1
|
Xiong X, Yang M, Hai Z, Fei X, Zhu Y, Pan B, Yang Q, Xie Y, Cheng Y, Xiong Y, Lan D, Fu W, Li J. Maternal Kdm2a-mediated PI3K/Akt signaling and E-cadherin stimulate the morula-to-blastocyst transition revealing crucial roles in early embryonic development. Theriogenology 2023; 209:60-75. [PMID: 37356280 DOI: 10.1016/j.theriogenology.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Histone methylation plays an essential role in oocyte growth and preimplantation embryonic development. The modification relies on histone methyl-transferases and demethylases, and one of these, lysine-specific demethylase 2a (Kdm2a), is responsible for modulating histone methylation during oocyte and early embryonic development. The mechanism of how Kdm2a deficiency disrupts early embryonic development and fertility remains elusive. To determine if maternally deposited Kdm2a is required for preimplantation embryonic development, the expression profile of Kdm2a during early embryos was detected via immunofluorescence staining and RT-qPCR. The Kdm2a gene in oocytes was specifically deleted with the Zp3-Cre/LoxP system and the effects of maternal Kdm2a loss were studied through a comprehensive range of female reproductive parameters including fertilization, embryo development, and the number of births. RNA transcriptome sequencing was performed to determine differential mRNA expression, and the interaction between Kdm2a and the PI3K/Akt pathway was studied with a specific inhibitor and activator. Our results revealed that Kdm2a was continuously expressed in preimplantation embryos and loss of maternal Kdm2a suppressed the morula-to-blastocyst transition, which may have been responsible for female subfertility. After the deletion of Kdm2a, the global H3K36me2 methylation in mutant embryos was markedly increased, but the expression of E-cadherin decreased significantly in morula embryos compared to controls. Mechanistically, RNA-seq analysis revealed that deficiency of maternal Kdm2a altered the mRNA expression profile, especially in the PI3K/Akt signaling pathway. Interestingly, the addition of a PI3K/Akt inhibitor (LY294002) to the culture medium blocked embryo development at the stage of morula; however, the developmental block caused by maternal Kdm2a loss was partially rescued with a PI3K/Akt activator (SC79). In summary, our results indicate that loss of Kdm2a influences the transcriptome profile and disrupts the PI3K/Akt signaling pathway during the development of preimplantation embryo. This can result in embryo block at the morula stage and female subfertility, which suggests that maternal Kdm2a is a potential partial redundancy with other genes encoding enzymes in the dynamics of early embryonic development. Our results provide further insight into the role of histone modification, especially on Kdm2a, in preimplantation embryonic development in mice.
Collapse
Affiliation(s)
- Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Manzhen Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Zhuo Hai
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Xixi Fei
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Yanjin Zhu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Bangting Pan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Qinhui Yang
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Yumian Xie
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Yuying Cheng
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Wei Fu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Kalous J, Aleshkina D, Anger M. A Role of PI3K/Akt Signaling in Oocyte Maturation and Early Embryo Development. Cells 2023; 12:1830. [PMID: 37508495 PMCID: PMC10378481 DOI: 10.3390/cells12141830] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
A serine/threonine-specific protein kinase B (PKB), also known as Akt, is a key factor in the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway that regulates cell survival, metabolism and proliferation. Akt phosphorylates many downstream specific substrates, which subsequently control the nuclear envelope breakdown (NEBD), centrosome maturation, spindle assembly, chromosome segregation, and cytokinesis. In vertebrates, Akt is also an important player during oogenesis and preimplantation development. In the signaling pathways regulating mRNA translation, Akt is involved in the control of mammalian target of rapamycin complex 1 (mTORC1) and thereby regulates the activity of a translational repressor, the eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1). In this review, we summarize the functions of Akt in mitosis, meiosis and early embryonic development. Additionally, the role of Akt in the regulation of mRNA translation is addressed with respect to the significance of this process during early development.
Collapse
Affiliation(s)
- Jaroslav Kalous
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic
| | - Daria Aleshkina
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, 128 00 Praha, Czech Republic
| | - Martin Anger
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic
| |
Collapse
|
3
|
Li Y, Tang J, Ji X, Hua MM, Liu M, Chang L, Gu Y, Shi C, Ni W, Liu J, Shi HJ, Huang X, O'Neill C, Jin X. Regulation of the mammalian maternal-to-embryonic transition by eukaryotic translation initiation factor 4E. Development 2021; 148:268308. [PMID: 34013332 PMCID: PMC8254863 DOI: 10.1242/dev.190793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) mediates cap-dependent translation. Genetic and inhibitor studies show that eIF4E expression is required for the successful transition from maternal to embryonic control of mouse embryo development. eIF4E was present in the oocyte and in the cytoplasm soon after fertilization and during each stage of early development. Functional knockout (Eif4e−/−) by PiggyBac [Act-RFP] transposition resulted in peri-implantation embryonic lethality because of the failure of normal epiblast formation. Maternal stores of eIF4E supported development up to the two- to four-cell stage, after which new expression occurred from both maternal and paternal inherited alleles. Inhibition of the maternally acquired stores of eIF4E (using the inhibitor 4EGI-1) resulted in a block at the two-cell stage. eIF4E activity was required for new protein synthesis in the two-cell embryo and Eif4e−/− embryos had lower translational activity compared with wild-type embryos. eIF4E-binding protein 1 (4E-BP1) is a hypophosphorylation-dependent negative regulator of eIF4E. mTOR activity was required for 4E-BP1 phosphorylation and inhibiting mTOR retarded embryo development. Thus, this study shows that eIF4E activity is regulated at key embryonic transitions in the mammalian embryo and is essential for the successful transition from maternal to embryonic control of development. Summary: Combined use of a PB [Act-RFP] transgenesis model, selective pharmacological inhibition and expression analyses verified the essential role of eIF4E in the transition from maternal to embryonic control of mouse development.
