1
|
Wali S, Hwej A, Welsh DJ, Wilson K, Kennedy S, Dempsie Y. Connexin 43 Affects Pulmonary Artery Reactivity via Changes in Nitric Oxide Production and Influences Proliferative and Migratory Responses in Mouse Pulmonary Artery Fibroblasts. Int J Mol Sci 2025; 26:1280. [PMID: 39941047 PMCID: PMC11818546 DOI: 10.3390/ijms26031280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Pulmonary hypertension (PH) is a complex condition characterized by pulmonary artery constriction and vascular remodeling. Connexin 43 (Cx43), involved in cellular communication, may play a role in PH development. Cx43 heterozygous (Cx43+/-) mice show partial protection against hypoxia-induced pulmonary remodeling, with prior research highlighting its role in rat pulmonary artery fibroblast (PAF) proliferation and migration. However, inhibiting Cx43 may compromise nitric oxide (NO)-mediated vascular relaxation. This study evaluated the effects of Cx43 on mouse PAF (MPAF) proliferation, migration, NO-dependent and independent pulmonary vascular relaxation, and NO synthesis. Proliferation and migration were assessed in Cx43+/- MPAFs under normoxic and hypoxic conditions. Vascular responses were analyzed in intra-lobar pulmonary artery rings with acetylcholine (ACh), SNAP, and U46619, while NO production was measured in lung tissue. Both genetic knockdown and pharmacological inhibition of Cx43 significantly reduced serum-induced proliferation but not migration under normoxia, while 37,43Gap27 inhibited hypoxia-induced proliferation and migration. The effects of genetic knockdown and pharmacological inhibition of Cx43 on vascular reactivity were also investigated. NO-dependent and independent relaxations and NO production were reduced in Cx43+/- mice by 37,43Gap27. In conclusion, while Cx43 inhibition may protect against PAF proliferation and migration, it could also impair pulmonary vascular relaxation, at least in part through a reduction in NO signaling. Further studies are needed to fully understand the mechanisms by which Cx43 influences NO signaling.
Collapse
Affiliation(s)
- Saad Wali
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah 24342, Saudi Arabia;
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK;
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (D.J.W.); (K.W.)
| | - Abdmajid Hwej
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK;
- School of Pharmacy, Univeristy of El-Mergib, Al-Khoms 11324, Libya
| | - David J. Welsh
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (D.J.W.); (K.W.)
| | - Kathryn Wilson
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (D.J.W.); (K.W.)
| | - Simon Kennedy
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK;
| | - Yvonne Dempsie
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (D.J.W.); (K.W.)
| |
Collapse
|
2
|
Rengarajan A, Austin JL, Stanic AK, Patankar MS, Boeldt DS. Mononuclear Cells Negatively Regulate Endothelial Ca 2+ Signaling. Reprod Sci 2023; 30:2292-2301. [PMID: 36717462 DOI: 10.1007/s43032-023-01164-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/24/2022] [Indexed: 02/01/2023]
Abstract
Endothelial Ca2+ signaling has important roles to play in maintaining pregnancy associated vasodilation in the utero-placenta. Inflammatory cytokines, often elevated in vascular complications of pregnancy, negatively regulate ATP-stimulated endothelial Ca2+ signaling and associated nitric oxide production. However, the role of direct engagement of immune cells on endothelial Ca2+ signaling and therefore endothelial function is unclear. To model immune-endothelial interactions, herein, we evaluate the effects of peripheral blood mononuclear cells (PBMCs) in short-term interaction with human umbilical vein endothelial cells (HUVECs) on agonist-stimulated Ca2+ signaling in HUVECs. We find that mononuclear cells (10:1 and 25:1 mononuclear: HUVEC) cause decreased ATP-stimulated Ca2+ signaling; worsened by activated mononuclear cells possibly due to increased cytokine secretion. Additionally, monocytes, natural killers, and T-cells cause decrease in ATP-stimulated Ca2+ signaling using THP-1 (monocyte), NKL (natural killer cells), and Jurkat (T-cell) cell lines, respectively. PBMCs with Golgi-restricted protein transport prior to interaction with endothelial cells display rescue in Ca2+ signaling, strongly suggesting that secreted proteins from PBMCs mediate changes in HUVEC Ca2+ signaling. We propose that endothelial cells from normal pregnancy interacting with PBMCs may model preeclamptic endothelial-immune interaction and resultant endothelial dysfunction.
Collapse
Affiliation(s)
- Aishwarya Rengarajan
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, School of Medicine and Public Health, Perinatal Research Laboratories, 7E UnityPoint Health-Meriter Hospital, 202 South Park St, Madison, WI, 53715, USA
| | - Jason L Austin
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, School of Medicine and Public Health, Perinatal Research Laboratories, 7E UnityPoint Health-Meriter Hospital, 202 South Park St, Madison, WI, 53715, USA
| | - Aleksandar K Stanic
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, School of Medicine and Public Health, Perinatal Research Laboratories, 7E UnityPoint Health-Meriter Hospital, 202 South Park St, Madison, WI, 53715, USA
| | - Manish S Patankar
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, School of Medicine and Public Health, Perinatal Research Laboratories, 7E UnityPoint Health-Meriter Hospital, 202 South Park St, Madison, WI, 53715, USA
| | - Derek S Boeldt
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, School of Medicine and Public Health, Perinatal Research Laboratories, 7E UnityPoint Health-Meriter Hospital, 202 South Park St, Madison, WI, 53715, USA.
| |
Collapse
|
3
|
Clemente L, Bird IM. The epidermal growth factor receptor in healthy pregnancy and preeclampsia. J Mol Endocrinol 2023; 70:e220105. [PMID: 36197759 PMCID: PMC9742168 DOI: 10.1530/jme-22-0105] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022]
Abstract
The epidermal growth factor receptor (EGFR) is expressed robustly in the placenta, and critical processes of pregnancy such as placental growth and trophoblast fusion are dependent on EGFR function. However, the role that aberrant EGFR signaling might play in the etiology and/or maintenance of preeclampsia (PE) remains largely unexplored. Recently, we have shown that overexpression of EGFR in cultured uterine artery endothelial cells (UAEC), which express little endogenous EGFR, remaps responsiveness away from vascular endothelial growth factor receptor (VEGFR) signaling and toward EGFR, suggesting that endothelial EGFR expression may be kept low to preserve VEGFR control of angiogenesis. Here we will consider the evidence for the possibility that the endothelial dysfunction observed in PE might in some cases result from elevation of endothelial EGFR. During pregnancy, trophoblasts are known to synthesize large amounts of EGFR protein, and the placenta regularly releases syncytiotrophoblast-derived exosomes and microparticles into the maternal circulation. Although there are no reports of elevated EGFR gene expression in preeclamptic endothelial cells, the ongoing shedding of placental vesicles into the vascular system raises the possibility that EGFR-rich vesicles might fuse with endothelium, thereby contributing to the symptoms of PE by interrupting angiogenesis and blocking pregnancy-adapted vasodilatory function.
Collapse
Affiliation(s)
- Luca Clemente
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53715, USA
| | - Ian M. Bird
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53715, USA
- Department of Pediatrics, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53715, USA
| |
Collapse
|
4
|
Ampey AC, Dahn RL, Grummer MA, Bird IM. Differential control of uterine artery endothelial monolayer integrity by TNF and VEGF is achieved through multiple mechanisms operating inside and outside the cell - Relevance to preeclampsia. Mol Cell Endocrinol 2021; 534:111368. [PMID: 34153378 PMCID: PMC8344923 DOI: 10.1016/j.mce.2021.111368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/03/2021] [Accepted: 06/12/2021] [Indexed: 01/28/2023]
Abstract
Uterine artery endothelium undergoes a form of functional adaptation during pregnancy because of an increase in Cx43 communication, resulting in increased Ca2+/IP3 exchange and more synchronous and sustained vasodilator production. We have shown previously that acute exposure to growth factors and TNF can block this adaptation through ERK and/or Src-mediated Cx43 phosphorylation. In preeclampsia such adapted function is already missing, but while elevated TNF is associated with this condition, particularly after 28 weeks (late PE), elevated circulating VEGF165 is not. Given PE is a long term condition emerging in the second half of pregnancy, and is often associated with added edema, we now compare the chronic effects of these two factors on the cell monolayer in order to establish if the breakdown of junctional adherens and tight junctional assemblies in which Cx43 resides could also explain loss of vasodilatory function. We report that while TNF can degrade monolayer integrity even in the 0.1-1 ng/ml physiologic range, VEGF up to 10 ng/ml does not. In addition, the progressive action of TNF is mediated through Src and ERK signaling to promote internalization and destruction of VE-Cadherin (VE-Cad) and ZO-1, as well as the expression and secretion of a variety of proteases. At least one protein degraded from the extracellular space is VE-Cad, resulting in release of a shed VE-Cad protein product, and consistent with monolayer breakdown being sensitive to both Src and MEK/ERK kinase inhibitors and the general protease inhibitor GM6001. We conclude that the greater association of TNF with 'late' PE is as much due to its longer term destabilizing effects on junctional assemblies as it is to acute closure of Cx43 channels themselves. New therapies aimed at stabilizing these junctional assemblies may help treat this hypertensive condition.
Collapse
Affiliation(s)
- Amanda C Ampey
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Unity Point Health-Meriter Hospital, 202 South Park Street, Madison, WI, 53715, USA
| | - Rachel L Dahn
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Unity Point Health-Meriter Hospital, 202 South Park Street, Madison, WI, 53715, USA
| | - Mary A Grummer
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Unity Point Health-Meriter Hospital, 202 South Park Street, Madison, WI, 53715, USA
| | - Ian M Bird
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Unity Point Health-Meriter Hospital, 202 South Park Street, Madison, WI, 53715, USA.
| |
Collapse
|
5
|
Hu X, Zhang L. Uteroplacental Circulation in Normal Pregnancy and Preeclampsia: Functional Adaptation and Maladaptation. Int J Mol Sci 2021; 22:8622. [PMID: 34445328 PMCID: PMC8395300 DOI: 10.3390/ijms22168622] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Uteroplacental blood flow increases as pregnancy advances. Adequate supply of nutrients and oxygen carried by uteroplacental blood flow is essential for the well-being of the mother and growth/development of the fetus. The uteroplacental hemodynamic change is accomplished primarily through uterine vascular adaptation, involving hormonal regulation of myogenic tone, vasoreactivity, release of vasoactive factors and others, in addition to the remodeling of spiral arteries. In preeclampsia, hormonal and angiogenic imbalance, proinflammatory cytokines and autoantibodies cause dysfunction of both endothelium and vascular smooth muscle cells of the uteroplacental vasculature. Consequently, the vascular dysfunction leads to increased vascular resistance and reduced blood flow in the uteroplacental circulation. In this article, the (mal)adaptation of uteroplacental vascular function in normal pregnancy and preeclampsia and underlying mechanisms are reviewed.
Collapse
Affiliation(s)
- Xiangqun Hu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
6
|
Mauro AK, Khurshid N, Berdahl DM, Ampey AC, Adu D, Shah DM, Boeldt DS. Cytokine concentrations direct endothelial function in pregnancy and preeclampsia. J Endocrinol 2021; 248:107-117. [PMID: 33263558 PMCID: PMC7906941 DOI: 10.1530/joe-20-0397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022]
Abstract
Endothelial dysfunction is a prominent feature of preeclampsia, a hypertensive disorder of pregnancy, and contributes to multiple symptoms characteristic of the syndrome. A myriad of growth factors and cytokines are dysregulated in preeclampsia as compared to normal pregnancy, however, a complete appreciation of the effect of changing concentrations of these factors on endothelial function is lacking. In this study, we evaluate the effect of a variety of growth factors and cytokines on Ca2+ signaling and monolayer integrity. We report that VEGF165, TNFα, EGF, and IL-1β either improve or inhibit Ca2+ signaling depending on dose, whereas TNFα and IL-1β reduce monolayer integrity and bFGF increases monolayer integrity. Additionally, to model the effects of combinations of growth factors and cytokines, we screened for Ca2+ signaling changes in response to 16 dose combinations of VEGF165 and TNFα together. This revealed an optimal combination capable of supporting pregnancy-adapted Ca2+ signaling, and that changes in either VEGF165 or TNFα dose would result in a shift toward suppressed function. This study shows in detail how growth factor or cytokine concentration effects endothelial cell function. Such data can be used to model how changing growth factor and cytokine levels in normal pregnancy may contribute to healthy endothelial function and in preeclampsia may promote endothelial dysfunction. The results of VEGF165 and TNFα combination treatments suggest that more complex growth factor and cytokine combination modeling may be important in order to more accurately understand the effects of circulating factors on the endothelial function.
