1
|
Colon-Caraballo M, Russell SR, Myers KM, Mahendroo M. Collagen turnover during cervical remodeling involves both intracellular and extracellular collagen degradation pathways†. Biol Reprod 2025; 112:709-727. [PMID: 39823285 PMCID: PMC11996760 DOI: 10.1093/biolre/ioaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/20/2024] [Accepted: 01/15/2025] [Indexed: 01/19/2025] Open
Abstract
Reproductive success requires accurately timed remodeling of the cervix to orchestrate the maintenance of pregnancy, the process of labor, and birth. Prior work in mice established that a combination of continuous turnover of fibrillar collagen and reduced formation of collagen cross-links allows for the gradual increase in tissue compliance and delivery of the fetus during labor. However, the mechanism for continuous collagen degradation to ensure turnover during cervical remodeling is still unknown. This study demonstrates the functional role of extracellular and intracellular collagen degradative pathways in two different settings of cervical remodeling: physiological term remodeling and inflammation-mediated premature remodeling. Extracellular collagen degradation is achieved by the activity of fibroblast-derived matrix metalloproteases MMP14, MMP2, and fibroblast activation protein (FAP). In parallel, we demonstrate the function of an intracellular collagen degradative pathway in fibroblast cells mediated by the collagen endocytic mannose receptor type-2 (MRC2). These pathways appear to be functionally redundant as loss of MRC2 does not obstruct collagen turnover or cervical function in pregnancy. While both extracellular and intracellular pathways are also utilized in inflammation-mediated premature cervical remodeling, the extracellular collagen degradation pathway uniquely employs fibroblast and immune-cell-derived proteases. In sum, these findings identify the dual utilization of two distinct degradative pathways as a failsafe mechanism to achieve continuous collagen turnover in the cervix, thereby allowing dynamic shifts in cervical tissue mechanics and function.
Collapse
Affiliation(s)
- Mariano Colon-Caraballo
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Serena R Russell
- Department of Mechanical Engineering, Columbia University, New York, New York City, United States of America
| | - Kristin M Myers
- Department of Mechanical Engineering, Columbia University, New York, New York City, United States of America
| | - Mala Mahendroo
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
2
|
Madhukaran S, Fomina YY, Mahendroo M. Cervical function in pregnancy and disease: new insights from single-cell analysis. Am J Obstet Gynecol 2025; 232:S81-S94. [PMID: 40253084 DOI: 10.1016/j.ajog.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 04/21/2025]
Abstract
The uterine cervix plays an essential role in regulating fertility, maintaining pregnancy, remodeling in preparation for parturition, and protecting the reproductive tract from infection. A compromise in cervical function contributes to adverse clinical outcomes. Understanding molecular events that drive the multifunctional and temporally defined roles of the cervix is necessary to effectively treat infertility, reproductive tract infections, preterm birth, labor dystocia, and cervical cancer. The application of single-cell technologies to study cervical pathophysiology, while in its infancy, underscores the potential of these approaches in developing clinically relevant biomarkers of disease and preventative therapies. This review focuses on insights gained from single-cell transcriptomic studies in human and mouse cervical tissue and highlights outstanding questions in the field. One collective advance from single-cell analysis is the dynamic plasticity of cervical epithelial cells during the reproductive cycle in health and disease. Single-cell comparisons between upper and lower regions of the reproductive tract also highlight the distinct and divergent immunological responses elicited in the cervix during the reproductive lifespan. These findings may reconcile prior controversies in the role of proinflammatory mediators during parturition. In addition to providing obstetric insights, single-cell technologies elucidate the molecular pathways that drive cervical cancer progression. Thus far, these technologies have uncovered cellular heterogeneity in the tumor microenvironment and have identified potential cancer stem cells. While single-cell technology alone will not uncover all the molecular underpinnings contributing to preterm birth or cervical cancer, the insights derived from this valuable technology will accelerate our understanding of cervical biology in health and disease, which ultimately will help develop biomarkers for disease prediction and prevention therapies.
Collapse
Affiliation(s)
- ShanmugaPriyaa Madhukaran
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yevgenia Y Fomina
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Mala Mahendroo
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
3
|
Villegas-Downs M, Mohammadi M, Han A, O'Brien WD, Simpson DG, Peters TA, Schlaeger JM, McFarlin BL. Trajectory of Postpartum Cervical Remodeling in Women Delivering Full-Term and Spontaneous Preterm: Sensitivity to Quantitative Ultrasound Biomarkers. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1777-1784. [PMID: 39237426 DOI: 10.1016/j.ultrasmedbio.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVE Women with a history of spontaneous preterm birth (sPTB) face an increased risk of recurrence. Yet, the factors contributing to the increased risk are unknown, hampering the development of targeted interventions. Noninvasive quantitative ultrasound (QUS) has been validated in the characterization of cervical tissue and has the potential to provide information about postpartum cervical remodeling. The objective of this study was to determine the postpartum cervical remodeling trajectories of women over 12 mo post-delivery and to determine whether there were differences between women who delivered full-term and spontaneous preterm that were sensitive to QUS biomarkers. METHODS Data were collected prospectively from 55 women: 41 who delivered full-term and 14 who delivered spontaneously preterm at 6 wk, 3, 6, 9 and 12 mo (±2 wk) postpartum. Data from QUS biomarkers: Attenuation Coefficient; Backscatter Coefficient; Shear Wave Speed; and Lizzi-Feleppa Slope, Intercept and Midband were analyzed from the acquired radiofrequency data using a Siemens S2000 ultrasound system with a transvaginal MC 9-4 MHz probe. The biomarkers were analyzed using descriptive statistics and linear mixed-effects models. RESULTS QUS biomarkers, Backscatter Coefficient and Lizzi-Feleppa Intercept showed significant differences during the year after delivery between women who had a full-term birth and sPTB (p < 0.05), suggesting that there are differences in the cervical remodeling trajectories between the two groups. All QUS biomarkers demonstrated significant variations between the full-term birth and sPTB groups over time (p < 0.05), indicating ongoing cervical remodeling for both groups during the 12-mo postpartum period. CONCLUSION QUS biomarkers identified cervical microstructure differences and trajectories in the year after delivery between women who delivered full-term and spontaneous preterm.
Collapse
Affiliation(s)
- Michelle Villegas-Downs
- Department of Human Development Nursing Science, University of Illinois Chicago, Chicago, IL, USA.
| | - Mehrdad Mohammadi
- Department of Statistics, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Aiguo Han
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - William D O'Brien
- Department of Electrical and Computer Engineering, Bioacoustics Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Douglas G Simpson
- Department of Statistics, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Tara A Peters
- Department of Human Development Nursing Science, University of Illinois Chicago, Chicago, IL, USA
| | - Judith M Schlaeger
- Department of Human Development Nursing Science, University of Illinois Chicago, Chicago, IL, USA
| | - Barbara L McFarlin
- Department of Human Development Nursing Science, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Wu W, Sun Z, Gao H, Nan Y, Pizzella S, Xu H, Lau J, Lin Y, Wang H, Woodard PK, Krigman HR, Wang Q, Wang Y. Whole cervix imaging of collagen, muscle, and cellularity in term and preterm pregnancy. Nat Commun 2024; 15:5942. [PMID: 39030173 PMCID: PMC11271604 DOI: 10.1038/s41467-024-48680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 05/08/2024] [Indexed: 07/21/2024] Open
Abstract
Cervical softening and dilation are critical for the successful term delivery of a fetus, with premature changes associated with preterm birth. Traditional clinical measures like transvaginal ultrasound and Bishop scores fall short in predicting preterm births and elucidating the cervix's complex microstructural changes. Here, we introduce a magnetic resonance diffusion basis spectrum imaging (DBSI) technique for non-invasive, comprehensive imaging of cervical cellularity, collagen, and muscle fibers. This method is validated through ex vivo DBSI and histological analyses of specimens from total hysterectomies. Subsequently, retrospective in vivo DBSI analysis at 32 weeks of gestation in ten term deliveries and seven preterm deliveries with inflammation-related conditions shows distinct microstructural differences between the groups, alongside significant correlations with delivery timing. These results highlight DBSI's potential to improve understanding of premature cervical remodeling and aid in the evaluation of therapeutic interventions for at-risk pregnancies. Future studies will further assess DBSI's clinical applicability.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhexian Sun
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hansong Gao
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Electrical & Systems Engineering, Washington University, St. Louis, MO, USA
| | - Yuan Nan
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Electrical & Systems Engineering, Washington University, St. Louis, MO, USA
| | - Stephanie Pizzella
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Haonan Xu
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Josephine Lau
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yiqi Lin
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Electrical & Systems Engineering, Washington University, St. Louis, MO, USA
| | - Hui Wang
- Department of Physics, Washington University, St. Louis, MO, USA
| | - Pamela K Woodard
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hannah R Krigman
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qing Wang
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA.
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Yong Wang
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, USA.
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Powell AM, Khan FZA, Ravel J, Elovitz MA. Untangling Associations of Microbiomes of Pregnancy and Preterm Birth. Clin Perinatol 2024; 51:425-439. [PMID: 38705650 PMCID: PMC11070640 DOI: 10.1016/j.clp.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
This review illuminates the complex interplay between various maternal microbiomes and their influence on preterm birth (PTB), a driving and persistent contributor to neonatal morbidity and mortality. Here, we examine the dynamics of oral, gastrointestinal (gut), placental, and vaginal microbiomes, dissecting their roles in the pathogenesis of PTB. Importantly, focusing on the vaginal microbiome and PTB, the review highlights (1) a protective role of Lactobacillus species; (2) an increased risk with select anaerobes; and (3) the influence of social health determinants on the composition of vaginal microbial communities.
Collapse
Affiliation(s)
- Anna Maya Powell
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 249, Baltimore, MD 21287, USA
| | - Fouzia Zahid Ali Khan
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 249, Baltimore, MD 21287, USA
| | - Jacques Ravel
- Department of Microbiology and Immunology, Institute for Genome Sciences, 670 West Baltimore Street, 3rd Floor, Room 3173, Baltimore, MD 21201, USA
| | - Michal A Elovitz
- Department of Obstetrics and Gynecology, Women's Health Research, Icahn School of Medicine at Mount Sinai, Women's Biomedical Research Institute, 1468 Madison Avenue, New York, NY 10029, USA.
| |
Collapse
|
6
|
Galaz J, Romero R, Greenberg JM, Theis KR, Arenas-Hernandez M, Xu Y, Farias-Jofre M, Miller D, Kanninen T, Garcia-Flores V, Gomez-Lopez N. Host-microbiome interactions in distinct subsets of preterm labor and birth. iScience 2023; 26:108341. [PMID: 38047079 PMCID: PMC10692673 DOI: 10.1016/j.isci.2023.108341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Preterm birth, the leading cause of perinatal morbidity, often follows premature labor, a syndrome whose prevention remains a challenge. To better understand the relationship between premature labor and host-microbiome interactions, we conducted a mechanistic investigation using three preterm birth models. We report that intra-amniotic delivery of LPS triggers inflammatory responses in the amniotic cavity and cervico-vaginal microenvironment, causing vaginal microbiome changes and signs of active labor. Intra-amniotic IL-1α delivery causes a moderate inflammatory response in the amniotic cavity but increasing inflammation in the cervico-vaginal space, leading to vaginal microbiome disruption and signs of active labor. Conversely, progesterone action blockade by RU-486 triggers local immune responses accompanying signs of active labor without altering the vaginal microbiome. Preterm labor facilitates ascension of cervico-vaginal bacteria into the amniotic cavity, regardless of stimulus. This study provides compelling mechanistic insights into the dynamic host-microbiome interactions within the cervico-vaginal microenvironment that accompany premature labor and birth.
Collapse
Affiliation(s)
- Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Jonathan M. Greenberg
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kevin R. Theis
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yi Xu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Marcelo Farias-Jofre
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tomi Kanninen
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Valeria Garcia-Flores
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Zhu B, Tao Z, Edupuganti L, Serrano MG, Buck GA. Roles of the Microbiota of the Female Reproductive Tract in Gynecological and Reproductive Health. Microbiol Mol Biol Rev 2022; 86:e0018121. [PMID: 36222685 PMCID: PMC9769908 DOI: 10.1128/mmbr.00181-21] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The microbiome of the female reproductive tract defies the convention that high biodiversity is a hallmark of an optimal ecosystem. Although not universally true, a homogeneous vaginal microbiome composed of species of Lactobacillus is generally associated with health, whereas vaginal microbiomes consisting of other taxa are generally associated with dysbiosis and a higher risk of disease. The past decade has seen a rapid advancement in our understanding of these unique biosystems. Of particular interest, substantial effort has been devoted to deciphering how members of the microbiome of the female reproductive tract impact pregnancy, with a focus on adverse outcomes, including but not limited to preterm birth. Herein, we review recent research efforts that are revealing the mechanisms by which these microorganisms of the female reproductive tract influence gynecologic and reproductive health of the female reproductive tract.