Collapse
Affiliation(s)
- Yan Li
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Jianan Tang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Xu Ji
- Department of Pharmacology, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Min-Min Hua
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Miao Liu
- Reproductive Medical Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lu Chang
- Department of Pharmacology, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Yihua Gu
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Changgen Shi
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Wuhua Ni
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Jing Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Hui-Juan Shi
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Xuefeng Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Christopher O'Neill
- Human Reproduction Unit, Sydney Center for Regenerative and Developmental Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Xingliang Jin
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China.,Human Reproduction Unit, Sydney Center for Regenerative and Developmental Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| |
Collapse
|
4
|
Toralova T, Kinterova V, Chmelikova E, Kanka J. The neglected part of early embryonic development: maternal protein degradation. Cell Mol Life Sci 2020; 77:3177-3194. [PMID: 32095869 PMCID: PMC11104927 DOI: 10.1007/s00018-020-03482-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 12/28/2022]
Abstract
The degradation of maternally provided molecules is a very important process during early embryogenesis. However, the vast majority of studies deals with mRNA degradation and protein degradation is only a very little explored process yet. The aim of this article was to summarize current knowledge about the protein degradation during embryogenesis of mammals. In addition to resuming of known data concerning mammalian embryogenesis, we tried to fill the gaps in knowledge by comparison with facts known about protein degradation in early embryos of non-mammalian species. Maternal protein degradation seems to be driven by very strict rules in terms of specificity and timing. The degradation of some maternal proteins is certainly necessary for the normal course of embryonic genome activation (EGA) and several concrete proteins that need to be degraded before major EGA have been already found. Nevertheless, the most important period seems to take place even before preimplantation development-during oocyte maturation. The defects arisen during this period seems to be later irreparable.
Collapse
Affiliation(s)
- Tereza Toralova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Veronika Kinterova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic.
- Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Prague, Czech Republic.
| | - Eva Chmelikova
- Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Jiri Kanka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| |
Collapse
|
5
|
Morris MB, Ozsoy S, Zada M, Zada M, Zamfirescu RC, Todorova MG, Day ML. Selected Amino Acids Promote Mouse Pre-implantation Embryo Development in a Growth Factor-Like Manner. Front Physiol 2020; 11:140. [PMID: 32210831 PMCID: PMC7076138 DOI: 10.3389/fphys.2020.00140] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
Groups of amino acids, and some selected amino acids, added to media used for culture of pre-implantation embryos have previously been shown to improve development in various ways including survival to the blastocyst stage, increased blastocyst cell number and improved hatching. In this study, we cultured 1-cell mouse embryos for 5 days to the hatching blastocyst stage in isosmotic medium (270 mOsm/kg) at high density (10 embryos/10 μL), where autocrine/paracrine support of development occurs, and low density (1 embryo/100 μL), where autocrine/paracrine support is minimized and development is compromised. When 400 μM L-Pro or 1 mM L-Gln was added to embryos at low density, the percentage of embryos reaching the blastocyst stage and the percentage hatching increased compared to low-density culture without these amino acids, and were now similar to those for embryos cultured at high density without amino acids. When L-Pro or L-Gln was added to embryos at high density, the percentage of embryos reaching the blastocyst stage didn’t change but hatching improved. Neither embryo culture density nor the presence of these amino acids had any effect on blastocyst cell number. D-Pro and the osmolytes Gly and Betaine did not improve embryo development in low- or high-density culture indicating the mechanism was stereospecific and not osmotic, respectively. L-Pro- and L-Gln-mediated improvement in development is observed from the 5-cell stage and persists to the blastocyst stage. Molar excess of Gly, Betaine or L-Leu over L-Pro eliminated improvement in development and hatching consistent with them acting as competitive inhibitors of transporter-mediated uptake across the plasma membrane. The L-Pro effect is dependent on mTORC1 signaling (rapamycin sensitive) while that for L-Gln is not. The addition of L-Pro leads to significant nuclear translocation of p-AktS473 at the 2- and 4-cell stages and of p-ERK1/2T202/Y204 nuclear translocation at the 2-, 4-, and 8-cell stages. L-Pro improvement in embryo development involves mechanisms analogous to those seen with Pro-mediated differentiation of mouse ES cells, which is also stereoselective, dependent on transporter uptake, and activates Akt, ERK, and mTORC1 signaling pathways.
