1
|
Anand-Ivell R, Heng K, Antonio L, Bartfai G, Casanueva FF, Maggi M, O'Neill TW, Punab M, Rastrelli G, Slowikowska-Hilczer J, Tournoy J, Vanderschueren D, Wu FC, Huhtaniemi IT, Ivell R. Insulin-like peptide 3 (INSL3) as an indicator of leydig cell insufficiency (LCI) in Middle-aged and older men with hypogonadism: reference range and threshold. Aging Male 2024; 27:2346322. [PMID: 38676285 DOI: 10.1080/13685538.2024.2346322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Insulin-like peptide 3 (INSL3) is a circulating biomarker for Leydig cell functional capacity in men, also indicating Leydig Cell Insufficiency (LCI) and potential primary hypogonadism. Using results from large cohort studies we explore sources of biological and technical variance, and establish a reference range for adult men. It is constitutively secreted with little within-individual variation and reflects testicular capacity to produce testosterone. The main INSL3 assays available indicate good concordance with low technical variance; there is no effect of ethnicity. INSL3 declines with age from 35 years at about 15% per decade. Like low calculated free testosterone, and to a lesser extent low total testosterone, reduced INSL3 is significantly associated with increasing age-related morbidity, including lower overall sexual function, reflecting LCI. Consequently, low INSL3 (≤0.4 ng/ml; ca. <2 SD from the population mean) might serve as an additional biochemical marker in the assessment of functional hypogonadism (late-onset hypogonadism, LOH) where testosterone is in the borderline low range. Excluding individuals with low LCI (INSL3 ≤ 0.4 ng/ml) leads to an age-independent (> 35 years) reference range (serum) for INSL3 in the eugonadal population of 0.4 - 2.3 ng/ml, with low INSL3 prospectively identifying individuals at risk of increased future morbidity.
Collapse
Affiliation(s)
| | - Kee Heng
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Leen Antonio
- Department of Chronic Diseases and Metabolism, Laboratory of Clinical and Experimental Endocrinology, Leuven, KU, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Gyorgy Bartfai
- Department of Obstetrics, Gynaecology and Andrology, Albert Szent-Gyorgy Medical University, Szeged, Hungary
| | - Felipe F Casanueva
- Department of Medicine, Santiago de Compostela University, Complejo Hospitalario Universitario de Santiago (IDIS), CIBER de Fisiopatología Obesidad y Nutricion (CB06/03), Instituto Salud Carlos III, Santiago de Compostela, Spain
| | - Mario Maggi
- Endocrinology and Andrology Unit, "Mario Serio" Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Terence W O'Neill
- Centre for Epidemiology Versus Arthritis, The University of Manchester & NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Margus Punab
- Andrology Clinic, Tartu University Hospital, and Institute of Clinical Medicine, and Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Giulia Rastrelli
- Endocrinology and Andrology Unit, "Mario Serio" Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Jos Tournoy
- Department of Geriatrics, University Hospitals Leuven, and Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Dirk Vanderschueren
- Department of Chronic Diseases and Metabolism, Laboratory of Clinical and Experimental Endocrinology, Leuven, KU, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Frederick Cw Wu
- Department of Endocrinology, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ilpo T Huhtaniemi
- Institute of Reproductive and Developmental, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, London, UK
| | - Richard Ivell
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| |
Collapse
|
2
|
Wang S, Ren J, Jing Y, Qu J, Liu GH. Perspectives on biomarkers of reproductive aging for fertility and beyond. NATURE AGING 2024; 4:1697-1710. [PMID: 39672897 DOI: 10.1038/s43587-024-00770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/29/2024] [Indexed: 12/15/2024]
Abstract
Reproductive aging, spanning an age-related functional decline in the female and male reproductive systems, compromises fertility and leads to a range of health complications. In this Perspective, we first introduce a comprehensive framework for biomarkers applicable in clinical settings and discuss the existing repertoire of biomarkers used in practice. These encompass functional, imaging-based and biofluid-based biomarkers, all of which reflect the physiological characteristics of reproductive aging and help to determine the reproductive biological age. Next, we delve into the molecular alterations associated with aging in the reproductive system, highlighting the gap between these changes and their potential as biomarkers. Finally, to enhance the precision and practicality of assessing reproductive aging, we suggest adopting cutting-edge technologies for identifying new biomarkers and conducting thorough validations in population studies before clinical applications. These advancements will foster improved comprehension, prognosis and treatment of subfertility, thereby increasing chances of preserving reproductive health and resilience in populations of advanced age.
Collapse
Affiliation(s)
- Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Jie Ren
- Aging Biomarker Consortium, Beijing, China
- Key Laboratory of RNA Science and Engineering, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Jing
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Qu
- Aging Biomarker Consortium, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, CAS, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, CAS, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
3
|
Cai Z, Yao B, Tan Y, Liu Y, Su J. Seasonal piRNA Expression Profile Changes in the Testes of Plateau Zokor ( Eospalax baileyi). Animals (Basel) 2024; 14:2620. [PMID: 39272405 PMCID: PMC11394656 DOI: 10.3390/ani14172620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Seasonal reproduction is a mammalian behavior that has developed over an extended evolutionary period and requires animals to respond to external environmental changes to facilitate reproduction. In this study, we investigated the role of PIWI-interacting RNA (piRNA) in the seasonal reproduction of plateau zokors (Eospalax baileyi). piRNA expression profiles in plateau zokor testes during both breeding and non-breeding seasons were examined. The piRNAs had a distinctive ping-pong signature and ranged from 27 to 32 nt with a peak at 30 nt. Testicular piRNAs predominantly aligned to specific genomic regions, including repeat and gene regions. Analysis of the piRNA-mRNA interaction network and functional enrichment of differentially expressed piRNAs targeting mRNAs revealed their association with testicular development and spermatogenesis. Significantly, PIWIL4 is an mRNA gene that interacts with piRNA and exhibits high expression levels within the testes during the non-breeding phase. This study provides a foundation to improve our understanding of piRNA regulatory mechanisms during testicular development and spermatogenesis in seasonally reproducing animals and, specifically, in the plateau zokor.
Collapse
Affiliation(s)
- Zhiyuan Cai
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming 650031, China
- College of Grassland Science, Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
| | - Baohui Yao
- College of Grassland Science, Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Yuchen Tan
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming 650031, China
- College of Grassland Science, Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongjie Liu
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming 650031, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
4
|
Anand-Ivell R, Coutinho AR, Dai Y, England G, Goericke-Pesch S, Ivell R. INSL3 Variation in Dogs Following Suppression and Recovery of the HPG Axis. Animals (Basel) 2024; 14:675. [PMID: 38473059 DOI: 10.3390/ani14050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Insulin-like peptide 3 (INSL3) is a constitutive product of mature, adult-type Leydig cells of the testes and consequently in most mammals is an ideal biomarker with which to monitor pubertal development. A new heterologous time-resolved fluorescence immunoassay was developed and validated to measure circulating INSL3 in the blood of adult male dogs. Compared to other species, INSL3 concentration is low with marked variation between individuals, which appears to be independent of breed, age, or weight. A model system was then used in which a cohort of beagle dogs was subject to a GnRH-agonist implant to suppress the HPG axis and spermatogenesis, followed by implant removal and recovery. Unlike testosterone, INSL3 levels were not fully suppressed in all animals by the GnRH agonist, nor was the recovery of Leydig cell function following implant removal uniform or complete, even after several weeks. In dogs, and dissimilar from other species (including humans), Leydig-cell INSL3 appears to be quite variable between individual dogs and only weakly connected to the physiology of the HPG axis after its suppression by a GnRH-agonist implant and recovery. Consequently, INSL3 may be less useful in this species for the assessment of testis function.
Collapse
Affiliation(s)
- Ravinder Anand-Ivell
- School of Bioscience, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Acacia Rebello Coutinho
- School of Bioscience, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Yanzhenzi Dai
- School of Bioscience, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Gary England
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Sandra Goericke-Pesch
- Unit for Reproductive Medicine, Clinic for Small Animals, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Richard Ivell
- School of Bioscience, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| |
Collapse
|
5
|
Gao L, Xiong X, Chen C, Luo P, Li J, Gao X, Huang L, Li L. The male reproductive toxicity after nanoplastics and microplastics exposure: Sperm quality and changes of different cells in testis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115618. [PMID: 37939553 DOI: 10.1016/j.ecoenv.2023.115618] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
Nanoplastics (NPs) and Microplastics (MPs) pollution has become a severe threat to the planet and is a growing concern. However, their effects on male reproductive toxicity remain poorly understood. In this study, a series of morphological analyses were completed to explore the influence of NPs and MPs exposure on the testis in mice. After 12-weeks exposure, although both NPs and MPs exposure can lead to reproductive toxicity, compared with NPs exposure, exposure to MPs leads to a more significant increase in reproductive toxicity dependent on some particle size. Moreover, increased reproductive toxicities, including increased spermatogenesis disorders, and sperm physiological abnormality, oxidative stress, testis inflammation was more associated with MPs group than NPs group. Ultra-pathological structure observed by transmission electron microscopy indicated that both NPs and MPs have different effects on spermatogonia, spermatocytes and Sertoli cells. Exposure to MPs resulted in decreased Sertoli cell numbers and reduced Leydig cell area, and showed no effects on differentiation of Leydig cells by the expression level of the Insulin-Like factor 3 (INSL3) in Leydig cells. Transcriptomic sequencing analysis provided valuable insights into the differential effects of NPs and MPs on cellular processes. Specifically, our findings demonstrated that NPs were predominantly involved in the regulation of steroid biosynthesis, whereas MPs primarily influenced amino acid metabolism. This study demonstrates the effect of adult-stage reproductive toxicity in mice after exposure to NPs and MPs, which will deep the understanding of the NPs and MPs induced toxicity.
Collapse
Affiliation(s)
- Likun Gao
- Department of Pathology, Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Xi Xiong
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of science and Technology, Wuhan 430060, China
| | - Chen Chen
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of science and Technology, Wuhan 430060, China
| | - Pengcheng Luo
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of science and Technology, Wuhan 430060, China
| | - Jing Li
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiang Gao
- Central Laboratory, Scientific Research Department, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Lizhi Huang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Lili Li
- Central Laboratory, Scientific Research Department, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
6
|
Wimalarathne HDA, Nakamura Y, Ishizaka K, Silva BDK, Sasakura K, Shimada M, Kibushi M, Sakase M, Kawate N. Age-related changes in circulating INSL3 concentrations and their associations with ovarian conditions in Japanese Black beef cattle. Theriogenology 2023; 211:97-104. [PMID: 37603938 DOI: 10.1016/j.theriogenology.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
Information on circulating levels of insulin-like peptide 3 (INSL3) in female domesticated animals is limited, as their concentrations are significantly lower than in males. The objectives of the present study were to 1) develop a sandwich time-resolved fluorescence immunoassay (TRFIA) with higher detectability to measure blood INSL3 concentrations in female cattle, 2) determine INSL3 concentrations in female cattle among age groups and reproductive conditions, and 3) explore associations between INSL3 levels and ultrasonographic ovarian measurements. Blood was collected repeatedly from Japanese Black beef female calves (n = 12; 0-8 mo), heifers (n = 10; 10-26 mo), and cows (n = 20; 27-200 mo). Blood was taken from the cows (n = 13) at follicular, post-ovulatory, and luteal phases, and from cows with follicular cysts (n = 12). Ultrasonography of ovaries was conducted in the calves (n = 12) and the cows without ovarian diseases (n = 9). The ovarian area, as well as the number and diameters of antral follicles ≥ 2 mm, were determined in each ovary. The proposed method detected a difference in plasma INSL3 between calves (0.01 ng/mL) and heifers (0.18 ng/mL). However, the conventional assay showed similar levels for calves and heifers (1.82 vs 2.07 ng/mL). Plasma INSL3 and testosterone concentrations increased from calves to heifers (P < 0.0001), but only INSL3 rose from heifers to cows (P < 0.0001). INSL3 and testosterone concentrations did not change across the estrus cycle in cows, and the levels of both hormones in follicular cystic cows did not differ from those in the follicular phase. Ovarian area, maximal and average follicular diameters, and total volume of all follicles per animal were higher in cows than calves (P < 0.001). Plasma INSL3 concentrations correlated positively with the total volumes of all follicles in calves (P < 0.05) and cows (P < 0.05), whereas testosterone concentrations did not correlate with ovarian follicular measurements. In conclusion, plasma INSL3 concentrations measured by the proposed sandwich TRFIA showed a clear increase from female calves to cows in beef cattle. These results suggest that circulating levels of INSL3, but not of testosterone, are associated with the total volume of all antral follicles in both ovaries per animal in female cattle.