Collapse
Affiliation(s)
- Bin Zhu
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zhi Tao
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Laahirie Edupuganti
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Myrna G. Serrano
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Gregory A. Buck
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
- Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
8
|
Tripathy S, Nallasamy S, Mahendroo M. Progesterone and its receptor signaling in cervical remodeling: Mechanisms of physiological actions and therapeutic implications. J Steroid Biochem Mol Biol 2022; 223:106137. [PMID: 35690241 PMCID: PMC9509468 DOI: 10.1016/j.jsbmb.2022.106137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
The remodeling of the cervix from a closed rigid structure to one that can open sufficiently for passage of a term infant is achieved by a complex series of molecular events that in large part are regulated by the steroid hormones progesterone and estrogen. Among hormonal influences, progesterone exerts a dominant role for most of pregnancy to initiate a loss of tissue strength yet maintain competence in a phase termed softening. Equally important are the molecular events that abrogate progesterone function in late pregnancy to allow a loss of tissue competence and strength during cervical ripening and dilation. In this review, we focus on current understanding by which progesterone receptor signaling for the majority of pregnancy followed by a loss/shift in progesterone receptor action at the end of pregnancy, collectively ensure cervical remodeling as necessary for successful parturition.
Collapse
Affiliation(s)
- Sudeshna Tripathy
- Division of Basic Research, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shanmugasundaram Nallasamy
- Division of Basic Research, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mala Mahendroo
- Division of Basic Research, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
9
|
Tantengco OAG, Richardson LS, Radnaa E, Kammala AK, Kim S, Medina PMB, Han A, Menon R. Modeling ascending Ureaplasma parvum infection through the female reproductive tract using vagina-cervix-decidua-organ-on-a-chip and feto-maternal interface-organ-on-a-chip. FASEB J 2022; 36:e22551. [PMID: 36106554 PMCID: PMC9500016 DOI: 10.1096/fj.202200872r] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 09/02/2023]
Abstract
Genital mycoplasmas can break the cervical barrier and cause intraamniotic infection and preterm birth. This study developed a six-chamber vagina-cervix-decidua-organ-on-a-chip (VCD-OOC) that recapitulates the female reproductive tract during pregnancy with culture chambers populated by vaginal epithelial cells, cervical epithelial and stromal cells, and decidual cells. Cells cultured in VCD-OOC were characterized by morphology and immunostaining for cell-specific markers. We transferred the media from the decidual cell chamber of the VCD-OOC to decidual cell chamber in feto-maternal interface organ-on-a-chip (FMi-OOC), which contains the fetal membrane layers. An ascending Ureaplasma parvum infection was created in VCD-OOC. U. parvum was monitored for 48 h post-infection with their cytotoxicity (LDH assay) and inflammatory effects (multiplex cytokine assay) in the cells tested. An ascending U. parvum infection model of PTB was developed using CD-1 mice. The cell morphology and expression of cell-specific markers in the VCD-OOC mimicked those seen in lower genital tract tissues. U. parvum reached the cervical epithelial cells and decidua within 48 h and did not cause cell death in VCD-OOC or FMi-OOC cells. U. parvum infection promoted minimal inflammation, while the combination of U. parvum and LPS promoted massive inflammation in the VCD-OOC and FMi-OOC cells. In the animal model, U. parvum vaginal inoculation of low-dose U. parvum did not result in PTB, and even a high dose had only some effects on PTB (20%). However, intra-amniotic injection of U. parvum resulted in 67% PTB. We report the colonization of U. parvum in various cell types; however, inconsistent, and low-grade inflammation across multiple cell types suggests poor immunogenicity induced by U. parvum.
Collapse
Affiliation(s)
- Ourlad Alzeus G. Tantengco
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Lauren S. Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Paul Mark B. Medina
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Arum Han
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
10
|
The Impact of Mouse Preterm Birth Induction by RU-486 on Microglial Activation and Subsequent Hypomyelination. Int J Mol Sci 2022; 23:ijms23094867. [PMID: 35563258 PMCID: PMC9105222 DOI: 10.3390/ijms23094867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Preterm birth (PTB) represents 15 million births every year worldwide and is frequently associated with maternal/fetal infections and inflammation, inducing neuroinflammation. This neuroinflammation is mediated by microglial cells, which are brain-resident macrophages that release cytotoxic molecules that block oligodendrocyte differentiation, leading to hypomyelination. Some preterm survivors can face lifetime motor and/or cognitive disabilities linked to periventricular white matter injuries (PWMIs). There is currently no recommendation concerning the mode of delivery in the case of PTB and its impact on brain development. Many animal models of induced-PTB based on LPS injections exist, but with a low survival rate. There is a lack of information regarding clinically used pharmacological substances to induce PTB and their consequences on brain development. Mifepristone (RU-486) is a drug used clinically to induce preterm labor. This study aims to elaborate and characterize a new model of induced-PTB and PWMIs by the gestational injection of RU-486 and the perinatal injection of pups with IL-1beta. A RU-486 single subcutaneous (s.c.) injection at embryonic day (E)18.5 induced PTB at E19.5 in pregnant OF1 mice. All pups were born alive and were adopted directly after birth. IL-1beta was injected intraperitoneally from postnatal day (P)1 to P5. Animals exposed to both RU-486 and IL-1beta demonstrated microglial reactivity and subsequent PWMIs. In conclusion, the s.c. administration of RU-486 induced labor within 24 h with a high survival rate for pups. In the context of perinatal inflammation, RU-486 labor induction significantly decreases microglial reactivity in vivo but did not prevent subsequent PWMIs.
Collapse
|
11
|
Barnum CE, Shetye SS, Fazelinia H, Garcia BA, Fang S, Alzamora M, Li H, Brown LM, Tang C, Myers K, Wapner R, Soslowsky LJ, Vink JY. The Non-pregnant and Pregnant Human Cervix: a Systematic Proteomic Analysis. Reprod Sci 2022; 29:1542-1559. [PMID: 35266109 DOI: 10.1007/s43032-022-00892-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 02/13/2022] [Indexed: 10/18/2022]
Abstract
Appropriate timing of cervical remodeling (CR) is key to normal term parturition. To date, mechanisms behind normal and abnormal (premature or delayed) CR remain unclear. Recent studies show regional differences exist in human cervical tissue structure. While the entire cervix contains extracellular matrix (ECM), the internal os is highly cellular containing 50-60% cervical smooth muscle (CSM). The external os contains 10-20% CSM. Previously, we reported ECM rigidity and different ECM proteins influence CSM cell function, highlighting the importance of understanding not only how cervical cells orchestrate cervical ECM remodeling in pregnancy, but also how changes in specific ECM proteins can influence resident cellular function. To understand this dynamic process, we utilized a systematic proteomic approach to understand which soluble ECM and cellular proteins exist in the different regions of the human cervix and how the proteomic profiles change from the non-pregnant (NP) to the pregnant (PG) state. We found the human cervix proteome contains at least 4548 proteins and establish the types and relative abundance of cellular and soluble matrisome proteins found in the NP and PG human cervix. Further, we report the relative abundance of proteins involved with elastic fiber formation and ECM organization/degradation were significantly increased while proteins involved in RNA polymerase I/promoter opening, DNA methylation, senescence, immune system, and compliment activation were decreased in the PG compared to NP cervix. These findings establish an initial platform from which we can further comprehend how changes in the human cervix proteome results in normal and abnormal CR.
Collapse
Affiliation(s)
- Carrie E Barnum
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Snehal S Shetye
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Hossein Fazelinia
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuyang Fang
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Maria Alzamora
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hongyu Li
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lewis M Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Chuanning Tang
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kristin Myers
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Louis J Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Joy Y Vink
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA. .,Preterm Birth Prevention Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
12
|
Gerson KD, Liao J, McCarthy C, Burris HH, Korem T, Levy M, Ravel J, Elovitz MA. A non-optimal cervicovaginal microbiota in pregnancy is associated with a distinct metabolomic signature among non-Hispanic Black individuals. Sci Rep 2021; 11:22794. [PMID: 34815499 PMCID: PMC8611022 DOI: 10.1038/s41598-021-02304-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Biomechanical and molecular processes of premature cervical remodeling preceding spontaneous preterm birth (sPTB) likely result from interactions between the cervicovaginal microbiota and host immune responses. A non-optimal cervicovaginal microbiota confers increased risk of sPTB. The cervicovaginal space is metabolically active in pregancy; microbiota can produce, modify, and degrade metabolites within this ecosystem. We establish that cervicovaginal metabolomic output clusters by microbial community in pregnancy among Black individuals, revealing increased metabolism within the amino acid and dipeptide pathways as hallmarks of a non-optimal microbiota. Few differences were detected in metabolomic profiles when stratified by birth outcome. The study raises the possibility that metabolites could distinguish women with greater risk of sPTB among those with similar cervicovaginal microbiota, and that metabolites within the amino acid and carbohydrate pathways may play a role in this distinction.
Collapse
Affiliation(s)
- Kristin D Gerson
- Department of OB/GYN, Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Biomedical Research Building II/III, 1351, 421 Curie Blvd, Philadelphia, PA, 19104-6160, USA.
| | - Jingqiu Liao
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Clare McCarthy
- Department of OB/GYN, Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Biomedical Research Building II/III, 1351, 421 Curie Blvd, Philadelphia, PA, 19104-6160, USA
| | - Heather H Burris
- Department of OB/GYN, Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Biomedical Research Building II/III, 1351, 421 Curie Blvd, Philadelphia, PA, 19104-6160, USA
| | - Tal Korem
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Canada
| | - Maayan Levy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Michal A Elovitz
- Department of OB/GYN, Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Biomedical Research Building II/III, 1351, 421 Curie Blvd, Philadelphia, PA, 19104-6160, USA
| |
Collapse
|
13
|
Nallasamy S, Palacios HH, Setlem R, Caraballo MC, Li K, Cao E, Shankaran M, Hellerstein M, Mahendroo M. Transcriptome and proteome dynamics of cervical remodeling in the mouse during pregnancy. Biol Reprod 2021; 105:1257-1271. [PMID: 34309663 DOI: 10.1093/biolre/ioab144] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/02/2021] [Accepted: 07/20/2021] [Indexed: 11/14/2022] Open
Abstract
During gestation, the female reproductive tract must maintain pregnancy while concurrently preparing for parturition. Here, we explore the transitions in gene expression and protein turnover (fractional synthesis rates [FSR]) by which the cervix implements a transition from rigid to compliant. Shifts in gene transcription to achieve immune tolerance and alter epithelial cell programs begin in early pregnancy. Subsequently, in mid-to-late pregnancy transcriptional programs emerge that promote structural reorganization of the extracellular matrix (ECM). Stable isotope labeling revealed a striking slowdown of overall FSRs across the proteome on gestation day 6 that reverses in mid-to-late pregnancy. An exception was soluble fibrillar collagens and proteins of collagen assembly, which exhibit high turnover in non-pregnant cervix compared to other tissues and FSRs that continue throughout pregnancy. This finding provides a mechanism to explain how cross-linked collagen is replaced by newly synthesized, less-cross-linked collagens, which allows increased tissue compliance during parturition. The rapid transition requires a reservoir of newly synthesized, less cross-linked collagens, which is assured by the high FSR of soluble collagens in the cervix. These findings suggest a previously unrecognized form of "metabolic flexibility" for ECM in the cervix that underlies rapid transformation in compliance to allow parturition.
Collapse
Affiliation(s)
- Shanmugasundaram Nallasamy
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Hector H Palacios
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA
| | - Rohit Setlem
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Mariano Colon Caraballo
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Kelvin Li
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA
| | - Edward Cao
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA
| | - Mahalakshmi Shankaran
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA
| | - Marc Hellerstein
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA
| | - Mala Mahendroo
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
14
|
Next generation strategies for preventing preterm birth. Adv Drug Deliv Rev 2021; 174:190-209. [PMID: 33895215 DOI: 10.1016/j.addr.2021.04.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022]
Abstract
Preterm birth (PTB) is defined as delivery before 37 weeks of gestation. Globally, 15 million infants are born prematurely, putting these children at an increased risk of mortality and lifelong health challenges. Currently in the U.S., there is only one FDA approved therapy for the prevention of preterm birth. Makena is an intramuscular progestin injection given to women who have experienced a premature delivery in the past. Recently, however, Makena failed a confirmatory trial, resulting the Center for Drug Evaluation and Research's (CDER) recommendation for the FDA to withdrawal Makena's approval. This recommendation would leave clinicians with no therapeutic options for preventing PTB. Here, we outline recent interdisciplinary efforts involving physicians, pharmacologists, biologists, chemists, and engineers to understand risk factors associated with PTB, to define mechanisms that contribute to PTB, and to develop next generation therapies for preventing PTB. These advances have the potential to better identify women at risk for PTB, prevent the onset of premature labor, and, ultimately, save infant lives.