Collapse
Affiliation(s)
- Amanda K Mauro
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin – Madison, School Medicine and Public Health, Madison, WI 53715
| | - Nauman Khurshid
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin – Madison, School Medicine and Public Health, Madison, WI 53715
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, University of Wisconsin – Madison, School Medicine and Public Health, Madison, WI 53715
| | - Danielle M Berdahl
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin – Madison, School Medicine and Public Health, Madison, WI 53715
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, University of Wisconsin – Madison, School Medicine and Public Health, Madison, WI 53715
| | - Amanda C Ampey
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin – Madison, School Medicine and Public Health, Madison, WI 53715
| | - Daniel Adu
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin – Madison, School Medicine and Public Health, Madison, WI 53715
- Department of Pediatrics, University of Wisconsin – Madison, School Medicine and Public Health, Madison, WI 53715
| | - Dinesh M Shah
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin – Madison, School Medicine and Public Health, Madison, WI 53715
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, University of Wisconsin – Madison, School Medicine and Public Health, Madison, WI 53715
| | - Derek S Boeldt
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin – Madison, School Medicine and Public Health, Madison, WI 53715
- Correspondence and reprint requests: Derek S Boeldt, Ph.D., University Wisconsin - Madison, Department Obstetrics & Gynecology, Perinatal Research Laboratories, 7E Meriter Hospital/Park, 202 South Park St., Madison, WI 53715., Tel: (608) 417 6314, Fax: (608) 257 1304,
| |
Collapse
|
7
|
Rozas-Villanueva MF, Casanello P, Retamal MA. Role of ROS/RNS in Preeclampsia: Are Connexins the Missing Piece? Int J Mol Sci 2020; 21:ijms21134698. [PMID: 32630161 PMCID: PMC7369723 DOI: 10.3390/ijms21134698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/28/2020] [Indexed: 12/15/2022] Open
Abstract
Preeclampsia is a pregnancy complication that appears after 20 weeks of gestation and is characterized by hypertension and proteinuria, affecting both mother and offspring. The cellular and molecular mechanisms that cause the development of preeclampsia are poorly understood. An important feature of preeclampsia is an increase in oxygen and nitrogen derived free radicals (reactive oxygen species/reactive nitrogen species (ROS/RNS), which seem to be central players setting the development and progression of preeclampsia. Cell-to-cell communication may be disrupted as well. Connexins (Cxs), a family of transmembrane proteins that form hemichannels and gap junction channels (GJCs), are essential in paracrine and autocrine cell communication, allowing the movement of signaling molecules between cells as well as between the cytoplasm and the extracellular media. GJCs and hemichannels are fundamental for communication between endothelial and smooth muscle cells and, therefore, in the control of vascular contraction and relaxation. In systemic vasculature, the activity of GJCs and hemichannels is modulated by ROS and RNS. Cxs participate in the development of the placenta and are expressed in placental vasculature. However, it is unknown whether Cxs are modulated by ROS/RNS in the placenta, or whether this potential modulation contributes to the pathogenesis of preeclampsia. Our review addresses the possible role of Cxs in preeclampsia, and the plausible modulation of Cxs-formed channels by ROS and RNS. We suggest these factors may contribute to the development of preeclampsia.
Collapse
Affiliation(s)
- María F. Rozas-Villanueva
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7690000, Chile;
- Programa de Doctorado en Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7690000, Chile
| | - Paola Casanello
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7690000, Chile;
- Department of Neonatology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7690000, Chile
| | - Mauricio A. Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7690000, Chile;
- Programa de Comunicación Celular de Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7690000, Chile
- Correspondence:
| |
Collapse
|
8
|
Mauro AK, Berdahl DM, Khurshid N, Clemente L, Ampey AC, Shah DM, Bird IM, Boeldt DS. Conjugated linoleic acid improves endothelial Ca2+ signaling by blocking growth factor and cytokine-mediated Cx43 phosphorylation. Mol Cell Endocrinol 2020; 510:110814. [PMID: 32259635 PMCID: PMC7253345 DOI: 10.1016/j.mce.2020.110814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/13/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022]
Abstract
Sustained Ca2+ burst signaling is crucial for endothelial vasodilator production and is disrupted by growth factors and cytokines. Conjugated linoleic acid (CLA), a Src inhibitor in certain preparations, is generally regarded as safe during pregnancy by the FDA. Multiple CLA preparations; t10, c12 or c9, t11 CLA, or a 1:1 mixture of the two were administered before growth factor or cytokine treatment. Growth factors and cytokines caused a significant decrease in Ca2+ burst numbers in response to ATP stimulation. Both t10, c12 CLA and the 1:1 mixture rescued VEGF165 or TNFα inhibited Ca2+ bursts and correlated with Src-specific phosphorylation of connexin 43. VEGF165, TNFα, and IL-6 in combination at physiologic concentrations revealed IL-6 amplified the inhibitory effects of lower dose of VEGF165 and TNFα. Again, the 1:1 CLA mixture was most effective at rescue of function. Therefore, CLA formulations may be a promising treatment for endothelial dysfunction in diseases such as preeclampsia.
Collapse
Affiliation(s)
- Amanda K Mauro
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Danielle M Berdahl
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA; Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Nauman Khurshid
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA; Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Luca Clemente
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Amanda C Ampey
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Dinesh M Shah
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Ian M Bird
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA; Department of Pediatrics, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Derek S Boeldt
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA.
| |
Collapse
|
9
|
Rengarajan A, Mauro AK, Boeldt DS. Maternal disease and gasotransmitters. Nitric Oxide 2020; 96:1-12. [PMID: 31911124 DOI: 10.1016/j.niox.2020.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
The three known gasotransmitters, nitric oxide, carbon monoxide, and hydrogen sulfide are involved in key processes throughout pregnancy. Gasotransmitters are known to impact on smooth muscle tone, regulation of immune responses, and oxidative state of cells and their component molecules. Failure of the systems that tightly regulate gasotransmitter production and downstream effects are thought to contribute to common maternal diseases such as preeclampsia and preterm birth. Normal pregnancy-related changes in uterine blood flow depend heavily on gasotransmitter signaling. In preeclampsia, endothelial dysfunction is a major contributor to aberrant gasotransmitter signaling, resulting in hypertension after 20 weeks gestation. Maintenance of pregnancy to term also requires gasotransmitter-mediated uterine quiescence. As the appropriate signals for parturition occur, regulation of gasotransmitter signaling must work in concert with those endocrine signals in order for appropriate labor and delivery timing. Like preeclampsia, preterm birth may have origins in abnormal gasotransmitter signaling. We review the evidence for the involvement of gasotransmitters in preeclampsia and preterm birth, as well as mechanistic and molecular signaling targets.
Collapse
Affiliation(s)
- Aishwarya Rengarajan
- Perinatal Research Laboratories, Dept Ob/ Gyn, UW - Madison, Madison, WI, 53715, USA
| | - Amanda K Mauro
- Perinatal Research Laboratories, Dept Ob/ Gyn, UW - Madison, Madison, WI, 53715, USA
| | - Derek S Boeldt
- Perinatal Research Laboratories, Dept Ob/ Gyn, UW - Madison, Madison, WI, 53715, USA.
| |
Collapse
|
10
|
Clemente L, Boeldt DS, Grummer MA, Morita M, Morgan TK, Wiepz GJ, Bertics PJ, Bird IM. Adenoviral transduction of EGFR into pregnancy-adapted uterine artery endothelial cells remaps growth factor induction of endothelial dysfunction. Mol Cell Endocrinol 2020; 499:110590. [PMID: 31550517 PMCID: PMC6886699 DOI: 10.1016/j.mce.2019.110590] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022]
Abstract
During pregnancy, uterine vascular vasodilation is enhanced through adapted Ca2+ signaling, facilitated through increased endothelial connexin 43 (Cx43) gap junctional communication (GJC). In preeclampsia (PE), this adaptive response is missing. Of note, the angiogenic factor VEGF can also act via Src and ERK to close Cx43 gap junctions. While VEGFR2 is necessary for such closure, a role VEGFR1 is less clear. We reasoned if VEGFR2 is acting alone, then substituting another growth factor receptor with VEGFR2-like signaling should have the same effect. In uterine artery endothelial cells derived from pregnant sheep (P-UAEC), endogenous EGFR expression is very low. When we used adenovirus to raise EGFR, we also dose-dependently induced EGF-sensitive Cx43 phosphorylation mainly via ERK, and corresponding loss of Ca2+ bursts, but eliminated VEGF effects on phosphorylation of Cx43 or loss of Ca2+ bursting. This surprising observation suggests that while activated EGFR may indeed substitute for VEGFR2, it also sequesters a limited pool of effector molecules needed for VEGFR2 to phosphorylate Cx43. Thus, low endogenous EGFR expression in P-UAEC may be a necessary strategy to allow VEGFR-2 control of GJC, a first step in initiating angiogenesis in healthy pregnancy. Of further note, trophoblasts are rich in EGFR, and we have demonstrated shed PLAP+/EGFR + extracellular vesicles in maternal circulation in first trimester plasma samples using nanoscale high resolution flow cytometry. Collectively our data suggest that placenta derived exosomes positive for EGFR should be further considered as a possible cause of endothelial dysfunction in women with PE.
Collapse
Affiliation(s)
- Luca Clemente
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin - Madison, School of Medicine and Public Health, Madison, WI, 53715, USA
| | - Derek S Boeldt
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin - Madison, School of Medicine and Public Health, Madison, WI, 53715, USA
| | - Mary A Grummer
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin - Madison, School of Medicine and Public Health, Madison, WI, 53715, USA
| | - Mayu Morita
- Departments of Pathology, Obstetrics & Gynecology, and Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Terry K Morgan
- Departments of Pathology, Obstetrics & Gynecology, and Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Greg J Wiepz
- Department of Comparative Biosciences, University of Wisconsin - Madison, School of Veterinary Medicine, Madison, WI, 53715, USA
| | - Paul J Bertics
- Department of Biomolecular Chemistry, University of Wisconsin - Madison, School of Medicine and Public Health, Madison, WI, 53715, USA
| | - Ian M Bird
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin - Madison, School of Medicine and Public Health, Madison, WI, 53715, USA; Department of Pediatrics, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA.
| |
Collapse
|
11
|
Ampey AC, Boeldt DS, Clemente L, Grummer MA, Yi F, Magness RR, Bird IM. TNF-alpha inhibits pregnancy-adapted Ca 2+ signaling in uterine artery endothelial cells. Mol Cell Endocrinol 2019; 488:14-24. [PMID: 30779937 PMCID: PMC6475486 DOI: 10.1016/j.mce.2019.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 01/03/2023]
Abstract
Enhancement of vasodilation of uterine arteries during pregnancy occurs through increased connexin (Cx)43 gap junction (GJ) communication supporting more frequent and sustained Ca2+ 'bursts'. Such adaptation is lacking in subjects with preeclampsia (PE). Here we show TNF-alpha, commonly increased in PE subjects, inhibits Cx43 function and Ca2+ bursts in pregnancy-derived ovine uterine artery endothelial cells (P-UAEC) via Src and MEK/ERK phosphorylation of Cx43, and this can be reversed by PP2 or U0126. Of relevance to humans: (1) the nutraceutical Src antagonist t10, c12 CLA also recovers Ca2+ bursting in P-UAEC. (2) TNF-alpha can reduce and PP2 rescue Ca2+ bursting and NO output in human umbilical vein endothelium (HUV Endo) preparations. (3) Treatment of HUV Endo from PE subjects with PP2 alone can rescue bursting and NO output. We conclude TNF-alpha acts via Src more than MEK/ERK to inhibit GJ Cx43 function in PE subjects, and CLA may offer a potential therapy.
