhang
- Key Lab of Reproduction Regulation of NPFPC, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 300000, P.R. China
| | - Jun Wu
- Key Lab of Reproduction Regulation of NPFPC, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 300000, P.R. China
| | - Caihua Liao
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541004, P.R. China
| | - Zhong Ni
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jufen Zheng
- Key Lab of Reproduction Regulation of NPFPC, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 300000, P.R. China
| | - Fudong Yu
- Key Lab of Reproduction Regulation of NPFPC, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 300000, P.R. China
| |
Collapse
|
10
|
Li X, Song H, Liu Z, Bi Y. miR-1260b promotes cell migration and invasion of hepatocellular carcinoma by targeting the regulator of G-protein signaling 22. Biotechnol Lett 2017; 40:57-62. [PMID: 29038925 DOI: 10.1007/s10529-017-2455-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/12/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To investigate whether miR-1260b can regulate migration and invasion of hepatocellular carcinoma (HCC) by targeting RGS22. RESULTS miR-1260b was up-regulated in HCC tissues compared with their corresponding non-cancerous tissues. Over-expression of miR-1260b increased migration and invasion of HepG2 and SMMC-7721 cells associated with HCC. Regulator of G-protein signaling 22 (RGS22) was identified as a directly target of miR-1260b and was inhibited by miR-1260b. Knockdown of RGS22 increased proliferation of HCC cells. CONCLUSIONS The new identified miR-1260b/RGS22 axis provides useful therapeutic methods for treatment of HCC deepening on our understanding of underlying mechanisms of HCC tumorigenesis.
Collapse
Affiliation(s)
- Xiaoying Li
- Three Subjects of Jinan Infectious Disease Hospital, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Hongxia Song
- Ozone Treatment Center of Jinan Infectious Disease Hospital, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Zhirong Liu
- Three Subjects of Jinan Infectious Disease Hospital, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Yunsheng Bi
- Department of Pharmaceutical, General Hospital of Jinan Military Region, No. 25, Shifan Road, Jinan, 250031, Shandong, People's Republic of China.
| |
Collapse
|
11
|
Perez-Patiño C, Barranco I, Parrilla I, Valero ML, Martinez EA, Rodriguez-Martinez H, Roca J. Characterization of the porcine seminal plasma proteome comparing ejaculate portions. J Proteomics 2016; 142:15-23. [PMID: 27109353 DOI: 10.1016/j.jprot.2016.04.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/04/2016] [Accepted: 04/17/2016] [Indexed: 01/04/2023]
Abstract
UNLABELLED Full identification of boar seminal plasma (SP) proteins remains challenging. This study aims to provide an extensive proteomic analysis of boar SP and to generate an accessible database of boar SP-proteome. A SP-pool (33entire ejaculates/11 boars; 3ejaculates/boar) was analyzed to characterize the boar SP-proteome. Twenty ejaculates (5 boars, 4ejaculates/boar) collected in portions (P1: first 10mL of sperm rich ejaculate fraction (SRF), P2: rest of SRF and P3: post-SRF) were analyzed to evaluate differentially expressed SP-proteins among portions. SP-samples were analyzed using a combination of SEC, 1-D SDS PAGE and NanoLC-ESI-MS/MS followed by functional bioinformatics. The identified proteins were quantified from normalized LFQ intensity data. A total of 536 SP-proteins were identified, 409 of them in Sus scrofa taxonomy (374 validated with ≥99% confidence). Barely 20 of the identified SP-proteins were specifically implicated in reproductive processes, albeit other SP-proteins could be indirectly involved in functionality and fertility of boar spermatozoa. Thirty-four proteins (16 identified in S. scrofa taxonomy) were differentially expressed among ejaculate portions, 16 being over-expressed and 18 under-expressed in P1-P2 regarding to P3. This major proteome mapping of the boar SP provides a complex inventory of proteins with potential roles as sperm function- and fertility- biomarkers. BIOLOGICAL SIGNIFICANCE This proteomic study provides the major characterization of the boar SP-proteome with >250 proteins first reported. The boar SP-proteome is described so that a spectral library can be built for relative 'label free' protein quantification with SWATH approach. This proteomic profiling allows the creation of a publicly accessible database of the boar SP-proteome, as a first step for further understanding the role of SP-proteins in reproductive outcomes as well as for the identification of biomarkers for sperm quality and fertility.