Collapse
|
15
|
Motomura K, Romero R, Galaz J, Miller D, Done B, Arenas-Hernandez M, Garcia-Flores V, Tao L, Tarca AL, Gomez-Lopez N. Human Chorionic Gonadotropin Modulates the Transcriptome of the Myometrium and Cervix in Late Gestation. Reprod Sci 2021; 28:2246-2260. [PMID: 33650091 DOI: 10.1007/s43032-020-00454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
Human chorionic gonadotropin (hCG) is a critical hormone for the establishment and maintenance of pregnancy. hCG administration prevents the onset of preterm labor in mice; yet, the transcriptomic changes associated with this tocolytic effect that take place in the myometrium and cervix have not been elucidated. Herein, we implemented both discovery and targeted approaches to investigate the transcriptome of the myometrium and cervix after hCG administration. Pregnant mice were intraperitoneally injected with 10 IU of hCG on 13.0, 15.0, and 17.0 days post coitum, and the myometrium and cervix were collected. RNA sequencing was performed to determine differentially expressed genes, enriched biological processes, and impacted KEGG pathways. Multiplex qRT-PCR was performed to investigate the expression of targeted contractility- and inflammation-associated transcripts. hCG administration caused the differential expression of 720 genes in the myometrium. Among the downregulated genes, enriched biological processes were primarily associated with regulation of transcription. hCG administration downregulated key contractility genes, Gja1 and Oxtr, but upregulated the prostaglandin-related genes Ptgfr and Ptgs2 and altered the expression of inflammation-related genes in the myometrium. In the cervix, hCG administration caused differential expression of 3348 genes that were related to inflammation and host defense, among others. The downregulation of key contractility genes and upregulation of prostaglandin-related genes were also observed in the cervix. Thus, hCG exerts tocolytic and immunomodulatory effects in late gestation by altering biological processes in the myometrium and cervix, which should be taken into account when considering hCG as a potential treatment to prevent the premature onset of labor.
Collapse
Affiliation(s)
- Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.,Detroit Medical Center, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Li Tao
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA. .,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA.
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA. .,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
16
|
Brooks J, Gorman K, McColm J, Martin A, Parrish M, Lee GT. Do patients with a short cervix, with or without an ultrasound-indicated cerclage, have an increased risk for a small for gestational age newborn? J Matern Fetal Neonatal Med 2020; 35:3519-3524. [PMID: 33016161 DOI: 10.1080/14767058.2020.1827384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Mothers with a short cervix have been shown to have increased risk of spontaneous preterm delivery (PTD) and newborn morbidity. Those who require an ultrasound-indicated cerclage experience the highest rates of morbidity. Inflammation has been linked to a short cervix, and it has been linked to pregnancies affected by small for gestational age (SGA) newborns. To date, there are no studies that have investigated an association between a short cervix, with or without an ultrasound-indicated cerclage, and a SGA newborn. METHODS This was a case-control study examining all pregnancies with a transvaginal cervical length <25 mm found at their second trimester anatomy scan. Cases were subdivided into those who received an ultrasound-indicated cerclage (Group 1, n = 52) and those who did not (Group 2, n = 139). Controls were defined as pregnancies with a transvaginal cervical length >25 mm with no cerclage (Group 3, n = 186) whose due date was within 2 months of the case pregnancy. Each short cervix case was matched with a control from group 3 in a 1:1 ratio. The primary outcome was birthweight <10% (SGA). Unadjusted data was analyzed with simple odds ratios. A logistic regression was used to control for confounding variables and provide an adjusted odds ratios (aOR). RESULTS The incidence of SGA among cases overall (group 1 + group 2) was 13.6% (26/191). In group 3, the SGA incidence was 4.3% (8/186). The adjusted odds ratio (aOR) for a SGA infant was significant, 2.8 (95% CI 1.2, 6.6). Subgroup analysis showed that Group 1 had an increased risk for an SGA infant [aOR 4.9 (95% CI 1.8, 13.7)], but Group 2 did not show a significant finding [aOR 2.3 (95% CI 0.9, 5.7)]. CONCLUSION Pregnancies complicated by a short cervical length <25mm, with or without a cerclage, were associated with an increased risk for a SGA newborn. Most of this significance was due to the pregnancies which received an ultrasound-indicated cerclage for a mid-trimester short cervix.
Collapse
Affiliation(s)
- Jennifer Brooks
- Department of Obstetrics and Gynecology, The University of Kansas Health System, Kansas City, KS, USA
| | - Kelly Gorman
- Department of Obstetrics and Gynecology, The University of Kansas Health System, Kansas City, KS, USA
| | - Jordan McColm
- Department of Obstetrics and Gynecology, The University of Kansas Health System, Kansas City, KS, USA
| | - Angela Martin
- Department of Obstetrics and Gynecology, The University of Kansas Health System, Kansas City, KS, USA
| | - Marc Parrish
- Department of Obstetrics and Gynecology, The University of Kansas Health System, Kansas City, KS, USA
| | - Gene T Lee
- Department of Obstetrics and Gynecology, The University of Kansas Health System, Kansas City, KS, USA
| |
Collapse
|
17
|
Motomura K, Romero R, Tarca AL, Galaz J, Bhatti G, Done B, Arenas-Hernandez M, Levenson D, Slutsky R, Hsu CD, Gomez-Lopez N. Pregnancy-specific transcriptional changes upon endotoxin exposure in mice. J Perinat Med 2020; 48:700-722. [PMID: 32866128 PMCID: PMC8258803 DOI: 10.1515/jpm-2020-0159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022]
Abstract
Objectives Pregnant women are more susceptible to certain infections; however, this increased susceptibility is not fully understood. Herein, systems biology approaches were utilized to elucidate how pregnancy modulates tissue-specific host responses to a bacterial product, endotoxin. Methods Pregnant and non-pregnant mice were injected with endotoxin or saline on 16.5 days post coitum (n=8-11 per group). The uterus, cervix, liver, adrenal gland, kidney, lung, and brain were collected 12 h after injection and transcriptomes were measured using microarrays. Heatmaps and principal component analysis were used for visualization. Differentially expressed genes between groups were assessed using linear models that included interaction terms to determine whether the effect of infection differed with pregnancy status. Pathway analysis was conducted to interpret gene expression changes. Results We report herein a multi-organ atlas of the transcript perturbations in pregnant and non-pregnant mice in response to endotoxin. Pregnancy strongly modified the host responses to endotoxin in the uterus, cervix, and liver. In contrast, pregnancy had a milder effect on the host response to endotoxin in the adrenal gland, lung, and kidney. However, pregnancy did not drastically affect the host response to endotoxin in the brain. Conclusions Pregnancy imprints organ-specific host immune responses upon endotoxin exposure. These findings provide insight into the host-response against microbes during pregnancy.
Collapse
Affiliation(s)
- Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan 48201, USA,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109, USA,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan 48824, USA,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA,Detroit Medical Center, Detroit, Michigan 48201, USA,Department of Obstetrics and Gynecology, Florida International University, Miami, Florida, 33199, USA,Address correspondence to: Nardhy Gomez-Lopez, MSc, PhD, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Perinatology Research Branch, NICHD/NIH/DHHS, 275 E. Hancock, Detroit, Michigan 48201, USA, Tel (313) 577-8904, ; . Roberto Romero, MD, D. Med. Sci., Perinatology Research Branch, NICHD/NIH/DHHS, Wayne State University/Hutzel Women’s Hospital 3990 John R, Box 4, Detroit, Michigan 48201, USA, Telephone: (313) 993-2700, Fax: (313) 993-2694,
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA,Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan 48201, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Dustyn Levenson
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Rebecca Slutsky
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan 48201, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA,Address correspondence to: Nardhy Gomez-Lopez, MSc, PhD, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Perinatology Research Branch, NICHD/NIH/DHHS, 275 E. Hancock, Detroit, Michigan 48201, USA, Tel (313) 577-8904, ; . Roberto Romero, MD, D. Med. Sci., Perinatology Research Branch, NICHD/NIH/DHHS, Wayne State University/Hutzel Women’s Hospital 3990 John R, Box 4, Detroit, Michigan 48201, USA, Telephone: (313) 993-2700, Fax: (313) 993-2694,
| |
Collapse
|
18
|
Kniss DA, Summerfield TL. Progesterone Receptor Signaling Selectively Modulates Cytokine-Induced Global Gene Expression in Human Cervical Stromal Cells. Front Genet 2020; 11:883. [PMID: 33061933 PMCID: PMC7517718 DOI: 10.3389/fgene.2020.00883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/17/2020] [Indexed: 01/09/2023] Open
Abstract
Preterm birth (PTB) is the leading cause of morbidity and mortality in infants <1 year of age. Intrauterine inflammation is a hallmark of preterm and term parturition; however, this alone cannot fully explain the pathobiology of PTB. For example, the cervix undergoes a prolonged series of biochemical and biomechanical events, including extracellular matrix (ECM) remodeling and mechanochemical changes, culminating in ripening. Vaginal progesterone (P4) prophylaxis demonstrates great promise in preventing PTB in women with a short cervix (<25 mm). We used a primary culture model of human cervical stromal fibroblasts to investigate gene expression signatures in cells treated with interleukin-1β (IL-1β) in the presence or absence of P4 following 17β-estradiol (17β-E2) priming for 7–10 days. Microarrays were used to measure global gene expression in cells treated with cytokine or P4 alone or in combination, followed by validation of select transcripts by semiquantitative polymerase chain reactions (qRT-PCR). Primary/precursor (MIR) and mature microRNAs (miR) were quantified by microarray and NanoString® platforms, respectively, and validated by qRT-PCR. Differential gene expression was computed after data normalization followed by pathway analysis using Kyoto Encyclopedia Genes and Genomes (KEGG), Panther, Gene Ontology (GO), and Ingenuity Pathway Analysis (IPA) upstream regulator algorithm tools. Treatment of fibroblasts with IL-1β alone resulted in the differential expression of 1432 transcripts (protein coding and non-coding), while P4 alone led to the expression of only 43 transcripts compared to untreated controls. Cytokines, chemokines, and their cognate receptors and prostaglandin endoperoxide synthase-2 (PTGS-2) were among the most highly upregulated transcripts following either IL-1β or IL-1β + P4. Other prominent differentially expressed transcripts were those encoding ECM proteins, ECM-degrading enzymes, and enzymes involved in glycosaminoglycan (GAG) biosynthesis. We also detected differential expression of bradykinin receptor-1 and -2 transcripts, suggesting (prominent in tissue injury/remodeling) a role for the kallikrein–kinin system in cervical responses to cytokine and/or P4 challenge. Collectively, this global gene expression study provides a rich database to interrogate stromal fibroblasts in the setting of a proinflammatory and endocrine milieu that is relevant to cervical remodeling/ripening during preparation for parturition.
Collapse
Affiliation(s)
- Douglas A Kniss
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research, Department of Obstetrics and Gynecology, The Ohio State University, College of Medicine and Wexner Medical Center, Columbus, OH, United States.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Taryn L Summerfield
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research, Department of Obstetrics and Gynecology, The Ohio State University, College of Medicine and Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
19
|
Gerson KD, Haviland MJ, Neo D, Hecht JL, Baccarelli AA, Brennan KJM, Dereix AE, Ralston SJ, Hacker MR, Burris HH. Pregnancy-associated changes in cervical noncoding RNA. Epigenomics 2020; 12:1013-1025. [PMID: 32808540 PMCID: PMC7546170 DOI: 10.2217/epi-2019-0231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
Aim: To identify pregnancy-associated changes in cervical noncoding RNA (ncRNA), including miRNA and long noncoding RNA (lncRNA), and their potential effects on biologic processes. Materials & methods: We enrolled 21 pregnant women with term deliveries (≥37 weeks' gestation) in a prospective cohort and collected cervical swabs before 28 weeks' gestation. We enrolled 21 nonpregnant controls. We analyzed miRNA, lncRNA and mRNA expression, applying a Bonferroni correction. Results: Five miRNA and three lncRNA were significantly differentially (>twofold change) expressed. Putative miRNA targets are enriched in genes mediating organogenesis, glucocorticoid signaling, cell adhesion and ncRNA machinery. Conclusion: Differential cervical ncRNA expression occurs in the setting of pregnancy. Gene ontology classification reveals biological pathways through which miRNA may play a biologic role in normal pregnancy physiology.