Collapse
Affiliation(s)
- Michael B Morris
- Discipline of Physiology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Sukran Ozsoy
- Discipline of Physiology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Matthew Zada
- Discipline of Physiology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Mark Zada
- Discipline of Physiology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Radu C Zamfirescu
- Discipline of Physiology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Mariana G Todorova
- Discipline of Physiology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Margot L Day
- Discipline of Physiology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Xu S, Pang L, Liu Y, Lian X, Mo K, Lv R, Zhu H, Lv C, Lin J, Sun J, Xu L, Wang S. Akt plays indispensable roles during the first cell lineage differentiation of mouse. J Mol Histol 2019; 50:369-374. [PMID: 31190160 DOI: 10.1007/s10735-019-09833-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/10/2019] [Indexed: 01/06/2023]
Abstract
The first cell lineage differentiation occurs during the development of mouse 8-cell embryo to blastocyst. Akt is a potent kinase whose role during blastocyst formation has not been elucidated. In the present study, immunofluorescence results showed that the Akt protein was specifically localized to the outer cells of the morula. Akt-specific inhibitor MK2206 significantly inhibited mouse blastocyst formation and resulted in decreased expression of the trophectoderm marker Cdx2 and led to granular distribution of ERα in the cytoplasm. Furthermore, knockdown of ERα by siRNA microinjection can also lead to a decrease in the development rate of mouse blastocysts, accompanied by a decrease in the expression level of Yap protein. We conclude that Akt may be indispensable for the first cell lineage differentiation of mouse.
Collapse
Affiliation(s)
- Songhua Xu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fuzhou, 350122, People's Republic of China.,Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Lili Pang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fuzhou, 350122, People's Republic of China
| | - Yue Liu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fuzhou, 350122, People's Republic of China
| | - Xiuli Lian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Kaien Mo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Ruimin Lv
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Huimin Zhu
- Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Chengyu Lv
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Jianmin Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Jiandong Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Lixuan Xu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Shie Wang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fuzhou, 350122, People's Republic of China. .,Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China.
| |
Collapse
|
7
|
De Paepe C, Aberkane A, Dewandre D, Essahib W, Sermon K, Geens M, Verheyen G, Tournaye H, Van de Velde H. BMP4 plays a role in apoptosis during human preimplantation development. Mol Reprod Dev 2018; 86:53-62. [DOI: 10.1002/mrd.23081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 10/24/2018] [Indexed: 01/04/2023]
Affiliation(s)
- C. De Paepe
- Research Group of Reproduction and Genetics, Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - A. Aberkane
- Research Group of Reproduction and Immunology, Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - D. Dewandre
- Research Group of Reproduction and Genetics, Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - W. Essahib
- Research Group of Reproduction and Immunology, Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - K. Sermon
- Research Group of Reproduction and Genetics, Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - M. Geens
- Research Group of Reproduction and Genetics, Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - G. Verheyen
- Centre for Reproductive Medicine (CRG), UZ Brussel; Brussels Belgium
| | - H. Tournaye
- Centre for Reproductive Medicine (CRG), UZ Brussel; Brussels Belgium
| | - H. Van de Velde
- Research Group of Reproduction and Genetics, Vrije Universiteit Brussel (VUB); Brussels Belgium
- Research Group of Reproduction and Immunology, Vrije Universiteit Brussel (VUB); Brussels Belgium
- Centre for Reproductive Medicine (CRG), UZ Brussel; Brussels Belgium
| |
Collapse
|
8
|
Jeong PS, Yoon SB, Choi SA, Song BS, Kim JS, Sim BW, Park YH, Yang HJ, Mun SE, Kim YH, Kang P, Jeong KJ, Lee Y, Jin YB, Huh JW, Lee SR, Koo DB, Park YI, Kim SU, Chang KT. Iloprost supports early development of in vitro-produced porcine embryos through activation of the phosphatidylinositol 3-kinase/AKT signalling pathway. Reprod Fertil Dev 2018; 29:1306-1318. [PMID: 27279419 DOI: 10.1071/rd15391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/20/2016] [Indexed: 12/11/2022] Open
Abstract
Despite evidence of the presence of prostaglandin (PG) I2 in mammalian oviducts, its role in early development of in vitro-produced (IVP) embryos is largely unknown. Thus, in the present study we examined the effects of iloprost, a PGI2 analogue, on the in vitro developmental competence of early porcine embryos and the underlying mechanism(s). To examine the effects of iloprost on the development rate of IVF embryos, iloprost was added to the in vitro culture (IVC) medium and cultured for 6 days. Supplementation of the IVC medium with iloprost significantly improved developmental parameters, such as blastocyst formation rate, the trophectoderm:inner cell mass ratio and cell survival in IVF and parthenogenetically activated (PA) embryos. In addition, post-blastulation development into the expanded blastocyst stage was improved in iloprost-treated groups compared with controls. Interestingly, the phosphatidylinositol 3-kinase (PI3K)/AKT signalling pathway was significantly activated by iloprost supplementation in a concentration-dependent manner (10-1000nM), and the beneficial effects of iloprost on the early development of porcine IVF and PA embryos was completely ablated by treatment with 2.5μM wortmannin, a PI3K/AKT signalling inhibitor. Importantly, expression of the PI3K/AKT signalling pathway was significantly reduced in somatic cell nuclear transfer (SCNT) compared with IVF embryos, and iloprost supported the early development of SCNT embryos, as was the case for IVF and PA embryos, suggesting a consistent effect of iloprost on the IVC of IVP porcine embryos. Together, these results indicate that iloprost can be a useful IVC supplement for production of IVP early porcine embryos with high developmental competence.