Collapse
Affiliation(s)
- Cristina Perez-Patiño
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - M Luz Valero
- Proteomics Section, Central Service for Experimental Research, University of Valencia, Spain; Department of Biochemistry and Molecular Biology, University of Valencia, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | | | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain.
| |
Collapse
|
12
|
Li Z, Lu J, Sun X, Pang Q, Zhao Y. Molecular Cloning, mRNA Expression, and Localization of the G-protein Subunit Galphaq in Sheep Testis and Epididymis. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:1702-1709. [PMID: 27004818 PMCID: PMC5088417 DOI: 10.5713/ajas.15.1037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/06/2016] [Accepted: 03/15/2016] [Indexed: 02/04/2023]
Abstract
The reproductive function of G-protein subunit Galphaq (GNAQ), a member of the G protein alpha subunit family, has been extensively studied in humans and rats. However, no data is available on its status in ruminants. The objectives of this study were to evaluate the expression pattern of the GNAQ in the testis and epididymis of sheep by polymerase chain reaction (PCR). The mRNA expression levels were detected by real-time fluorescent quantitative PCR, and cellular localization of GNAQ in the testis and epididymis was examined by immunohistochemistry. Additionally, GNAQ protein was qualitatively evaluated via western blot, with the results indicating that similarities between GNAQ mRNA levels from sheep was highly conserved with those observed in Bos taurus and Sus scrofa. Our results also indicated that GNAQ exists in the caput and cauda epididymis of sheep, while GNAQ in the testis and epididymis was localized to Leydig cells, spermatogonial stem cells, spermatocytes, Sertoli cells, spermatid, principal cells, and epididymis interstitial cells. The concentrations of GNAQ mRNA and protein in the caput and cauda epididymis were significantly greater than those observed in the corpus epididymis (p<0.01) and testis (p<0.05). Our results indicated that GNAQ exists at high concentrations in the caput and cauda epididymis of sheep, suggesting that GNAQ may play an important role in gonad development and sperm maturation.
Collapse
Affiliation(s)
- Zhen Li
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, China.,Lab of China clinical veterinary, Shanxi Agricultural University, Taigu 030801, China
| | - Jieli Lu
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, China.,Lab of China clinical veterinary, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaowei Sun
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, China.,Lab of China clinical veterinary, Shanxi Agricultural University, Taigu 030801, China
| | - Quanhai Pang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, China
| | - Yiwen Zhao
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, China.,Lab of China clinical veterinary, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
13
|
Hu Y, Xing J, Chen L, Zheng Y, Zhou Z. RGS22 inhibits pancreatic adenocarcinoma cell migration through the G12/13 α subunit/F-actin pathway. Oncol Rep 2015; 34:2507-14. [PMID: 26323264 DOI: 10.3892/or.2015.4209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/27/2015] [Indexed: 11/05/2022] Open
Abstract
Pancreatic cancer is characterized by the potential for local invasion, allowing it to spread during the early developmental stages of the disease. Regulator of G protein signaling 22 (RGS22) localizes to the cytoplasm in pancreatic adenocarcinoma tissue. We overexpressed RGS22 in the human pancreatic cancer cell line BXPC-3. Cells that overexpressed RGS22 had much lower wound-healing rates and greatly reduced migration compared to the control cells. Conversely, cells in which RGS22 expression had been downregulated had higher wound-healing rates and migration than the control cells. These results confirmed that RGS22 expression suppresses pancreatic adenocarcinoma cell migration. Pull-down and coimmunoprecipitation assays revealed that RGS22 had specific interactions with the heterotrimeric G protein G12 α subunit (GNA12) and GNA13 in the cells. We also demonstrated that in the presence of higher RGS22 expression, the cell deformation and F-actin formation caused by lysophosphatidic acid treatment, is delayed. Constitutively active Gα subunits did not accelerate GTP hydrolysis to GDP. We did not investigate the function of RGS22 as a negative regulator of heterotrimeric G12/13 protein signaling. Our data demonstrate that RGS22 acts as a tumor suppressor, repressing human pancreatic adenocarcinoma cell migration by coupling to GNA12/13, which in turn leads to inhibition of stress fiber formation.