Collapse
Affiliation(s)
- Amanda C Ampey
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Unity Point Health-Meriter Hospital, 202 South Park Street, Madison, WI, 53715, USA
| | - Derek S Boeldt
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Unity Point Health-Meriter Hospital, 202 South Park Street, Madison, WI, 53715, USA
| | - Luca Clemente
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Unity Point Health-Meriter Hospital, 202 South Park Street, Madison, WI, 53715, USA
| | - Mary A Grummer
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Unity Point Health-Meriter Hospital, 202 South Park Street, Madison, WI, 53715, USA
| | - FuXian Yi
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Unity Point Health-Meriter Hospital, 202 South Park Street, Madison, WI, 53715, USA
| | - Ronald R Magness
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Unity Point Health-Meriter Hospital, 202 South Park Street, Madison, WI, 53715, USA
| | - Ian M Bird
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Unity Point Health-Meriter Hospital, 202 South Park Street, Madison, WI, 53715, USA.
| |
Collapse
|
12
|
Dang S, Ding D, Lu Y, Su Q, Lin T, Zhang X, Zhang H, Wang X, Tan H, Zhu Z, Li H. PM 2.5 exposure during pregnancy induces hypermethylation of estrogen receptor promoter region in rat uterus and declines offspring birth weights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:851-861. [PMID: 30245447 DOI: 10.1016/j.envpol.2018.09.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
Particulate matter 2.5 (PM2.5) exposures during pregnancy could lead to declined birth weight, intrauterine developmental restriction, and premature delivery, however, the underlying mechanisms are still not elucidated. There are few studies concerning the effects of PM2.5 exposure on maternal and child health in Xi'an (one of the cities with severe air pollution of PM2.5 in North China). Then, this study aimed to investigate the effect of PM2.5 exposure in Xi'an on the offspring birth weights and the possibly associated epigenetic mechanisms. We found the Low and High groups: the offspring with declined birth weights; the decreased mRNA and protein expression of the estrogen receptor (ERs) and eNOs in the uterus; the decreased endometria vascular diameter maximum (EVDM); the increased mRNA and protein expressions of the DNMT1 and 3b in the uterus; the elevated methylation levels of the CpG sites in the CpG island of ERα promoter region in the uterus. However, no differences were observed in the mRNA or protein expressions of ERβ and DNMT3a between the Clean and PM2.5 exposure groups, as well as endometriavascular density (EVD). Additionally, PM2.5 level was negatively correlated with the ERα protein expression, EVDM and offspring birth weight, as well as the methylation level of the CpG sites in the CpG island of ERα promoter region and the ERα protein expression in the uterus; whereas the ERα protein expression was positively correlated with the offspring birth weight, as well as PM2.5 level and the methylation level of the CpG sites in the CpG island of ERα promoter region in the uterus. Taken together, elevated methylation level of the CpG sites in the CpG island of ERα promoter region reduces ERα expression in the uterus, which could be one of the epigenetic mechanisms that pregnant PM2.5 exposure reduces the offspring birth weights.
Collapse
Affiliation(s)
- Shaokang Dang
- Division of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ding Ding
- Division of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yong Lu
- Department of Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Qian Su
- Division of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tianwei Lin
- Key Laboratory of Shaanxi Province Biomedicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710061, China
| | - Xiaoxiao Zhang
- Key Laboratory of Shaanxi Province Biomedicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710061, China
| | - Huiping Zhang
- Division of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xuebin Wang
- Department of Thermal Engineering, Energy and Power Engineering College of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Houzhang Tan
- Department of Thermal Engineering, Energy and Power Engineering College of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhongliang Zhu
- Key Laboratory of Shaanxi Province Biomedicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710061, China
| | - Hui Li
- Division of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
13
|
Yu W, Gao W, Rong D, Wu Z, Khalil RA. Molecular determinants of microvascular dysfunction in hypertensive pregnancy and preeclampsia. Microcirculation 2018; 26:e12508. [PMID: 30338879 PMCID: PMC6474836 DOI: 10.1111/micc.12508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022]
Abstract
Preeclampsia is a pregnancy-related disorder characterized by hypertension and often fetal intrauterine growth restriction, but the underlying mechanisms are unclear. Defective placentation and apoptosis of invasive cytotrophoblasts cause inadequate remodeling of spiral arteries, placental ischemia, and reduced uterine perfusion pressure (RUPP). RUPP causes imbalance between the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the pro-angiogenic vascular endothelial growth factor and placental growth factor, and stimulates the release of proinflammatory cytokines, hypoxia-inducible factor, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors target the vascular endothelium, smooth muscle and various components of the extracellular matrix. Generalized endotheliosis in systemic, renal, cerebral, and hepatic vessels causes decreases in endothelium-derived vasodilators such as nitric oxide, prostacyclin and hyperpolarization factor, and increases in vasoconstrictors such as endothelin-1 and thromboxane A2. Enhanced mechanisms of vascular smooth muscle contraction, such as intracellular Ca2+ , protein kinase C, and Rho-kinase cause further increases in vasoconstriction. Changes in matrix metalloproteinases and extracellular matrix cause inadequate vascular remodeling and increased arterial stiffening, leading to further increases in vascular resistance and hypertension. Therapeutic options are currently limited, but understanding the molecular determinants of microvascular dysfunction could help in the design of new approaches for the prediction and management of preeclampsia.
Collapse
Affiliation(s)
- Wentao Yu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wei Gao
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dan Rong
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Zhixian Wu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
14
|
Alvarez RE, Boeldt DS, Pattnaik BR, Friedman HL, Bird IM. Pregnancy-adapted uterine artery endothelial cell Ca2+ signaling and its relationship with membrane potential. Physiol Rep 2018; 5:5/21/e13452. [PMID: 29122954 PMCID: PMC5688774 DOI: 10.14814/phy2.13452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/12/2017] [Accepted: 08/15/2017] [Indexed: 11/24/2022] Open
Abstract
Pregnancy‐derived uterine artery endothelial cells (P‐UAEC) express P2Y2 receptors and at high cell density show sustained and synchronous [Ca2+]i burst responses in response to ATP. Bursts in turn require coupling of transient receptor potential canonical type3 channel (TRPC3) and inositol 1,4,5‐triphosphate receptor type 2 (IP3R2), which is upregulated in P‐UAEC in a manner dependent on connexin 43 (Cx43) gap junctions. While there is no known direct interaction of TRPC3 with Cx43, early descriptions of TRPC3 function showed it may also be influenced by altered membrane potential (Vm). Herein, we ask if enhanced TRPC3 Ca2+ bursting due to enhanced Cx43 coupling may be coupled via dynamic alterations in Vm in P‐UAEC, as reported in some (HUVEC) but not all endothelial cells. Following basic electrical characterization of UAEC, we employed a high sensitivity cell imaging system to simultaneously monitor cell Vm and [Ca2+]i in real time in continuous monolayers of UAEC. Our findings show that while acute and sustained phase [Ca2+]i bursting occur dose‐dependently in response to ATP, Vm is not coregulated with any periodicity related to [Ca2+]i bursting. Only a small but significant progressive change in Vm is seen, and this is more closely related to overall mobilization of Ca2+. Surprisingly, this is also most apparent in NP‐UAEC > P‐UAEC. In contrast [Ca2+]i bursting is more synchronous in P‐UAEC and even achieves [Ca2+]i waves passing through the P‐UAEC monolayer. The relevance of these findings to mechanisms of pregnancy adaptation and its failure in hypertensive pregnancy are discussed.
Collapse
Affiliation(s)
- Roxanne E Alvarez
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin, Madison, Wisconsin
| | - Derek S Boeldt
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin, Madison, Wisconsin
| | - Bikash R Pattnaik
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin.,Department of Ophthalmology and Vision Sciences, University of Wisconsin, Madison, Wisconsin
| | - Hannah L Friedman
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin, Madison, Wisconsin
| | - Ian M Bird
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin, Madison, Wisconsin .,Department of Pediatrics, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
15
|
Mishra JS, More AS, Hankins GDV, Kumar S. Hyperandrogenemia reduces endothelium-derived hyperpolarizing factor-mediated relaxation in mesenteric artery of female rats. Biol Reprod 2018; 96:1221-1230. [PMID: 28486649 DOI: 10.1093/biolre/iox043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/08/2017] [Indexed: 01/05/2023] Open
Abstract
Women with polycystic ovary syndrome (PCOS) are often presented with hyperandrogenemia along with vascular dysfunction and elevated blood pressure. In animal models of PCOS, anti-androgen treatment decreased blood pressure, indicating a key role for androgens in the development of hypertension. However, the underlying androgen-mediated mechanism that contributes to increased blood pressure is not known. This study determined whether elevated androgens affect endothelium-derived hyperpolarizing factor (EDHF)-mediated vascular relaxation responses through alteration in function of gap junctional proteins. Female rats were implanted with placebo or dihydrotestosterone (DHT) pellets (7.5 mg, 90-day release). After 12 weeks of DHT exposure, blood pressure was assessed through carotid arterial catheter and endothelium-dependent mesenteric arterial EDHF relaxation using wire myograph. Connexin expression in mesenteric arteries was also examined. Elevated DHT significantly increased mean arterial pressure and decreased endothelium-dependent EDHF-mediated acetylcholine relaxation. Inhibition of Cx40 did not have any effect, while inhibition of Cx37 decreased EDHF relaxation to a similar magnitude in both controls and DHT females. On the other hand, inhibition of Cx43 significantly attenuated EDHF relaxation in mesenteric arteries of controls but not DHT females. Elevated DHT did not alter Cx37 or Cx40, but decreased Cx43 mRNA and protein levels in mesenteric arteries. In vitro exposure of DHT to cultured mesenteric artery smooth muscle cells dose-dependently downregulated Cx43 expression. In conclusion, increased blood pressure in hyperandrogenic females is due, at least in part, to decreased EDHF-mediated vascular relaxation responses. Decreased Cx43 expression and activity may play a role in contributing to androgen-induced decrease in EDHF function.
Collapse
Affiliation(s)
- Jay S Mishra
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Texas, USA
| | - Amar S More
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Texas, USA
| | - Gary D V Hankins
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Texas, USA
| | - Sathish Kumar
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Texas, USA
| |
Collapse
|
16
|
Li Y, Lorca RA, Su EJ. Molecular and cellular underpinnings of normal and abnormal human placental blood flows. J Mol Endocrinol 2018; 60:R9-R22. [PMID: 29097590 PMCID: PMC5732864 DOI: 10.1530/jme-17-0139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
Abnormal placental function is well-established as a major cause for poor pregnancy outcome. Placental blood flow within the maternal uteroplacental compartment, the fetoplacental circulation or both is a vital factor in mediating placental function. Impairment in flow in either or both vasculatures is a significant risk factor for adverse pregnancy outcome, potentially impacting maternal well-being, affecting immediate neonatal health and even influencing the long-term health of the infant. Much remains unknown regarding the mechanistic underpinnings of proper placental blood flow. This review highlights the currently recognized molecular and cellular mechanisms in the development of normal uteroplacental and fetoplacental blood flows. Utilizing the entities of preeclampsia and fetal growth restriction as clinical phenotypes that are often evident downstream of abnormal placental blood flow, mechanisms underlying impaired uteroplacental and fetoplacental blood flows are also discussed. Deficiencies in knowledge, which limit the efficacy of clinical care, are also highlighted, underscoring the need for continued research on normal and abnormal placental blood flows.
Collapse
Affiliation(s)
- Yingchun Li
- Department of Obstetrics and GynecologyDivision of Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ramón A Lorca
- Department of Obstetrics and GynecologyDivision of Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Emily J Su
- Department of Obstetrics and GynecologyDivision of Maternal-Fetal Medicine/Division of Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
17
|
|
18
|
Transient receptor potential canonical type 3 channels: Interactions, role and relevance - A vascular focus. Pharmacol Ther 2017; 174:79-96. [DOI: 10.1016/j.pharmthera.2017.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Ampey BC, Ampey AC, Lopez GE, Bird IM, Magness RR. Cyclic Nucleotides Differentially Regulate Cx43 Gap Junction Function in Uterine Artery Endothelial Cells From Pregnant Ewes. Hypertension 2017; 70:401-411. [PMID: 28559397 PMCID: PMC5507815 DOI: 10.1161/hypertensionaha.117.09113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/03/2017] [Accepted: 05/08/2017] [Indexed: 12/20/2022]
Abstract
Supplemental Digital Content is available in the text. Cell–cell communication is dependent on GJ (gap junction) proteins such as Cx43 (connexin 43). We previously demonstrated the importance of Cx43 function in establishing the enhanced pregnancy vasodilatory phenotype during pregnancy in uterine artery endothelial cells from pregnant (P-UAEC) ewes. Cx43 is regulated by elevating cAMP and PKA (protein kinase A)–dependent Cx43 S365 phosphorylation–associated trafficking and GJ open gating, which is opposed by PKC (protein kinase C)–dependent S368 phosphorylation-mediated GJ turnover and closed gating. However, the role of cyclic nucleotide-mediated signaling mechanisms that control Cx43 and GJ function in P-UAECs is unknown. We hypothesize that cAMP will mediate increases in S365 phosphorylation, thereby, enhancing GJ trafficking and open gating, while cGMP will stimulate S368, but not S365, phosphorylation to enhance GJ turnover and closed gating in P-UAECs. Treatment with 8-Bromo (8-Br)-cAMP signal significantly (P<0.05) increased nonphosphorylated S365 signal and total Cx43 phosphorylation, but not S368 phosphorylation, while 8-Br-cGMP significantly (P<0.05) increased Cx43 C-terminus-S365 signal, S368, and total Cx43 phosphorylation. Inhibition of PKA, but not PKG (protein kinase G), abrogated the 8-Br-cAMP–stimulated increase in nonphosphorylated S365 and total Cx43 phosphorylation and inhibited S368 below basal levels, whereas inhibition of PKG blocked (P<0.05) the 8-bromo-cGMP-stimulated rises in nonphosphorylated S365, total Cx43, and S368 phosphorylation levels in P-UAECs. Functional studies showed that 8-Br-cAMP increased dye transfer and sustained calcium bursts, while 8-Br-cGMP decreased both. Thus, in P-UAECs, only 8-Br-cAMP and not 8-Br-cGMP effectively enhances nonphosphorylated S365 and total Cx43 expression that correspondingly reduces S368 phosphorylation, allowing increased GJ communication. This provides new insights into the regulatory mechanisms behind Cx43 function and GJ communication.