Collapse
Affiliation(s)
- H D A Wimalarathne
- Laboratory of Theriogenology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
| | - Y Nakamura
- Laboratory of Theriogenology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
| | - K Ishizaka
- Laboratory of Theriogenology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
| | - B D K Silva
- Laboratory of Theriogenology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
| | - K Sasakura
- Hyogo Prefecture College of Agriculture, General Technological Center of Hyogo Prefecture for Agriculture, Forest and Fishery, Kasai, Hyogo, Japan
| | - M Shimada
- Hyogo Prefecture College of Agriculture, General Technological Center of Hyogo Prefecture for Agriculture, Forest and Fishery, Kasai, Hyogo, Japan
| | - M Kibushi
- Laboratory of Theriogenology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan; M's Veterinary Partners, Tanba, Hyogo, Japan
| | - M Sakase
- Hokubu Agricultural Technology Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Asago, Hyogo, Japan
| | - N Kawate
- Laboratory of Theriogenology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan.
| |
Collapse
|
7
|
Schneck NA, Mortezavi L, Olzinski AR, Posavec D, Jolivette LJ, Sikorski TW, Zhang SS, Schnackenberg CG, Licea-Perez H. Development of an LC-MS/MS assay for quantification of intact INSL3 in rat plasma. Bioanalysis 2023; 15:1169-1178. [PMID: 37676652 DOI: 10.4155/bio-2023-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
Background: Relatively large disulfide-linked polypeptides can serve as signaling molecules for a diverse array of biological processes and may be studied in animal models to investigate their function in vivo. The aim of this work was to develop an LC-MS/MS assay to measure a model peptide, INSL3, in rat plasma. Results: A dual enrichment strategy incorporating both protein precipitation and solid phase extraction was utilized to isolate INSL3 from rat plasma, followed by targeted LC-MS/MS detection. The method was able to measure full-length INSL3 (6.1 kDa) down to 0.2 ng/ml with acceptable accuracy and precision. Conclusion: The final assay was applied to support an exploratory pharmacokinetic study to evaluate steady-state concentrations of dosed INSL3 in rat plasma.
Collapse
Affiliation(s)
- Nicole A Schneck
- Bioanalysis, Immunogenicity & Biomarkers, GSK, 1250 S. Collegeville Rd, Collegeville, PA 19426, USA
| | - Lela Mortezavi
- Bioanalysis, Immunogenicity & Biomarkers, GSK, 1250 S. Collegeville Rd, Collegeville, PA 19426, USA
| | - Alan R Olzinski
- Novel Human Genetics Research Unit, GSK, 1250 S. Collegeville Rd, Collegeville, PA 19426, USA
| | - Diane Posavec
- Novel Human Genetics Research Unit, GSK, 1250 S. Collegeville Rd, Collegeville, PA 19426, USA
| | - Larry J Jolivette
- Drug Metabolism & Pharmacokinetics, GSK, 1250 S. Collegeville Rd, Collegeville, PA 19426, USA
| | - Timothy W Sikorski
- Bioanalysis, Immunogenicity & Biomarkers, GSK, 1250 S. Collegeville Rd, Collegeville, PA 19426, USA
| | - Shan-Shan Zhang
- Therapeutics Division, 23andMe, 349 Oyster Point Blvd, South San Francisco, CA 94080, USA
| | | | - Hermes Licea-Perez
- Bioanalysis, Immunogenicity & Biomarkers, GSK, 1250 S. Collegeville Rd, Collegeville, PA 19426, USA
| |
Collapse
|
8
|
Ivell R, Vinggaard AM, Soyama H, Anand‐Ivell R. Influence on the adult male Leydig cell biomarker insulin‐like peptide 3 of maternal exposure to estrogenic and anti‐androgenic endocrine disrupting compound mixtures: A retrospective study. Andrologia 2022; 54:e14566. [PMID: 36054713 PMCID: PMC10078366 DOI: 10.1111/and.14566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 11/27/2022] Open
Abstract
Insulin-like peptide 3 (INSL3) is a peptide biomarker secreted specifically by the mature Leydig cells of the testes. It is constitutive, has low within-individual variance, and effectively measures the functional capacity of Leydig cells to make testosterone. In young adult men there is a large 10-fold range of serum INSL3 concentration, persisting into old age, and implying that later hypogonadal status might be programmed in early life. To determine whether maternal exposure to environmental endocrine disrupting compounds (EDCs) influences adult serum INSL3 concentration, using a retrospective paradigm, INSL3 was measured in young adult male rats (80-90 days) from the F1 generation of females maternally exposed to varied doses of bisphenol A (BPA), butylparaben, epoxiconazole, and fludioxonil as single compounds, as well as estrogenic and anti-androgenic mixtures of BPA and butylparaben, and di(2-ethylhexyl) phthalate and procymidone respectively. A mixture of BPA and butylparaben significantly reduced circulating INSL3 concentration in adult male progeny. The remaining compounds or mixtures tested, though sufficient to induce other effects in the F1 generation were without significant effect. Maternal exposure to low concentrations of some EDCs may be a contributing factor to the variation in the Leydig cell biomarker INSL3 in young adulthood, though caution is warranted translating results from rats to humans.
Collapse
Affiliation(s)
- Richard Ivell
- School of Bioscience University of Nottingham, Sutton Bonington UK
| | | | - Hiroaki Soyama
- School of Bioscience University of Nottingham, Sutton Bonington UK
| | | |
Collapse
|
9
|
Ivell R, Mamsen LS, Andersen CY, Anand-Ivell R. Expression and Role of INSL3 in the Fetal Testis. Front Endocrinol (Lausanne) 2022; 13:868313. [PMID: 35464060 PMCID: PMC9019166 DOI: 10.3389/fendo.2022.868313] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin-like peptide 3 (INSL3) is a small peptide hormone of the insulin-relaxin family which is produced and secreted by the fetal Leydig cells in the testes only. It appears to be undetectable in female fetuses. In the human fetus INSL3 synthesis begins immediately following gonadal sex determination at weeks 7 to 8 post coitum and the peptide can be detected in amniotic fluid 1 to 2 weeks later. INSL3 acts through a unique G-protein-coupled receptor, called RelaXin-like Family Peptide receptor 2 (RXFP2), which is expressed by the mesenchymal cells of the gubernacular ligament linking the testes to the inguinal wall. The role of INSL3 in the male fetus is to cause a thickening of the gubernaculum which then retains the testes in the inguinal region, while the remainder of the abdominal organs grow away in an antero-dorsal direction. This represents the first phase of testis descent and is followed later in pregnancy by the second inguino-scrotal phase whereby the testes pass into the scrotum through the inguinal canal. INSL3 acts as a significant biomarker for Leydig cell differentiation in the fetus and may be reduced by maternal exposure to endocrine disrupting chemicals, such as xenoestrogens or phthalates, leading to cryptorchidism. INSL3 may have other roles within the fetus, but as a Leydig cell biomarker its reduction acts also as a surrogate for anti-androgen action.
Collapse
Affiliation(s)
- Richard Ivell
- School of Bioscience, University of Nottingham, Sutton Bonington, United Kingdom
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, Section 5712, Juliane Marie Centre for Women, Children and Reproduction, Rigshospitalet, University Hospital of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Section 5712, Juliane Marie Centre for Women, Children and Reproduction, Rigshospitalet, University Hospital of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ravinder Anand-Ivell
- School of Bioscience, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
10
|
Duan P, Ha M, Huang X, Zhang P, Liu C. Intronic miR-140-5p contributes to beta-cypermethrin-mediated testosterone decline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150517. [PMID: 34794910 DOI: 10.1016/j.scitotenv.2021.150517] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 05/23/2023]
Abstract
Beta-cypermethrin (β-CYP), a widely-used pyrethroid pesticide, is considered to have anti-androgenic effects and could impair male reproduction. To ascertain whether MAPK pathways, DNA methyltransferases (DNMTs), and miRNAs played pleiotropic roles in β-CYP-mediated testicular dysfunction, Sprague-Dawley rats and Leydig cells were employed in this study. Results showed that plasma testosterone levels were declined, testicular histomorphology and ultrastructures were abnormally altered, and Leydig cell functions were damaged after β-CYP exposure. JNK and p38/MAPK pathways were inactivated, accompanied by the decrease in c-Jun and Sp1 expressions. Specific activators/inhibitors of MAPK pathways and Co-IP demonstrated that DNMT3α was synergistically regulated by JNK/p38 pathways. The activity, mRNA and protein expressions of DNMT3α were all reduced by β-CYP. β-CYP induced expressions of intronic miR-140-5p and its host gene Wwp2, and then overexpressed miR-140-5p suppressed steroidogenic StAR, P450scc, and 3β-HSD by directly targeting SF-1. SF-1 silencing/overexpression, ChIP, and qPCR indicated that SF-1 modulated positively StAR, P450scc, and 3β-HSD expressions by directly binding to their promoter regions. Intriguingly, 5α-reductase expressions were downregulated after β-CYP exposure. Collectively, β-CYP has the anti-androgenic feature and the DNMT3α/miR-140-5p/SF-1 cascade co-regulated by JNK/p38 functions critically in β-CYP-caused testosterone declines. The downregulation of 5α-reductases may be a potential compensatory mechanism of the organism.
Collapse
Affiliation(s)
- Peng Duan
- Department of Obstetrics and Gynaecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Mei Ha
- School of Nursing, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
| | - Xu Huang
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 400020, China
| | - Pei Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Changjiang Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 400020, China.
| |
Collapse
|
11
|
Kawate N. Insulin-like peptide 3 in domestic animals with normal and abnormal reproductive functions, in comparison to rodents and humans. Reprod Med Biol 2022; 21:e12485. [PMID: 36310659 PMCID: PMC9601793 DOI: 10.1002/rmb2.12485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/07/2022] Open
Abstract
Background Insulin-like peptide 3 (INSL3) is a circulating hormone secreted from only testis and ovaries in mammals. Findings on INSL3 have been gathered from subjects with normal and abnormal reproductive statuses, especially rodents and humans. However, little to no review articles focusing on INSL3 in domestic animals exist. Methods The author reviewed the past and recent literature regarding the structure, expression, roles of INSL3 in the reproductive organs, and its circulation under normal and aberrant reproductive conditions in domestic animals in comparison with rodents and humans. Main findings As with humans and rodents, blood INSL3 concentrations rise around puberty in normal male domestic animals and are associated with testicular size. INSL3 levels are acutely upregulated by luteinizing hormone (LH), and the increase is smaller than that of testosterone in male ruminants, whereas the acute regulation of INSL3 by LH does not occur in human men. Dogs with cryptorchidism and bulls with abnormal semen have lowered INSL3 levels. Conclusion The findings regarding INSL3 secretions in male domestic animals with normal and aberrant reproductive functions illustrate similar or dissimilar points to humans and rodents. Data on blood INSL3 levels in normal and abnormal female domestic species are still limited and require further investigation.
Collapse
Affiliation(s)
- Noritoshi Kawate
- Graduate School of Veterinary ScienceOsaka Metropolitan UniversityIzumisanoJapan
| |
Collapse
|
12
|
Sencar L, Coskun G, Şaker D, Sapmaz T, Tuli A, Özgür H, Polat S. Bisphenol A decreases expression of Insulin-like factor 3 and induces histopathological changes in the Testes of Rats. Toxicol Ind Health 2021; 37:314-327. [PMID: 33973500 DOI: 10.1177/07482337211014097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bisphenol A (BPA) is a chemical agent known to have detrimental reproductive and developmental effects. The tissue-specific impacts of BPA exposures and target tissues sensitiveness to BPA are still unclear. The aim of this study was to determine the short- and long-term dose-dependent toxic effects of BPA on rat testes. Forty-eight Wistar albino male rats were divided into four groups each containing 12 rats. To induce toxicity, BPA was administered orally at three different dosages (50, 100, and 200 mg/kg) for 14 and 28 days, respectively. Testis tissues were examined using light and electron microscopy, immunohistochemistry, and biochemical methods. Serum testosterone (T) and luteinizing hormone (LH) levels were measured. Additionally, insulin-like factor 3 (INSL3) as a marker of Leydig cell function was evaluated immunohistochemically. Groups administered high doses of BPA showed severe degenerations such as testicular atrophy, spermatogenic arrest, and interstitial edema in testis. Also, a significant decrease in INSL3 immunoreactivity and serum LH and T levels was found. The results indicated that both increased exposure time and dosage of BPA caused more serious detrimental effects on testes in the rat. Decreased INSL3 and T levels was evidence of Leydig cell function impairment due to BPA.