Collapse
Affiliation(s)
- Pil-Soo Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Seung-Bin Yoon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Seon-A Choi
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Bong-Seok Song
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Ji-Su Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Bo-Woong Sim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Young-Ho Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Hae-Jun Yang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Seong-Eun Mun
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Philyong Kang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Kang-Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Yeung Bae Jin
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, Jillyang-eup, Gyeongsan-si, Gyeongsangbuk-do 38453, Republic of Korea
| | - Young Il Park
- Graduate School Department of Digital Media, Ewha Womans University, Daehyeon-dong, Seodaemun-gu, Seoul 03760, Korea
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Kyu-Tae Chang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanjiro, Ochangeup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| |
Collapse
|
9
|
Ganeshan L, Jin XL, O'Neill C. The induction of tumour suppressor protein P53 limits the entry of cells into the pluripotent inner cell mass lineage in the mouse embryo. Exp Cell Res 2017; 358:227-233. [PMID: 28663058 DOI: 10.1016/j.yexcr.2017.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 11/28/2022]
Abstract
The early preimplantation embryo is susceptible to a range of exogenous stresses which result in their reduced long-term developmental potential. The P53 tumour suppressor protein is normally held at low levels in the preimplantation embryo and we show that culture stress induces the expression of a range of canonical P53-response genes (Mdm2, Bax and Cdkn1a). Culture stress caused a P53-dependent loss of cells from resulting blastocysts, and this was most evident within the inner cell mass population. Culture stress increased the proportion of cells expressing active caspase-3 and undergoing apoptosis, while inhibition of caspase-3 increased the number of cells within the inner cell mass. The P53-dependent loss of cells from the inner cell mass was accompanied by a loss of NANOG-positive epiblast progenitors. Pharmacological activation of P53 by the MDM2 inhibitor, Nutlin-3, also caused increased P53-dependent transcription and the loss of cells from the inner cell mass. This loss of cells could be ameliorated by simultaneous treatment with the P53 inhibitor, Pifithrin-α. Culture stress causes reduced signalling via the phosphatidylinositol-3-kinase signalling pathway, and blocking this pathway caused P53-dependent loss of cells from the inner cell mass. These results point to P53 acting to limit the accumulation and survival of cells within the pluripotent lineage of the blastocyst and provide a molecular framework for the further investigation of the factors determining the effects of stressors on the embryo's developmental potential.
Collapse
Affiliation(s)
- L Ganeshan
- Human Reproduction Unit, Kolling Institute, Sydney Medical School, University of Sydney, NSW 2065, Australia
| | - X L Jin
- Human Reproduction Unit, Kolling Institute, Sydney Medical School, University of Sydney, NSW 2065, Australia
| | - C O'Neill
- Human Reproduction Unit, Kolling Institute, Sydney Medical School, University of Sydney, NSW 2065, Australia.
| |
Collapse
|
10
|
Bertoldo MJ, Locatelli Y, O'Neill C, Mermillod P. Impacts of and interactions between environmental stress and epigenetic programming during early embryo development. Reprod Fertil Dev 2017; 27:1125-36. [PMID: 24965854 DOI: 10.1071/rd14049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/31/2014] [Indexed: 01/24/2023] Open
Abstract
The processes of assisted reproductive technologies (ART) involve a variety of interventions that impact on the oocyte and embryo. Critically, these interventions cause considerable stress and coincide with important imprinting events throughout gametogenesis, fertilisation and early embryonic development. It is now accepted that the IVM and in vitro development of gametes and embryos can perturb the natural course of development to varying degrees of severity. Altered gene expression and, more recently, imprinting disorders relating to ART have become a focused area of research. Although various hypotheses have been put forward, most research has been observational, with little attempt to discover the mechanisms and periods of sensitivity during embryo development that are influenced by the culture conditions following fertilisation. The embryo possesses innate survival factor signalling pathways, yet when an embryo is placed in culture, this signalling in response to in vitro stress becomes critically important in mitigating the effects of stresses caused by the in vitro environment. It is apparent that not all embryos possess this ability to adequately adapt to the stresses experienced in vitro, most probably due to an inadequate oocyte. It is speculated that it is important that embryos use their survival signalling mechanisms to maintain normal epigenetic programming. The seeming redundancy in the function of various survival signalling pathways would support this notion. Any invasion into the natural, highly orchestrated and dynamic process of sexual reproduction could perturb the normal progression of epigenetic programming. Therefore the source of gametes and the subsequent culture conditions of gametes and embryos are critically important and require careful attention. It is the aim of this review to highlight avenues of research to elucidate the effects of stress and the relationship with epigenetic programming. The short- and long-term health and viability of human and animal embryos derived in vitro will also be discussed.