Collapse
Affiliation(s)
- Bryan C Ampey
- From the Department of Obstetrics and Gynecology, Perinatal Research Labs University of Wisconsin, Madison (B.C.A., A.C.A., G.E.L., I.M.B., R.R.M.); and Department of Obstetrics and Gynecology, Perinatal Research Center Tampa, University of South Florida, (R.R.M.)
| | - Amanda C Ampey
- From the Department of Obstetrics and Gynecology, Perinatal Research Labs University of Wisconsin, Madison (B.C.A., A.C.A., G.E.L., I.M.B., R.R.M.); and Department of Obstetrics and Gynecology, Perinatal Research Center Tampa, University of South Florida, (R.R.M.)
| | - Gladys E Lopez
- From the Department of Obstetrics and Gynecology, Perinatal Research Labs University of Wisconsin, Madison (B.C.A., A.C.A., G.E.L., I.M.B., R.R.M.); and Department of Obstetrics and Gynecology, Perinatal Research Center Tampa, University of South Florida, (R.R.M.)
| | - Ian M Bird
- From the Department of Obstetrics and Gynecology, Perinatal Research Labs University of Wisconsin, Madison (B.C.A., A.C.A., G.E.L., I.M.B., R.R.M.); and Department of Obstetrics and Gynecology, Perinatal Research Center Tampa, University of South Florida, (R.R.M.)
| | - Ronald R Magness
- From the Department of Obstetrics and Gynecology, Perinatal Research Labs University of Wisconsin, Madison (B.C.A., A.C.A., G.E.L., I.M.B., R.R.M.); and Department of Obstetrics and Gynecology, Perinatal Research Center Tampa, University of South Florida, (R.R.M.).
| |
Collapse
|
20
|
Chen J, Khalil RA. Matrix Metalloproteinases in Normal Pregnancy and Preeclampsia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:87-165. [PMID: 28662830 PMCID: PMC5548443 DOI: 10.1016/bs.pmbts.2017.04.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Normal pregnancy is associated with marked hemodynamic and uterine changes that allow adequate uteroplacental blood flow and uterine expansion for the growing fetus. These pregnancy-associated changes involve significant uteroplacental and vascular remodeling. Matrix metalloproteinases (MMPs) are important regulators of vascular and uterine remodeling. Increases in MMP-2 and MMP-9 have been implicated in vasodilation, placentation, and uterine expansion during normal pregnancy. The increases in MMPs could be induced by the increased production of estrogen and progesterone during pregnancy. MMP expression/activity may be altered during complications of pregnancy. Decreased vascular MMP-2 and MMP-9 may lead to decreased vasodilation, increased vasoconstriction, hypertensive pregnancy, and preeclampsia. Abnormal expression of uteroplacental integrins, cytokines, and MMPs may lead to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate remodeling of spiral arteries, and reduced uterine perfusion pressure (RUPP). RUPP may cause imbalance between the antiangiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the proangiogenic vascular endothelial growth factor and placental growth factor, or stimulate the release of inflammatory cytokines, hypoxia-inducible factor, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could target MMPs in the extracellular matrix as well as endothelial and vascular smooth muscle cells, causing generalized vascular dysfunction, increased vasoconstriction and hypertension in pregnancy. MMP activity can also be altered by endogenous tissue inhibitors of metalloproteinases (TIMPs) and changes in the MMP/TIMP ratio. In addition to their vascular effects, decreases in expression/activity of MMP-2 and MMP-9 in the uterus could impede uterine growth and expansion and lead to premature labor. Understanding the role of MMPs in uteroplacental and vascular remodeling and function could help design new approaches for prediction and management of preeclampsia and premature labor.
Collapse
Affiliation(s)
- Juanjuan Chen
- Vascular Surgery Research Laboratories, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.
| |
Collapse
|
21
|
Guo R, Si R, Scott BT, Makino A. Mitochondrial connexin40 regulates mitochondrial calcium uptake in coronary endothelial cells. Am J Physiol Cell Physiol 2017; 312:C398-C406. [PMID: 28122731 PMCID: PMC5407023 DOI: 10.1152/ajpcell.00283.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/30/2023]
Abstract
Connexins (Cxs) are a group of integral membrane proteins that can form gap junctions between adjacent cells. Recently, it was reported that Cx43 is expressed not only in the plasma membrane but also in the inner mitochondrial membrane and that it regulates mitochondrial functions. Cx40 is predominantly expressed in vascular endothelial cells (ECs) and plays an important role in the electrical propagation between ECs and endothelial/smooth muscle cells. However, it is unknown whether Cx40 is expressed in the mitochondria and what the role of mitochondrial Cx40 is in endothelial functions. We observed in coronary ECs that Cx40 protein was expressed in the mitochondria, as determined by Western blot and immunofluorescence studies. We found that mouse coronary ECs (MCECs) isolated from Cx40 knockout (Cx40 KO) mice exhibited significantly lower resting mitochondrial calcium concentration ([Ca2+]mito) than MCECs from wild-type (WT) mice. After increase in cytosolic Ca2+ concentration ([Ca2+]cyto) with cyclopiazonic acid, calcium uptake into the mitochondria was significantly attenuated in MCECs from Cx40 KO mice compared with WT MCECs. There was no difference in resting [Ca2+]cyto and store-operated calcium entry in MCECs from WT and Cx40 KO mice. We also detected a significant decrease in the concentration of mitochondrial reactive oxygen species (ROS) in Cx40 KO MCECs. Cx40 overexpression in ECs significantly increased resting [Ca2+]mito level and calcium uptake by mitochondria in response to increased [Ca2+]cyto and augmented mitochondrial ROS production. These data suggest that mitochondrial Cx40 contributes to the regulation of mitochondrial calcium homeostasis.
Collapse
Affiliation(s)
- Rui Guo
- Department of Physiology, The University of Arizona, Tucson, Arizona; and
| | - Rui Si
- Department of Physiology, The University of Arizona, Tucson, Arizona; and
| | - Brian T Scott
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Ayako Makino
- Department of Physiology, The University of Arizona, Tucson, Arizona; and
| |
Collapse
|
22
|
Boeldt DS, Bird IM. Vascular adaptation in pregnancy and endothelial dysfunction in preeclampsia. J Endocrinol 2017; 232:R27-R44. [PMID: 27729465 PMCID: PMC5115955 DOI: 10.1530/joe-16-0340] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/11/2016] [Indexed: 12/27/2022]
Abstract
Maternal vascular adaptation to pregnancy is critically important to expand the capacity for blood flow through the uteroplacental unit to meet the needs of the developing fetus. Failure of the maternal vasculature to properly adapt can result in hypertensive disorders of pregnancy such as preeclampsia (PE). Herein, we review the endocrinology of maternal adaptation to pregnancy and contrast this with that of PE. Our focus is specifically on those hormones that directly influence endothelial cell function and dysfunction, as endothelial cell dysfunction is a hallmark of PE. A variety of growth factors and cytokines are present in normal vascular adaptation to pregnancy. However, they have also been shown to be circulating at abnormal levels in PE pregnancies. Many of these factors promote endothelial dysfunction when present at abnormal levels by acutely inhibiting key Ca2+ signaling events and chronically promoting the breakdown of endothelial cell-cell contacts. Increasingly, our understanding of how the contributions of the placenta, immune cells, and the endothelium itself promote the endocrine milieu of PE is becoming clearer. We then describe in detail how the complex endocrine environment of PE affects endothelial cell function, why this has contributed to the difficulty in fully understanding and treating this disorder, and how a focus on signaling convergence points of many hormones may be a more successful treatment strategy.
Collapse
Affiliation(s)
- D S Boeldt
- Department of Ob/GynPerinatal Research Laboratories, University Wisconsin - Madison, Madison, Wisconsin, USA
| | - I M Bird
- Department of Ob/GynPerinatal Research Laboratories, University Wisconsin - Madison, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Boeldt DS, Krupp J, Yi FX, Khurshid N, Shah DM, Bird IM. Positive versus negative effects of VEGF165 on Ca2+ signaling and NO production in human endothelial cells. Am J Physiol Heart Circ Physiol 2016; 312:H173-H181. [PMID: 27836897 DOI: 10.1152/ajpheart.00924.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 11/22/2022]
Abstract
The role increased vascular endothelial growth factor (VEGF) plays in vascular function during normal vs. preeclamptic pregnancy has been a source of some controversy of late. In this study, we seek to understand how VEGF165 influences vasodilator production via Ca2+ signaling mechanisms in human endothelial cells. We utilize human umbilical vein endothelial cells (HUVEC) as well as intact ex vivo human umbilical vein (HUV Endo) to address direct stimulation of Ca2+ and NO by VEGF165 alone, as well as the effect of VEGF165 on subsequent ATP-stimulated Ca2+ signaling and NO production. We show that VEGF165 stimulates Ca2+ responses in both HUVEC and HUV Endo, which results in a corresponding increase in NO production in HUV Endo. Longer-term VEGF165 pretreatment then inhibits sustained Ca2+ burst responses to ATP in HUVEC and HUV Endo. This is paralleled by a corresponding drop in ATP-stimulated NO production in HUV Endo, likely through inhibition of Cx43 gap-junction function. Thus, although VEGF165 makes a small initial positive impact on vasodilator production via direct stimulation of Ca2+ responses, this is outweighed by the greater subsequent negative impact on Ca2+ bursts and vasodilator production promoted by more potent agonists such as ATP. Overall, elevated levels of VEGF165 associated with preeclampsia could contribute to the endothelial dysfunction by preventing Ca2+ bursts to other agonists including but not limited to ATP. NEW & NOTEWORTHY In this manuscript, we show that VEGF levels associated with preeclampsia are a net negative contributor to potential vasodilator production in both a human ex vivo and in vitro endothelial cell model. Therefore, pharmacological targeting of VEGF-stimulated signaling pathways could be a novel treatment modality for preeclampsia-related hypertension.
Collapse
Affiliation(s)
- Derek S Boeldt
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Jennifer Krupp
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; and.,Division Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Fu-Xian Yi
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Nauman Khurshid
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; and.,Division Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Dinesh M Shah
- Division Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ian M Bird
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; and
| |
Collapse
|
24
|
Min SJ, Kang TC. Positive feedback role of TRPC3 in TNF-α-mediated vasogenic edema formation induced by status epilepticus independent of ET B receptor activation. Neuroscience 2016; 337:37-47. [PMID: 27623392 DOI: 10.1016/j.neuroscience.2016.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/26/2016] [Accepted: 09/05/2016] [Indexed: 02/06/2023]
Abstract
Brain-blood barrier (BBB) disruption results in vasogenic edema, which is involved in the pathogenesis of epilepsy. Following status epilepticus (SE), up-regulated transient receptor potential canonical channel-3 (TRPC3), a Ca2+-permeable cation channels in endothelial cells, is relevant to vasogenic edema formation in the rat piriform cortex. In addition, pyrazole-3 (Pyr-3, a TRPC3 inhibitor) attenuated SE-induced vasogenic edema. However, the upstream regulators of TRPC3 expression in vasogenic edema formation have been unclear. In the present study, soluble tumor necrosis factor p55 receptor (sTNFp55R, a TNF-α inhibitor), SN50 (a nuclear factor-κB (NFκB) inhibitor), BQ-788 (an endothelin B (ETB) receptor inhibitor) and Pyr-3 effectively prevented vasogenic edema following SE. sTNFp55R and SN50 (but not BQ-788) attenuated SE-induced up-regulation of endothelial TRPC3 expression. Pyr-3 ameliorated SE-induced NFκB p65-Thr435 phosphorylation and ETB receptor expression. In addition, Pyr-3 mitigated NFκB p65-Thr435 phosphorylation induced by recombinant TNF-α. These findings indicate that TNF-α-mediated NFκB p65-Thr435 phosphorylation may up-regulate TRPC3 expression, which participates in vasogenic edema formation via increasing endothelial nitric oxide synthase expression following SE, independent of ETB receptor activation. Therefore, we suggest that TRPC3 may be involved in a positive feedback loop of NFκB/ETB receptor signaling pathway.