Collapse
Affiliation(s)
- Leman Sencar
- Department of Histology and Embryology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Gulfidan Coskun
- Department of Histology and Embryology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Dilek Şaker
- Department of Histology and Embryology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Tuğçe Sapmaz
- Department of Histology and Embryology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Abdullah Tuli
- Department of Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Hülya Özgür
- Department of Histology and Embryology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Sait Polat
- Department of Histology and Embryology, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
13
|
Mularoni V, Esposito V, Di Persio S, Vicini E, Spadetta G, Berloco P, Fanelli F, Mezzullo M, Pagotto U, Pelusi C, Nielsen JE, Rajpert-De Meyts E, Jorgensen N, Jorgensen A, Boitani C. Age-related changes in human Leydig cell status. Hum Reprod 2021; 35:2663-2676. [PMID: 33094328 DOI: 10.1093/humrep/deaa271] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/31/2020] [Indexed: 12/29/2022] Open
Abstract
STUDY QUESTION What are the consequences of ageing on human Leydig cell number and hormonal function? SUMMARY ANSWER Leydig cell number significantly decreases in parallel with INSL3 expression and Sertoli cell number in aged men, yet the in vitro Leydig cell androgenic potential does not appear to be compromised by advancing age. WHAT IS KNOWN ALREADY There is extensive evidence that ageing is accompanied by decline in serum testosterone levels, a general involution of testis morphology and reduced spermatogenic function. A few studies have previously addressed single features of the human aged testis phenotype one at a time, but mostly in tissue from patients with prostate cancer. STUDY DESIGN, SIZE, DURATION This comprehensive study examined testis morphology, Leydig cell and Sertoli cell number, steroidogenic enzyme expression, INSL3 expression and androgen secretion by testicular fragments in vitro. The majority of these endpoints were concomitantly evaluated in the same individuals that all displayed complete spermatogenesis. PARTICIPANTS/MATERIALS, SETTING, METHODS Testis biopsies were obtained from 15 heart beating organ donors (age range: 19-85 years) and 24 patients (age range: 19-45 years) with complete spermatogenesis. Leydig cells and Sertoli cells were counted following identification by immunohistochemical staining of specific cell markers. Gene expression analysis of INSL3 and steroidogenic enzymes was carried out by qRT-PCR. Secretion of 17-OH-progesterone, dehydroepiandrosterone, androstenedione and testosterone by in vitro cultured testis fragments was measured by LC-MS/MS. All endpoints were analysed in relation to age. MAIN RESULTS AND THE ROLE OF CHANCE Increasing age was negatively associated with Leydig cell number (R = -0.49; P < 0.01) and concomitantly with the Sertoli cell population size (R= -0.55; P < 0.001). A positive correlation (R = 0.57; P < 0.001) between Sertoli cell and Leydig cell numbers was detected at all ages, indicating that somatic cell attrition is a relevant cellular manifestation of human testis status during ageing. INSL3 mRNA expression (R= -0.52; P < 0.05) changed in parallel with Leydig cell number and age. Importantly, steroidogenic capacity of Leydig cells in cultured testis tissue fragments from young and old donors did not differ. Consistently, age did not influence the mRNA expression of steroidogenic enzymes. The described changes in Leydig cell phenotype with ageing are strengthened by the fact that the different age-related effects were mostly evaluated in tissue from the same men. LIMITATIONS, REASONS FOR CAUTION In vitro androgen production analysis could not be correlated with in vivo hormone values of the organ donors. In addition, the number of samples was relatively small and there was scarce information about the concomitant presence of potential confounding variables. WIDER IMPLICATIONS OF THE FINDINGS This study provides a novel insight into the effects of ageing on human Leydig cell status. The correlation between Leydig cell number and Sertoli cell number at any age implies a connection between these two cell types, which may be of particular relevance in understanding male reproductive disorders in the elderly. However aged Leydig cells do not lose their in vitro ability to produce androgens. Our data have implications in the understanding of the physiological role and regulation of intratesticular sex steroid levels during the complex process of ageing in humans. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from Prin 2010 and 2017. The authors have no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Valentina Mularoni
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, University of Rome "La Sapienza", 00161 Rome, Italy
| | - Valentina Esposito
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, University of Rome "La Sapienza", 00161 Rome, Italy
| | - Sara Di Persio
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, University of Rome "La Sapienza", 00161 Rome, Italy
| | - Elena Vicini
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, University of Rome "La Sapienza", 00161 Rome, Italy
| | - Gustavo Spadetta
- Department of Cardiovascular, Respiratory, Nephrological, Anesthesiological and Geriatric Sciences, University of Rome "La Sapienza", 00161 Rome, Italy
| | - Pasquale Berloco
- Department of General and Specialistic Surgery "Paride Stefanini", University of Rome "La Sapienza", 00161 Rome, Italy
| | - Flaminia Fanelli
- Endocrinology and Diabetes Prevention and Care-Unit, Department of Medical and Surgical Sciences, Centre for Applied Biomedical Research, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Marco Mezzullo
- Endocrinology and Diabetes Prevention and Care-Unit, Department of Medical and Surgical Sciences, Centre for Applied Biomedical Research, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Uberto Pagotto
- Endocrinology and Diabetes Prevention and Care-Unit, Department of Medical and Surgical Sciences, Centre for Applied Biomedical Research, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Carla Pelusi
- Endocrinology and Diabetes Prevention and Care-Unit, Department of Medical and Surgical Sciences, Centre for Applied Biomedical Research, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - John E Nielsen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet 2100, Denmark, Copenhagen
| | - Ewa Rajpert-De Meyts
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet 2100, Denmark, Copenhagen
| | - Niels Jorgensen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet 2100, Denmark, Copenhagen
| | - Anne Jorgensen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet 2100, Denmark, Copenhagen
| | - Carla Boitani
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, University of Rome "La Sapienza", 00161 Rome, Italy
| |
Collapse
|
14
|
Aldahhan RA, Stanton PG. Heat stress response of somatic cells in the testis. Mol Cell Endocrinol 2021; 527:111216. [PMID: 33639219 DOI: 10.1016/j.mce.2021.111216] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/30/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
The testis is a temperature-sensitive organ that needs to be maintained 2-7 °C below core body temperature to ensure the production of normal sperm. Failure to maintain testicular temperature in mammals impairs spermatogenesis and leads to low sperm counts, poor sperm motility and abnormal sperm morphology in the ejaculate. This review discusses the recent knowledge on the response of testicular somatic cells to heat stress and, specifically, regarding the relevant contributions of heat, germ cell depletion and inflammatory reactions on the functions of Sertoli and Leydig cells. It also outlines mechanisms of testicular thermoregulation, as well as the thermogenic factors that impact testicular function.
Collapse
Affiliation(s)
- Rashid A Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 2114, Dammam, 31541, Saudi Arabia.
| | - Peter G Stanton
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
15
|
Ji B, Wen Z, Ni C, Zhu Q, Wang Y, Li X, Zhong Y, Ge RS. The Production of Testosterone and Gene Expression in Neonatal Testes of Rats Exposed to Diisoheptyl Phthalate During Pregnancy is Inhibited. Front Pharmacol 2021; 12:568311. [PMID: 33912029 PMCID: PMC8072358 DOI: 10.3389/fphar.2021.568311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 02/17/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Diisoheptyl phthalate (DIHP) is a phthalate plasticizer, which is a branched phthalate. Here, we reported the effects of gestational exposure to DIHP on testis development in male rats. Methods: Pregnant Sprague-Dawley rats were orally fed with vehicle (corn oil, control) or DIHP (10, 100, 500, and 1,000 mg/kg) from gestational day (GD) 12-21. At GD21, serum testosterone levels, the number and distribution of fetal Leydig cells, and testicular mRNA and protein levels, the incidence of multinucleated gonocytes, and focal testicular hypoplasia in the neonatal testis were measured. Results: DIHP increased the fetal Leydig cell cluster size and decreased the fetal Leydig cell size with LOAEL of 10 mg/kg. DIHP did not affect the fetal Leydig cell number. DIHP significantly lowered serum testosterone levels, down-regulated the expression of steroidogenesis-related genes (Lhcgr, Star, Cyp11a1, Hsd3b1, Cyp17a1, and Hsd17b3) and testis descent-related gene (Insl3) as well as protein levels of cholesterol side-chain cleavage enzyme (CYP11A1) and insulin-like 3 (INSL3). DIHP dose-dependently increased the percentage of multinucleated gonocytes with the low observed adverse-effect level (LOAEL) of 100 mg/kg. DIHP induced focal testicular hypoplasia. Conclusion: Gestational exposure to DIHP causes testis dysgenesis in rats.
Collapse
Affiliation(s)
- Bin Ji
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Zina Wen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Chengdu Jinjiang Maternal and Child Health Hospital and Chengdu Xi’nan Gynecology Hospital, Chengdu, China
| | - Chaobo Ni
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Qiqi Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhong
- Chengdu Jinjiang Maternal and Child Health Hospital and Chengdu Xi’nan Gynecology Hospital, Chengdu, China
| | - Ren-Shan Ge
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
- Chengdu Jinjiang Maternal and Child Health Hospital and Chengdu Xi’nan Gynecology Hospital, Chengdu, China
| |
Collapse
|
16
|
Anand-Ivell R, Tremellen K, Soyama H, Enki D, Ivell R. Male seminal parameters are not associated with Leydig cell functional capacity in men. Andrology 2021; 9:1126-1136. [PMID: 33715296 DOI: 10.1111/andr.13001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Insulin-like peptide 3 (INSL3) is a constitutive, secreted peptide produced in the male uniquely by the Leydig cells of the testes. It is a biomarker for Leydig cell functional capacity, which is a measure of the numbers and differentiation status of these steroidogenic cells and lacks the biological and technical variance of the steroid testosterone. This retrospective study was carried out to examine the relationship between seminal parameters and the Leydig cell compartment, and secondarily to assess other factors responsible for determining Leydig cell functional capacity. METHODS INSL3 was assessed together with seminal, anthropometric, and hormonal parameters in a Swedish cohort of 18-year-old men, representing the average population, and in a smaller, more heterogeneous cohort of men visiting an Australian infertility clinic. RESULTS AND DISCUSSION Average INSL3 concentration at 18 years is greater than that reported at younger or older ages and indicated a large 10-fold variation. In neither cohort was there a relationship between INSL3 concentration and any semen parameter. For the larger, more uniform Swedish cohort of young men, there was a significant negative relationship between INSL3 and BMI, supporting the idea that adult Leydig cell functional capacity may be established during puberty. In both cohorts, there was a significant relationship between INSL3 and FSH, but not LH concentration. No relationship was found between INSL3 and androgen receptor trinucleotide repeat polymorphisms, reinforcing the notion that Leydig cell functional capacity is unlikely to be determined by androgen influence alone. Nor did INSL3 correlate with the T/LH ratio, an alternative measure of Leydig cell functional capacity, supporting the view that these are independent measures of Leydig cell function.
Collapse
Affiliation(s)
| | - Kelton Tremellen
- Department of Obstetrics Gynaecology and Reproductive Medicine, Flinders University, Bedford Park, SA, Australia.,Repromed, Dulwich, SA, Australia
| | - Hiroaki Soyama
- School of Biosciences, University of Nottingham, Sutton Bonington, UK.,Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Japan
| | - Doyo Enki
- School of Medicine, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Richard Ivell
- School of Biosciences, University of Nottingham, Sutton Bonington, UK.,School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| |
Collapse
|
17
|
Zhu X, Hu M, Ji H, Huang T, Ge RS, Wang Y. Exposure to di-n-octyl phthalate during puberty induces hypergonadotropic hypogonadism caused by Leydig cell hyperplasia but reduced steroidogenic function in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111432. [PMID: 33075588 DOI: 10.1016/j.ecoenv.2020.111432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Humans are exposed to phthalates ubiquitously, which may threaten health. However, whether di-n-octyl phthalate can prevent pubertal sexual maturity is still elusive. In this study, male Sprague Dawley rats (age 35 days) were treated daily by gavage with 0, 10, 100, and 1000 mg/kg body weight of di-n-octyl phthalate from day 35 to day 49 after birth. Di-n-octyl phthalate significantly reduced serum testosterone levels at doses of 100 and 1000 mg/kg, but increased serum luteinizing hormone levels of 1000 mg/kg and decreased testosterone/luteinizing hormone ratio at ≥10 mg/kg, without affecting serum follicle-stimulating hormone levels. Di-n-octyl phthalate significantly induced Leydig cell hyperplasia (increased number of CYP11A1-positive Leydig cells) at 100 and 1000 mg/kg. Di-n-octyl phthalate down-regulates the gene expression of Cyp11a1, Hsd3b1 and Insl3 in individual Leydig cells. Di-n-octyl phthalate can also reduce the number of sperm in the epididymis. Di-n-octyl phthalate increased phosphorylated AKT1/AKT2 without affecting their total proteins, but increased the total protein and phosphorylated protein of ERK1/2 and GSK-3β. Primary immature Leydig cells isolated from 35-day-old rats were treated with 0-50 μM di-n-octyl phthalate for 3 h. This phthalate inhibited androgen production under basal, LH-stimulated, and cAMP-stimulated conditions by 5 and 50 μM in vitro via down-regulating Cyp11a1 expression but up-regulating Srd5a1 expression in vitro. In conclusion, di-n-octyl phthalate induces hypergonadotropic hypogonadism caused by Leydig cell hyperplasia but reduced steroidogenic function and prevents sperm production.