Collapse
Affiliation(s)
- Michael J Bertoldo
- Institut National de la Recherche Agronomique (INRA), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - Yann Locatelli
- Institut National de la Recherche Agronomique (INRA), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - Christopher O'Neill
- Centre for Developmental and Regenerative Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, NSW 2065, Australia
| | - Pascal Mermillod
- Institut National de la Recherche Agronomique (INRA), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| |
Collapse
|
11
|
Fenelon JC, Shaw G, Frankenberg SR, Murphy BD, Renfree MB. Embryo arrest and reactivation: potential candidates controlling embryonic diapause in the tammar wallaby and mink†. Biol Reprod 2017; 96:877-894. [DOI: 10.1093/biolre/iox019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/29/2017] [Indexed: 12/13/2022] Open
|
12
|
Effect of potential role of p53 on embryo development arrest induced by H 2O 2 in mouse. In Vitro Cell Dev Biol Anim 2017; 53:344-353. [PMID: 28127704 DOI: 10.1007/s11626-016-0122-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
Abstract
During mammalian embryo development in vitro, mechanism of embryonic development arrest caused by oxidative stress has not been clear so far. The tumor suppressor protein p53 controls cell cycle and programmed cell death by regulating relevant signal pathway. Recent researches revealed that the concentration and distribution of p53 are closely related with reactive oxygen species (ROS). The main objective of this experiment was to explore the role of p53 on embryonic development arrest caused by oxidative stress. Results showed that embryo arrest at two-four-cell stage was significantly increased in the presence of 50 μM H2O2 (39.01 ± 2.74 vs. 77.20 ± 5.34%, p < 0.05). Supplementation of N-acetyl-L-cysteine (NAC) obviously reduced the ratio of development arrest (39.01 ± 2.74 vs. 71.18 ± 5.34%, p < 0.05), which was accompanied by an increase in ROS level, and H2O2 treatment sharply increased messenger RNA (mRNA) expression and protein levels of p53 and p53-ser15. Further increased transcription of GADD45a and p21, a downstream of p53, has an especially significant effect on the mRNA expression of GADD45a. However, expressions of cdc2 were reduced by H2O2. In addition, using Pifithrin-α (PFT-α), the suppresser of p53, the result showed that GADD45a and p21 were significantly downregulated, but the cell cycle gene cdc2 was significantly upregulated, while the protein level of p53 and p53-ser15 was significantly decreased. Taken together, these results demonstrate that ROS could activate p53 and regulate p53 target genes to influence early embryo development in in vitro culture.
Collapse
|
13
|
Chen J, Lian X, Du J, Xu S, Wei J, Pang L, Song C, He L, Wang S. Inhibition of phosphorylated Ser473-Akt from translocating into the nucleus contributes to 2-cell arrest and defective zygotic genome activation in mouse preimplantation embryogenesis. Dev Growth Differ 2016; 58:280-92. [DOI: 10.1111/dgd.12273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Junming Chen
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Xiuli Lian
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Juan Du
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Songhua Xu
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Jianen Wei
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Lili Pang
- Cellular and Developmental Engineering Center; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Chanchan Song
- Cellular and Developmental Engineering Center; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Lin He
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Shie Wang
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
- Cellular and Developmental Engineering Center; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| |
Collapse
|
14
|
Female tract cytokines and developmental programming in embryos. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:173-213. [PMID: 25956299 DOI: 10.1007/978-1-4939-2480-6_7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the physiological situation, cytokines are pivotal mediators of communication between the maternal tract and the embryo. Compelling evidence shows that cytokines emanating from the oviduct and uterus confer a sophisticated mechanism for 'fine-tuning' of embryo development, influencing a range of cellular events from cell survival and metabolism, through division and differentiation, and potentially exerting long-term impact through epigenetic remodelling. The balance between survival agents, including GM-CSF, CSF1, LIF, HB-EGF and IGFII, against apoptosis-inducing factors such as TNFα, TRAIL and IFNg, influence the course of preimplantation development, causing embryos to develop normally, adapt to varying maternal environments, or in some cases to arrest and undergo demise. Maternal cytokine-mediated pathways help mediate the biological effects of embryo programming, embryo plasticity and adaptation, and maternal tract quality control. Thus maternal cytokines exert influence not only on fertility and pregnancy progression but on the developmental trajectory and health of offspring. Defining a clear understanding of the biology of cytokine networks influencing the embryo is essential to support optimal outcomes in natural and assisted conception.