Collapse
Affiliation(s)
- Kristin D Gerson
- Department of Obstetrics & Gynecology, Maternal Child Health Research Center, Center for Research on Reproduction & Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Miriam J Haviland
- Department of Obstetrics & Gynecology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Dayna Neo
- Department of Obstetrics & Gynecology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrea A Baccarelli
- Department of Environmental Health, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Kasey JM Brennan
- Department of Environmental Health, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Alexandra E Dereix
- Department of Environmental Health, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Steven J Ralston
- Department of Obstetrics & Gynecology, Pennsylvania Hospital, Philadelphia, PA 19107, USA
- Department of Obstetrics & Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michele R Hacker
- Department of Obstetrics & Gynecology, Maternal Child Health Research Center, Center for Research on Reproduction & Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department Obstetrics, Gynecology & Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Heather H Burris
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Maternal Child Health Research Center, Center for Research on Reproduction & Women’s Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Peng J, Jiang J, Wang H, Feng X, Dong X. miR‑199a‑3p suppresses cervical epithelial cell inflammation by inhibiting the HMGB1/TLR4/NF‑κB pathway in preterm birth. Mol Med Rep 2020; 22:926-938. [PMID: 32468045 PMCID: PMC7339783 DOI: 10.3892/mmr.2020.11184] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Preterm birth (PTB) is the primary cause of neonatal mortality worldwide. Infection and inflammation are considered to be the primary causes of PTB. Cervical remodeling is an important step in the process of preterm delivery, and the destruction of the cervical epithelial barrier and inflammation are important triggers of cervical remodeling. The aim of the present study was to determine the effect and underlying mechanism of microRNA (miR)-199a-3p/high-mobility group box 1 protein (HMGB1) signaling in cervical epithelial inflammation in PTB. The results of this study revealed that miR-199a-3p was significantly decreased in cervical epithelial tissue samples from patients in both the preterm labor and preterm premature rupture of membrane groups. This decrease was also observed in tissue samples from a lipopolysaccharide (LPS)-induced PTB mouse model and in LPS-induced ectocervical and endocervical cells. Whereas, the expression of HMGB1 and toll-like receptor 4 (TLR4) was significantly increased, which was associated with the upregulation of interleukin (IL)-1β and tumor necrosis factor (TNF)-α expression. Furthermore, overexpression of miR-199a-3p significantly suppressed the expression and activation of HMGB1 and TLR4/NF-κB signaling, and decreased the levels of IL-1β and TNF-α in vitro and in vivo. Additionally, overexpression of HMGB1 and/or TLR4 reversed the anti-inflammatory effects of miR-199a-3p mimics in vitro and in vivo. These results indicate that miR-199a-3p acts as a negative inflammatory regulator in PTB by targeting HMGB1 to regulate the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Juan Peng
- Department of Obstetrics, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650031, P.R. China
| | - Jiang Jiang
- Department of Obstetrics, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650031, P.R. China
| | - Huizi Wang
- Department of Obstetrics, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650031, P.R. China
| | - Xinzi Feng
- Department of Obstetrics, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650031, P.R. China
| | - Xudong Dong
- Department of Obstetrics, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650031, P.R. China
| |
Collapse
|
21
|
Gerson KD, McCarthy C, Elovitz MA, Ravel J, Sammel MD, Burris HH. Cervicovaginal microbial communities deficient in Lactobacillus species are associated with second trimester short cervix. Am J Obstet Gynecol 2020; 222:491.e1-491.e8. [PMID: 31816307 DOI: 10.1016/j.ajog.2019.11.1283] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/19/2019] [Accepted: 11/30/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The cervix functions as a barrier to ascending pathogens in pregnancy. Short cervical length and lack of cervicovaginal Lactobacillus species are risk factors for spontaneous preterm birth; however, whether they interact to increase risk remains unknown. OBJECTIVE We sought to examine the relationship between cervicovaginal microbiota and short cervix as well as their combined impact on spontaneous preterm birth risk. STUDY DESIGN This was a secondary analysis of a prospective nested, case-control pregnancy study. Cervical swabs were collected between 16 and 20 weeks of gestation. Cervical length was measured per standard clinical care during a clinically indicated ultrasound at approximately 20 weeks of gestation. Cervicovaginal microbiota were analyzed with 16S ribosomal RNA gene sequencing and classified into community state types among 67 cases of spontaneous preterm birth, 47 cases of medically indicated preterm birth, and 358 cases of term births. Logistic regression was used to model associations of community state type IV, a community characterized by a paucity of Lactobacillus species and a wide array of anaerobic bacteria, and short cervix (<25 mm) as well as to model the association of a combination of short cervix and community state type IV with the odds of spontaneous preterm birth. RESULTS Among the 472 women in the data set, there were 38 with short cervix (8.1%) and 177 with community state type IV (37.5%). Short cervix was associated with spontaneous preterm birth (adjusted odds ratio, 15.59; 95% confidence interval, 6.77-35.92). Women with community state type IV had higher odds of short cervix (adjusted odds ratio, 2.17; 95% confidence interval, 1.04-4.53) as well as spontaneous preterm birth (adjusted odds ratio, 1.97; 95% confidence interval, 1.06-3.65). While the interaction of community state type IV and short cervix was not significant (P = .771), women with both short cervix and community state type IV (n = 20) had higher odds of spontaneous preterm birth compared with women with both normal cervical length and community state types I, II, III, or V (n = 277) (adjusted odds ratio, 21.8; 95% confidence interval, 6.78-70.2). CONCLUSION Community state type IV, characterized by a diverse set of strict and facultative anaerobes and a paucity of Lactobacillus species, is associated with increased odds of short cervix. Women with both community state type IV and short cervix have higher odds of spontaneous preterm birth than women with either factor alone. Determining the cascade of events leading to premature cervical shortening, including dysbiosis, may be critical in preventing spontaneous preterm birth.
Collapse
Affiliation(s)
- Kristin D Gerson
- Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
| | - Clare McCarthy
- Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michal A Elovitz
- Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Mary D Sammel
- Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Heather H Burris
- Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
22
|
Leow SM, Di Quinzio MKW, Ng ZL, Grant C, Amitay T, Wei Y, Hod M, Sheehan PM, Brennecke SP, Arbel N, Georgiou HM. Preterm birth prediction in asymptomatic women at mid-gestation using a panel of novel protein biomarkers: the Prediction of PreTerm Labor (PPeTaL) study. Am J Obstet Gynecol MFM 2020; 2:100084. [PMID: 33345955 DOI: 10.1016/j.ajogmf.2019.100084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Accurate prediction of spontaneous preterm labor/preterm birth in asymptomatic women remains an elusive clinical challenge because of the multi-etiological nature of preterm birth. OBJECTIVE The aim of this study was to develop and validate an immunoassay-based, multi-biomarker test to predict spontaneous preterm birth. MATERIALS AND METHODS This was an observational cohort study of women delivering from December 2017 to February 2019 at 2 maternity hospitals in Melbourne, Australia. Cervicovaginal fluid samples were collected from asymptomatic women at gestational week 16+0-24+0, and biomarker concentrations were quantified by enzyme-linked immunosorbent assay. Women were assigned to a training cohort (n = 136) and a validation cohort (n = 150) based on chronological delivery dates. RESULTS Seven candidate biomarkers representing key pathways in utero-cervical remodeling were discovered by high-throughput bioinformatic search, and their significance in both in vivo and in vitro studies was assessed. Using a combination of the biomarkers for the first 136 women allocated to the training cohort, we developed an algorithm to stratify term birth (n = 124) and spontaneous preterm birth (n = 12) samples with a sensitivity of 100% (95% confidence interval, 76-100%) and a specificity of 74% (95% confidence interval, 66-81%). The algorithm was further validated in a subsequent cohort of 150 women (n = 139 term birth and n = 11 preterm birth), achieving a sensitivity of 91% (95% confidence interval, 62-100%) and a specificity of 78% (95% confidence interval, 70-84%). CONCLUSION We have identified a panel of biomarkers that yield clinically useful diagnostic values when combined in a multiplex algorithm. The early identification of asymptomatic women at risk for preterm birth would allow women to be triaged to specialist clinics for further assessment and appropriate preventive treatment.
Collapse
Affiliation(s)
| | - Megan K W Di Quinzio
- Department of Obstetrics and Gynecology University of Melbourne, Australia; Department of Obstetrics and Gynecology, Mercy Hospital for Women, Heidelberg VIC, Australia
| | | | - Claire Grant
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville VIC, Australia
| | - Tal Amitay
- Carmentix Australia Pty Ltd, Collingwood VIC, Australia
| | | | | | - Penelope M Sheehan
- Department of Obstetrics and Gynecology University of Melbourne, Australia; Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville VIC, Australia
| | - Shaun P Brennecke
- Department of Obstetrics and Gynecology University of Melbourne, Australia; Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville VIC, Australia
| | - Nir Arbel
- Carmentix Pte Ltd, Singapore; Carmentix Australia Pty Ltd, Collingwood VIC, Australia
| | - Harry M Georgiou
- Department of Obstetrics and Gynecology University of Melbourne, Australia; Department of Obstetrics and Gynecology, Mercy Hospital for Women, Heidelberg VIC, Australia; Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville VIC, Australia.
| |
Collapse
|
23
|
Zierden HC, Ortiz Ortiz JI, Dimitrion P, Laney V, Bensouda S, Anders NM, Scardina M, Hoang T, Ronnett BM, Hanes J, Burd I, Mahendroo M, Ensign LM. Characterization of an Adapted Murine Model of Intrauterine Inflammation-Induced Preterm Birth. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:295-305. [PMID: 31837289 DOI: 10.1016/j.ajpath.2019.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/11/2019] [Accepted: 10/03/2019] [Indexed: 11/17/2022]
Abstract
Preterm birth (PTB) affects nearly 15 million infants each year. Of these PTBs, >25% are a result of inflammation or infection. Animal models have improved our understanding of the mechanisms leading to PTB. Prior work has described induction of intrauterine inflammation in mice with a single injection of lipopolysaccharide (LPS). Herein, we have improved the reproducibility and potency of LPS in the model using two injections distal to the cervix. An in vivo imaging system revealed more uniform distribution of Evans Blue Dye using a double distal injection (DDI) approach compared with a single proximal injection (SPI). Endotoxin concentrations in vaginal lavage fluid from SPI dams were significantly higher than from DDI dams. At equivalent LPS doses, DDI consistently induced more PTB than SPI, and DDI showed a linear dose-response, whereas SPI did not. Gene expression in myometrial tissue revealed increased levels of inflammatory markers in dams that received LPS DDI compared with LPS SPI. The SPI group showed more significant overexpression in cervical remodeling genes, likely due to the leakage of LPS from the uterine horns through the cervix. The more reliable PTB induction and uniform uterine exposure provided by this new model will be useful for further studying fetal outcomes and potential therapeutics for the prevention of inflammation-induced PTB.
Collapse
Affiliation(s)
- Hannah C Zierden
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Jairo I Ortiz Ortiz
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peter Dimitrion
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Victoria Laney
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Sabrine Bensouda
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nicole M Anders
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Morgan Scardina
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thuy Hoang
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brigitte M Ronnett
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Justin Hanes
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Irina Burd
- Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Mala Mahendroo
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Laura M Ensign
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
24
|
Dude CM, Saylany A, Brown A, Elovitz M, Anton L. Microbial supernatants from Mobiluncus mulieris, a bacteria strongly associated with spontaneous preterm birth, disrupts the cervical epithelial barrier through inflammatory and miRNA mediated mechanisms. Anaerobe 2019; 61:102127. [PMID: 31760081 DOI: 10.1016/j.anaerobe.2019.102127] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 11/17/2022]
Abstract
Recent human clinical studies have identified Mobiluncus mulieris, a fastidious strict anaerobic bacterium present in the cervicovaginal (CV) space, as being strongly associated with spontaneous preterm birth (sPTB). However, the molecular mechanisms that underlie this association remain unknown. As disruption of the cervical epithelial barrier has been shown to contribute to the premature cervical remodeling that precedes sPTB, we hypothesize that M. mulieris, a microbe strongly associated with sPTB in humans, has the ability to alter cervical epithelial function. We investigated if bacteria-free supernatants of M. mulieris were able to disrupt the cervical epithelial barrier through immunological and epigenetic based mechanisms in an in vitro model system. Ectocervical cells were treated with supernatant from cultured M. mulieris and epithelial cell permeability, immune cytokines and microRNAs (miRNAs) were investigated. M. mulieris supernatant significantly increased cell permeability and the expression of two inflammatory mediators associated with cervical epithelial breakdown, IL-6 and IL-8. Moreover, treatment of the ectocervical cells with the M. mulieris supernatant also increased the expression of miRNAs that have been associated with either sPTB or a shorter gestational length in humans. Collectively, these results suggest that M. mulieris induces molecular and functional changes in the cervical epithelial barrier thought to contribute to the pathogenesis of sPTB, which allows us to hypothesize that targeting CV bacteria such as M. mulieris could provide a therapeutic opportunity to reduce sPTB rates.