Collapse
Affiliation(s)
- Xiayan Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Miner Hu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Haosen Ji
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Tongliang Huang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
18
|
Ivell R, Alhujaili W, Kohsaka T, Anand-Ivell R. Physiology and evolution of the INSL3/RXFP2 hormone/receptor system in higher vertebrates. Gen Comp Endocrinol 2020; 299:113583. [PMID: 32800774 DOI: 10.1016/j.ygcen.2020.113583] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022]
Abstract
Although the insulin-like peptide hormone INSL3 and its cognate receptor RXFP2 (relaxin-family peptide receptor 2) have existed throughout chordate evolution, their physiological diversification appears to be linked closely with mammalian emergence and radiation. In contrast, they have been lost in birds and reptiles. Both hormone and receptor are expressed from autosomal genes which have maintained their synteny across vertebrate evolution. Whereas the INSL3 gene comprises only two exons closely linked to the JAK3 gene, RXFP2 is normally encoded by 18 exons. Both genes, however, are subject to alternative splicing to yield a variety of possibly inactive or antagonistic molecules. In mammals, the INSL3-RXFP2 dyad has maintained a probably primitive association with gametogenesis, seen also in fish, whereby INSL3 promotes the survival, growth and differentiation of male germ cells in the testis and follicle development in the ovary. In addition, however, the INSL3/RXFP2 system has adopted a typical 'neohormone' profile, essential for the promotion of internal fertilisation and viviparity; fetal INSL3 is essential for the first phase of testicular descent into a scrotum, and also appears to be associated with male phenotype, in particular horn and skeletal growth. Circulating INSL3 is produced exclusively by the mature testicular Leydig cells in male mammals and acts as a potent biomarker for testis development during fetal and pubertal development as well as in ageing. As such it can be used also to monitor seasonally breeding animals as well as to investigate environmental or lifestyle conditions affecting development. Nevertheless, most information about INSL3 and RXFP2 comes from a very limited selection of species; it will be especially useful to gain further information from a more diverse range of animals, especially those whose evolution has led them to express unusual reproductive phenotypes.
Collapse
Affiliation(s)
- Richard Ivell
- School of Bioscience, University of Nottingham, Sutton Bonington, LE2 5RD, UK; School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE2 5RD, UK.
| | - Waleed Alhujaili
- School of Bioscience, University of Nottingham, Sutton Bonington, LE2 5RD, UK
| | - Tetsuya Kohsaka
- Dept. of Applied Life Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
| | | |
Collapse
|
19
|
Abstract
Insulin-like 3 peptide (INSL3) is a member of the insulin-like peptide superfamily and is the only known physiological ligand of relaxin family peptide receptor 2 (RXFP2), a G protein-coupled receptor (GPCR). In mammals, INSL3 is primarily produced both in testicular Leydig cells and in ovarian theca cells, but circulating levels of the hormone are much higher in males than in females. The INSL3/RXFP2 system has an essential role in the development of the gubernaculum for the initial transabdominal descent of the testis and in maintaining proper reproductive health in men. Although its function in female physiology has been less well-characterized, it was reported that INSL3 deletion affects antral follicle development during the follicular phase of the menstrual cycle and uterus function. Since the discovery of its role in the reproductive system, the study of INSL3/RXFP2 has expanded to others organs, such as skeletal muscle, bone, kidney, thyroid, brain, and eye. This review aims to summarize the various advances in understanding the physiological function of this ligand-receptor pair since its first discovery and elucidate its future therapeutic potential in the management of various diseases.
Collapse
Affiliation(s)
- Maria Esteban-Lopez
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Miami, Florida, USA
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| |
Collapse
|
20
|
Shokri S, Tavalaee M, Ebrahimi SM, Ziaeipour S, Nasr-Esfahani MH, Nejatbakhsh R. Expression of RXFP2 receptor on human spermatozoa and the anti-apoptotic and antioxidant effects of insulin-like factor 3. Andrologia 2020; 52:e13715. [PMID: 32557760 DOI: 10.1111/and.13715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 01/16/2023] Open
Abstract
Insulin-like factor 3 (INSL3) has an important role in the human reproductive system; however, its detailed function is still mysterious. We aimed to investigate the possibility of expression of RXFP2 receptor on human spermatozoa and to determine the anti-apoptotic and antioxidant mechanism derived the binding of INSL3 and RXFP2. In this experimental study, the expression/location of the RXFP2 receptor was determined on the spermatozoa of fertile and infertile men. Twenty samples from 20 fertile men were collected and divided into 6 parts (control group, and five groups treated with INSL3 10, 100, 250, 500, 1,000 ng/ml). DNA damage, active caspase, reactive oxygen species (ROS) and sperm parameters were evaluated by TUNEL, flow cytometry, optical microscope and computer-assisted sperm analysis. The expression of RXFP2 was confirmed by Western blot. Immunocytochemistry illustrated that this receptor is expressed in the posterior half of the spermatozoa's head. The INSL3 at concentrations of 500 and 1,000 ng/ml reduced the active caspase and mitochondrial ROS, and also reduced DNA fragmentation at 1,000 ng/ml. Besides, INSL3 500 and 1,000 ng/ml significantly increased the sperm motility. This study confirmed the presence of RXFP2 receptor in fertile and infertile men's spermatozoa, indicating the highly dose-dependent efficacy of the INSL3, which may have promising impacts on the in-vitro fertilisation outcomes.
Collapse
Affiliation(s)
- Saeed Shokri
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Marziyeh Tavalaee
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyyed Meisam Ebrahimi
- Department of Medical Surgical Nursing, Abhar School of Nursing, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sanaz Ziaeipour
- Department of Anatomical Sciences, School of Medicine, Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Reza Nejatbakhsh
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
21
|
Zhang S, Chen X, Li X, Wang Y, Zhu Q, Huang T, Ge RS. Effects of in utero exposure to diisodecyl phthalate on fetal testicular cells in rats. Toxicol Lett 2020; 330:23-29. [PMID: 32387388 DOI: 10.1016/j.toxlet.2020.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/18/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
Diisodecyl phthalate (DIDP) is one of synthetic phthalate plasticizers. It is widely used in plastic products and is a potential endocrine disruptor. However, the effects of DIDP on fetal testicular cell development remain unclear. The objective of the present study was to determine the effects of DIDP on fetal testis development in rats after in utero exposure. Sprague Dawley dams were randomly divided into 5 groups and were daily gavaged with DIDP (0, 10, 100, 500, and 1000 mg/kg body weight) from gestational day 14-21. Serum testosterone levels, fetal Leydig cell number and distribution, testicular gene and protein expression in male pups were examined. DIDP decreased serum testosterone levels at 1000 mg/kg (1.37 ± 0.40 ng/mL, mean ± SE) when compared to the control level (3.14 ± 0.60 ng/mL). DIDP did not affect numbers of Leydig and Sertoli cells. DIDP significantly induced abnormal aggregation of fetal Leydig cells and increased the incidence of multinucleated gonocytes at 1000 mg/kg. Furthermore, DIDP down-regulated expression of Star, Cyp11a1, Hsd17b3, and Insl3 in fetal Leydig cells at 1000 mg/kg and Sox9 in Sertoli cells at 1000 mg/kg. In conclusion, the current study indicates that in utero exposure to high-dose DIDP disrupts the development of fetal testicular cells, thus affecting the male reproductive system.
Collapse
Affiliation(s)
- Song Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiuxiu Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoheng Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qiqi Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Tongliang Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
22
|
Anand-Ivell R, Byrne CJ, Arnecke J, Fair S, Lonergan P, Kenny DA, Ivell R. Prepubertal nutrition alters Leydig cell functional capacity and timing of puberty. PLoS One 2019; 14:e0225465. [PMID: 31751436 PMCID: PMC6872131 DOI: 10.1371/journal.pone.0225465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Leydig cell functional capacity reflects the numbers and differentiation status of the steroidogenic Leydig cells in the testes and becomes more or less fixed in early adulthood with the final establishment of the hypothalamo-pituitary-gonadal (HPG) axis after puberty. Factors influencing Leydig cell functional capacity and its role in puberty are poorly understood. Using a bovine model of dairy bulls fed four different nutritional regimes from 1 month to 12 months, and applying circulating Insulin-like peptide 3 (INSL3) as an accurate biomarker of Leydig cell functional capacity, showed that a high plane of nutrition in the first 6 months of life, but not later, significantly increased INSL3 in young adulthood. Moreover, INSL3 concentration at 4 months indicated a marked differential in early feeding regime and correlated well (negatively) with the timing of puberty, as reflected by the age in days for the first production of an ejaculate with >50 million sperm and >10% forward motility, as well as with testis size at 18 months. Reversing the diet at 6 months was unable to rectify the trend in either parameter, unlike for other parameters such as testosterone, body weight, and scrotal circumference. This study has shown that early prepubertal nutrition is a key factor in the development of Leydig cell functional capacity in early adulthood and appears to be a key driver in the dynamic progression of puberty.
Collapse
Affiliation(s)
- Ravinder Anand-Ivell
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- * E-mail:
| | - Colin J. Byrne
- Animal and Bioscience Department, Teagasc, Dunsany, Ireland
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Jonas Arnecke
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David A. Kenny
- Animal and Bioscience Department, Teagasc, Dunsany, Ireland
| | - Richard Ivell
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
23
|
Mo J, Chen X, Ni C, Wu K, Li X, Zhu Q, Ma L, Chen Y, Zhang S, Wang Y, Lian Q, Ge RS. Fibroblast growth factor homologous factor 1 stimulates Leydig cell regeneration from stem cells in male rats. J Cell Mol Med 2019; 23:5618-5631. [PMID: 31222931 PMCID: PMC6653537 DOI: 10.1111/jcmm.14461] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 01/05/2023] Open
Abstract
Fibroblast growth factor homologous factor 1 (FHF1) is an intracellular protein that does not bind to cell surface fibroblast growth factor receptor. Here, we report that FHF1 is abundantly present in Leydig cells with up‐regulation during its development. Adult male Sprague Dawley rats were intraperitoneally injected with 75 mg/kg ethane dimethane sulphonate (EDS) to ablate Leydig cells to initiate their regeneration. Then, rats daily received intratesticular injection of FHF1 (0, 10 and 100 ng/testis) from post‐EDS day 14 for 14 days. FHF1 increased serum testosterone levels without affecting the levels of luteinizing hormone and follicle‐stimulating hormone. FHF1 increased the cell number staining with HSD11B1, a biomarker for Leydig cells at the advanced stage, without affecting the cell number staining with CYP11A1, a biomarker for all Leydig cells. FHF1 did not affect PCNA‐labelling index in Leydig cells. FHF1 increased Leydig cell mRNA (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Insl3, Nr5a1 and Hsd11b1) and their protein levels in vivo. FHF1 increased preadipocyte biomarker Dlk1 mRNA level and decreased fully differentiated adipocyte biomarker (Fabp4 and Lpl) mRNA and their protein levels. In conclusion, FHF1 promotes Leydig cell regeneration from stem cells while inhibiting the differentiation of preadipocyte/stem cells into adipocytes in EDS‐treated testis.