Collapse
|
15
|
O’Neill C, Li Y, Jin X. Survival Signalling in the Preimplantation Embryo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:129-49. [DOI: 10.1007/978-1-4939-2480-6_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Li Q, Zhang P, Zhang C, Wang Y, Wan R, Yang Y, Guo X, Huo R, Lin M, Zhou Z, Sha J. DDX3X regulates cell survival and cell cycle during mouse early embryonic development. J Biomed Res 2014; 28:282-91. [PMID: 25050112 PMCID: PMC4102842 DOI: 10.7555/jbr.27.20130047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/06/2013] [Accepted: 08/04/2013] [Indexed: 12/13/2022] Open
Abstract
DDX3X is a highly conserved DEAD-box RNA helicase that participates in RNA transcription, RNA splicing, and mRNA transport, translation, and nucleo-cytoplasmic transport. It is highly expressed in metaphase II (MII) oocytes and is the predominant DDX3 variant in the ovary and embryo. However, whether it is important in mouse early embryo development remains unknown. In this study, we investigated the function of DDX3X in early embryogenesis by cytoplasmic microinjection with its siRNA in zygotes or single blastomeres of 2-cell embryos. Our results showed that knockdown of Ddx3x in zygote cytoplasm led to dramatically diminished blastocyst formation, reduced cell numbers, and an increase in the number of apoptotic cells in blastocysts. Meanwhile, there was an accumulation of p53 in RNAi blastocysts. In addition, the ratio of cell cycle arrest during 2-cell to 4-cell transition increased following microinjection of Ddx3x siRNA into single blastomeres of 2-cell embryos compared with control. These results suggest that Ddx3x is an essential gene associated with cell survival and cell cycle control in mouse early embryos, and thus plays key roles in normal embryo development.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Pan Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chao Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ying Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ru Wan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ye Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Min Lin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
17
|
Fenelon JC, Shaw G, O'Neill C, Frankenberg S, Renfree MB. Paf receptor expression in the marsupial embryo and endometrium during embryonic diapause. Reproduction 2014; 147:21-31. [DOI: 10.1530/rep-13-0140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The control of reactivation from embryonic diapause in the tammar wallaby (Macropus eugenii) involves sequential activation of the corpus luteum, secretion of progesterone that stimulates endometrial secretion and subsequent changes in the uterine environment that activate the embryo. However, the precise signals between the endometrium and the blastocyst are currently unknown. In eutherians, both the phospholipid Paf and its receptor, platelet-activating factor receptor (PTAFR), are present in the embryo and the endometrium. In the tammar, endometrial Paf releasein vitroincreases around the time of the early progesterone pulse that occurs around the time of reactivation, but whether Paf can reactivate the blastocyst is unknown. We cloned and characterised the expression of PTAFR in the tammar embryo and endometrium at entry into embryonic diapause, during its maintenance and after reactivation. Tammar PTAFR sequence and protein were highly conserved with mammalian orthologues. In the endometrium, PTAFR was expressed at a constant level in the glandular epithelium across all stages and in the luminal epithelium during both diapause and reactivation. Thus, the presence of the receptor appears not to be a limiting factor for Paf actions in the endometrium. However, the low levels of PTAFR in the embryo during diapause, together with its up-regulation and subsequent internalisation at reactivation, supports earlier results suggesting that endometrial Paf could be involved in reactivation of the tammar blastocyst from embryonic diapause.
Collapse
|
18
|
Wang FW, Zhang YM, Wang Z, Liu SM, Wang LY, Zhang XL, Jia DY, Hao AJ, Wu YL. Calcitonin Promotes Mouse Pre-implantation Development: Involvement of Calcium Mobilization and P38 Mitogen-Activated Protein Kinase Activation. Reprod Domest Anim 2013; 48:382-9. [DOI: 10.1111/rda.12000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/10/2012] [Indexed: 11/28/2022]
Affiliation(s)
- F-w Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology; Department of Histology and Embryology; Shandong University School of Medicine; Jinan; Shandong; China
| | - Y-m Zhang
- Key Laboratory of the Ministry of Education for Experimental Teratology; Department of Histology and Embryology; Shandong University School of Medicine; Jinan; Shandong; China
| | - Z Wang
- Department of Physiology; Shandong University School of Medicine; Jinan; Shandong; China
| | - S-m Liu
- Key Laboratory of the Ministry of Education for Experimental Teratology; Department of Histology and Embryology; Shandong University School of Medicine; Jinan; Shandong; China
| | - L-y Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology; Department of Histology and Embryology; Shandong University School of Medicine; Jinan; Shandong; China
| | - X-l Zhang
- Key Laboratory of the Ministry of Education for Experimental Teratology; Department of Histology and Embryology; Shandong University School of Medicine; Jinan; Shandong; China
| | - D-y Jia
- Key Laboratory of the Ministry of Education for Experimental Teratology; Department of Histology and Embryology; Shandong University School of Medicine; Jinan; Shandong; China
| | - A-j Hao
- Key Laboratory of the Ministry of Education for Experimental Teratology; Department of Histology and Embryology; Shandong University School of Medicine; Jinan; Shandong; China
| | - Y-l Wu
- Key Laboratory of the Ministry of Education for Experimental Teratology; Department of Histology and Embryology; Shandong University School of Medicine; Jinan; Shandong; China
| |
Collapse
|
19
|
Campbell JM, Lane M, Vassiliev I, Nottle MB. Epiblast cell number and primary embryonic stem cell colony generation are increased by culture of cleavage stage embryos in insulin. J Reprod Dev 2012; 59:131-8. [PMID: 23171593 PMCID: PMC3934205 DOI: 10.1262/jrd.2012-103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Human embryos for hESC derivation are often donated at the cleavage stage and of reduced
quality. Poor quality embryos have lower efficiency for hESC derivation. However, cleavage
stage mouse embryos develop into higher quality expanded blastocysts if they are cultured
with insulin, suggesting that this approach could be used to improve hESC derivation from
poor quality cleavage stage embryos. The present study used a mouse model to examine this
approach. In particular we examined the effect of insulin on the number of epiblast cells
in blastocysts on days 4, 5 and 6 using Oct4 and Nanog co-expression. Second we examined
the effect of insulin on the frequency with which outgrowths can be derived from these.