Collapse
Affiliation(s)
- Su-Ji Min
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea.
| |
Collapse
|
25
|
Ampey BC, Morschauser TJ, Ramadoss J, Magness RR. Domain-Specific Partitioning of Uterine Artery Endothelial Connexin43 and Caveolin-1. Hypertension 2016; 68:982-8. [PMID: 27572151 DOI: 10.1161/hypertensionaha.116.08000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/01/2016] [Indexed: 11/16/2022]
Abstract
Uterine vascular adaptations facilitate rises in uterine blood flow during pregnancy, which are associated with gap junction connexin (Cx) proteins and endothelial nitric oxide synthase. In uterine artery endothelial cells (UAECs), ATP activates endothelial nitric oxide synthase in a pregnancy (P)-specific manner that is dependent on Cx43 function. Caveolar subcellular domain partitioning plays key roles in ATP-induced endothelial nitric oxide synthase activation and nitric oxide production. Little is known regarding the partitioning of Cx proteins to caveolar domains or their dynamics with ATP treatment. We observed that Cx43-mediated gap junction function with ATP stimulation is associated with Cx43 repartitioning between the noncaveolar and caveolar domains. Compared with UAECs from nonpregnant (NP) ewes, levels of ATP, PGI2, cAMP, NOx, and cGMP were 2-fold higher (P<0.05) in pregnant UAECs. In pregnant UAECs, ATP increased Lucifer yellow dye transfer, a response abrogated by Gap27, but not Gap 26, indicating involvement of Cx43, but not Cx37. Confocal microscopy revealed domain partitioning of Cx43 and caveolin-1. In pregnant UAECs, LC/MS/MS analysis revealed only Cx43 in the caveolar domain. In contrast, Cx37 was located only in the noncaveolar pool. Western analysis revealed that ATP increased Cx43 distribution (1.7-fold; P=0.013) to the caveolar domain, but had no effect on Cx37. These data demonstrate rapid ATP-stimulated repartitioning of Cx43 to the caveolae, where endothelial nitric oxide synthase resides and plays an important role in nitric oxide-mediated increasing uterine blood flow during pregnancy.
Collapse
Affiliation(s)
- Bryan C Ampey
- From the Department of Ob/Gyn, University of Wisconsin, Madison (B.C.A., T.J.M., R.R.M.); Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station (J.R.); and Department of Ob/Gyn, University South Florida, Perinatal Research Center Tampa (R.R.M.)
| | - Timothy J Morschauser
- From the Department of Ob/Gyn, University of Wisconsin, Madison (B.C.A., T.J.M., R.R.M.); Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station (J.R.); and Department of Ob/Gyn, University South Florida, Perinatal Research Center Tampa (R.R.M.)
| | - Jayanth Ramadoss
- From the Department of Ob/Gyn, University of Wisconsin, Madison (B.C.A., T.J.M., R.R.M.); Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station (J.R.); and Department of Ob/Gyn, University South Florida, Perinatal Research Center Tampa (R.R.M.)
| | - Ronald R Magness
- From the Department of Ob/Gyn, University of Wisconsin, Madison (B.C.A., T.J.M., R.R.M.); Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station (J.R.); and Department of Ob/Gyn, University South Florida, Perinatal Research Center Tampa (R.R.M.).
| |
Collapse
|
26
|
Possomato-Vieira JS, Khalil RA. Mechanisms of Endothelial Dysfunction in Hypertensive Pregnancy and Preeclampsia. ADVANCES IN PHARMACOLOGY 2016; 77:361-431. [PMID: 27451103 DOI: 10.1016/bs.apha.2016.04.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preeclampsia is a pregnancy-related disorder characterized by hypertension and could lead to maternal and fetal morbidity and mortality. Although the causative factors and pathophysiological mechanisms are unclear, endothelial dysfunction is a major hallmark of preeclampsia. Clinical tests and experimental research have suggested that generalized endotheliosis in the systemic, renal, cerebral, and hepatic circulation could decrease endothelium-derived vasodilators such as nitric oxide, prostacyclin, and hyperpolarization factor and increase vasoconstrictors such as endothelin-1 and thromboxane A2, leading to increased vasoconstriction, hypertension, and other manifestation of preeclampsia. In search for the upstream mechanisms that could cause endothelial dysfunction, certain genetic, demographic, and environmental risk factors have been suggested to cause abnormal expression of uteroplacental integrins, cytokines, and matrix metalloproteinases, leading to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate spiral arteries remodeling, reduced uterine perfusion pressure (RUPP), and placental ischemia/hypoxia. RUPP may cause imbalance between the antiangiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the proangiogenic factors vascular endothelial growth factor and placental growth factor, or stimulate the release of other circulating bioactive factors such as inflammatory cytokines, hypoxia-inducible factor-1, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could then target endothelial cells and cause generalized endothelial dysfunction. Therapeutic options are currently limited, but understanding the factors involved in endothelial dysfunction could help design new approaches for prediction and management of preeclampsia.
Collapse
Affiliation(s)
- J S Possomato-Vieira
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - R A Khalil
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
27
|
Boeldt DS, Grummer MA, Yi F, Magness RR, Bird IM. Phosphorylation of Ser-279/282 and Tyr-265 positions on Cx43 as possible mediators of VEGF-165 inhibition of pregnancy-adapted Ca2+ burst function in ovine uterine artery endothelial cells. Mol Cell Endocrinol 2015; 412:73-84. [PMID: 26033246 PMCID: PMC4516676 DOI: 10.1016/j.mce.2015.05.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
Abstract
Normal pregnancy requires increased uterine endothelial cell driven vasodilation that is related to increases in sustained Ca2+ signaling via increased connexin 43 (Cx43) gap junction function. Preeclampsia, a hypertensive disorder of pregnancy associated with endothelial dysfunction, is also linked with down regulation of Ca2+ driven vasodilator production and increased levels of vascular endothelial growth factor (VEGF). Cx43 function can be acutely down-regulated by phosphorylation of multiple inhibitory residues and VEGF is known to promote phosphorylation of Cx43. Herein, we show that VEGF-165 promotes Cx43 phosphorylation at Ser-279/282 and Tyr-265 residues and blocks pregnancy-adapted Ca2+ signaling in ovine uterine artery endothelial cells (UAEC). Pharmacological Src and ERK kinase pathway inhibitors (PP2 and U0126) reverse these phosphorylations and rescue Ca2+ signaling. We also report a nutraceutical Src inhibitor, t10,c12 conjugated linoleic acid (10,12 CLA), rescues Ca2+ signaling in UAEC and therefore may have therapeutic potential for preeclampsia.
Collapse
Affiliation(s)
- Derek S Boeldt
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI 53715, USA.
| | - Mary A Grummer
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI 53715, USA
| | - FuXian Yi
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI 53715, USA
| | - Ronald R Magness
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI 53715, USA; Department of Pediatrics, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI 53715, USA; Department of Animal Sciences, University of Wisconsin - Madison, WI 53715, USA
| | - Ian M Bird
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI 53715, USA; Department of Pediatrics, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI 53715, USA
| |
Collapse
|
28
|
Anaya HA, Yi FX, Boeldt DS, Krupp J, Grummer MA, Shah DM, Bird IM. Changes in Ca2+ Signaling and Nitric Oxide Output by Human Umbilical Vein Endothelium in Diabetic and Gestational Diabetic Pregnancies. Biol Reprod 2015. [PMID: 26203178 DOI: 10.1095/biolreprod.115.128645] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Diabetes (DM) complicates 3%-10% of pregnancies, resulting in significant maternal and neonatal morbidity and mortality. DM pregnancies are also associated with vascular dysfunction, including blunted nitric oxide (NO) output, but it remains unclear why. Herein we examine changes in endothelial NO production and its relationship to Ca(2+) signaling in endothelial cells of intact umbilical veins from control versus gestational diabetic (GDM) or preexisting diabetic subjects. We have previously reported that endothelial cells of intact vessels show sustained Ca(2+) bursting in response to ATP, and these bursts drive prolonged NO production. Herein we show that in both GDM and DM pregnancies, the incidence of Ca(2+) bursts remains similar, but there is a reduction in overall sustained phase Ca(2+) mobilization and a reduction in NO output. Further studies show damage has occurred at the level of NOS3 protein itself. Since exposure to DM serum is known to impair normal human umbilical vein endothelial cell (HUVEC) function, we further studied the ability of HUVEC to signal through Ca(2+) after they were isolated from DM and GDM subjects and maintained in culture for several days. These HUVEC showed differences in the rate of Ca(2+) bursting, with DM > GDM = control HUVEC. Both GDM- and DM-derived HUVEC showed smaller Ca(2+) bursts that were less capable of NOS3 activation compared to control HUVEC. We conclude that HUVEC from DM and GDM subjects are reprogrammed such that the Ca(2+) bursting peak shape and duration are permanently impaired. This may explain why ROS therapy alone is not effective in DM and GDM subjects.
Collapse
Affiliation(s)
- Heather A Anaya
- Perinatal Research Laboratories and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin, Madison, Wisconsin Rush University Medical Center, Section of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Chicago, Illinois
| | - Fu-Xian Yi
- Perinatal Research Laboratories and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Derek S Boeldt
- Perinatal Research Laboratories and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Jennifer Krupp
- Perinatal Research Laboratories and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin, Madison, Wisconsin Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Mary A Grummer
- Perinatal Research Laboratories and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Dinesh M Shah
- Perinatal Research Laboratories and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Ian M Bird
- Perinatal Research Laboratories and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
29
|
Gokina NI, Bonev AD, Phillips J, Gokin AP, Veilleux K, Oppenheimer K, Goloman G. Impairment of IKCa channels contributes to uteroplacental endothelial dysfunction in rat diabetic pregnancy. Am J Physiol Heart Circ Physiol 2015; 309:H592-604. [PMID: 26092991 DOI: 10.1152/ajpheart.00901.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/19/2015] [Indexed: 12/18/2022]
Abstract
Diabetes in rat pregnancy is associated with impaired vasodilation of the maternal uteroplacental vasculature. In the present study, we explored the role of endothelial cell (EC) Ca(2+)-activated K(+) channels of small conductance (SKCa channels) and intermediate conductance (IKCa channels) in diabetes-induced uterine vascular dysfunction. Diabetes was induced by injection of streptozotocin to second-day pregnant rats and confirmed by the development of maternal hyperglycemia. Control rats were injected with citrate buffer. Changes in smooth muscle cell intracellular Ca(2+) concentration, membrane potential, and vasodilation induced by SKCa/IKCa channel activators were studied in uteroplacental arteries of control and diabetic rats. The impact of diabetes on SKCa- and IKCa-mediated currents was explored in freshly dissociated ECs. NS309 evoked a potent vasodilation that was effectively inhibited by TRAM-34 but not by apamin. NS309-induced smooth muscle cell intracellular Ca(2+) concentration, membrane potential, and dilator responses were significantly diminished by diabetes; N-cyclohexyl-N-2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-4-pyrimidinamine (CyPPA)-evoked responses were not affected. Ca(2+)-activated ion currents in ECs were insensitive to paxilline, markedly inhibited by charybdotoxin (ChTX), and diminished by apamin. NS309-induced EC currents were generated mostly due to activation of ChTX-sensitive channels. Maternal diabetes resulted in a significant reduction in ChTX-sensitive currents with no effect on apamin-sensitive or CyPPA-induced currents. We concluded that IKCa channels play a prevalent role over SKCa channels in the generation of endothelial K(+) currents and vasodilation of uteroplacental arteries. Impaired function of IKCa channels importantly contributes to diabetes-induced uterine endothelial dysfunction. Therapeutic restoration of IKCa channel function may be a novel strategy for improvement of maternal uteroplacental blood flow in pregnancies complicated by diabetes.
Collapse
Affiliation(s)
- Natalia I Gokina
- Department of Obstetrics, Gynecology and Reproductive Sciences, College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Adrian D Bonev
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont
| | - Julie Phillips
- Department of Obstetrics, Gynecology and Reproductive Sciences, College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Alexander P Gokin
- Department of Obstetrics, Gynecology and Reproductive Sciences, College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Kelsey Veilleux
- Department of Obstetrics, Gynecology and Reproductive Sciences, College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Karen Oppenheimer
- Department of Obstetrics, Gynecology and Reproductive Sciences, College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Gabriela Goloman
- Department of Obstetrics, Gynecology and Reproductive Sciences, College of Medicine, University of Vermont, Burlington, Vermont; and
| |
Collapse
|
30
|
Ampey BC, Morschauser TJ, Lampe PD, Magness RR. Gap junction regulation of vascular tone: implications of modulatory intercellular communication during gestation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 814:117-32. [PMID: 25015806 DOI: 10.1007/978-1-4939-1031-1_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the vasculature, gap junctions (GJ) play a multifaceted role by serving as direct conduits for cell-cell intercellular communication via the facilitated diffusion of signaling molecules. GJs are essential for the control of gene expression and coordinated vascular development in addition to vascular function. The coupling of endothelial cells to each other, as well as with vascular smooth muscle cells via GJs, plays a relevant role in the control of vasomotor tone, tissue perfusion and arterial blood pressure. The regulation of cell-signaling is paramount to cardiovascular adaptations of pregnancy. Pregnancy requires highly developed cell-to-cell coupling, which is affected partly through the formation of intercellular GJs by Cx43, a gap junction protein, within adjacent cell membranes to help facilitate the increase of uterine blood flow (UBF) in order to ensure adequate perfusion for nutrient and oxygen delivery to the placenta and thus the fetus. One mode of communication that plays a critical role in regulating Cx43 is the release of endothelial-derived vasodilators such as prostacyclin (PGI2) and nitric oxide (NO) and their respective signaling mechanisms involving second messengers (cAMP and cGMP, respectively) that are likely to be important in maintaining UBF. Therefore, the assertion we present in this review is that GJs play an integral if not a central role in maintaining UBF by controlling rises in vasodilators (PGI2 and NO) via cyclic nucleotides. In this review, we discuss: (1) GJ structure and regulation; (2) second messenger regulation of GJ phosphorylation and formation; (3) pregnancy-induced changes in cell-signaling; and (4) the role of uterine arterial endothelial GJs during gestation. These topics integrate the current knowledge of this scientific field with interpretations and hypotheses regarding the vascular effects that are mediated by GJs and their relationship with vasodilatory vascular adaptations required for modulating the dramatic physiological rises in uteroplacental perfusion and blood flow observed during normal pregnancy.