Collapse
Affiliation(s)
- Jiaying Mo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiuxiu Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Keyang Wu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Leika Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Song Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
24
|
Li X, Mo J, Zhu Q, Ni C, Wang Y, Li H, Lin ZK, Ge RS. The structure-activity relationship (SAR) for phthalate-mediated developmental and reproductive toxicity in males. CHEMOSPHERE 2019; 223:504-513. [PMID: 30784757 DOI: 10.1016/j.chemosphere.2019.02.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Testicular dysgenesis syndrome includes the hypospadias, cryptorchidism and abnormal fetal testis in male neonate. This is possibly caused by the environmental phthalates, which down-regulate the expression of androgen synthetic genes and Insl3 or directly inhibits steroidogenic enzymes. There are distinct structure-activity relationships (SARs) for phthalate-mediated developmental and reproductive toxicity. Here, we review the SAR for phthalate-mediated testicular dysgenesis syndrome. Of phthalates of straight side chains, C5-C6 ones are the most potent, C4 or C7 are moderate, C3 is weakest, and C1-2 or C8-13 are ineffective. The branching and unsaturation of side chains increases the toxicity. The cycling of side chains does not increase the toxicity.
Collapse
Affiliation(s)
- Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaying Mo
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huitao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen-Kun Lin
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
25
|
Hannan MA, Murase H, Sato F, Tsogtgerel M, Kawate N, Nambo Y. Age related and seasonal changes of plasma concentrations of insulin-like peptide 3 and testosterone from birth to early-puberty in Thoroughbred male horses. Theriogenology 2019; 132:212-217. [PMID: 31029851 DOI: 10.1016/j.theriogenology.2019.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 10/27/2022]
Abstract
The peripheral blood concentrations of insulin-like peptide 3 (INSL3) have been detected in many mammalian species, but the level of INSL3 in horse remains unknown. The objectives were to develop a time-resolved fluorescence immunoassay (TRFIA) to detect INSL3 concentrations from horse blood as well as to determine the age-related and seasonal changes of plasma concentrations of INSL3 and testosterone from birth to early-puberty in Thoroughbred male horse (n = 11). Monthly blood sample and measurement of body weight, height, chest and cannon bone size were done from birth until 16 mo. The TRFIA and EIA were used to measure plasma concentrations of INSL3 and testosterone, respectively. An increase in mean body weight, height, chest and cannon bone size was observed throughout the study. The monthly blood sampling revealed an increase in mean plasma INSL3 concentrations up to 2 mo, followed by a decreasing and increasing pattern until the end of experiment at 16 mo. A high testosterone level was detected at birth followed by a sharp decrease to basal level within 1 mo, maintained low level up to10 mo before a gradual rise until 16 mo. In case of seasonality, there was no difference in mean plasma INSL3 concentrations between breeding (March to September) and non-breeding (October to February) seasons, whereas a higher (P < 0.001) mean plasma testosterone concentrations in the second breeding season compared to non-breeding season was observed. In age categorized group, an increase (P < 0.01) in mean plasma INSL3 concentrations was noticed at pre-puberty (1-12 mo) and early-puberty (13-16 mo) compared to birth, but a lower (P < 0.001) mean plasma testosterone concentrations was observed at pre-puberty compared to birth and early-puberty. In conclusion, a TRFIA was developed to measure INSL3 levels in horse. An increase in plasma concentrations of INSL3 and testosterone were observed with the advancement of age, whereas for testosterone a very lower level was detected at the non-breeding season than in the second breeding season after birth in Thoroughbred male horse. The INSL3 secretions seemed independent of seasonal influence, at least before puberty.
Collapse
Affiliation(s)
- M A Hannan
- Department of Clinical Veterinary Sciences, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, 080-8555, Japan
| | - Harutaka Murase
- Equine Science Division, Hidaka Training and Research Center, Japan Racing Association, 525-13 Nishicha Urakawa-Cho, Hokkaido, 057-0171, Japan
| | - Fumio Sato
- Equine Science Division, Hidaka Training and Research Center, Japan Racing Association, 525-13 Nishicha Urakawa-Cho, Hokkaido, 057-0171, Japan; United Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Munkhtuul Tsogtgerel
- Department of Clinical Veterinary Sciences, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, 080-8555, Japan; United Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Noritoshi Kawate
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Yasuo Nambo
- Department of Clinical Veterinary Sciences, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, 080-8555, Japan; United Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan.
| |
Collapse
|
26
|
Lv Y, Li L, Fang Y, Chen P, Wu S, Chen X, Ni C, Zhu Q, Huang T, Lian Q, Ge RS. In utero exposure to bisphenol A disrupts fetal testis development in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:217-224. [PMID: 30557795 DOI: 10.1016/j.envpol.2018.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/01/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) is widely used in consumer products and is a potential endocrine disruptor linked with abnormal development of male reproductive tract. However, its action and its effects on the pathways in the development of male gonad are still unclear. Here we report that effects of BPA exposure during gestation on male gonad development. Sprague-Dawley rats were gavaged daily with BPA (0, 4, 40, and 400 mg/kg body weight) from gestational day 12 to day 21. BPA dose-dependently decreased serum testosterone levels (0.45 ± 0.08 ng/ml and 0.32 ± 0.08 ng/ml for 40 and 400 mg/kg BPA, respectively) versus the control level (1.11 ± 0.22 ng/ml, Mean ± SE). BPA lowered Leydig cell Insl3 and Hsd17b3 mRNA and their protein levels at doses of 40 and 400 mg/kg. BPA also lowered Leydig cell (Lhcgr, Cyp11a1, and Cyp17a1) and Sertoli cell (Amh) mRNA and their protein levels at 400 mg/kg. BPA decreased fetal Leydig cell number via inhibiting their proliferation, but it did not affect fetal Sertoli cell number. In conclusion, the current study shows that in utero exposure to BPA inhibits fetal Leydig and Sertoli cell differentiation, possibly disrupting the development of male reproductive tract.
Collapse
Affiliation(s)
- Yao Lv
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Lili Li
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Yinghui Fang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Panpan Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Siwen Wu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Xiuxiu Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Tongliang Huang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
27
|
Ge F, Zheng W, Bao S, Wu K, Xiang S, Chen W, Chen X, Mo J, Zhou S, Wang Y, Lian Q, Ge RS. In utero exposure to triphenyltin disrupts rat fetal testis development. CHEMOSPHERE 2018; 211:1043-1053. [PMID: 30223319 DOI: 10.1016/j.chemosphere.2018.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/06/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
Triphenyltin is an organotin that is widely used as an anti-fouling agent and may have endocrine-disrupting effects. The objective of the current study was to investigate effects of triphenyltin on the development of rat fetal testis. Female pregnant Sprague Dawley dams were gavaged daily with triphenyltin (0, 0.5, 1, and 2 mg/kg body weight/day) from gestational day 12 to day 21. Triphenyltin dose-dependently decreased serum testosterone levels (0.971 ± 0.072 and 0.972 ± 0.231 ng/ml at 1 and 2 mg/kg, respectively) from control level (2.099 ± 0.351 ng/ml). Triphenyltin at 1 and 2 mg/kg doses also induced fetal Leydig cell aggregation, decreased fetal Leydig cell size and cytoplasmic size. Triphenyltin decreased the expression levels of Lhcgr, Scarb1, Star, Cyp11a1, Cyp17a1, Insl3, Fshr, Pdgfa, and Sox9 by 0.5 mg/kg dose and above. However, triphenyltin did not affect Leydig and Sertoli cell numbers. In conclusion, the current study indicated that in utero exposure of triphenyltin disrupted fetal Leydig and Sertoli cell development.
Collapse
Affiliation(s)
- Fei Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Wenwen Zheng
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Suhao Bao
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Keyang Wu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Saiqiong Xiang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Wanwan Chen
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiuxiu Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jiaying Mo
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Songyi Zhou
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
28
|
Ivell R, Anand-Ivell R. Insulin-like peptide 3 (INSL3) is a major regulator of female reproductive physiology. Hum Reprod Update 2018; 24:639-651. [DOI: 10.1093/humupd/dmy029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/31/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Richard Ivell
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | | |
Collapse
|
29
|
Sakase M, Kitagawa K, Kibushi M, Kawate N, Weerakoon WWPN, Hannan MA, Kohama N, Tamada H. Relationships of plasma insulin-like peptide 3, testosterone, inhibin, and insulin-like growth factor-I concentrations with scrotal circumference and testicular weight in Japanese Black beef bull calves. J Reprod Dev 2018; 64:401-407. [PMID: 29984734 PMCID: PMC6189565 DOI: 10.1262/jrd.2018-034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
This study was conducted to clarify the relationships of plasma concentrations of insulin-like peptide 3 (INSL3), testosterone, inhibin, and insulin-like growth factor-I (IGF-I) with scrotal circumference and testicular weight in Japanese Black beef bull calves (n = 20), from birth to pre-puberty. Monthly blood sampling (0 to 7 months) and scrotal circumference measurements (0 to 7 months) were performed. Testicular weight was recorded immediately after castration at 7 months. Plasma INSL3, testosterone, inhibin, and IGF-I concentrations were measured either by enzyme immunoassay or time-resolved fluorescence immunoassay. The correlation coefficients of these hormonal concentrations with scrotal circumference were significant (P < 0.0001) and it was higher for INSL3 (r = 0.647) than for testosterone (r = 0.597), IGF-I (r = 0.400), and inhibin (r = –0.453). Calves with heavier testes (> 60 g) at castration (7 months) had higher (P < 0.05) plasma INSL3 (from 3 to 7 months) and inhibin (from 1 to 4 months) concentrations than those with lighter testes (< 60 g). The calves with heavier testes at castration had larger (P < 0.05) scrotal circumference than those with lighter testes from 3 to 7 months. In conclusion, blood INSL3 concentrations may be the best functional indicator among the hormones analyzed for determining total testicular volume during pre-puberty in bull calves. In addition, inhibin and INSL3 concentrations in early calfhood may be functional predictors for testicular weight at pre-puberty.
Collapse
Affiliation(s)
- Mitsuhiro Sakase
- Hokubu Agricultural Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Hyogo 669-5254, Japan
| | - Keita Kitagawa
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | - Masahiko Kibushi
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan.,Asago Animal Hygiene Institute of Hyogo Prefecture, Hyogo 669-5243, Japan
| | - Noritoshi Kawate
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | - W W P N Weerakoon
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | - M A Hannan
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | - Namiko Kohama
- Hokubu Agricultural Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Hyogo 669-5254, Japan
| | - Hiromichi Tamada
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| |
Collapse
|
30
|
Dong Y, Zhao Y, Zhu Q, Wang Z, Shan Y, Akingbemi BT, Chen R, Zhu L, Ge RS. Gestational exposure to tetrabutyltin blocks rat fetal Leydig cell development. Reprod Toxicol 2018; 78:111-119. [PMID: 29627429 DOI: 10.1016/j.reprotox.2018.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 11/24/2022]
Abstract
Tetrabutyltin is a stable organotin and may exhibit endocrine disrupting properties. Herein, we investigated effects of tetrabutyltin on the development of rat fetal Leydig cells, which support differentiation of the male reproductive tract in late gestation. Female pregnant Sprague Dawley rats were gavaged with tetrabutyltin (0, 100, 200, and 500 mg/kg) from gestational day (GD) 12 to GD 21. Tetrabutyltin dose-dependently decreased testicular testosterone levels (0.756 ± 0.208 and 0.813 ± 0.277 ng/testis at the 200 and 500 mg/kg doses, respectively) compared to control (1.692 ± 0.218 ng/testis) at GD 21. Furthermore, tetrabutyltin induced fetal Leydig cell aggregation, decreased fetal Leydig cell size and cytoplasmic size at the ≥100 mg/kg doses, and downregulated the expression levels of Scarb1, Cyp17a1, and Insl3 at doses ≥100 mg/kg and Star expression at 200 mg/kg. Taking together, the present results indicated that prenatal exposure of male rats to tetrabutyltin affected fetal Leydig cell development.