Collapse
Affiliation(s)
- Yanqiu Hu
- Reproductive Medicine Center, Subei People's Hospital, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jun Xing
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Ling Chen
- Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ying Zheng
- Department of Histology and Embryology, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Zuomin Zhou
- Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
14
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
15
|
Stacey SN, Sulem P, Gudbjartsson DF, Jonasdottir A, Thorleifsson G, Gudjonsson SA, Masson G, Gudmundsson J, Sigurgeirsson B, Benediktsdottir KR, Thorisdottir K, Ragnarsson R, Fuentelsaz V, Corredera C, Grasa M, Planelles D, Sanmartin O, Rudnai P, Gurzau E, Koppova K, Hemminki K, Nexø BA, Tjønneland A, Overvad K, Johannsdottir H, Helgadottir HT, Thorsteinsdottir U, Kong A, Vogel U, Kumar R, Nagore E, Mayordomo JI, Rafnar T, Olafsson JH, Stefansson K. Germline sequence variants in TGM3 and RGS22 confer risk of basal cell carcinoma. Hum Mol Genet 2014; 23:3045-53. [PMID: 24403052 PMCID: PMC4014188 DOI: 10.1093/hmg/ddt671] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To search for new sequence variants that confer risk of cutaneous basal cell carcinoma (BCC), we conducted a genome-wide association study of 38.5 million single nucleotide polymorphisms (SNPs) and small indels identified through whole-genome sequencing of 2230 Icelanders. We imputed genotypes for 4208 BCC patients and 109 408 controls using Illumina SNP chip typing data, carried out association tests and replicated the findings in independent population samples. We found new BCC susceptibility loci at TGM3 (rs214782[G], P = 5.5 × 10−17, OR = 1.29) and RGS22 (rs7006527[C], P = 8.7 × 10−13, OR = 0.77). TGM3 encodes transglutaminase type 3, which plays a key role in production of the cornified envelope during epidermal differentiation.
Collapse
Affiliation(s)
- Simon N Stacey
- deCODE Genetics/AMGEN, Sturlugata 8, 101 Reykjavik, Iceland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shihan M, Kirch U, Scheiner-Bobis G. Dehydroepiandrosterone sulfate mediates activation of transcription factors CREB and ATF-1 via a Gα11-coupled receptor in the spermatogenic cell line GC-2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3064-3075. [DOI: 10.1016/j.bbamcr.2013.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 02/06/2023]
|
17
|
Yan Q, Wu X, Chen C, Diao R, Lai Y, Huang J, Chen J, Yu Z, Gui Y, Tang A, Cai Z. Developmental expression and function of DKKL1/Dkkl1 in humans and mice. Reprod Biol Endocrinol 2012; 10:51. [PMID: 22817830 PMCID: PMC3442974 DOI: 10.1186/1477-7827-10-51] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/27/2012] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Experiments were designed to identify the developmental expression and function of the Dickkopf-Like1 (DKKL1/Dkkl1) gene in humans and mice. METHODS Mouse testes cDNA samples were collected at multiple postnatal times (days 4, 9, 18, 35, and 54, as well as at 6 months) and hybridized to Affymetrix mouse whole genome Genechips. To further characterize the homologous gene DKKL1 in human beings, the expression profiles between human adult testis and foetal testis were compared using Affymetrix human Genechips. The characteristics of DKKL1/Dkkl1 were analysed using various cellular and molecular biotechnologies. RESULTS The expression of Dkkl1 was not detected in mouse testes on days 4 or 9, but was present on days 18, 35, and 54, as well as at 6 months, which was confirmed by RT-PCR and Western blot results. Examination of the tissue distribution of Dkkl1 demonstrated that while Dkkl1 mRNA was abundantly expressed in testes, little to no expression of Dkkl1 was observed in the epididymis or other tissues. In an in vitro fertilization assay, a Dkkl1 antibody was found to significantly reduce fertilization. Human Genechips results showed that the hybridization signal intensity of DKKL1 was 405.56-fold higher in adult testis than in foetal testis. RT-PCR analysis of multiple human tissues indicated that DKKL1 mRNA was exclusively expressed in the testis. Western blot analysis also demonstrated that DKKL1 was mainly expressed in human testis with a molecular weight of approximately 34 kDa. Additionally, immunohistochemical staining showed that the DKKL1 protein was predominantly located in spermatocytes and round spermatids in human testes. An examination of the expression levels of DKKL1 in infertile male patients revealed that while no DKKL1 appeared in the testes of patients with Sertoli cell only syndrome (SCOS) or cryptorchidism, DKKL1 was observed with variable expression in patients with spermatogenic arrest. CONCLUSIONS These results, together with previous studies, suggest that DKKL1/Dkkl1 may play an important role in testicular development and spermatogenesis and may be an important factor in male infertility.