Collapse
Affiliation(s)
- Carolynn M Dude
- Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Anissa Saylany
- Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Brown
- Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michal Elovitz
- Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren Anton
- Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Campbell MLH, Peachey L, Callan L, Wathes DC, de Mestre AM. Cyclical cervical function in the mare involves remodelling of collagen content, which is correlated with modification of oestrogen receptor 1 abundance. Anim Reprod Sci 2019; 210:106192. [PMID: 31635778 DOI: 10.1016/j.anireprosci.2019.106192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/28/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022]
Abstract
This study was conducted to elucidate mare cervical dilation mechanisms by testing two hypotheses: (i) the proportion of collagen staining in histological samples of mare cervices and (ii) the abundance of hormone receptors in the equine cervix differ with stage of the oestrous cycle and site within the cervix. Tissues and jugular vein blood samples were collected from 15 mares. Collagen content was assessed using Masson's Trichome staining. Receptor abundance was assessed using RT-PCR, qRT-PCR and immunohistochemistry. In sub-epithelial stroma, there was less collagen during the follicular than luteal phase, in the caudal- (P = 0.029), mid- (P = 0.0000) and cranial (P = 0.001) cervical tissue. In the deep stroma, there was less collagen staining during the follicular stage in the mid- (P = 0.004) and cranial- (P = 0.041) cervical regions. There were PTGER2, PTGER3, PGR and ESR1 mRNA transcripts in the cervix. A greater proportion of cells were positive for ESR1 protein during the follicular phase in sub-epithelial (P = 0.019) and deep (P = 0.013) stroma. The abundance of ESR1 in the epithelium was negatively correlated with collagen staining in sub-epithelial (P = 0.007) and deep (P = 0.005) stroma. The results of the study provide new information about the cervical biology of mares by increasing the knowledge about collagen content and the relationship between collagen content and ESR1 protein abundance during the oestrous cycle which indicates the ESR1 receptor is a candidate for involvement in control of cervical dilation.
Collapse
MESH Headings
- Animals
- Cervix Uteri/physiology
- Cloning, Molecular
- Collagen/physiology
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Estrous Cycle/physiology
- Female
- Gene Expression Regulation/physiology
- Horses
- Labor Stage, First/physiology
- Luteinizing Hormone/genetics
- Luteinizing Hormone/metabolism
- Pregnancy
- Progesterone/metabolism
- RNA/genetics
- RNA/metabolism
- Receptors, FSH/genetics
- Receptors, FSH/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/genetics
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
Collapse
Affiliation(s)
- M L H Campbell
- The Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK; Department of Pathobiology and Population Sciences, UK.
| | - L Peachey
- The Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK
| | - L Callan
- The Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK
| | - D C Wathes
- The Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK; Department of Pathobiology and Population Sciences, UK
| | - A M de Mestre
- The Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK; Department of Comparative Biomedical Sciences, UK
| |
Collapse
|
26
|
Exhausted and Senescent T Cells at the Maternal-Fetal Interface in Preterm and Term Labor. J Immunol Res 2019; 2019:3128010. [PMID: 31263712 PMCID: PMC6556261 DOI: 10.1155/2019/3128010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
Successful pregnancy requires a tightly-regulated equilibrium of immune cell interactions at the maternal-fetal interface (i.e., the decidual tissues), which plays a central role in the inflammatory process of labor. Most of the innate immune cells in this compartment have been well characterized; however, adaptive immune cells are still under investigation. Herein, we performed immunophenotyping of the decidua basalis and decidua parietalis to determine whether exhausted and senescent T cells are present at the maternal-fetal interface and whether the presence of pathological (i.e., preterm) or physiological (i.e., term) labor and/or placental inflammation alter such adaptive immune cells. In addition, decidual exhausted T cells were sorted to test their functional status. We found that (1) exhausted and senescent T cells were present at the maternal-fetal interface and predominantly expressed an effector memory phenotype, (2) exhausted CD4+ T cells increased in the decidua parietalis as gestational age progressed, (3) exhausted CD4+ and CD8+ T cells decreased in the decidua basalis of women who underwent labor at term compared to those without labor, (4) exhausted CD4+ T cells declined with the presence of placental inflammation in the decidua basalis of women with preterm labor, (5) exhausted CD8+ T cells decreased with the presence of placental inflammation in the decidua basalis of women who underwent labor at term, (6) both senescent CD4+ and CD8+ T cells declined with the presence of placental inflammation in the decidua basalis of women who underwent preterm labor, and (7) decidual exhausted T cells produced IFNγ and TNFα upon in vitro stimulation. Collectively, these findings indicate that exhausted and senescent T cells are present at the human maternal-fetal interface and undergo alterations in a subset of women either with labor at term or preterm labor and placental inflammation. Importantly, decidual T cell function can be restored upon stimulation.
Collapse
|
27
|
Anton L, Sierra LJ, DeVine A, Barila G, Heiser L, Brown AG, Elovitz MA. Common Cervicovaginal Microbial Supernatants Alter Cervical Epithelial Function: Mechanisms by Which Lactobacillus crispatus Contributes to Cervical Health. Front Microbiol 2018; 9:2181. [PMID: 30349508 PMCID: PMC6186799 DOI: 10.3389/fmicb.2018.02181] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022] Open
Abstract
Cervicovaginal (CV) microbiota is associated with vaginal health and disease in non-pregnant women. Recent studies in pregnant women suggest that specific CV microbes are associated with preterm birth (PTB). While the associations between CV microbiota and adverse outcomes have been demonstrated, the mechanisms regulating the associations remain unclear. As the CV space contains an epithelial barrier, we postulate that CV microbiota can alter the epithelial barrier function. We investigated the biological, molecular, and epigenetic effects of Lactobacillus crispatus, Lactobacillus iners, and Gardnerella vaginalis on the cervical epithelial barrier function and determined whether L. crispatus mitigates the effects of lipopolysaccharide (LPS) and G. vaginalis on the cervical epithelial barrier as a possible mechanism by which CV microbiota mitigates disease risk. Ectocervical and endocervical cells treated with L. crispatus, L. iners, and G. vaginalis bacteria-free supernatants alone or combined were used to measure cell permeability, adherens junction proteins, inflammatory mediators, and miRNAs. Ectocervical and endocervical permeability increased after L. iners and G. vaginalis exposure. Soluble epithelial cadherin increased after exposure to L. iners but not G. vaginalis or L. crispatus. A Luminex cytokine/chemokine panel revealed increased proinflammatory mediators in all three bacteria-free supernatants with L. iners and G. vaginalis having more diverse inflammatory effects. L. iners and G. vaginalis altered the expression of cervical-, microbial-, and inflammatory-associated miRNAs. L. crispatus mitigated the LPS or G. vaginalis-induced disruption of the cervical epithelial barrier and reversed the G. vaginalis-mediated increase in miRNA expression. G. vaginalis colonization of the CV space of a pregnant C57/B6 mouse resulted in 100% PTB. These findings demonstrate that L. iners and G. vaginalis alter the cervical epithelial barrier by regulating adherens junction proteins, cervical immune responses, and miRNA expressions. These results provide evidence that L. crispatus confers protection to the cervical epithelial barrier by mitigating LPS- or G. vaginalis-induced miRNAs associated with cervical remodeling, inflammation, and PTB. This study provides further evidence that the CV microbiota plays a role in cervical function by altering the cervical epithelial barrier and initiating PTB. Thus, targeting the CV microbiota and/or its effects on the cervical epithelium may be a potential therapeutic strategy to prevent PTB.
Collapse
Affiliation(s)
- Lauren Anton
- Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | | | | | | | | | | | | |
Collapse
|
28
|
Vink J, Myers K. Cervical alterations in pregnancy. Best Pract Res Clin Obstet Gynaecol 2018; 52:88-102. [PMID: 30314740 DOI: 10.1016/j.bpobgyn.2018.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/28/2018] [Accepted: 03/29/2018] [Indexed: 12/15/2022]
Abstract
Spontaneous preterm birth (SPTB), defined as delivery before 37 weeks' gestation, remains a significant obstetric dilemma even after decades of research in this field. Although trends from 2007 to 2014 showed the rate of preterm birth slightly decreased, the CDC recently reported the rate of preterm birth has increased for two consecutive years since 2014. Currently, 1 in 10 pregnancies in the US still end prematurely. In this chapter, we focus on the "compartment" of the cervix. The goal is to outline the current knowledge of normal cervical structure and function in pregnancy and the current knowledge of how the cervix malfunctions lead to SPTB. We review the mechanisms by which our current interventions are hypothesized to work. Finally, we outline gaps in knowledge and future research directions that may lead to novel and effective interventions to prevent premature cervical failure and SPTB.
Collapse
Affiliation(s)
- Joy Vink
- Dept. of OB/GYN, Columbia University Medical Center, New York, NY, USA.
| | - Kristin Myers
- Dept. of Mechanical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
29
|
Sierra LJ, Brown AG, Barilá GO, Anton L, Barnum CE, Shetye SS, Soslowsky LJ, Elovitz MA. Colonization of the cervicovaginal space with Gardnerella vaginalis leads to local inflammation and cervical remodeling in pregnant mice. PLoS One 2018; 13:e0191524. [PMID: 29346438 PMCID: PMC5773211 DOI: 10.1371/journal.pone.0191524] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/05/2018] [Indexed: 01/08/2023] Open
Abstract
The role of the cervicovaginal (CV) microbiome in regulating cervical function during pregnancy is poorly understood. Gardnerella vaginalis (G. vaginalis) is the most common bacteria associated with the diagnosis of bacterial vaginosis (BV). While BV has been associated with preterm birth (PTB), clinical trials targeting BV do not decrease PTB rates. It remains unknown if G. vaginalis is capable of triggering molecular, biomechanical and cellular events that could lead to PTB. The objective of this study was to determine if cervicovaginal colonization with G. vaginalis, in pregnant mice, induced cervical remodeling and modified cervical function. CD-1 timed-pregnant mice received a 5X108 CFU/mL intravaginal inoculation of G. vaginalis or control on embryonic day 12 (E12) and E13. On E15, the mice were sacrificed and cervicovaginal fluid (CVF), amniotic fluid (AF), cervix, uterus, placentas and fetal membranes (FM) were collected. Genomic DNA was isolated from the CVF, placenta, uterus and FM and QPCR was performed to confirm colonization. IL-6 was measured in the CVF and AF and soluble e-cadherin (seCAD) was assessed in the CVF by ELISA. RNA was extracted from the cervices to evaluate IL-10, IL-8, IL-1β, TNF-α, Tff-1, SPINK-5, HAS-1 and LOX expression via QPCR. Mucicarmine and trichrome staining was used to assess cervical mucin and collagen. Biomechanical properties of the cervix were studied using quasi-static tensile load-to-failure biomechanical tests. G. vaginalis successfully colonized the CV space. This colonization induced immune responses (increased IL-6 levels in CVF and AF, increased mRNA expression of cervical cytokines), altered the epithelial barrier (increased seCAD in the CVF), induced cervical remodeling (increased mucin production, altered collagen) and altered cervical biomechanical properties (a decrease in biomechanical modulus and an increase in maximum strain). The ability of G. vaginalis to induce these molecular, immune, cellular and biomechanical changes suggests that this bacterium may play a pathogenic role in premature cervical remodeling leading to PTB.
Collapse
Affiliation(s)
- Luz-Jeannette Sierra
- Maternal Child Health Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Amy G. Brown
- Maternal Child Health Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Guillermo O. Barilá
- Maternal Child Health Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lauren Anton
- Maternal Child Health Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Carrie E. Barnum
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Snehal S. Shetye
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Louis J. Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michal A. Elovitz
- Maternal Child Health Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
30
|
Nallasamy S, Akins M, Tetreault B, Luby-Phelps K, Mahendroo M. Distinct reorganization of collagen architecture in lipopolysaccharide-mediated premature cervical remodeling. Biol Reprod 2018; 98:63-74. [PMID: 29161343 PMCID: PMC5803761 DOI: 10.1093/biolre/iox155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 11/13/2022] Open
Abstract
Previous work has identified divergent mechanisms by which cervical remodeling is achieved in preterm birth (PTB) induced by hormone withdrawal (mifepristone) or lipopolysaccharide (LPS). Our current study aims to document how collagen architecture is modified to achieve premature cervical remodeling in mice treated with LPS as a model of infection-induced inflammation. Cervices were collected on gestation day (d) 15 from mice with premature cervical ripening induced by LPS and compared to d15 and d18 controls as well as a hormone withdrawal PTB model. Second harmonic generation (SHG) and electron microscopy were utilized for visualization of collagen morphology and ultrastructure. LPS-mediated premature cervical ripening is characterized by unique structural changes in collagen fiber morphology. LPS treatment increased the interfibrillar spacing of collagen fibrils. A preferential disruption of collagen fiber architecture in the subepithelial region compared to midstroma region was evidenced by increased pores lacking collagen signal in SHG images in the LPS-treated mice. Coinciding with this alteration, the infiltration of neutrophils was concentrated in the subepithelial stromal region as compared to midstromal region implicating the potential role of immune cells to extracellular matrix reorganization in inflammation-induced preterm cervical ripening. The current study demonstrates a preferential disorganization of collagen interfibrillar spacing and collagen fiber structure in LPS-mediated ripening.