Finally, we tested whether prior culture in the presence of insulin results in blastocysts
with increased capacity to generate ESC colonies. Culture of cleavage stage embryos with
insulin increased the number of Oct4 and Nanog positive cells in blastocysts at all time
points examined. Prior culture with insulin had no effect on outgrowths generated from
blastocysts plated on days 4 or 5. However, insulin treatment of blastocysts plated on day
6 resulted in increased numbers of outgrowths with larger epiblasts compared with
controls. 13% of insulin treated day 6 blastocysts produced primary ESC colonies compared
with 6% of controls. In conclusion, treatment with insulin can improve epiblast cell
number in mice leading to an increase with which primary ESC colonies can be generated and
may improve hESC isolation from reduced quality embryos donated at the cleavage stage.
Collapse
Affiliation(s)
- Jared M Campbell
- School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, University of Adelaide, Adelaide, SA 5005, Australia
| | | | | | | |
Collapse
|
20
|
Li A, Ganeshan L, O'Neill C. The effect of Trp53 gene-dosage and parent-of-origin of inheritance on mouse gamete and embryo function in vitro. Biol Reprod 2012; 86:175. [PMID: 22441798 DOI: 10.1095/biolreprod.111.097741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The transformation-related protein 53 (TRP53) has a canonical role as the "guardian of the genome," serving to protect against the propagation of cells with genomic damage. Autocrine trophic signals act to block the accumulation of TRP53 in the normal preimplantation embryo. Culture of the early embryo at limiting dilutions in simple defined media limits autocrine signaling, resulting in the accumulation of TRP53. This TRP53 reduces the rate of development of embryos. In this study we show that deletion of the Trp53 gene improved development in vitro in a dose-dependent manner. Development to morphological blastocysts increased as the dose of Trp53 was reduced, and this was accompanied by a Trp53-dependent increase in the allocation of cells to the inner cell mass. The intermediate developmental response of heterozygous mice provides evidence for haploinsufficiency of this trait. This haploinsufficiency was evident irrespective of the parent-of-origin of the null allele; however, zygotes with paternal inheritance of the Trp53-null allele had better development in vitro than those with maternal inheritance. There was a beneficial effect of the Trp53-null allele on the number of oocytes released by Trp53(+/-) females, and heterozygous males produced higher fertilization rates than controls, although this was independent of the genotype of the fertilizing sperm. The study shows that ovulation induction or culture of embryos in limiting conditions creates conditions that favor the early development of embryos inheriting loss of Trp53 function. This occurs even in the heterozygous state, showing that the conditions provide a potential basis for accelerated accumulation of deleterious mutations within a population.
Collapse
Affiliation(s)
- A Li
- Centre for Developmental and Regenerative Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, St Leonards, New South Wales, Australia
| | | | | |
Collapse
|
21
|
CFTR mediates bicarbonate-dependent activation of miR-125b in preimplantation embryo development. Cell Res 2012; 22:1453-66. [PMID: 22664907 DOI: 10.1038/cr.2012.88] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although HCO(3)(-) is known to be required for early embryo development, its exact role remains elusive. Here we report that HCO(3)(-) acts as an environmental cue in regulating miR-125b expression through CFTR-mediated influx during preimplantation embryo development. The results show that the effect of HCO(3)(-) on preimplantation embryo development can be suppressed by interfering the function of a HCO(3)(-)-conducting channel, CFTR, by a specific inhibitor or gene knockout. Removal of extracellular HCO(3)(-) or inhibition of CFTR reduces miR-125b expression in 2 cell-stage mouse embryos. Knockdown of miR-125b mimics the effect of HCO(3)(-) removal and CFTR inhibition, while injection of miR-125b precursor reverses it. Downregulation of miR-125b upregulates p53 cascade in both human and mouse embryos. The activation of miR-125b is shown to be mediated by sAC/PKA-dependent nuclear shuttling of NF-κB. These results have revealed a critical role of CFTR in signal transduction linking the environmental HCO(3)(-) to activation of miR-125b during preimplantation embryo development and indicated the importance of ion channels in regulation of miRNAs.