Collapse
Affiliation(s)
- Yaoyao Dong
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yu Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qiqi Zhu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhe Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuanyuan Shan
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Benson T Akingbemi
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn AL 36849, USA
| | - Ruijie Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Lihe Zhu
- Department of Pathology, Wenzhou Hospital of Integrated Traditional and Western Medicine, Wenzhou 325000, China.
| | - Ren-Shan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
31
|
Minagawa I, Murata Y, Terada K, Shibata M, Park EY, Sasada H, Kohsaka T. Evidence for the role of INSL3 on sperm production in boars by passive immunisation. Andrologia 2018; 50:e13010. [DOI: 10.1111/and.13010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 01/15/2023] Open
Affiliation(s)
- I. Minagawa
- Department of Applied Life Science; Faculty of Agriculture; Shizuoka University; Shizuoka Japan
| | - Y. Murata
- Department of Agriculture; Graduate School of Integrated Science and Technology; Shizuoka University; Shizuoka Japan
| | - K. Terada
- Shizuoka Swine and Poultry Experimental Station; Kikugawa Japan
| | - M. Shibata
- Shizuoka Swine and Poultry Experimental Station; Kikugawa Japan
| | - E. Y. Park
- Research Institute of Green Science and Technology; Shizuoka University; Shizuoka Japan
- Department of Bioscience; Graduate School of Science and Technology; Shizuoka University; Shizuoka Japan
| | - H. Sasada
- School of Veterinary Science; Kitasato University; Towada Japan
| | - T. Kohsaka
- Department of Applied Life Science; Faculty of Agriculture; Shizuoka University; Shizuoka Japan
- Department of Agriculture; Graduate School of Integrated Science and Technology; Shizuoka University; Shizuoka Japan
| |
Collapse
|
32
|
Yeganeh IS, Taromchi AH, Fathabadi FF, Nejatbakhsh R, Novin MG, Shokri S. Expression and localization of relaxin family peptide receptor 4 in human spermatozoa and impact of insulin-like peptide 5 on sperm functions. Reprod Biol 2017; 17:327-332. [PMID: 28986276 DOI: 10.1016/j.repbio.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 01/26/2023]
Abstract
Insulin-like peptide 5 (INSL5) is a member of the insulin superfamily peptide that interacts with the relaxin family peptide receptor 4 (RXFP4). Numerous recent studies have focused on the functional effects of INSL5 on fat and glucose metabolism. Although there is no evidence that the human sperm may be a candidate target of INSL5, it has been detected in mice testis and sperm. Therefore, the present study sought to analyze the localization and expression of RXFP4 on human sperm and determine the efficiency of INSL5 in human sperm. Normal semen samples were incubated in different doses and exposure time periods of INSL5. We analyzed sperm motility by computer-assisted sperm analysis (CASA) and ROS levels by flow cytometry using the MitoSOX™ Red probe. Localization and expression of RXFP4 were assayed by immunofluorescence and RT-PCR, respectively. The results confirmed the presence of RXFP4 in human spermatozoa, which localized in the neck and midpiece of sperm. Nested PCR showed the expression of RXFP4 in human sperm. INSL5 could attenuate generation of mitochondrial ROS at the 1, 10, 30, and 100nmol/L doses. This result was particularly noted in the 30nmol/L treated samples after 4h incubation. Total motility of sperm was significantly preserved in the 100nmol/L after 2h and in 30nmol/L after 4h incubation period. This study, for the first time, clarified the expression and localization of RXFP4 on human sperm and revealed the role of INSL5 in sperm motility and mitochondrial ROS generation in a dose-dependent manner.
Collapse
Affiliation(s)
- Imaneh Shamayeli Yeganeh
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Ph.D. Student in Anatomical Sciences, International Branch, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Hossein Taromchi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran.
| | - Fatemeh Fadaei Fathabadi
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Nejatbakhsh
- Department of Anatomical Sciences, Faculty of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran.
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeed Shokri
- Department of Anatomical Sciences, Faculty of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran.
| |
Collapse
|
33
|
Penny GM, Cochran RB, Pihlajoki M, Kyrönlahti A, Schrade A, Häkkinen M, Toppari J, Heikinheimo M, Wilson DB. Probing GATA factor function in mouse Leydig cells via testicular injection of adenoviral vectors. Reproduction 2017; 154:455-467. [PMID: 28710293 PMCID: PMC5589507 DOI: 10.1530/rep-17-0311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/09/2017] [Accepted: 07/14/2017] [Indexed: 12/21/2022]
Abstract
Testicular Leydig cells produce androgens essential for proper male reproductive development and fertility. Here, we describe a new Leydig cell ablation model based on Cre/Lox recombination of mouse Gata4 and Gata6, two genes implicated in the transcriptional regulation of steroidogenesis. The testicular interstitium of adult Gata4flox/flox ; Gata6flox/flox mice was injected with adenoviral vectors encoding Cre + GFP (Ad-Cre-IRES-GFP) or GFP alone (Ad-GFP). The vectors efficiently and selectively transduced Leydig cells, as evidenced by GFP reporter expression. Three days after Ad-Cre-IRES-GFP injection, expression of androgen biosynthetic genes (Hsd3b1, Cyp17a1 and Hsd17b3) was reduced, whereas expression of another Leydig cell marker, Insl3, was unchanged. Six days after Ad-Cre-IRES-GFP treatment, the testicular interstitium was devoid of Leydig cells, and there was a concomitant loss of all Leydig cell markers. Chromatin condensation, nuclear fragmentation, mitochondrial swelling, and other ultrastructural changes were evident in the degenerating Leydig cells. Liquid chromatography-tandem mass spectrometry demonstrated reduced levels of androstenedione and testosterone in testes from mice injected with Ad-Cre-IRES-GFP. Late effects of treatment included testicular atrophy, infertility and the accumulation of lymphoid cells in the testicular interstitium. We conclude that adenoviral-mediated gene delivery is an expeditious way to probe Leydig cell function in vivo Our findings reinforce the notion that GATA factors are key regulators of steroidogenesis and testicular somatic cell survival.Free Finnish abstract: A Finnish translation of this abstract is freely available at http://www.reproduction-online.org/content/154/4/455/suppl/DC2.
Collapse
Affiliation(s)
- Gervette M Penny
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Rebecca B Cochran
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Marjut Pihlajoki
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Kyrönlahti
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anja Schrade
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Merja Häkkinen
- University of Eastern FinlandSchool of Pharmacy, Kuopio, Finland
| | - Jorma Toppari
- Department of PhysiologyInstitute of Biomedicine, University of Turku and Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Markku Heikinheimo
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - David B Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
- Department of Developmental BiologyWashington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| |
Collapse
|
34
|
Wang X, Pan L, Zou Z, Wang D, Lu Y, Dong Z, Zhu L. Hypoxia reduces testosterone synthesis in mouse Leydig cells by inhibiting NRF1-activated StAR expression. Oncotarget 2017; 8:16401-16413. [PMID: 28146428 PMCID: PMC5369971 DOI: 10.18632/oncotarget.14842] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/11/2017] [Indexed: 02/02/2023] Open
Abstract
Male fertility disorders play a key role in half of all infertility cases. Reduction in testosterone induced by hypoxia might cause diseases in reproductive system and other organs. Hypoxic exposure caused a significant decrease of NRF1. Software analysis reported that the promoter region of steroidogenic acute regulatory protein (StAR) contained NRF1 binding sites, indicating NRF1 promoted testicular steroidogenesis. The purpose of this study is to determine NRF1 is involved in testosterone synthesis; and under hypoxia, the decrease of testosterone synthesis is caused by lower expression of NRF1. We designed both in vivo and in vitro experiments. Under hypoxia, the expressions of NRF1 in Leydig cells and testosterone level were significantly decreased both in vivo and in vitro. Overexpression and interference NRF1 could induced StAR and testosterone increased and decreased respectively. ChIP results confirmed the binding of NRF1 to StAR promoter region. In conclusion, decline of NRF1 expression downregulated the level of StAR, which ultimately resulted in a reduction in testosterone synthesis.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, China
| | - Longlu Pan
- Department of Rehabilitation of the Six People's Hospital of Nantong, Jiangsu, China
| | - Zhiran Zou
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, China
| | - Dan Wang
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, China
| | - Yapeng Lu
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, China
| | - Zhangji Dong
- Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Li Zhu
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, China
| |
Collapse
|
35
|
Abstract
Neohormone systems evolved specifically to regulate those mammalian traits, such as internal fertilization, pregnancy and lactation, which have proved to be central to the success, environmental independence, and adaptability of mammals as a vertebrate group. Neohormones such as oxytocin or relaxin are not only involved in the regulation of mammary gland development and function, but are also significant components of milk itself. Particularly for the latter hormone, it has been shown for the pig that relaxin in the first milk is taken up by the gastrointestinal tract of the offspring, enters the neonatal circulation and can have specific physiological and epigenetic effects on target organs such as the female reproductive system. Nevertheless, there are large gaps in our knowledge and understanding of such lactocrine systems especially in regard to other neohormones, species, and neonatal organ systems.
Collapse
Affiliation(s)
- Richard Ivell
- School of Biosciences & School of Veterinary Medicine and Science, University of Nottingham, UK.
| | | |
Collapse
|
36
|
Ivell R, Agoulnik AI, Anand‐Ivell R. Relaxin-like peptides in male reproduction - a human perspective. Br J Pharmacol 2017; 174:990-1001. [PMID: 27933606 PMCID: PMC5406299 DOI: 10.1111/bph.13689] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/10/2016] [Accepted: 12/05/2016] [Indexed: 12/26/2022] Open
Abstract
The relaxin family of peptide hormones and their cognate GPCRs are becoming physiologically well-characterized in the cardiovascular system and particularly in female reproductive processes. Much less is known about the physiology and pharmacology of these peptides in male reproduction, particularly as regards humans. H2-relaxin is involved in prostate function and growth, while insulin-like peptide 3 (INSL3) is a major product of the testicular Leydig cells and, in the adult, appears to modulate steroidogenesis and germ cell survival. In the fetus, INSL3 is a key hormone expressed shortly after sex determination and is responsible for the first transabdominal phase of testicular descent. Importantly, INSL3 is becoming a very useful constitutive biomarker reflecting both fetal and post-natal development. Nothing is known about roles for INSL4 in male reproduction and only very little about relaxin-3, which is mostly considered as a brain peptide, or INSL5. The former is expressed at very low levels in the testes, but has no known physiology there, whereas the INSL5 knockout mouse does exhibit a testicular phenotype with mild effects on spermatogenesis, probably due to a disruption of glucose homeostasis. INSL6 is a major product of male germ cells, although it is relatively unexplored with regard to its physiology or pharmacology, except that in mice disruption of the INSL6 gene leads to a disruption of spermatogenesis. Clinically, relaxin analogues may be useful in the control of prostate cancer, and both relaxin and INSL3 have been considered as sperm adjuvants for in vitro fertilization. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- Richard Ivell
- School of BiosciencesUniversity of NottinghamNottinghamLE12 5RDUK
- School of Veterinary and Medical SciencesUniversity of NottinghamNottinghamLE12 5RDUK
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of MedicineFlorida International UniversityMiamiFLUSA
| | | |
Collapse
|
37
|
Hannan MA, Kawate N, Fukami Y, Weerakoon WWPN, Büllesbach EE, Inaba T, Tamada H. Changes of plasma concentrations of insulin-like peptide 3 and testosterone, and their association with scrotal circumference during pubertal development in male goats. Theriogenology 2017; 92:51-56. [PMID: 28237342 DOI: 10.1016/j.theriogenology.2017.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/05/2016] [Accepted: 01/04/2017] [Indexed: 11/15/2022]
Abstract
Insulin-like peptide 3 (INSL3) has been used as a testis-specific biomarker for puberty in several species, but the secretory profile of INSL3 during pubertal development in small ruminants is unknown. Here we sought to determine the age-related changes in the plasma concentrations of INSL3 and testosterone and their association with scrotal circumference during pubertal development in five male Shiba goats. Blood samples and scrotal circumference measurement were taken every 2 weeks from week 10 to week 52 of each goat's lifespan. Based on the changes in scrotal circumference, data were grouped into early pubertal (10-22 weeks), late pubertal (22-34 weeks) and post-pubertal (34-52 weeks) categories. The plasma concentrations of testosterone and luteinizing hormone (LH) were measured by enzyme-immunoassays (EIAs), and we used a time-resolved fluorescence immunoassay (TRFIA) to measure plasma INSL3. The biweekly sampling showed that the plasma INSL3 secretions maintained a moderate increase during and after puberty, whereas the plasma testosterone secretions fluctuated over the same period. The comparison of the three age categories revealed a significant increase (p < 0.01) in the mean plasma INSL3 concentrations during the late and post-pubertal periods compared to the early pubertal period. There was no difference in the mean plasma testosterone concentrations between the early and late pubertal periods, but a significant increase (p < 0.01) was observed during the post-pubertal period compared to early and late pubertal periods. The mean plasma LH concentrations increased significantly (p < 0.05) from the early pubertal to late pubertal and from the late pubertal to post-pubertal periods. A significant increase (p < 0.05) in the mean scrotal circumference from the early pubertal to late pubertal and from the late pubertal to post-pubertal periods was observed. The R2 value of the best regression curves between scrotal circumference and INSL3 (0.513; p < 0.001) was higher than that between scrotal circumference and testosterone (0.162; p < 0.01) from 10 to 52 weeks of age. In conclusion, in male goats, plasma concentrations of INSL3 increased continuously during and after puberty, whereas testosterone secretions were fluctuated. The scrotal circumference was more highly correlated with the INSL3 concentrations than with testosterone, implying that INSL3 is superior as a biomarker of testicular total Leydig cell volume.