Collapse
Affiliation(s)
- Bryan C Ampey
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, School Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53715, USA
| | | | | | | |
Collapse
|
31
|
Boeldt DS, Grummer MA, Magness RR, Bird IM. Altered VEGF-stimulated Ca2+ signaling in part underlies pregnancy-adapted eNOS activity in UAEC. J Endocrinol 2014; 223:1-11. [PMID: 25063757 PMCID: PMC4161637 DOI: 10.1530/joe-14-0252] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In pregnancy, the uterine vasculature undergoes dramatic vasodilatory adaptations. Previously, vascular endothelial growth factor (VEGF) has been shown to stimulate endothelial nitric oxide synthase (eNOS) in uterine artery endothelial cells (UAECs) derived from pregnant ewes to a greater extent than those from non-pregnant ewes in a manner not fully explained by changes in the phosphorylation of eNOS. In this study, we used Fura-2 Ca(2+) imaging and arginine-to-citrulline conversion eNOS activity assays to assess the importance of VEGF-stimulated Ca(2+) responses in pregnancy-related changes in NO production in UAEC. In this study, we show that pregnancy-induced changes in VEGF-stimulated Ca(2+) responses could account in part for the greater capacity of VEGF to stimulate eNOS in UAECs from pregnant versus non-pregnant animals. VEGF-stimulated Ca(2+) responses in UAECs from pregnant and non-pregnant animals were mediated through VEGF receptor 2 and were detected in roughly 15% of all cells. There were no pregnancy-specific differences in area under the curve or peak height. UAECs from pregnant animals were more consistent in the time to response initiation, had a larger component of extracellular Ca(2+) entry, and were more sensitive to a submaximal dose of VEGF. In UAECs from pregnant and non-pregnant animals Ca(2+) responses and eNOS activation were sensitive to the phospholipase C/inositol 1,4,5-trisphosphate pathway inhibitors 2-aminoethoxydiphenylborane and U73122. Thus, changes in VEGF-stimulated [Ca(2+)]i are necessary for eNOS activation in UAECs, and pregnancy-induced changes in Ca(2+) responses could also in part explain the pregnancy-specific adaptive increase in eNOS activity in UAECs.
Collapse
Affiliation(s)
- Derek S Boeldt
- Perinatal Research LaboratoriesDepartment of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Meriter Hospital/Park, 202 South Park Street, Madison, Wisconsin 53715, USADepartment of PediatricsSchool Medicine and Public HealthDepartment of Animal SciencesUniversity of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Mary A Grummer
- Perinatal Research LaboratoriesDepartment of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Meriter Hospital/Park, 202 South Park Street, Madison, Wisconsin 53715, USADepartment of PediatricsSchool Medicine and Public HealthDepartment of Animal SciencesUniversity of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Ronald R Magness
- Perinatal Research LaboratoriesDepartment of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Meriter Hospital/Park, 202 South Park Street, Madison, Wisconsin 53715, USADepartment of PediatricsSchool Medicine and Public HealthDepartment of Animal SciencesUniversity of Wisconsin-Madison, Madison, Wisconsin 53715, USA Perinatal Research LaboratoriesDepartment of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Meriter Hospital/Park, 202 South Park Street, Madison, Wisconsin 53715, USADepartment of PediatricsSchool Medicine and Public HealthDepartment of Animal SciencesUniversity of Wisconsin-Madison, Madison, Wisconsin 53715, USA Perinatal Research LaboratoriesDepartment of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Meriter Hospital/Park, 202 South Park Street, Madison, Wisconsin 53715, USADepartment of PediatricsSchool Medicine and Public HealthDepartment of Animal SciencesUniversity of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Ian M Bird
- Perinatal Research LaboratoriesDepartment of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Meriter Hospital/Park, 202 South Park Street, Madison, Wisconsin 53715, USADepartment of PediatricsSchool Medicine and Public HealthDepartment of Animal SciencesUniversity of Wisconsin-Madison, Madison, Wisconsin 53715, USA Perinatal Research LaboratoriesDepartment of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Meriter Hospital/Park, 202 South Park Street, Madison, Wisconsin 53715, USADepartment of PediatricsSchool Medicine and Public HealthDepartment of Animal SciencesUniversity of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| |
Collapse
|
32
|
Activation of CB1 inhibits NGF-induced sensitization of TRPV1 in adult mouse afferent neurons. Neuroscience 2014; 277:679-89. [PMID: 25088915 DOI: 10.1016/j.neuroscience.2014.07.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/12/2014] [Accepted: 07/02/2014] [Indexed: 01/02/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1)-containing afferent neurons convey nociceptive signals and play an essential role in pain sensation. Exposure to nerve growth factor (NGF) rapidly increases TRPV1 activity (sensitization). In the present study, we investigated whether treatment with the selective cannabinoid receptor 1 (CB1) agonist arachidonyl-2'-chloroethylamide (ACEA) affects NGF-induced sensitization of TRPV1 in adult mouse dorsal root ganglion (DRG) afferent neurons. We found that CB1, NGF receptor tyrosine kinase A (trkA), and TRPV1 are present in cultured adult mouse small- to medium-sized afferent neurons and treatment with NGF (100ng/ml) for 30 min significantly increased the number of neurons that responded to capsaicin (as indicated by increased intracellular Ca(2 +) concentration). Pretreatment with the CB1 agonist ACEA (10nM) inhibited the NGF-induced response, and this effect of ACEA was reversed by a selective CB1 antagonist. Further, pretreatment with ACEA inhibited NGF-induced phosphorylation of AKT. Blocking PI3 kinase activity also attenuated the NGF-induced increase in the number of neurons that responded to capsaicin. Our results indicate that the analgesic effect of CB1 activation may in part be due to inhibition of NGF-induced sensitization of TRPV1 and also that the effect of CB1 activation is at least partly mediated by attenuation of NGF-induced increased PI3 signaling.
Collapse
|
33
|
Ramadoss J, Pastore MB, Magness RR. Endothelial caveolar subcellular domain regulation of endothelial nitric oxide synthase. Clin Exp Pharmacol Physiol 2014; 40:753-64. [PMID: 23745825 DOI: 10.1111/1440-1681.12136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 12/12/2022]
Abstract
Complex regulatory processes alter the activity of endothelial nitric oxide synthase (eNOS) leading to nitric oxide (NO) production by endothelial cells under various physiological states. These complex processes require specific subcellular eNOS partitioning between plasma membrane caveolar domains and non-caveolar compartments. Translocation of eNOS from the plasma membrane to intracellular compartments is important for eNOS activation and subsequent NO biosynthesis. We present data reviewing and interpreting information regarding: (i) the coupling of endothelial plasma membrane receptor systems in the caveolar structure relative to eNOS trafficking; (ii) how eNOS trafficking relates to specific protein-protein interactions for inactivation and activation of eNOS; and (iii) how these complex mechanisms confer specific subcellular location relative to eNOS multisite phosphorylation and signalling. Dysfunction in the regulation of eNOS activation may contribute to several disease states, in particular gestational endothelial abnormalities (pre-eclampsia, gestational diabetes etc.), that have life-long deleterious health consequences that predispose the offspring to develop hypertensive disease, Type 2 diabetes and adiposity.
Collapse
Affiliation(s)
- Jayanth Ramadoss
- Department of Obstetrics and Gynaecology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | |
Collapse
|
34
|
Thornburg KL, Louey S. Uteroplacental circulation and fetal vascular function and development. Curr Vasc Pharmacol 2014; 11:748-57. [PMID: 24063386 DOI: 10.2174/1570161111311050012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/14/2012] [Accepted: 07/12/2012] [Indexed: 12/20/2022]
Abstract
Although blood flow in the placental vasculature is governed by the same physiological forces of shear, pressure and resistance as in other organs, it is also uniquely specialized on the maternal and fetal sides. At the materno-fetal interface, the independent uteroplacental and umbilicoplacental circulations must coordinate sufficiently to supply the fetus with the nutrients and substrates it needs to grow and develop. Uterine arterial flow must increase dramatically to accommodate the growing fetus. Recent evidence delineates the hormonal and endothelial mechanisms by which maternal vessels dilate and remodel during pregnancy. The umbilical circulation is established de novo during embryonic development but blood does not flow through the placenta until late in the first trimester. The umbilical circulation operates in the interest of maintaining fetal oxygenation over the course of pregnancy, and is affected differently by mechanical and chemical regulators of vascular tone compared to other organs. The processes that match placental vascular growth and fetal tissue growth are not understood, but studies of compromised pregnancies provide clues. The subtle changes that cause the failure of the normally regulated vascular processes during pregnancy have not been thoroughly identified. Likewise, practical and effective therapeutic strategies to reverse detrimental placental perfusion patterns have yet to be investigated.
Collapse
Affiliation(s)
- Kent L Thornburg
- Heart Research Center, Oregon Health & Science University, 3303 SW Bond Ave, CH15H, Portland, OR 97239-3098, USA.
| | | |
Collapse
|
35
|
Mayra PR, Rosalina VL, López G, Iruretagoyena J, Magness R. [Regulation of uterine blood flow. I. Functions of estrogen and estrogen receptor α/β in the uterine vascular endothelium during pregnancy]. ACTA ACUST UNITED AC 2014; 79:129-139. [PMID: 26113750 DOI: 10.4067/s0717-75262014000200011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Estrogen and classical estrogen receptors (ERs), ER-α and ER-β, have been shown to be partially responsible for short and long term uterine endothelial adaptations during pregnancy. The molecular and structural differences, together with the various effects caused by these receptors in cells and tissues, suggest that their function varies depending upon estrogen and estrogen receptor signaling. In this review, we discuss the role of estrogen and its classic receptors in the cardiovascular adaptations during pregnancy and the expression of ERs in vivo and in vitro in the uterine artery endothelium during the ovarian cycle and pregnancy, while comparing their expression in arterial endothelium from reproductive and non-reproductive tissues. These themes integrate current knowledge of this broad scientific field with various interpretations and hypothesis that related estrogenic effects by either one or both ERs. This review also includes the relationship with vasodilator and angiogenic adaptations required to modulate the dramatic physiological increase to the uteroplacental perfusion observed during normal pregnancy.