Collapse
Affiliation(s)
- Qiuxia Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The People's Hospital of Qingyuan, The Fifth Affiliated Hospital of Medical College of Jinan University, Qingyuan, China
| | - Xiaoping Wu
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Cairong Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The People's Hospital of Qingyuan, The Fifth Affiliated Hospital of Medical College of Jinan University, Qingyuan, China
| | - Ruiying Diao
- Guangdong Key Lab of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yongqing Lai
- Guangdong Key Lab of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jun Huang
- Guangdong Key Lab of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jing Chen
- Guangdong Key Lab of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhou Yu
- Guangdong Key Lab of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yaoting Gui
- Guangdong Key Lab of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, China
| | - Aifa Tang
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhiming Cai
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
18
|
Hu Y, Xing J, Wang L, Huang M, Guo X, Chen L, Lin M, Zhou Y, Liu Z, Zhou Z, Sha J. RGS22, a novel cancer/testis antigen, inhibits epithelial cell invasion and metastasis. Clin Exp Metastasis 2011; 28:541-9. [DOI: 10.1007/s10585-011-9390-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 04/15/2011] [Indexed: 12/26/2022]
|
19
|
Tang A, Yan Q, Sun L, Diao R, Yu Z, Zhang Z, Gui Y, Cai Z. Developmental expression of ACRV1 in humans and mice. Andrologia 2011; 44:16-22. [PMID: 21488928 DOI: 10.1111/j.1439-0272.2010.01095.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
To identify the developmental expression of the ACRV1 gene in humans and mice, testes cDNA samples were collected at different post-natal days (days 4, 9, 18, 35, 54, and 6 months) from Balb/c mice and were hybridised to the mouse whole genome 430 2.0 Array (Affymetrix Inc.) chip. The characteristics of ACRV1 were analysed using various cellular and molecular biotechnologies. The results showed that the expression of mouse ACRV1 was not detected in mouse testes on days 4, 9, and 18 but was present on days 35, 54, and 6 months. Using RT-PCR analysis of mouse ACRV1, we determined that mouse ACRV1 was expressed specifically in the mouse testis, and its expression began at days 35. Western blot analysis demonstrated that human ACRV1 was primarily expressed in human testes, and immunofluorescent and immunohistochemistry staining showed that human ACRV1 protein was predominantly located in round and elongated spermatids in human testes, indicating that ACRV1 may play an important role in mammalian spermatogenesis and may be a target of a contraceptive vaccine.
Collapse
Affiliation(s)
- A Tang
- Guangdong Key Lab of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kim JH, Lee JY, Lee KT, Lee JK, Lee KH, Jang KT, Heo JS, Choi SH, Rhee JC. RGS16 and FosB underexpressed in pancreatic cancer with lymph node metastasis promote tumor progression. Tumour Biol 2010; 31:541-548. [PMID: 20571966 DOI: 10.1007/s13277-010-0067-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 06/08/2010] [Indexed: 12/29/2022] Open
Abstract
Lymph node (LN) metastasis is one of the most important adverse prognostic factors for pancreatic cancer. The aim of this study was to identify novel lymphatic metastasis-associated markers for pancreatic cancer. DNA microarray analysis was used to determine and compare the expression profiles of 17 pancreatic cancer tissues with LN metastasis and 17 pancreatic cancer tissues without LN metastasis. The microarray results were validated by real-time reverse transcription-polymerase chain reaction and immunohistochemistry. Only 58 genes were differentially expressed between the two groups with a difference in signal intensity ratio greater than a 1.5-fold change. Of these genes, 30 were significantly down-regulated in the LN metastasis group. Among five selected down-regulated genes for validation using real-time PCR, the expression of DST, FosB, RGS16, and CXCL12 was significantly lower in the LN metastasis group. Immunohistochemical analysis confirmed RGS16 and FosB underexpression in pancreatic cancer tissues with LN metastasis. RGS16 and FosB underexpression was associated with poor patient survival. Our findings show that RGS16 and FosB are underexpressed in pancreatic cancer with lymph node metastasis and associated with reduced survival, suggesting that RGS16 and FosB might be prognostic markers for pancreatic cancer.