Collapse
Affiliation(s)
- M A Hannan
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - N Kawate
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan.
| | - Y Fukami
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - W W P N Weerakoon
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - E E Büllesbach
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - T Inaba
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - H Tamada
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| |
Collapse
|
38
|
Liu S, Li C, Wang Y, Hong T, Song T, Li L, Ye L, Lian Q, Ge RS. In utero methoxychlor exposure increases rat fetal Leydig cell number but inhibits its function. Toxicology 2016; 370:31-40. [PMID: 27663972 DOI: 10.1016/j.tox.2016.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/17/2016] [Accepted: 09/19/2016] [Indexed: 12/17/2022]
Abstract
The objective of the present study is to determine whether in utero exposure to methoxychlor (MXC) affects rat fetal Leydig cell number, cell size, or functions. Pregnant Sprague Dawley dams were gavaged with corn oil (control, 0mg/kg/day MXC) or MXC at doses of 10, 50, or 100mg/kg/day from gestational day (GD) 12 to 21. The results show that MXC increased fetal Leydig cell numbers dose-dependently from 95±8×103 cells/testis (control, mean±SEM) to 101±6, 148±22, and 168±21×103 cells/testis, at the doses of 10, 50, and 100mg/kg, respectively. The increase of Leydig cell number by MXC was contributed by the increase of single cell population of Leydig cells, which increased from 21±2% of the control to 31±4%, 39±3%, or 40±4% at the doses of 10, 50 or 100mg/kg, respectively. Quantitative PCR results show that MXC increased Lhcgr expression at dose of 10mg/kg and Scarb1 and Cyp11a1 mRNA levels at doses of 50 and 100mg/kg. Immunohistochemical staining demonstrated the increase of CYP11A1 protein level from the dose of 10mg/kg. However, at the highest dose (100mg/kg) MXC reduced the testicular testosterone level and MXC (1μM) in vitro treatment also inhibited androgen production from isolated fetal Leydig cells. In conclusion, our findings indicate that at low dose MXC may increase fetal Leydig cell numbers and the expressions of some steroidogenic enzymes, but at high dose it reduces the testicular testosterone level leading to reproductive tract malformations in the male offspring.
Collapse
Affiliation(s)
- Shiwen Liu
- Department of Anesthesiology, The 2nd Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chao Li
- Center for Scientific Research, The 2nd Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Anesthesiology, The 2nd Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Tingting Hong
- Center for Scientific Research, The 2nd Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Tiantian Song
- Department of Anesthesiology, The 2nd Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Linxi Li
- Center for Scientific Research, The 2nd Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Leping Ye
- Department of Pediatrics, The 2nd Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qingquan Lian
- Department of Anesthesiology, The 2nd Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The 2nd Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
39
|
Stanton PG, Foo CFH, Rainczuk A, Stephens AN, Condina M, O'Donnell L, Weidner W, Ishikawa T, Cruickshanks L, Smith LB, McLachlan RI. Mapping the testicular interstitial fluid proteome from normal rats. Proteomics 2016; 16:2391-402. [DOI: 10.1002/pmic.201600107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/03/2016] [Accepted: 06/16/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Peter G. Stanton
- Hudson Institute of Medical Research; Clayton Victoria Australia
- Department of Molecular and Translational Science; Monash University; Clayton Victoria Australia
| | - Caroline F. H. Foo
- Hudson Institute of Medical Research; Clayton Victoria Australia
- Department of Molecular and Translational Science; Monash University; Clayton Victoria Australia
| | - Adam Rainczuk
- Hudson Institute of Medical Research; Clayton Victoria Australia
- Department of Molecular and Translational Science; Monash University; Clayton Victoria Australia
| | - Andrew N. Stephens
- Hudson Institute of Medical Research; Clayton Victoria Australia
- Department of Molecular and Translational Science; Monash University; Clayton Victoria Australia
- Epworth Research Institute; Epworth Healthcare; Richmond Victoria Australia
| | | | - Liza O'Donnell
- Hudson Institute of Medical Research; Clayton Victoria Australia
- Department of Molecular and Translational Science; Monash University; Clayton Victoria Australia
| | - Wolfgang Weidner
- Department of Urology; Paediatric Urology and Andrology; Justus Liebig University; Giessen Germany
| | | | - Lyndsey Cruickshanks
- MRC Centre for Reproductive Health; University of Edinburgh; Edinburgh United Kingdom
| | - Lee B. Smith
- MRC Centre for Reproductive Health; University of Edinburgh; Edinburgh United Kingdom
| | - Robert I. McLachlan
- Hudson Institute of Medical Research; Clayton Victoria Australia
- Department of Molecular and Translational Science; Monash University; Clayton Victoria Australia
| |
Collapse
|
40
|
Pitia AM, Uchiyama K, Sano H, Kinukawa M, Minato Y, Sasada H, Kohsaka T. Functional insulin-like factor 3 (INSL3) hormone-receptor system in the testes and spermatozoa of domestic ruminants and its potential as a predictor of sire fertility. Anim Sci J 2016; 88:678-690. [PMID: 27592693 DOI: 10.1111/asj.12694] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/31/2016] [Accepted: 06/26/2016] [Indexed: 11/30/2022]
Abstract
Insulin-like factor 3 (INSL3) is essential for fetal testis descent, and has been implicated in the testicular and sperm functions in adult males; however, similar functions in domestic ruminants remain largely unknown. This study investigated the functional INSL3 hormone-receptor system in adult ruminant testes and spermatozoa, and explored its potential to diagnose the fertility of sires. Testes and spermatozoa were obtained from fertile bulls, rams and he-goats, whereas subfertile testes and spermatozoa were obtained only from bulls. As expected, INSL3 was visualized in Leydig cells, while we clearly demonstrated that the functional receptor, relaxin family peptide receptor 2 (RXFP2), enabling INSL3 to bind was identified in testicular germ cells and in the sperm equatorial segment of bulls, rams and he-goats. In comparison to fertile bulls, the percentage of INSL3- and RXFP2-expressing cells and their expression levels per cell were significantly reduced in the testes of subfertile bulls. In addition, the population of INSL3-binding spermatozoa was also significantly reduced in the semen of subfertile bulls. These results provide evidence for a functional INSL3 hormone-receptor system operating in ruminant testes and spermatozoa, and its potential to predict subfertility in sires.
Collapse
Affiliation(s)
- Ali M Pitia
- Division of Animal Resource Production, United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Laboratory of Animal Reproduction and Physiology, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Kyoko Uchiyama
- Division of Animal Reproduction, Maebashi Institute of Animal Science, Livestock Improvement Association of Japan (LIAJ), Maebashi, Japan
| | - Hiroaki Sano
- Department of Animal Science, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Masashi Kinukawa
- Division of Animal Reproduction, Maebashi Institute of Animal Science, Livestock Improvement Association of Japan (LIAJ), Maebashi, Japan
| | - Yoshiaki Minato
- Division of Animal Reproduction, Maebashi Institute of Animal Science, Livestock Improvement Association of Japan (LIAJ), Maebashi, Japan
| | - Hiroshi Sasada
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Tetsuya Kohsaka
- Division of Animal Resource Production, United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Laboratory of Animal Reproduction and Physiology, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
41
|
Vernunft A, Ivell R, Heng K, Anand-Ivell R. The Male Fetal Biomarker INSL3 Reveals Substantial Hormone Exchange between Fetuses in Early Pig Gestation. PLoS One 2016; 11:e0152689. [PMID: 27031644 PMCID: PMC4816311 DOI: 10.1371/journal.pone.0152689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 03/17/2016] [Indexed: 11/24/2022] Open
Abstract
The peptide hormone INSL3 is uniquely produced by the fetal testis to promote the transabdominal phase of testicular descent. Because it is fetal sex specific, and is present in only very low amounts in the maternal circulation, INSL3 acts as an ideal biomarker with which to monitor the movement of fetal hormones within the pregnant uterus of a polytocous species, the pig. INSL3 production by the fetal testis begins at around GD30. At GD45 of the ca. 114 day gestation, a time at which testicular descent is promoted, INSL3 evidently moves from male to female allantoic compartments, presumably impacting also on the female fetal circulation. At later time-points (GD63, GD92) there is less inter-fetal transfer, although there still appears to be significant INSL3, presumably of male origin, in the plasma of female fetuses. This study thus provides evidence for substantial transfer of a peptide hormone between fetuses, and probably also across the placenta, emphasizing the vulnerability of the fetus to extrinsic hormonal influences within the uterus.
Collapse
Affiliation(s)
- Andreas Vernunft
- FBN Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - Richard Ivell
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, United Kingdom
| | - Kee Heng
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, United Kingdom
| | - Ravinder Anand-Ivell
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Effects of in Utero Exposure to Dicyclohexyl Phthalate on Rat Fetal Leydig Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13030246. [PMID: 26907321 PMCID: PMC4808909 DOI: 10.3390/ijerph13030246] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 12/04/2022]
Abstract
Dicyclohexyl phthalate (DCHP) is one of the phthalate plasticizers. The objective of the present study was to investigate the effects of DCHP on fetal Leydig cell distribution and function as well as testis development. Female pregnant Sprague Dawley dams orally received vehicle (corn oil, control) or DCHP (10, 100, and 500 mg/kg/day) from gestational day (GD) 12 to GD 21. At GD 21.5, testicular testosterone production, fetal Leydig cell number and distribution, testicular gene and protein expression levels were examined. DCHP administration produced a dose-dependent increase of the incidence of multinucleated gonocytes at ≥100 mg/kg. DCHP dose-dependently increased abnormal fetal Leydig cell aggregation and decreased fetal Leydig cell size, cytoplasmic size, and nuclear size at ≥10 mg/kg. DCHP reduced the expression levels of steroidogenesis-related genes (including Star, Hsd3b1, and Hsd17b3) and testis-descent related gene Insl3 as well as protein levels of 3β-hydroxysteroid dehydrogenase 1 (HSD3B1) and insulin-like 3 (INSL3) at ≥10 mg/kg. DCHP significantly inhibited testicular testosterone levels at ≥100 mg/kg. The results indicate that in utero exposure to DCHP affects the expression levels of fetal Leydig cell steroidogenic genes and results in the occurrence of multinucleated gonocytes and Leydig cell aggregation.
Collapse
|
43
|
Baburski AZ, Sokanovic SJ, Bjelic MM, Radovic SM, Andric SA, Kostic TS. Circadian rhythm of the Leydig cells endocrine function is attenuated during aging. Exp Gerontol 2016; 73:5-13. [DOI: 10.1016/j.exger.2015.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 10/11/2015] [Accepted: 11/03/2015] [Indexed: 12/24/2022]
|
44
|
Zhang YF, Yuan KM, Liang Y, Chu YH, Lian QQ, Ge YF, Zhen W, Sottas CM, Su ZJ, Ge RS. Alterations of gene profiles in Leydig-cell-regenerating adult rat testis after ethane dimethane sulfonate-treatment. Asian J Androl 2015; 17:253-60. [PMID: 25337835 PMCID: PMC4405920 DOI: 10.4103/1008-682x.136447] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Only occupying about 1%–5% of total testicular cells, the adult Leydig cell (ALC) is a unique endocrine cell that produces androgens. Rat Leydig cells regenerate after these cells in the testis are eliminated with ethane dimethane sulfonate (EDS). In this study, we have characterized Leydig cell regeneration and messenger ribonucleic acids (mRNA) profiles of EDS treated rat testes. Serum testosterone, testicular gene profiling and some steroidogenesis-related proteins were analyzed at 7, 21, 35 and 90 days after EDS treatment. Testicular testosterone levels declined to undetectable levels until 7 days after treatment and then started to recover. Seven days after treatment, 81 mRNAs were down-regulated greater than or equal to two-fold, with 48 becoming undetectable. These genes increased their expression 21 days and completely returned to normal levels 90 days after treatment. The undetectable genes include steroidogenic pathway proteins: steroidogenic acute regulatory protein, Scarb1, Cyp11a1, Cyp17a1, Hsd3b1, Cyp1b1 and Cyp2a1. Seven days after treatment, there were 89 mRNAs up-regulated two-fold or more including Pkib. These up-regulated mRNAs returned to normal 90 days after treatment. Cyp2a1 did not start to recover until 35 days after treatment, indicating that this gene is only expressed in ALCs not in the precursor cells. Quantitative polymerase chain reaction, western blotting and semi-quantitative immunohistochemical staining using tissue array confirmed the changes of several randomly picked genes and their proteins.