Collapse
Affiliation(s)
- Shanmugasundaram Nallasamy
- Department of Obstetrics and Gynecology and Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Meredith Akins
- Department of Obstetrics and Gynecology and Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Breanna Tetreault
- Department of Obstetrics and Gynecology and Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kate Luby-Phelps
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mala Mahendroo
- Department of Obstetrics and Gynecology and Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
31
|
Stanley RL, Ohashi T, Gordon J, Mowa CN. A proteomic profile of postpartum cervical repair in mice. J Mol Endocrinol 2018; 60:17-28. [PMID: 29259042 DOI: 10.1530/jme-17-0179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/15/2017] [Indexed: 01/01/2023]
Abstract
A timely and complete uterine cervical tissue repair postpartum is of necessity to prevent obstetrical complications, such as cervicitis, ectropion, hemorrhage, repeated miscarriages or abortions and possibly preterm labor and malignancies. We recently characterized the morphological alterations, as well as changes in angiogenic expression profile in a mice uterine cervix during the immediate postpartum period. Here, we build on this previous study using a proteomic analysis to profile postpartum tissue changes in mice cervix during the same period, the first 48 h of postpartum. The current proteomics data reveal a variable expression of several intermediate filaments, cytoskeletal modulators and proteins with immune and/or wound-healing properties. We conclude that postpartum cervical repair involves a rapid and tightly regulated balance between a host of biological factors, notably between anti- and pro-inflammatory factors, executed by the M1 and M2 macrophage cells, as revealed by proteomics and verified by confocal immunofluorescence. Future studies will assess the suitability of some of the key proteins identified in this study as potential markers for determining the phase of postpartum cervical repair in obstetrical complications, such as cervical lacerations.
Collapse
Affiliation(s)
- Robert Lee Stanley
- Department of BiologyAppalachian State University, Boone, North Carolina, USA
| | - Takako Ohashi
- Department of BiologyAppalachian State University, Boone, North Carolina, USA
| | - Jacob Gordon
- Department of BiologyAppalachian State University, Boone, North Carolina, USA
| | | |
Collapse
|
32
|
Cervical HSV-2 infection causes cervical remodeling and increases risk for ascending infection and preterm birth. PLoS One 2017; 12:e0188645. [PMID: 29190738 PMCID: PMC5708831 DOI: 10.1371/journal.pone.0188645] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/10/2017] [Indexed: 11/20/2022] Open
Abstract
Preterm birth (PTB), or birth before 37 weeks gestation, is the leading cause of neonatal mortality worldwide. Cervical viral infections have been established as risk factors for PTB in women, although the mechanism leading to increased risk is unknown. Using a mouse model of pregnancy, we determined that intra-vaginal HSV2 infection caused increased rates of preterm birth following an intra-vaginal bacterial infection. HSV2 infection resulted in histological changes in the cervix mimicking cervical ripening, including significant collagen remodeling and increased hyaluronic acid synthesis. Viral infection also caused aberrant expression of estrogen and progesterone receptor in the cervical epithelium. Further analysis using human ectocervical cells demonstrated a role for Src kinase in virus-mediated changes in estrogen receptor and hyaluronic acid expression. In conclusion, HSV2 affects proteins involved in tissue hormone responsiveness, causes significant changes reminiscent of premature cervical ripening, and increases risk of preterm birth. Studies such as this improve our chances of identifying clinical interventions in the future.
Collapse
|
33
|
Vink J, Mourad M. The pathophysiology of human premature cervical remodeling resulting in spontaneous preterm birth: Where are we now? Semin Perinatol 2017; 41:427-437. [PMID: 28826790 PMCID: PMC6007872 DOI: 10.1053/j.semperi.2017.07.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Approximately one in ten (approximately 500,000) pregnancies results in preterm birth (PTB) annually in the United States. Although we have seen a slight decrease in the U.S. PTB rate between 2007 and 2014, data from 2014 to 2015 shows the preterm birth rate has slightly increased. It is even more intriguing to note that the rate of PTB has not significantly decreased since the 1980s. In order to decrease the rate of spontaneous preterm birth (sPTB), it is imperative that we improve our understanding of normal and abnormal reproductive tissue structure and function and how these tissues interact with each other at a cellular and biochemical level. Since other chapters in this issue will be focusing on the myometrium and fetal membranes, the goal of this chapter is to focus on the compartment of the cervix. We will review the current literature on normal and abnormal human cervical tissue remodeling and identify gaps in knowledge. Our goal is also to introduce a revised paradigm of normal cervical tissue structure and function which will provide novel research opportunities that may ultimately lead to developing safe and effective interventions to significantly decrease the rate and complications of prematurity.
Collapse
Affiliation(s)
- Joy Vink
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Medical Center, 622 West 168th St, PH16-66, New York, NY 10025.
| | - Mirella Mourad
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Medical Center, 622 West 168th St, PH16-66, New York, NY 10025
| |
Collapse
|
34
|
miR-143 and miR-145 disrupt the cervical epithelial barrier through dysregulation of cell adhesion, apoptosis and proliferation. Sci Rep 2017; 7:3020. [PMID: 28596604 PMCID: PMC5465080 DOI: 10.1038/s41598-017-03217-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
Molecular mechanisms regulating preterm birth (PTB)-associated cervical remodeling remain unclear. Prior work demonstrated an altered miRNA profile, with significant increases in miR-143 and miR-145, in cervical cells of women destined to have a PTB. The study objective was to determine the effect of miR-143 and miR-145 on the cervical epithelial barrier and to elucidate the mechanisms by which these miRNAs modify cervical epithelial cell function. Ectocervical and endocervical cells transfected with miR-negative control, miR-143 or miR-145 were used in cell permeability and flow cytometry assays for apoptosis and proliferation. miR-143 and miR-145 target genes associated with cell adhesion, apoptosis and proliferation were measured. Epithelial cell permeability was increased in miR-143 and miR-145 transfected cervical epithelial cells. Cell adhesion genes, JAM-A and FSCN1, were downregulated with overexpression of miR-143 and miR-145. miR-143 and miR-145 transfection decreased cervical cell number by increasing apoptosis and decreasing cell proliferation through initiation of cell cycle arrest. Apoptosis genes, BCL2 and BIRC5, and proliferation genes, CDK1 and CCND2, were repressed by miR-143 and miR-145. These findings suggest that miR-143 and miR-145 play a significant role in cervical epithelial barrier breakdown through diverse mechanisms and could contribute to premature cervical remodeling associated with PTB.
Collapse
|
35
|
Nold C, Stone J, Graham M, Trinh J, Blanchette A, Jensen T. Is nitric oxide an essential mediator in cervical inflammation and preterm birth? J Matern Fetal Neonatal Med 2017; 31:1735-1741. [PMID: 28475392 DOI: 10.1080/14767058.2017.1326898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Cervical ripening is an obligatory step in the process of preterm birth. We hypothesize an inflammatory challenge to the cervix, which leads to an increase in nitric oxide production, disrupting the cervical epithelial barrier leading to preterm birth. STUDY DESIGN For this study, three experiments were performed: (i) Using a mouse model, pregnant mice were treated with an intrauterine injection of saline or lipopolysaccharide (LPS). Mice were sacrificed and cervices were collected for molecular analysis. (ii) Immortalized ectocervical and endocervical cells were treated with either LPS or the nitric oxide donor sodium nitroprusside (SNP). Media and RNA was collected for analysis. (iii) The integrity of the epithelial cell barrier was evaluated using an in vitro permeability assay. RESULTS The expression of inducible nitric oxide synthase (iNOS) was increased in our mouse model with LPS (p < .005). In vitro, LPS did not increase nitrate or nitrite concentrations or mRNA expression of iNOS. Permeability increased in the presence of LPS (p < .01), but was unchanged after treatment with SNP. CONCLUSIONS These studies show that LPS increases the expression of the iNOS in an animal model of preterm birth, but the nitric oxide metabolites nitrate and nitrite do not initiate the pro-inflammatory LPS-induced breakdown of the cervical epithelial barrier.
Collapse
Affiliation(s)
- Christopher Nold
- a Hartford Hospital , Hartford , CT , USA.,b University of Connecticut Health Center , Farmington , CT , USA
| | - Julie Stone
- b University of Connecticut Health Center , Farmington , CT , USA
| | - Maura Graham
- b University of Connecticut Health Center , Farmington , CT , USA
| | - Jennifer Trinh
- b University of Connecticut Health Center , Farmington , CT , USA
| | - Alex Blanchette
- b University of Connecticut Health Center , Farmington , CT , USA
| | - Todd Jensen
- b University of Connecticut Health Center , Farmington , CT , USA
| |
Collapse
|
36
|
Migale R, MacIntyre DA, Cacciatore S, Lee YS, Hagberg H, Herbert BR, Johnson MR, Peebles D, Waddington SN, Bennett PR. Modeling hormonal and inflammatory contributions to preterm and term labor using uterine temporal transcriptomics. BMC Med 2016; 14:86. [PMID: 27291689 PMCID: PMC4904357 DOI: 10.1186/s12916-016-0632-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/01/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Preterm birth is now recognized as the primary cause of infant mortality worldwide. Interplay between hormonal and inflammatory signaling in the uterus modulates the onset of contractions; however, the relative contribution of each remains unclear. In this study we aimed to characterize temporal transcriptome changes in the uterus preceding term labor and preterm labor (PTL) induced by progesterone withdrawal or inflammation in the mouse and compare these findings with human data. METHODS Myometrium was collected at multiple time points during gestation and labor from three murine models of parturition: (1) term gestation; (2) PTL induced by RU486; and (3) PTL induced by lipopolysaccharide (LPS). RNA was extracted and cDNA libraries were prepared and sequenced using the Illumina HiSeq 2000 system. Resulting RNA-Seq data were analyzed using multivariate modeling approaches as well as pathway and causal network analyses and compared against human myometrial transcriptome data. RESULTS We identified a core set of temporal myometrial gene changes associated with term labor and PTL in the mouse induced by either inflammation or progesterone withdrawal. Progesterone withdrawal initiated labor without inflammatory gene activation, yet LPS activation of uterine inflammation was sufficient to override the repressive effects of progesterone and induce a laboring phenotype. Comparison of human and mouse uterine transcriptomic datasets revealed that human labor more closely resembles inflammation-induced PTL in the mouse. CONCLUSIONS Labor in the mouse can be achieved through inflammatory gene activation yet these changes are not a requisite for labor itself. Human labor more closely resembles LPS-induced PTL in the mouse, supporting an essential role for inflammatory mediators in human "functional progesterone withdrawal." This improved understanding of inflammatory and progesterone influence on the uterine transcriptome has important implications for the development of PTL prevention strategies.