Collapse
Affiliation(s)
- Pastore R Mayra
- Programa de Endocrinología y Fisiología Reproductiva, Universidad de Wisconsin-Madison, Wisconsin, USA ; Laboratorio de Investigación Perinatal, Departamento de Obstetricia y Ginecoloaía y División de Ciencias de la Reproducción, Universidad de Wisconsin-Madison, Wisconsin, USA
| | - Villalón L Rosalina
- Programa de Endocrinología y Fisiología Reproductiva, Universidad de Wisconsin-Madison, Wisconsin, USA ; Laboratorio de Investigación Perinatal, Departamento de Obstetricia y Ginecoloaía y División de Ciencias de la Reproducción, Universidad de Wisconsin-Madison, Wisconsin, USA
| | - Gladys López
- Laboratorio de Investigación Perinatal, Departamento de Obstetricia y Ginecoloaía y División de Ciencias de la Reproducción, Universidad de Wisconsin-Madison, Wisconsin, USA ; Departamento Perinatal, Universidad de Wisconsin-Madison, Wisconsin, USA
| | - Jesús Iruretagoyena
- Departamento Perinatal, Universidad de Wisconsin-Madison, Wisconsin, USA ; Departamento de Obstetricia y Ginecología de la División de Medicina Materno-Fetal. Universidad de Wisconsin-Madison, Wisconsin, USA
| | - Ronald Magness
- Programa de Endocrinología y Fisiología Reproductiva, Universidad de Wisconsin-Madison, Wisconsin, USA ; Laboratorio de Investigación Perinatal, Departamento de Obstetricia y Ginecoloaía y División de Ciencias de la Reproducción, Universidad de Wisconsin-Madison, Wisconsin, USA ; Departamento Perinatal, Universidad de Wisconsin-Madison, Wisconsin, USA ; Departamento de Ciencias de Animales, Universidad de Wisconsin-Madison, Wisconsin, USA
| |
Collapse
|
36
|
Pregnancy Programming and Preeclampsia: Identifying a Human Endothelial Model to Study Pregnancy-Adapted Endothelial Function and Endothelial Adaptive Failure in Preeclamptic Subjects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 814:27-47. [DOI: 10.1007/978-1-4939-1031-1_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Morschauser TJ, Ramadoss J, Koch JM, Yi FX, Lopez GE, Bird IM, Magness RR. Local effects of pregnancy on connexin proteins that mediate Ca2+-associated uterine endothelial NO synthesis. Hypertension 2013; 63:589-94. [PMID: 24366080 DOI: 10.1161/hypertensionaha.113.01171] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UNLABELLED Uterine artery adaptations during gestation facilitate increases in uterine blood flow and fetal growth. HYPOTHESIS local expression and distribution of uterine artery connexins play roles in mediating in vivo gestational eNOS activation and NO production. We established an ovine model restricting pregnancy to a single uterine horn and measured uterine blood flow, uterine artery shear stress, connexins 37/43, and P(635)eNOS protein levels in uterine artery and systemic artery (omental and renal) endothelium and connexins in vascular smooth muscle. Uterine blood flow and shear stress were locally (unilaterally) and substantially elevated by gestation. During pregnancy, uterine artery endothelial gap junction proteins connexins 37/43 were locally regulated in the gravid horn and elevated 10.3- and 25.6-fold; uterine artery endothelial P(635)eNOS and total eNOS were elevated 3.3- and 2.9-fold; whereas uterine artery vascular smooth muscle connexins 37/43 were locally elevated 12.5- and 5.9-fold, respectively. Less pronounced changes were observed in systemic vasculature except for significant pregnancy-associated increases in omental artery vascular smooth muscle connexin 43 and omental artery endothelial P(635)eNOS and total eNOS. Gap junction blockade using connexin 43, but not connexin 37-specific Gap peptides, abrogated uterine artery endothelial ATP-induced Ca(2+)-mediated NO production. Thus, uterine artery endothelial connexin 43, but not connexin 37, regulates Ca(2+)-mediated NO production required for the vasodilation to accommodate increases in uterine blood flow and shear stress during healthy pregnancies.
Collapse
Affiliation(s)
- Timothy J Morschauser
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, PAB1, Meriter Hospital/Park, 202 S. Park St, Madison, WI 53715.
| | | | | | | | | | | | | |
Collapse
|
38
|
Krupp J, Boeldt DS, Yi FX, Grummer MA, Bankowski Anaya HA, Shah DM, Bird IM. The loss of sustained Ca(2+) signaling underlies suppressed endothelial nitric oxide production in preeclamptic pregnancies: implications for new therapy. Am J Physiol Heart Circ Physiol 2013; 305:H969-79. [PMID: 23893163 PMCID: PMC3798749 DOI: 10.1152/ajpheart.00250.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/23/2013] [Indexed: 01/12/2023]
Abstract
Approximately 8% of pregnancies are complicated by preeclampsia (PE), a hypertensive condition characterized by widespread endothelial dysfunction. Reduced nitric oxide (NO) output in PE subjects has been inferred but not directly measured, and there is little understanding of why this occurs. To address this we have used direct imaging of changes in intracellular Ca(2+) concentration ([Ca(2+)]i) and NO in umbilical vein endothelium of normal and PE subjects that is still intact and on the vessel luminal surface. This was achieved by dissection and preloading with fura 2 and DAF-2 imaging dyes, respectively, before subsequent challenge with ATP (100 μM, 30 min). As a control to reveal the content of active endothelial nitric oxide synthase (eNOS) per vessel segment, results were compared with a maximal stimulus with ionomycin (5 μM, 30 min). We show for the first time that normal umbilical vein endothelial cells respond to ATP with sustained bursting that parallels sustained NO output. Furthermore, in subjects with PE, a failure of sustained [Ca(2+)]i bursting occurs in response to ATP and is associated with blunted NO output. In contrast, NO responses to maximal [Ca(2+)]i elevation using ionomycin and the levels of eNOS protein are more similar between groups than the responses to ATP. When the endothelial cells from PE subjects are isolated and allowed to recover in culture, they regain the ability under fura 2 imaging to show multiple [Ca(2+)]i bursts otherwise seen in the cells from normal subjects. Thus novel clinical therapy aimed at restoring function in vivo may be possible.
Collapse
Affiliation(s)
- Jennifer Krupp
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin; and
| | | | | | | | | | | | | |
Collapse
|
39
|
Toda N, Toda H, Okamura T. Regulation of myometrial circulation and uterine vascular tone by constitutive nitric oxide. Eur J Pharmacol 2013; 714:414-23. [DOI: 10.1016/j.ejphar.2013.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 07/01/2013] [Accepted: 07/04/2013] [Indexed: 01/13/2023]
|
40
|
De Bock M, Wang N, Decrock E, Bol M, Gadicherla AK, Culot M, Cecchelli R, Bultynck G, Leybaert L. Endothelial calcium dynamics, connexin channels and blood-brain barrier function. Prog Neurobiol 2013; 108:1-20. [PMID: 23851106 DOI: 10.1016/j.pneurobio.2013.06.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023]
Abstract
Situated between the circulation and the brain, the blood-brain barrier (BBB) protects the brain from circulating toxins while securing a specialized environment for neuro-glial signaling. BBB capillary endothelial cells exhibit low transcytotic activity and a tight, junctional network that, aided by the cytoskeleton, restricts paracellular permeability. The latter is subject of extensive research as it relates to neuropathology, edema and inflammation. A key determinant in regulating paracellular permeability is the endothelial cytoplasmic Ca(2+) concentration ([Ca(2+)]i) that affects junctional and cytoskeletal proteins. Ca(2+) signals are not one-time events restricted to a single cell but often appear as oscillatory [Ca(2+)]i changes that may propagate between cells as intercellular Ca(2+) waves. The effect of Ca(2+) oscillations/waves on BBB function is largely unknown and we here review current evidence on how [Ca(2+)]i dynamics influence BBB permeability.
Collapse
Affiliation(s)
- Marijke De Bock
- Dept. of Basic Medical Sciences, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Endothelial control of vasodilation: integration of myoendothelial microdomain signalling and modulation by epoxyeicosatrienoic acids. Pflugers Arch 2013; 466:389-405. [PMID: 23748495 DOI: 10.1007/s00424-013-1303-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 05/24/2013] [Accepted: 05/26/2013] [Indexed: 12/17/2022]
Abstract
Endothelium-derived epoxyeicosatrienoic acids (EETs) are fatty acid epoxides that play an important role in the control of vascular tone in selected coronary, renal, carotid, cerebral and skeletal muscle arteries. Vasodilation due to endothelium-dependent smooth muscle hyperpolarization (EDH) has been suggested to involve EETs as a transferable endothelium-derived hyperpolarizing factor. However, this activity may also be due to EETs interacting with the components of other primary EDH-mediated vasodilator mechanisms. Indeed, the transfer of hyperpolarization initiated in the endothelium to the adjacent smooth muscle via gap junction connexins occurs separately or synergistically with the release of K(+) ions at discrete myoendothelial microdomain signalling sites. The net effects of such activity are smooth muscle hyperpolarization, closure of voltage-dependent Ca(2+) channels, phospholipase C deactivation and vasodilation. The spatially localized and key components of the microdomain signalling complex are the inositol 1,4,5-trisphosphate receptor-mediated endoplasmic reticulum Ca(2+) store, Ca(2+)-activated K(+) (KCa), transient receptor potential (TRP) and inward-rectifying K(+) channels, gap junctions and the smooth muscle Na(+)/K(+)-ATPase. Of these, TRP channels and connexins are key endothelial effector targets modulated by EETs. In an integrated manner, endogenous EETs enhance extracellular Ca(2+) influx (thereby amplifying and prolonging KCa-mediated endothelial hyperpolarization) and also facilitate the conduction of this hyperpolarization to spatially remote vessel regions. The contribution of EETs and the receptor and channel subtypes involved in EDH-related microdomain signalling, as a candidate for a universal EDH-mediated vasodilator mechanism, vary with vascular bed, species, development and disease and thus represent potentially selective targets for modulating specific artery function.
Collapse
|
42
|
Smedlund K, Bah M, Vazquez G. On the role of endothelial TRPC3 channels in endothelial dysfunction and cardiovascular disease. Cardiovasc Hematol Agents Med Chem 2012; 10:265-74. [PMID: 22827251 PMCID: PMC3465809 DOI: 10.2174/187152512802651051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 05/05/2023]
Abstract
In endothelium, calcium (Ca(2+)) influx through plasma membrane Ca(2+)-permeable channels plays a fundamental role in several physiological functions and in the pathogenesis of cardiovascular disease. Current knowledge on the influence of Ca(2+) influx in signaling events associated to endothelial dysfunction has grown significantly over recent years, particularly after identification of members of the Transient Receptor Potential Canonical (TRPC) family of channel forming proteins as prominent mediators of Ca(2+) entry in endothelial cells. Among TRPC members TRPC3 has been at the center of many of these physiopathological processes. Progress in elucidating the mechanism/s underlying regulation of endothelial TRPC3 and characterization of signaling events downstream TRPC3 activation are of most importance to fully appreciate the role of this peculiar cation channel in cardiovascular disease and its potential use as a therapeutic target. In this updated review we focus on TRPC3 channels, revising and discussing current knowledge on channel expression and regulation in endothelium and the roles of TRPC3 in cardiovascular disease in relation to endothelial dysfunction.
Collapse
Affiliation(s)
| | | | - G. Vazquez
- Correspondence to: Guillermo Vazquez, PhD, Department of Physiology and Pharmacology, UTHSC Mailstop 1800, Toledo OH 43614 USA. FAX: 419 383 2871;
| |
Collapse
|
43
|
Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol 2012; 10:49. [PMID: 22748101 PMCID: PMC3527168 DOI: 10.1186/1477-7827-10-49] [Citation(s) in RCA: 971] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 06/06/2012] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress (OS), a state characterized by an imbalance between pro-oxidant molecules including reactive oxygen and nitrogen species, and antioxidant defenses, has been identified to play a key role in the pathogenesis of subfertility in both males and females. The adverse effects of OS on sperm quality and functions have been well documented. In females, on the other hand, the impact of OS on oocytes and reproductive functions remains unclear. This imbalance between pro-oxidants and antioxidants can lead to a number of reproductive diseases such as endometriosis, polycystic ovary syndrome (PCOS), and unexplained infertility. Pregnancy complications such as spontaneous abortion, recurrent pregnancy loss, and preeclampsia, can also develop in response to OS. Studies have shown that extremes of body weight and lifestyle factors such as cigarette smoking, alcohol use, and recreational drug use can promote excess free radical production, which could affect fertility. Exposures to environmental pollutants are of increasing concern, as they too have been found to trigger oxidative states, possibly contributing to female infertility. This article will review the currently available literature on the roles of reactive species and OS in both normal and abnormal reproductive physiological processes. Antioxidant supplementation may be effective in controlling the production of ROS and continues to be explored as a potential strategy to overcome reproductive disorders associated with infertility. However, investigations conducted to date have been through animal or in vitro studies, which have produced largely conflicting results. The impact of OS on assisted reproductive techniques (ART) will be addressed, in addition to the possible benefits of antioxidant supplementation of ART culture media to increase the likelihood for ART success. Future randomized controlled clinical trials on humans are necessary to elucidate the precise mechanisms through which OS affects female reproductive abilities, and will facilitate further explorations of the possible benefits of antioxidants to treat infertility.