Collapse
Affiliation(s)
- Ji Hyang Kim
- Health Promotion Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tesmer JJG. Structure and function of regulator of G protein signaling homology domains. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:75-113. [PMID: 20374714 DOI: 10.1016/s1877-1173(09)86004-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
All regulator of G protein signaling (RGS) proteins contain a conserved domain of approximately 130 amino acids that binds to activated heterotrimeric G protein α subunits (Gα) and accelerates their rate of GTP hydrolysis. Homologous domains are found in at least six other protein families, including a family of Rho guanine nucleotide exchange factors (RhoGEFs) and the G protein-coupled receptor kinases (GRKs). Although some of the RhoGEF and GRK RGS-like domains can also bind to activated Gα subunits, they do so in distinct ways and with much lower levels of GTPase activation. In other protein families, the domains have as of yet no obvious relationship to heterotrimeric G protein signaling. These RGS homology (RH) domains are now recognized as mediators of extraordinarily diverse protein-protein interactions. Through these interactions, they play roles that range from enzyme to molecular scaffold to signal transducing module. In this review, the atomic structures of RH domains from RGS proteins, Axins, RhoGEFs, and GRKs are compared in light of what is currently known about their functional roles.
Collapse
Affiliation(s)
- John J G Tesmer
- Department of Pharmacology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109‐2216, USA
| |
Collapse
|
22
|
Porter MY, Koelle MR. Insights into RGS protein function from studies in Caenorhabditis elegans. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:15-47. [PMID: 20374712 DOI: 10.1016/s1877-1173(09)86002-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nematode worm, Caenorhabditis elegans, contains orthologs of most regulator of G protein signaling (RGS) protein subfamilies and all four G protein α-subunit subfamilies found in mammals. Every C. elegans RGS and Gα gene has been knocked out, and the in vivo functions and Gα targets of a number of RGS proteins have been characterized in detail. This has revealed a complex relationship between the RGS and Gα proteins, in which multiple RGS proteins can regulate the same Gα protein, either by acting redundantly or by exerting control over signaling under different circumstances or in different cells. RGS proteins that are coexpressed can also show specificity for distinct Gα targets in vivo, and the determinants of such specificity can reside outside of the RGS domain. This review will discuss how analysis in C. elegans may aid us in achieving a full understanding of the physiological functions of RGS proteins.
Collapse
Affiliation(s)
- Morwenna Y Porter
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, SHM CE30, New Haven, Connecticut 06520‐8024, USA
| | | |
Collapse
|
23
|
Miyoshi N, Ishii H, Sekimoto M, Doki Y, Mori M. RGS16 is a marker for prognosis in colorectal cancer. Ann Surg Oncol 2009; 16:3507-14. [PMID: 19760045 DOI: 10.1245/s10434-009-0690-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 01/15/2023]
Abstract
BACKGROUND The RGS family, comprising 22 homologues of proteins, plays a role in cellular proliferation, differentiation, membrane trafficking, and embryonic development through the involvement of the mitogen-activated protein kinase signaling pathway. METHODS In order to demonstrate the importance of RGS16 expression for the prediction of prognosis of colorectal cancer (CRC), we analyzed RGS16 gene expression in 22 human gastrointestinal cell lines and 124 paired cases of CRC and noncancerous regions. RESULTS RGS16 was expressed in 17 human gastrointestinal cancer cell lines examined in this study. RGS16 expression was higher in colorectal cancer tissue than in corresponding normal tissue (P < 0.001) in messenger RNA (mRNA) and protein levels. Patients in the RGS16 high-expression group showed a poorer overall survival rate than those in the low-expression group (P < 0.001), indicating that high RGS16 expression was an independent prognostic factor. CONCLUSION The present study suggests that RGS16 is useful as a predictive marker for patient prognosis of CRC.
Collapse
Affiliation(s)
- Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|