Collapse
Affiliation(s)
- Roberta Migale
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - David A MacIntyre
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom.
| | - Stefano Cacciatore
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Yun S Lee
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Henrik Hagberg
- Perinatal Center, Department of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Bronwen R Herbert
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom.,Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | - Mark R Johnson
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom.,Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | - Donald Peebles
- UCL Centre for Perinatal Brain Protection & Repair, Institute for Women's Health, University College London, London, United Kingdom
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, United Kingdom.,Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Phillip R Bennett
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom.
| |
Collapse
|
37
|
Zhou X, Jiang Z, Zou Y, Yin Y, Zuo Q, Sun L. Role of SOCS3 in the Jak/stat3 pathway in the human placenta: different mechanisms for preterm and term labor. Acta Obstet Gynecol Scand 2015; 94:1112-7. [PMID: 26178755 DOI: 10.1111/aogs.12708] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 06/26/2015] [Indexed: 01/02/2023]
Abstract
INTRODUCTION To identify changes in interleukin (IL)-6 levels and its pathway (Jak/stat3) in the human placenta during preterm and term labor, placental tissues were collected from primiparous women who underwent vaginal deliveries or cesarean sections in our hospital. The women were divided into three groups: preterm labor (n = 15), term labor (n = 15), and term not in labor (n = 15). MATERIAL AND METHODS IL-6 levels were detected by ELISA in placental supernatant, and p-STAT3 and SOCS3 protein was detected by Western blot. TUNEL was used to detect apoptosis in trophoblasts. HTR-8/SVneo cells were cultured after stimulation with IL-6, and we measured p-STAT3, SOCS3, and the rate of apoptosis. RESULTS Expression of p-STAT3 and SOCS3 in the placenta and trophoblast cells showed that IL-6 levels were highest in the preterm labor group and lowest in the term not in labor group. The highest expression of placental SOCS3 protein was observed in the preterm labor group. More apoptotic cells were found in the preterm labor group than in the other two groups by TUNEL. SOCS3 and p-STAT3 expression was significantly upregulated after stimulation by IL-6 in trophoblast cells in a dose-dependent manner. However, p-STAT3 was significantly decreased after 50 ng/mL and 100 ng/mL IL-6 for 72 h. A significant increase of apoptosis was observed with treatment of 50 ng/mL IL-6 in HTR-8/SVneo cells. CONCLUSIONS The role of the SOCS3 protein in the Jak/stat3 pathway is to mediate different mechanisms for preterm and term labor processes in the placenta.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyan Jiang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanfen Zou
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yin Yin
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Zuo
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
38
|
Ackerman WE, Summerfield TL, Mesiano S, Schatz F, Lockwood CJ, Kniss DA. Agonist-Dependent Downregulation of Progesterone Receptors in Human Cervical Stromal Fibroblasts. Reprod Sci 2015; 23:112-23. [PMID: 26243545 DOI: 10.1177/1933719115597787] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Progesterone (P(4)) maintains uterine quiescence during the majority of pregnancy, whereas diminished progesterone receptor (PR) expression and/or activity (ie, functional P(4) withdrawal) promotes parturition. To investigate the regulation of PR expression in cervical stroma, fibroblasts from premenopausal hysterectomy specimens were prepared. Greater than 99% of the cultures were vimentin positive (mesenchymal cell marker) with only occasional cytokeratin-8 positivity (epithelial cell marker) and no evidence of CD31-positive (endothelial cell marker) cells. Cells were immunolabeled with antibodies directed against PRs (PR-A and PR-B), estrogen receptor α (ER-α), and glucocorticoid receptor-α/β (GR-α/β). All cells were uniformly immunopositive for ER-α and GR-α/β but did not express PRs. Incubation of cells with 10(-8) mol/L 17β-estradiol induced a time-dependent increase in PR-A and PR-B messenger RNAs (mRNAs) by quantitative real-time polymerase chain reactions and proteins by immunoblotting and immunofluorescence. Incubation of cervical fibroblasts with PR ligands (medroxyprogesterone acetate or Org-2058) downregulated PR-A and PR-B levels. Coincubation of cells with PR ligands plus RU-486, a PR antagonist, partially abrogated agonist-induced receptor downregulation. Dexamethasone, a pure glucocorticoid, had no inhibitory effect on PR expression. These results indicate that progestins and estrogens regulate PR expression in cervical fibroblasts. We postulate that hormonal regulation of PR expression in the cervical stroma may contribute to functional P(4) withdrawal in preparation for parturition.
Collapse
Affiliation(s)
- William E Ackerman
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research, Department of Obstetrics and Gynecology, The Ohio State University, College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Taryn L Summerfield
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research, Department of Obstetrics and Gynecology, The Ohio State University, College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Sam Mesiano
- Department of Obstetrics, Gynecology and Reproductive Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Frederick Schatz
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research, Department of Obstetrics and Gynecology, The Ohio State University, College of Medicine and Wexner Medical Center, Columbus, OH, USA Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Charles J Lockwood
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research, Department of Obstetrics and Gynecology, The Ohio State University, College of Medicine and Wexner Medical Center, Columbus, OH, USA Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Douglas A Kniss
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research, Department of Obstetrics and Gynecology, The Ohio State University, College of Medicine and Wexner Medical Center, Columbus, OH, USA Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
39
|
Stanley R, Ohashi T, Mowa C. Postpartum cervical repair in mice: a morphological characterization and potential role for angiogenic factors. Cell Tissue Res 2015; 362:253-63. [PMID: 25943091 DOI: 10.1007/s00441-015-2184-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 03/26/2015] [Indexed: 12/31/2022]
Abstract
The cervix undergoes marked mechanical trauma during delivery of the baby at birth. As such, a timely and complete tissue repair postpartum is necessary to prevent obstetrical complications, such as cervicitis, ectropion, hemorrhage, repeated miscarriages or abortions and possibly preterm labor and malignancies. However, our knowledge of normal cervical repair is currently incomplete and factors that influence repair are unclear. Here, we characterize the morphological and angiogenic profile of postpartum repair in mice cervix during the first 48 h of postpartum. The key findings presented here are: (1) cervical epithelial folds and size are diminished during the first 48 h of postpartum repair, (2) hypoxic inducible factor 1a, vascular endothelial growth factor (VEGF), and VEGF receptor 1 expression are pronounced early in postpartum cervical repair, and (3) VEGF receptor 2 gene and protein expressions are variable. We conclude that postpartum cervical repair involves gross and microscopic changes and is linked to expression of angiogenic factors. Future studies will assess the suitability of these factors, identified in the present study, as potential markers for determining the phase of postpartum cervical repair in obstetrical complications, such as cervical lacerations.
Collapse
Affiliation(s)
- Robert Stanley
- The Department of Biology, Appalachian State University, 572 Rivers Street, P.O. Box 32027, Boone, NC, 28608, USA
| | - Takako Ohashi
- The Department of Biology, Appalachian State University, 572 Rivers Street, P.O. Box 32027, Boone, NC, 28608, USA
| | - Chishimba Mowa
- The Department of Biology, Appalachian State University, 572 Rivers Street, P.O. Box 32027, Boone, NC, 28608, USA.
| |
Collapse
|
40
|
Macrophage gene expression associated with remodeling of the prepartum rat cervix: microarray and pathway analyses. PLoS One 2015; 10:e0119782. [PMID: 25811906 PMCID: PMC4374766 DOI: 10.1371/journal.pone.0119782] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/16/2015] [Indexed: 11/19/2022] Open
Abstract
As the critical gatekeeper for birth, prepartum remodeling of the cervix is associated with increased resident macrophages (Mφ), proinflammatory processes, and extracellular matrix degradation. This study tested the hypothesis that expression of genes unique to Mφs characterizes the prepartum from unremodeled nonpregnant cervix. Perfused cervix from prepartum day 21 postbreeding (D21) or nonpregnant (NP) rats, with or without Mφs, had RNA extracted and whole genome microarray analysis performed. By subtractive analyses, expression of 194 and 120 genes related to Mφs in the cervix from D21 rats were increased and decreased, respectively. In both D21 and NP groups, 158 and 57 Mφ genes were also more or less up- or down-regulated, respectively. Mφ gene expression patterns were most strongly correlated within groups and in 5 major clustering patterns. In the cervix from D21 rats, functional categories and canonical pathways of increased expression by Mφ gene related to extracellular matrix, cell proliferation, differentiation, as well as cell signaling. Pathways were characteristic of inflammation and wound healing, e.g., CD163, CD206, and CCR2. Signatures of only inflammation pathways, e.g., CSF1R, EMR1, and MMP12 were common to both D21 and NP groups. Thus, a novel and complex balance of Mφ genes and clusters differentiated the degraded extracellular matrix and cellular genomic activities in the cervix before birth from the unremodeled state. Predicted Mφ activities, pathways, and networks raise the possibility that expression patterns of specific genes characterize and promote prepartum remodeling of the cervix for parturition at term and with preterm labor.
Collapse
|
41
|
Jorge S, Chang S, Barzilai JJ, Leppert P, Segars JH. Mechanical signaling in reproductive tissues: mechanisms and importance. Reprod Sci 2014; 21:1093-107. [PMID: 25001021 DOI: 10.1177/1933719114542023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The organs of the female reproductive system are among the most dynamic tissues in the human body, undergoing repeated cycles of growth and involution from puberty through menopause. To achieve such impressive plasticity, reproductive tissues must respond not only to soluble signals (hormones, growth factors, and cytokines) but also to physical cues (mechanical forces and osmotic stress) as well. Here, we review the mechanisms underlying the process of mechanotransduction-how signals are conveyed from the extracellular matrix that surrounds the cells of reproductive tissues to the downstream molecules and signaling pathways that coordinate the cellular adaptive response to external forces. Our objective was to examine how mechanical forces contribute significantly to physiological functions and pathogenesis in reproductive tissues. We highlight how widespread diseases of the reproductive tract, from preterm labor to tumors of the uterus and breast, result from an impairment in mechanical signaling.
Collapse
Affiliation(s)
- Soledad Jorge
- CRTP Scholars, NIH, Bethesda, MD, USA Yale University School of Medicine, New Haven, CT, USA
| | - Sydney Chang
- CRTP Scholars, NIH, Bethesda, MD, USA Duke University School of Medicine, Durham, NC, USA
| | | | | | | |
Collapse
|
42
|
Gomez-Lopez N, StLouis D, Lehr MA, Sanchez-Rodriguez EN, Arenas-Hernandez M. Immune cells in term and preterm labor. Cell Mol Immunol 2014; 11:571-81. [PMID: 24954221 PMCID: PMC4220837 DOI: 10.1038/cmi.2014.46] [Citation(s) in RCA: 338] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 05/14/2014] [Accepted: 04/15/2014] [Indexed: 12/14/2022] Open
Abstract
Labor resembles an inflammatory response that includes secretion of
cytokines/chemokines by resident and infiltrating immune cells into reproductive
tissues and the maternal/fetal interface. Untimely activation of these inflammatory
pathways leads to preterm labor, which can result in preterm birth. Preterm birth is
a major determinant of neonatal mortality and morbidity; therefore, the elucidation
of the process of labor at a cellular and molecular level is essential for
understanding the pathophysiology of preterm labor. Here, we summarize the role of
innate and adaptive immune cells in the physiological or pathological activation of
labor. We review published literature regarding the role of innate and adaptive
immune cells in the cervix, myometrium, fetal membranes, decidua and the fetus in
late pregnancy and labor at term and preterm. Accumulating evidence suggests that
innate immune cells (neutrophils, macrophages and mast cells) mediate the process of
labor by releasing pro-inflammatory factors such as cytokines, chemokines and matrix
metalloproteinases. Adaptive immune cells (T-cell subsets and B cells) participate in
the maintenance of fetomaternal tolerance during pregnancy, and an alteration in
their function or abundance may lead to labor at term or preterm. Also, immune cells
that bridge the innate and adaptive immune systems (natural killer T (NKT) cells and
dendritic cells (DCs)) seem to participate in the pathophysiology of preterm labor.
In conclusion, a balance between innate and adaptive immune cells is required in
order to sustain pregnancy; an alteration of this balance will lead to labor at term
or preterm.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- 1] Department of Obstetrics & Gynecology and Immunology & Microbiology, Wayne State University, Detroit, MI, USA [2] Perinatology Research Branch NICHD/NIH, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Derek StLouis
- Department of Obstetrics & Gynecology and Immunology & Microbiology, Wayne State University, Detroit, MI, USA
| | - Marcus A Lehr
- Department of Obstetrics & Gynecology and Immunology & Microbiology, Wayne State University, Detroit, MI, USA
| | - Elly N Sanchez-Rodriguez
- Department of Obstetrics & Gynecology and Immunology & Microbiology, Wayne State University, Detroit, MI, USA
| | - Marcia Arenas-Hernandez
- Department of Obstetrics & Gynecology and Immunology & Microbiology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
43
|
Distinct cervical microRNA profiles are present in women destined to have a preterm birth. Am J Obstet Gynecol 2014; 210:221.e1-11. [PMID: 24565431 DOI: 10.1016/j.ajog.2013.12.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/17/2013] [Accepted: 12/31/2013] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Although premature cervical remodeling is involved in preterm birth (PTB), the molecular pathways that are involved have not been elucidated fully. MicroRNAs (miRNAs) that are highly conserved single-stranded noncoding RNAs that play a crucial role in gene regulation have now been identified as important players in disease states. The objective of this study was to determine whether miRNA profiles in cervical cells are different in women who are destined to have a PTB compared with a term birth. STUDY DESIGN A nested case-control study was performed. With the use of a noninvasive method, cervical cells were obtained at 2 time points in pregnancy. The cervical cell miRNA expression profiles were compared between women who ultimately had a PTB (n = 10) compared with a term birth (n = 10). MiRNA expression profiles were created with the Affymetrix GeneChip miRNA Array. The data were analyzed with the Significance of Analysis of Microarrays and Principle Components Analyses. A false-discovery rate of 20% was used to determine the most differentially expressed miRNAs. Validation was performed with quantitative polymerase chain reaction. In vitro studies were performed to confirm expression and regulation of select miRNAs. RESULTS With a false-discovery rate of 20% of the 5640 miRNAs that were analyzed on the array, 99 miRNAs differed between those with a PTB vs a term birth. Qualitative polymerase chain reaction validated the array findings. In vitro studies confirmed expression of select miRNAs in cervical cells. CONCLUSION MiRNA profiles in cervical cells may distinguish women who are at risk for PTB months before the outcome. With the large downstream effects of miRNAs on gene expression, these studies provide a new understanding of the processes that are involved in premature cervical remodeling and allow for the discovery of new therapeutic targets.