Collapse
Affiliation(s)
| | | | | | - Yan-Hui Chu
- Heilongjiang Key Laboratory of Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang 157011, China,
| | | | | | | | | | | | - Ren-Shan Ge
- The 2nd Affiliated Hospital, Wenzhou Medical College, Wenzhou 325000, China; The Population Council, New York 10065, USA,
| |
Collapse
|
45
|
Hannan M, Kawate N, Kubo Y, Pathirana I, Büllesbach E, Hatoya S, Inaba T, Takahashi M, Tamada H. Expression analyses of insulin-like peptide 3, RXFP2, LH receptor, and 3β-hydroxysteroid dehydrogenase in testes of normal and cryptorchid dogs. Theriogenology 2015. [DOI: 10.1016/j.theriogenology.2015.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Expression of insulin-like factor 3 hormone-receptor system in the reproductive organs of male goats. Cell Tissue Res 2015; 362:407-20. [PMID: 26017634 DOI: 10.1007/s00441-015-2206-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
Relaxin-like factor (RLF), generally known as insulin-like factor 3 (INSL3), is essential for testis descent during fetal development. However, its role in adult males is not fully understood. We investigate the function of INSL3 in male Saanen goats by identifying cell types expressing its receptor, relaxin/insulin-like family peptide receptor (RXFP)2 and by characterizing the developmental expression pattern of INSL3 and RXFP2 and the binding of INSL3 to target cells in the male reproductive system. A highly specific RXFP2 antibody that co-localizes with an anti-FLAG antibody in HEK-293 cells recognizes RXFP2-transcript-expressing cells in the testis. INSL3 and RXFP2 mRNA expression is upregulated in the testis, starting from puberty. INSL3 mRNA and protein expression has been detected in Leydig cells, whereas RXFP2 mRNA and protein localize to Leydig cells, to meiotic and post-meiotic germ cells and to the epithelium and smooth muscle of the cauda epididymis and vas deferens. INSL3 binds to all of these tissues and cell types, with the exception of Leydig cells, in a hormone-specific and saturable manner. These results provide evidence for a functional intra- and extra-testicular INSL3 ligand-receptor system in adult male goats.
Collapse
|
47
|
Schrade A, Kyrönlahti A, Akinrinade O, Pihlajoki M, Häkkinen M, Fischer S, Alastalo TP, Velagapudi V, Toppari J, Wilson DB, Heikinheimo M. GATA4 is a key regulator of steroidogenesis and glycolysis in mouse Leydig cells. Endocrinology 2015; 156:1860-72. [PMID: 25668067 PMCID: PMC4398762 DOI: 10.1210/en.2014-1931] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transcription factor GATA4 is expressed in somatic cells of the mammalian testis. Gene targeting studies in mice have shown that GATA4 is essential for proper differentiation and function of Sertoli cells. The role of GATA4 in Leydig cell development, however, remains controversial, because targeted mutagenesis experiments in mice have not shown a consistent phenotype, possibly due to context-dependent effects or compensatory responses. We therefore undertook a reductionist approach to study the function of GATA4 in Leydig cells. Using microarray analysis and quantitative RT-PCR, we identified a set of genes that are down-regulated or up-regulated after small interfering RNA (siRNA)-mediated silencing of Gata4 in the murine Leydig tumor cell line mLTC-1. These same genes were dysregulated when primary cultures of Gata4(flox/flox) adult Leydig cells were subjected to adenovirus-mediated cre-lox recombination in vitro. Among the down-regulated genes were enzymes of the androgen biosynthetic pathway (Cyp11a1, Hsd3b1, Cyp17a1, and Srd5a). Silencing of Gata4 expression in mLTC-1 cells was accompanied by reduced production of sex steroid precursors, as documented by mass spectrometric analysis. Comprehensive metabolomic analysis of GATA4-deficient mLTC-1 cells showed alteration of other metabolic pathways, notably glycolysis. GATA4-depleted mLTC-1 cells had reduced expression of glycolytic genes (Hk1, Gpi1, Pfkp, and Pgam1), lower intracellular levels of ATP, and increased extracellular levels of glucose. Our findings suggest that GATA4 plays a pivotal role in Leydig cell function and provide novel insights into metabolic regulation in this cell type.
Collapse
Affiliation(s)
- Anja Schrade
- Children's Hospital (A.S., A.K., O.A., M.P., T.-P.A., M.H.), University of Helsinki, Helsinki 00014, Finland; Institute of Biomedicine (O.A.), University of Helsinki, Helsinki 00014, Finland; School of Pharmacy (M.H.), University of Eastern Finland, Kuopio 70211, Finland; Institute of Applied Biotechnology (S.F.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku, Turku 20520, Finland; and Departments of Pediatrics (A.S., M.P., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University in St. Louis, St. Louis, Missouri 63110
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Schillebeeckx M, Pihlajoki M, Gretzinger E, Yang W, Thol F, Hiller T, Löbs AK, Röhrig T, Schrade A, Cochran R, Jay PY, Heikinheimo M, Mitra RD, Wilson DB. Novel markers of gonadectomy-induced adrenocortical neoplasia in the mouse and ferret. Mol Cell Endocrinol 2015; 399:122-30. [PMID: 25289806 PMCID: PMC4262703 DOI: 10.1016/j.mce.2014.09.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 07/18/2014] [Accepted: 09/29/2014] [Indexed: 12/25/2022]
Abstract
Gonadectomy (GDX) induces sex steroid-producing adrenocortical tumors in certain mouse strains and in the domestic ferret. Transcriptome analysis and DNA methylation mapping were used to identify novel genetic and epigenetic markers of GDX-induced adrenocortical neoplasia in female DBA/2J mice. Markers were validated using a combination of laser capture microdissection, quantitative RT-PCR, in situ hybridization, and immunohistochemistry. Microarray expression profiling of whole adrenal mRNA from ovariectomized vs. intact mice demonstrated selective upregulation of gonadal-like genes including Spinlw1 and Insl3 in GDX-induced adrenocortical tumors of the mouse. A complementary candidate gene approach identified Foxl2 as another gonadal-like marker expressed in GDX-induced neoplasms of the mouse and ferret. That both "male-specific" (Spinlw1) and "female-specific" (Foxl2) markers were identified is noteworthy and implies that the neoplasms exhibit mixed characteristics of male and female gonadal somatic cells. Genome-wide methylation analysis showed that two genes with hypomethylated promoters, Igfbp6 and Foxs1, are upregulated in GDX-induced adrenocortical neoplasms. These new genetic and epigenetic markers may prove useful for studies of steroidogenic cell development and for diagnostic testing.
Collapse
Affiliation(s)
- Maximiliaan Schillebeeckx
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Marjut Pihlajoki
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Elisabeth Gretzinger
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim, University of Applied Sciences, Mannheim 68163, Germany
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Franziska Thol
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim, University of Applied Sciences, Mannheim 68163, Germany
| | - Theresa Hiller
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim, University of Applied Sciences, Mannheim 68163, Germany
| | - Ann-Kathrin Löbs
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim, University of Applied Sciences, Mannheim 68163, Germany
| | - Theresa Röhrig
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim, University of Applied Sciences, Mannheim 68163, Germany
| | - Anja Schrade
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Rebecca Cochran
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Patrick Y Jay
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Markku Heikinheimo
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - David B Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| |
Collapse
|
49
|
Sokanovic SJ, Janjic MM, Stojkov NJ, Baburski AZ, Bjelic MM, Andric SA, Kostic TS. Age related changes of cAMP and MAPK signaling in Leydig cells of Wistar rats. Exp Gerontol 2014; 58:19-29. [PMID: 25019473 DOI: 10.1016/j.exger.2014.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 12/14/2022]
Abstract
Here, we chronologically analyzed age-associated changes of cAMP- and MAPK-signaling in Leydig cells (LCs) in relation with decreased testosterone (T) production. In Wistar rats, decreased serum T observed in 12 to 24-month-old rats was not related to decreased serum LH concentration but to reduced luteinizing hormone receptor (Lhr/LHR) and time-coordinated reduction of steroidogenic gene expression (decreased Cyp11a1, Cyp17a1 in 12-month-old rats followed by decreased Star/StAR, Hsd3b/HSD3B, Hsd17b4, and increased Cyp19a1 later in life). The predecessors of age-related changes noted in LCs from 6 to 12-month-old rats were increased level of soluble adenylate cyclase (Adcy/AC) 10, increased JNK phosphorylation but suppressed P38 MAPK. At approximately the same time changed mRNA abundance for transcription factors important for steroidogenesis was detected (increased Nur77 and decreased Sf1, Dax1). Aging caused biphasic expression pattern of ERK1/2 and Nur77: increased in 12-month but decreased in LCs from 24-month-old rats. Further, decreased basal cAMP level observed from 12 to 24th month coincidence with increased expression of cAMP-specific phosphodiesterase (Pde)4a, Pde4b and regulatory subunit of protein kinase A (Prkar/PKAR). Exposing of senescent LCs to permeable cAMP-analog improved transcription of Sf1, Nur77, Star, Cyp11a1,Cyp17a1, but without effect on aging pattern of Dax1, Pde4a/b, Prkar2a, Lhr and MAPK genes. Collectively, results indicated that age-related LC dysfunction is accompanied with changes in MAPK and cAMP signaling and coordinated reduction in the expression of many of the genes that participate in T synthesis. The predecessors of aged-related changes are increased ratio of pJNK/JNK, AC10 and decreased P38 level in LCs from 6-month-old rats.
Collapse
Affiliation(s)
- S J Sokanovic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - M M Janjic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - N J Stojkov
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - A Z Baburski
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - M M Bjelic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - S A Andric
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - T S Kostic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia.
| |
Collapse
|
50
|
Barthold JS, Robbins A, Wang Y, Pugarelli J, Mateson A, Anand-Ivell R, Ivell R, McCahan SM, Akins RE. Cryptorchidism in the orl rat is associated with muscle patterning defects in the fetal gubernaculum and altered hormonal signaling. Biol Reprod 2014; 91:41. [PMID: 24966393 DOI: 10.1095/biolreprod.114.119560] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cryptorchidism, or undescended testis, is a common male genital anomaly of unclear etiology. Hormonal stimulation of the developing fetal gubernaculum by testicular androgens and insulin-like 3 (INSL3) is required for testicular descent. In studies of the orl fetal rat, one of several reported strains with inherited cryptorchidism, we studied hormone levels, gene expression in intact and hormone-stimulated gubernaculum, and imaging of the developing cremaster muscle facilitated by a tissue clearing protocol to further characterize development of the orl gubernaculum. Abnormal localization of the inverted gubernaculum was visible soon after birth. In the orl fetus, testicular testosterone, gubernacular androgen-responsive transcript levels, and muscle-specific gene expression were reduced. However, the in vitro transcriptional response of the orl gubernaculum to androgen was largely comparable to wild type (wt). In contrast, increases in serum INSL3, gubernacular INSL3-responsive transcript levels, expression of the INSL3 receptor, Rxfp2, and the response of the orl gubernaculum to INSL3 in vitro all suggest enhanced activation of INSL3/RXFP2 signaling in the orl rat. However, DNA sequence analysis did not identify functional variants in orl Insl3. Finally, combined analysis of the present and previous studies of the orl transcriptome confirmed altered expression of muscle and cellular motility genes, and whole mount imaging revealed aberrant muscle pattern formation in the orl fetal gubernaculum. The nature and prevalence of developmental muscle defects in the orl gubernaculum are consistent with the cryptorchid phenotype in this strain. These data suggest impaired androgen and enhanced INSL3 signaling in the orl fetus accompanied by defective cremaster muscle development.
Collapse
Affiliation(s)
- Julia S Barthold
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Alan Robbins
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Yanping Wang
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Joan Pugarelli
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Abigail Mateson
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Ravinder Anand-Ivell
- Division of Animal Sciences, University of Nottingham, Leicestershire, United Kingdom
| | - Richard Ivell
- Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Suzanne M McCahan
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Robert E Akins
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| |
Collapse
|