Collapse
|
22
|
Survival signaling in the preimplantation embryo. Theriogenology 2012; 77:773-84. [PMID: 22325248 DOI: 10.1016/j.theriogenology.2011.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 12/12/2011] [Accepted: 01/12/2012] [Indexed: 11/24/2022]
Abstract
The autopoietic development of the preimplantation embryo may in part be explained by the actions of autocrine tropic ligands. The net effect of these mediators is to support the survival of cells within the early embryo. In the mouse, the actions of autocrine ligands are required by the 2-cell stage of development, and they can act in concert with paracrine mediators present within the reproductive tract. These mediators act via 1-o-phosphatidylinositol-3-kinase signaling which has the dual effects of activating calcium/calmodulin-dependent kinase/CREB transcription factor and AKT (protein kinase B)/MDM2 mediated survival pathways. The activated CREB drives transcription of prosurvival effectors, including the proto-oncogenes c-Fos and Bcl2. The AKT induces the phosphorylation and activation of MDM2 which causes the ubiquitination and resultant degradation of P53 resulting in the latency of P53 action. Tropic signals provide coordinated mechanisms for maintaining the survival of the cells of the early embryo. Disturbance of survival signaling has the net effect of reducing the number of cells populating the early embryo, due in part to the P53-mediated reduction in the pluripotent inner cell mass stem cell population within the embryo. The resultant embryos have a markedly reduced capacity for development beyond the implantation stage and those that do implant tend to be anembryonic.
Collapse
|
23
|
Campbell JM, Nottle MB, Vassiliev I, Mitchell M, Lane M. Insulin increases epiblast cell number of in vitro cultured mouse embryos via the PI3K/GSK3/p53 pathway. Stem Cells Dev 2012; 21:2430-41. [PMID: 22339667 DOI: 10.1089/scd.2011.0598] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
High-quality embryos give rise to embryonic stem cells (ESCs) at greater efficiencies than poor-quality embryos. However, most embryos available for human ESC derivation are of a reduced quality as a result of culture in relatively simple media up to 10 years earlier, before cryopreservation, or before compaction. In the present study, we used a mouse model to determine whether a culture with insulin from the 8-cell stage could increase the number of ESC progenitor epiblast cells in blastocysts, as well as endeavor to determine the molecular mechanism of the insulin's effect. Culture in media containing 1.7 ρM insulin increased epiblast cell number (determined by Oct4 and Nanog co-expression), and proportion in day 6 blastocysts. The inhibition of phosphoinositide 3 kinase (PI3K) (via LY294002), an early second messenger of the insulin receptor, blocked this effect. The inhibition of glycogen synthase kinase 3 (GSK3) or p53, 2 s messengers inactivated by insulin signaling (via CT99021 or pifithrin-α, respectively), increased epiblast cell numbers. When active, GSK3 and p53 block the transcription of Nanog, which is important for maintaining pluripotency. A simultaneous inhibition of GSK3 and p53 had no synergistic effects on epiblast cell number. The induced activation of GSK3 and p53, via the inhibition of proteins responsible for their inactivation (PKA via H-89 and SIRT-1 via nicotinamide, respectively), blocked the insulin's effect on the epiblast.From our findings, we conclude that insulin increases epiblast cell number via the activation of PI3K, which ultimately inactivates GSK3 and p53. Furthermore, we suggest that the inclusion of insulin in culture media could be used as a strategy for increasing the efficiency with which the ESC lines can be derived from cultured embryos.
Collapse
Affiliation(s)
- Jared M Campbell
- Centre for Stem Cell Research, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia.
| | | | | | | | | |
Collapse
|
24
|
Ganeshan L, Li A, O'Neill C. Transformation-related protein 53 expression in the early mouse embryo compromises preimplantation embryonic development by preventing the formation of a proliferating inner cell mass. Biol Reprod 2010; 83:958-64. [PMID: 20739669 DOI: 10.1095/biolreprod.109.083162] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The developmental viability of the preimplantation embryo requires the successful formation of a cluster of pluripotent stem cells called the inner cell mass. Development is variably compromised by a range of exogenous stressors (including their production by assisted reproductive technologies). Inbred C57BL/6 strain embryos are particularly susceptible to the stresses associated with embryo culture, whereas hybrid embryos are more resistant, and this is accounted for in part by the overexpression of transformation-related protein 53 in cultured inbred embryos compared with similarly treated hybrid embryos or embryos not subjected to culture. We show here that this loss of viability is a consequence of the Trp53-dependent reduction in the capacity of blastocysts to form a proliferating inner cell mass. Formation of the trophectodermal line was not adversely affected by these stresses.
Collapse
Affiliation(s)
- Lakshi Ganeshan
- Sydney Centre for Developmental and Regenerative Medicine, University of Sydney, St. Leonards, New South Wales, Australia
| | | | | |
Collapse
|
25
|
Chin PY, Macpherson AM, Thompson JG, Lane M, Robertson SA. Stress response genes are suppressed in mouse preimplantation embryos by granulocyte-macrophage colony-stimulating factor (GM-CSF). Hum Reprod 2009; 24:2997-3009. [DOI: 10.1093/humrep/dep307] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|