Collapse
|
44
|
Gonzalez JM, Romero R, Girardi G. Comparison of the mechanisms responsible for cervical remodeling in preterm and term labor. J Reprod Immunol 2013; 97:112-9. [PMID: 23312455 PMCID: PMC3581722 DOI: 10.1016/j.jri.2012.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 10/27/2022]
Abstract
Understanding the mechanisms of term and preterm cervical remodeling is essential to prevent prematurity. Is preterm cervical remodeling caused by the same mechanisms that cause cervical remodeling at term, and are these changes accelerated in time? This question has been pondered by obstetricians seeking strategies to prevent preterm labor for many years. Mice represent an informative model of preterm birth. Thus, in this review we discuss the recent findings from mouse models that identify and characterize the initiators and cellular effectors of cervical remodeling at term and preterm labor/delivery. These studies suggest that similarities and differences exist between term and preterm cervical remodeling. Complement is an initiator or mediator in preterm labor/delivery, but is not involved in the physiological process that leads to term delivery. Therefore, complememt constitutes a specific and selective target for potentially preventing preterm delivery, thus improving neonatal health.
Collapse
Affiliation(s)
- JM Gonzalez
- Department of Obstetrics and Gynecology, Wayns State University, Detroit, MI
| | - R Romero
- Perinatology Reserch Branch, National Institutes of Helath, National Institute of Child Health and Human Development, Bethesda, MD and Detroit, MI, USA
| | - G Girardi
- The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
45
|
Nold C, Maubert M, Anton L, Yellon S, Elovitz MA. Prevention of preterm birth by progestational agents: what are the molecular mechanisms? Am J Obstet Gynecol 2013; 208:223.e1-7. [PMID: 23433326 DOI: 10.1016/j.ajog.2013.01.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/04/2013] [Accepted: 01/11/2013] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Clinically, vaginal progesterone (VP) and 17 alpha-hydroxyprogesterone caproate (17P) have been shown to prevent preterm birth (PTB) in high-risk populations. We hypothesize that treatment with these agents may prevent PTB by altering molecular pathways involved in uterine contractility or cervical remodeling. STUDY DESIGN Using a mouse model, on embryonic day (E)14-E17 CD-1 pregnant mice were treated with: (1) 0.1 mL of 25 mg/mL of 17P subcutaneously; (2) 0.1 mL of castor oil subcutaneously; (3) 0.1 mL of 10 mg/mL of progesterone in a long-lasting Replens (Lil' Drug Store Products, Inc., Cedar Rapids, IA); or (4) 0.1 mL of the same Replens, with 4 dams per treatment group. Mice were sacrificed 6 hours after treatment on E17.5. Cervices and uteri were collected for molecular analysis. RESULTS Exposure to VP significantly increased the expression of defensin 1 compared to Replens (P < .01) on E17.5. Neither VP nor 17P altered the expression of uterine contraction-associated proteins, progesterone-mediated regulators of uterine quiescence, microRNA involved in uterine contractility, or pathways involved in cervical remodeling. In addition, neither agent had an effect on immune cell trafficking or collagen content in the cervix. CONCLUSION Neither VP nor 17P had any effect on the studied pathways known to be involved in uterine contractility or quiescence. In the cervix, neither VP nor 17P altered pathways demonstrated to be involved in cervical remodeling. Administration of VP was noted to increase the expression of the antimicrobial protein defensin 1. Whether this molecular change from VP results in a functional effect and is a key mechanism by which VP prevents PTB requires further study.
Collapse
|
46
|
Shynlova O, Nedd-Roderique T, Li Y, Dorogin A, Nguyen T, Lye SJ. Infiltration of myeloid cells into decidua is a critical early event in the labour cascade and post-partum uterine remodelling. J Cell Mol Med 2013; 17:311-24. [PMID: 23379349 PMCID: PMC3822594 DOI: 10.1111/jcmm.12012] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/28/2012] [Indexed: 11/28/2022] Open
Abstract
Leucocyte infiltration in the decidua (maternal–foetal interface) before, during and after term (TL) and preterm labour (PTL) was studied in mouse. We also investigated the mechanism of peripheral leucocyte recruitment into decidua by analysing the tissue cytokine profiles. Decidual tissues were collected during late gestation, TL and post-partum (PP). PTL was initiated on gestational day 15 by intrauterine injection of Lipopolysaccharide (LPS, 125 μg) or progesterone signalling antagonism by RU486. Animals were killed during PTL or PP. Decidua basalis was analysed using FACS and immunohistochemistry. Markers of myeloid cell differentiation (Gr1, Ly6G, Neu7/4, F4/80) were assessed to define tissue monocytes (M), neutrophils (N) and macrophages (Macs). Flow cytometry revealed a significant (P < 0.05) increase in decidual Macs prior to TL; M and N numbers increased during TL and further increased during PP, which correlated with immunohistochemistry data. Massive influx of N, but not Macs and M, was detected by FACS during LPS-PTL (P < 0.05) but not RU486-PTL. Highest levels of N infiltration into the decidua occurred PP in both LPS and RU486 groups. Decidual infiltration during TL and RU486-PTL was accompanied by an increase in pro-inflammatory cytokines (IL1b and IL6) and CCL2 chemokine; LPS-PTL showed increases in multiple cytokines. PP period following TL and PTL was associated with further up-regulation of multiple cytokines/chemokines (P < 0.05). Our data suggest a programme of myeloid cells involvement in parturition with the pre-partum influx of Macs into the decidua contributing to the progression of labour, whereas the later influx of M and N contribute to PP decidual involution.
Collapse
Affiliation(s)
- Oksana Shynlova
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada.
| | | | | | | | | | | |
Collapse
|
47
|
Shynlova O, Nedd-Roderique T, Li Y, Dorogin A, Lye SJ. Myometrial immune cells contribute to term parturition, preterm labour and post-partum involution in mice. J Cell Mol Med 2012. [PMID: 23205502 PMCID: PMC3823139 DOI: 10.1111/j.1582-4934.2012.01650.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This study aimed to determine the mechanism of uterine activation during labour, both term (TL) and preterm (PTL). We hypothesized that the peripheral leucocytes are recruited to uterine tissues by locally produced cytokines where they contribute to the initiation of parturition. Mouse uteri were collected (i) during gestation, TL and post-partum (PP), (ii) during PTL initiated by intrauterine infusion of LPS (125 μg) or (iii) injection of the progesterone receptor antagonist RU486 and analysed for multiple cytokine expression levels by real-time polymerase chain reaction (RT-PCR) and 23-plex Cytokine assay or enzymatically dispersed for assessment of immune cell populations. Markers of myeloid cell differentiation (Gr1, Neu7/4 and F4/80) were evaluated by FACS to define tissue macrophages (Macs), monocytes (M) and neutrophils (N) and by immunohistochemistry to detect tissue Macs and N. Our results indicate that: (1) Macs were elevated in mouse myometrium before TL (P < 0.05) followed by an increase in M and N; these changes were accompanied by an increase in multiple pro-inflammatory cytokines/chemokines genes. The expression of corresponding proteins increased PP. (2) TL and RU486-PTL models showed similar gene/protein expression profiles, (3) LPS-PTL was characterized by strong pro-inflammatory response and massive influx of N in myometrial tissues showing a pattern different from TL and RU486-PTL, (4) The PP period appears similar in all three models, with elevated myometrial cytokine levels and high infiltration of immune cells. We concluded that leucocytes infiltrate myometrium around the time of parturition implicating their potential role in labour activation (both term and preterm) and major role in PP uterine involution.
Collapse
Affiliation(s)
- Oksana Shynlova
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada.
| | | | | | | | | |
Collapse
|
48
|
Akgul Y, Holt R, Mummert M, Word A, Mahendroo M. Dynamic changes in cervical glycosaminoglycan composition during normal pregnancy and preterm birth. Endocrinology 2012; 153:3493-503. [PMID: 22529214 PMCID: PMC3380303 DOI: 10.1210/en.2011-1950] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Glycosaminoglycans (GAG) have diverse functions that regulate macromolecular assembly in the extracellular matrix. During pregnancy, the rigid cervix transforms to a pliable structure to allow birth. Quantitative assessment of cervical GAG is a prerequisite to identify GAG functions in term and preterm birth. In the current study, total GAG levels increased at term, yet the abundance, chain length, and sulfation levels of sulfated GAG remained constant. The increase in total GAG resulted exclusively from an increase in hyaluronan (HA). HA can form large structures that promote increased viscosity, hydration, and matrix disorganization as well as small structures that have roles in inflammation. HA levels increased from 19% of total GAG in early pregnancy to 71% at term. Activity of the HA-metabolizing enzyme, hyaluronidase, increased in labor, resulting in metabolism of large to small HA. Similar to mice, HA transitions from high to low molecular weight in term human cervix. Mouse preterm models were also characterized by an increase in HA resulting from differential expression of the HA synthase (Has) genes, with increased Has1 in preterm in contrast to Has2 induction at term. The Has2 gene but not Has1 is regulated in part by estrogen. These studies identify a shift in sulfated GAG dominance in the early pregnant cervix to HA dominance in term and preterm ripening. Increased HA synthesis along with hyaluronidase-induced changes in HA size in mice and women suggest diverse contributions of HA to macromolecular changes in the extracellular matrix, resulting in loss of tensile strength during parturition.
Collapse
Affiliation(s)
- Yucel Akgul
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas Texas 75390-9032, USA
| | | | | | | | | |
Collapse
|
49
|
Mahendroo M. Cervical remodeling in term and preterm birth: insights from an animal model. Reproduction 2012; 143:429-38. [PMID: 22344465 DOI: 10.1530/rep-11-0466] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Proper cervical function is essential for a normal pregnancy and birth to occur. Understanding the mechanisms that take place in normal pregnancy will allow a better comprehension of the complications involved in premature cervical remodeling and lead to better methods of diagnostics and prevention for preterm birth. Unfortunately, human samples are not easily available, and samples that are collected are often confounded by variations in timing and region of cervix from which sample is collected. Animal models, specifically the mouse, have facilitated a great deal of exploration into the mechanisms of cervical function and pathways of preterm birth. This review highlights some of the groundbreaking discoveries that have arisen from murine research including 1) the identification of early pregnancy changes in collagen fibril processing and assembly that result in progressive modifications to collagen architecture with subsequent loss of tissue stiffness during pregnancy, 2) the determination that immune cells are not key to cervical ripening at term but have diverse phenotypes and functions in postpartum repair, and 3) the finding that the process of preterm cervical ripening can differ from term ripening and is dependent on the etiology of prematurity. These findings, which are relevant to human cervical biology, provide new insights that will allow targeted studies on the human cervix as well as identify potential biomarkers for early detection of premature cervical ripening and development of improved therapies to prevent premature ripening of the cervix and subsequent preterm birth.
Collapse
Affiliation(s)
- Mala Mahendroo
- Department of Obstetrics and Gynecology and The Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, Texas 75235, USA.
| |
Collapse
|
50
|
Cervical remodeling/ripening at term and preterm delivery: the same mechanism initiated by different mediators and different effector cells. PLoS One 2011; 6:e26877. [PMID: 22073213 PMCID: PMC3206857 DOI: 10.1371/journal.pone.0026877] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 10/05/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Premature cervical remodeling/ripening is believed to contribute to preterm delivery (PTD), the leading cause of perinatal morbidity and mortality. Despite considerable research, the causes of term and PTD remain unclear, and there is no effective treatment for PTD. We previously demonstrated that complement activation plays a causative role in cervical remodeling that leads to PTD in mice. METHODOLOGY/PRINCIPAL FINDINGS Here we found that complement activation is not required for the physiological process that leads to term delivery in mice. Neither increased C3 cervical deposition nor increased C3a and C5a serum levels were observed at term. In addition, macrophages infiltration was found in PTD in contrast to term delivery were no leukocytes were found. Despite the different role of complement and different cellular effector cells, PTD and term delivery share a common dowsntream pathway characterized by increased metalloproteinases (MMPs) release and increased collagen degradation. However, different sources of MMPs were identified. Macrophages are the source of MMPs in PTD while cervical fibroblasts and columnar epithelial cells synthesize MMPs at term delivery. A dramatic diminution in serum progesterone levels precedes parturition at term but not in PTD, suggesting that progesterone withdrawal initiates cervical remodeling at term. On the other hand, MMPs release in PTD is triggered by C5a. CONCLUSION AND SIGNIFICANCE In conclusion, preterm and term cervical remodeling occur through the same mechanism but they are initiated by different mediators and effector cells. That complement activation is required for PTD but not for the physiological process that leads to term delivery, suggests that complement is a potential specific biomarker and selective target to prevent PTD and thus avert neonatal mortality and morbidity.
Collapse
|