Collapse
Affiliation(s)
- Ashok Agarwal
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | | | - Beena J Premkumar
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Amani Shaman
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Sajal Gupta
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
44
|
Senadheera S, Kim Y, Grayson TH, Toemoe S, Kochukov MY, Abramowitz J, Housley GD, Bertrand RL, Chadha PS, Bertrand PP, Murphy TV, Tare M, Birnbaumer L, Marrelli SP, Sandow SL. Transient receptor potential canonical type 3 channels facilitate endothelium-derived hyperpolarization-mediated resistance artery vasodilator activity. Cardiovasc Res 2012; 95:439-47. [PMID: 22721989 DOI: 10.1093/cvr/cvs208] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Microdomain signalling mechanisms underlie key aspects of artery function and the modulation of intracellular calcium, with transient receptor potential (TRP) channels playing an integral role. This study determines the distribution and role of TRP canonical type 3 (C3) channels in the control of endothelium-derived hyperpolarization (EDH)-mediated vasodilator tone in rat mesenteric artery. METHODS AND RESULTS TRPC3 antibody specificity was verified using rat tissue, human embryonic kidney (HEK)-293 cells stably transfected with mouse TRPC3 cDNA, and TRPC3 knock-out (KO) mouse tissue using western blotting and confocal and ultrastructural immunohistochemistry. TRPC3-Pyr3 (ethyl-1-(4-(2,3,3-trichloroacrylamide)phenyl)-5-(trifluoromethyl)-1H-pyrazole-4-carboxylate) specificity was verified using patch clamp of mouse mesenteric artery endothelial and TRPC3-transfected HEK cells, and TRPC3 KO and wild-type mouse aortic endothelial cell calcium imaging and mesenteric artery pressure myography. TRPC3 distribution, expression, and role in EDH-mediated function were examined in rat mesenteric artery using immunohistochemistry and western blotting, and pressure myography and endothelial cell membrane potential recordings. In rat mesenteric artery, TRPC3 was diffusely distributed in the endothelium, with approximately five-fold higher expression at potential myoendothelial microdomain contact sites, and immunoelectron microscopy confirmed TRPC3 at these sites. Western blotting and endothelial damage confirmed primary endothelial TRPC3 expression. In rat mesenteric artery endothelial cells, Pyr3 inhibited hyperpolarization generation, and with individual SK(Ca) (apamin) or IK(Ca) (TRAM-34) block, Pyr3 abolished the residual respective IK(Ca)- and SK(Ca)-dependent EDH-mediated vasodilation. CONCLUSION The spatial localization of TRPC3 and associated channels, receptors, and calcium stores are integral for myoendothelial microdomain function. TRPC3 facilitates endothelial SK(Ca) and IK(Ca) activation, as key components of EDH-mediated vasodilator activity and for regulating mesenteric artery tone.
Collapse
Affiliation(s)
- Sevvandi Senadheera
- Department of Physiology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney 2052, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pastore MB, Jobe SO, Ramadoss J, Magness RR. Estrogen receptor-α and estrogen receptor-β in the uterine vascular endothelium during pregnancy: functional implications for regulating uterine blood flow. Semin Reprod Med 2012; 30:46-61. [PMID: 22271294 DOI: 10.1055/s-0031-1299597] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The steroid hormone estrogen and its classical estrogen receptors (ERs), ER-α and ER-β, have been shown to be partly responsible for the short- and long-term uterine endothelial adaptations during pregnancy. The ER-subtype molecular and structural differences coupled with the differential effects of estrogen in target cells and tissues suggest a substantial functional heterogeneity of the ERs in estrogen signaling. In this review we discuss (1) the role of estrogen and ERs in cardiovascular adaptations during pregnancy, (2) in vivo and in vitro expression of ERs in uterine artery endothelium during the ovarian cycle and pregnancy, contrasting reproductive and nonreproductive arterial endothelia, (3) the structural basis for functional diversity of the ERs and estrogen subtype selectivity, (4) the role of estrogen and ERs on genomic responses of uterine artery endothelial cells, and (5) the role of estrogen and ERs on nongenomic responses in uterine artery endothelia. These topics integrate current knowledge of this very rapidly expanding scientific field with diverse interpretations and hypotheses regarding the estrogenic effects that are mediated by either or both ERs and their relationship with vasodilatory and angiogenic vascular adaptations required for modulating the dramatic physiological rises in uteroplacental perfusion observed during normal pregnancy.
Collapse
Affiliation(s)
- Mayra B Pastore
- Department of Obstetrics/Gynecology, Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
46
|
Inoue R, Shi J, Jian Z, Imai Y. Regulation of cardiovascular TRP channel functions along the NO-cGMP-PKG axis. Expert Rev Clin Pharmacol 2012; 3:347-60. [PMID: 22111615 DOI: 10.1586/ecp.10.15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is growing body of evidence that nitric oxide (NO)-cGMP-PKG signaling plays a central role in negative regulation of cardiovascular (CV) responses and its disorders through suppressed Ca(2+) dynamics. Other lines of evidence also reveal the stimulatory effects of this signaling on some CV functions. Recently, transient receptor potential (TRP) channels have received much attention as non-voltage-gated Ca(2+) channels involved in CV physiology and pathophysiology. Available information suggests that these channels undergo both inhibition and activation by NO via PKG-mediated phosphorylation and S-nitrosylation, respectively, and also act as upstream regulators to promote endothelial NO production. This review summarizes the roles of NO-cGMP-PKG signaling pathway, particularly in regulating TRP channel functions with their associated physiology and pathophysiology.
Collapse
Affiliation(s)
- Ryuji Inoue
- Department of Physiology, Graduate School of Medcial Sciences, Fukuoka University, Fukuoka, Japan.
| | | | | | | |
Collapse
|
47
|
Boeldt DS, Yi FX, Bird IM. eNOS activation and NO function: pregnancy adaptive programming of capacitative entry responses alters nitric oxide (NO) output in vascular endothelium--new insights into eNOS regulation through adaptive cell signaling. J Endocrinol 2011; 210:243-58. [PMID: 21555345 PMCID: PMC4059042 DOI: 10.1530/joe-11-0053] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In pregnancy, vascular nitric oxide (NO) production is increased in the systemic and more so in the uterine vasculature, thereby supporting maximal perfusion of the uterus. This high level of functionality is matched in the umbilical vein, and in corresponding disease states such as pre-eclampsia, reduced vascular responses are seen in both uterine artery and umbilical vein. In any endothelial cell, NO actually produced by endothelial NO synthase (eNOS) is determined by the maximum capacity of the cell (eNOS expression levels), eNOS phosphorylation state, and the intracellular [Ca(2+)](i) concentration in response to circulating hormones or physical forces. Herein, we discuss how pregnancy-specific reprogramming of NO output is determined as much by pregnancy adaptation of [Ca(2+)](i) signaling responses as it is by eNOS expression and phosphorylation. By examining the changes in [Ca(2+)](i) signaling responses from human hand vein endothelial cells, uterine artery endothelial cells, and human umbilical vein endothelial cells in (where appropriate) nonpregnant, normal pregnant, and pathological pregnant (pre-eclamptic) state, it is clear that pregnancy adaptation of NO output occurs at the level of sustained phase 'capacitative entry' [Ca(2+)](i) response, and the adapted response is lacking in pre-eclamptic pregnancies. Moreover, gap junction function is an essential permissive regulator of the capacitative response and impairment of NO output results from any inhibitor of gap junction function, or capacitative entry using TRPC channels. Identifying these [Ca(2+)](i) signaling mechanisms underlying normal pregnancy adaptation of NO output not only provides novel targets for future treatment of diseases of pregnancy but may also apply to other common forms of hypertension.
Collapse
Affiliation(s)
- D S Boeldt
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, 7E Meriter Hospital/Park, 202 South Park Street, Madison, WI 53715, USA
| | | | | |
Collapse
|
48
|
Baxley SE, Jiang W, Serra R. Misexpression of wingless-related MMTV integration site 5A in mouse mammary gland inhibits the milk ejection response and regulates connexin43 phosphorylation. Biol Reprod 2011; 85:907-15. [PMID: 21753195 DOI: 10.1095/biolreprod.111.091645] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Wingless-related MMTV integration site 5A (Wnt5a) is a noncanonical signaling WNT that is expressed in every stage of mouse mammary gland development except lactation. Using slow release pellets containing WNT5A as well as Wnt5a-null tissue, we previously showed that WNT5A acts to limit mammary development. Here, we generated transgenic mice that overexpress WNT5A in the mammary epithelium using the mouse mammary tumor virus promoter (M5a mice). Lactation was impaired in two high WNT5A-expressing lines. Lactation defects could not be explained by differences in apoptosis, lineage differentiation, milk synthesis, or secretion. Instead, misexpression of WNT5A led to a failure in oxytocin response and milk ejection. Noting the similarity between the M5a phenotype and that of mice with a mutation in connexin43 (Cx43; official gene symbol Gja1), we examined Cx43 phosphorylation and localization in M5a mice. In wild-type mice, Cx43 switched from a phosphorylated to a more hypophosphorylated form after parturition. In contrast, the phosphorylated form of Cx43 was maintained after parturition in M5a mice. Using a nontumorigenic breast cell line, MCF10A, we showed that, in addition to increasing the levels of phosphorylation of Cx43 on serine-368, ectopic expression of WNT5A reduced or blocked the amount of dye transferred between cells. In summary, we propose that WNT5A inhibits the response to oxytocin and prevents milk ejection through regulation of Cx43 function.
Collapse
Affiliation(s)
- Sarah E Baxley
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|
49
|
Sabourin J, Robin E, Raddatz E. A key role of TRPC channels in the regulation of electromechanical activity of the developing heart. Cardiovasc Res 2011; 92:226-36. [PMID: 21672930 DOI: 10.1093/cvr/cvr167] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AIMS It is well established that dysfunction of voltage-dependent ion channels results in arrhythmias and conduction disturbances in the foetal and adult heart. However, the involvement of voltage-insensitive cationic TRPC (transient receptor potential canonical) channels remains unclear. We assessed the hypothesis that TRPC channels play a crucial role in the spontaneous activity of the developing heart. METHODS AND RESULTS TRPC isoforms were investigated in isolated hearts obtained from 4-day-old chick embryos. Using RT-PCR, western blotting and co-immunoprecipitation, we report for the first time that TRPC1, 3, 4, 5, 6, and 7 isoforms are expressed at the mRNA and protein levels and that they can form a macromolecular complex with the α1C subunit of the L-type voltage-gated calcium channel (Cav1.2) in atria and ventricle. Using ex vivo electrocardiograms, electrograms of isolated atria and ventricle and ventricular mechanograms, we found that inhibition of TRPC channels by SKF-96365 leads to negative chrono-, dromo-, and inotropic effects, prolongs the QT interval, and provokes first- and second-degree atrioventricular blocks. Pyr3, a specific antagonist of TRPC3, affected essentially atrioventricular conduction. On the other hand, specific blockade of the L-type calcium channel with nifedipine rapidly stopped ventricular contractile activity without affecting rhythmic electrical activity. CONCLUSIONS These results give new insights into the key role that TRPC channels, via interaction with the Cav1.2 channel, play in regulation of cardiac pacemaking, conduction, ventricular activity, and contractility during cardiogenesis.
Collapse
Affiliation(s)
- Jessica Sabourin
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, 7 rue du Bugnon, CH-1005 Lausanne, Switzerland.
| | | | | |
Collapse
|
50
|
Yi FX, Boeldt DS, Magness RR, Bird IM. [Ca2+]i signaling vs. eNOS expression as determinants of NO output in uterine artery endothelium: relative roles in pregnancy adaptation and reversal by VEGF165. Am J Physiol Heart Circ Physiol 2011; 300:H1182-93. [PMID: 21239633 DOI: 10.1152/ajpheart.01108.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pregnancy is a time of greatly increased uterine blood flow to meet the needs of the growing fetus. Increased uterine blood flow is also observed in the follicular phase of the ovarian cycle. Simultaneous fura-2 and 4,5-diaminofluoresceine (DAF-2) imaging reveals that cells of the uterine artery endothelium (UA Endo) from follicular phase ewes produce marginally more nitric oxide (NO) in response to ATP than those from luteal phase. However, this is paralleled by changes in NO in response to ionomycin, suggesting this is solely due to higher levels of endothelial nitric oxide synthase (eNOS) protein in the follicular phase. In contrast, UA Endo from pregnant ewes (P-UA Endo) produces substantially more NO (4.62-fold initial maximum rate, 2.56-fold overall NO production) in response to ATP, beyond that attributed to eNOS levels alone (2.07-fold initial maximum rate, 1.93-fold overall with ionomycin). The ATP-stimulated intracellular free calcium concentration ([Ca(2+)](i)) response in individual cells of P-UA Endo comprises an initial peak followed by transient [Ca(2+)](i) bursts that are limited in the luteal phase, not altered in the follicular phase, but are sustained in pregnancy and observed in more cells. Thus pregnancy adaptation of UA Endo NO output occurs beyond the level of eNOS expression and likely through associated [Ca(2+)](i) cell signaling changes. Preeclampsia is a condition of a lack of UA Endo adaptation and poor NO production/vasodilation and is associated with elevated placental VEGF(165). While treatment of luteal NP-UA Endo and P-UA Endo with VEGF(165) acutely stimulates a very modest [Ca(2+)](i) and NO response, subsequent stimulation of the same vessel with ATP results in a blunted [Ca(2+)](i) and an associated NO response, with P-UA Endo reverting to the response of luteal NP-UA Endo. This demonstrates the importance of adaptation of cell signaling over eNOS expression in pregnancy adaptation of uterine endothelial function and further implicates VEGF in the pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- Fu-Xian Yi
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin, Madison, USA
| | | | | | | |
Collapse
|