1
|
Yao Y, Wang Y, Wang F, Meng C, Niu J, Guo M, Sizhu S, Xu Y. BMP15 Modulates the H19/miR-26b/SMAD1 Axis Influences Yak Granulosa Cell Proliferation, Autophagy, and Apoptosis. Reprod Sci 2023; 30:1266-1280. [PMID: 36071342 DOI: 10.1007/s43032-022-01051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/28/2022] [Indexed: 11/24/2022]
Abstract
Bone morphogenetic protein 15 (BMP15) regulates the growth and development of follicles. In particular, the long non-coding RNA H19 plays an important role in mammalian reproduction. However, the function and regulatory mechanism of the interaction of BMP15 with H19 in yak granulosa cell (GC) proliferation, autophagy, and apoptosis are poorly understood. In our study, quantitative reverse-transcription-polymerase chain reaction analysis showed that H19 were highly expressed in yak healthy follicles. H19 was induced by BMP15 protein in yak GCs. In addition, we confirmed that overexpression of H19 promoted yak GC proliferation and autophagy and inhibited apoptosis. Bioinformatic analysis and luciferase reporter assays demonstrated that H19 directly binds to miR-26b, and SMAD1 was identified as a target of miR-26b. miR-26b overexpression inhibited GC proliferation and autophagy and promoted apoptosis through decreased SMAD1 expression, which was attenuated by H19 overexpression. RNA immunoprecipitation-quantitative polymerase chain reaction and dual-luciferase assays showed that miR-26b was sponged by H19 to preserve SMAD1 expression. Furthermore, SMAD1 mRNA expression was induced and miR-26b expression was reduced after yak GCs were treated with BMP15 protein. In conclusion, our results demonstrated that the H19/miR-26b/SMAD1 axis responds to BMP15 to regulate yack GC proliferation, autophagy, and apoptosis.
Collapse
Affiliation(s)
- Yilong Yao
- Animal Science Department, Tibet Agricultural and Animal Husbandry College, 100 Yucai Road, Bayi District, Tibet, 860000, Nyingchi, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yunlu Wang
- Animal Science Department, Tibet Agricultural and Animal Husbandry College, 100 Yucai Road, Bayi District, Tibet, 860000, Nyingchi, China
- Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease Research, Tibet Agriculture & Animal Husbandry College, Tibet, 860000, Nyingchi, China
| | - Fupeng Wang
- College of Animal Science and Technology, China Agricultural University, Haidian, Beijing, 100193, China
| | - Chaoyi Meng
- Animal Science Department, Tibet Agricultural and Animal Husbandry College, 100 Yucai Road, Bayi District, Tibet, 860000, Nyingchi, China
| | - Jiaqiang Niu
- Animal Science Department, Tibet Agricultural and Animal Husbandry College, 100 Yucai Road, Bayi District, Tibet, 860000, Nyingchi, China
- Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease Research, Tibet Agriculture & Animal Husbandry College, Tibet, 860000, Nyingchi, China
| | - Ming Guo
- College of Animal Science and Technology, China Agricultural University, Haidian, Beijing, 100193, China
| | - Suolang Sizhu
- Animal Science Department, Tibet Agricultural and Animal Husbandry College, 100 Yucai Road, Bayi District, Tibet, 860000, Nyingchi, China
| | - Yefen Xu
- Animal Science Department, Tibet Agricultural and Animal Husbandry College, 100 Yucai Road, Bayi District, Tibet, 860000, Nyingchi, China.
| |
Collapse
|
2
|
Endometrial cell-derived conditioned medium in combination with platelet-rich plasma promotes the development of mouse ovarian follicles. ZYGOTE 2023; 31:1-7. [PMID: 36321419 DOI: 10.1017/s096719942200020x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fertility preservation is one of the most important issues in assisted reproductive technology. Previous studies have shown that cytokines and growth factors can improve follicle growth. The endometrial stromal cells secrete various factors that are involved in maintaining the integrity of uterine and epithelial secretory function. The platelet-rich plasma contains a large assembly of platelets suspended in plasma that successfully improves the viability and growth of various cell lines. This work aimed to investigate the influences of conditioned medium (CM) and platelet-rich plasma (PRP) on the development of ovarian follicles in infertile mice due to cyclophosphamide (CYC) exposure. In this study, 65 healthy BALB/c female mice (∼28-30 g and 6-8 weeks old) in five groups were studied. Immunohistochemistry (IHC) was used to detect growth differentiation factor 9 (GDF9)-positive cells. The mRNA expression levels of SMAD1, SMAD2, and BMP15 was assessed using reverse transcription-polymerase chain reaction (RT-PCR) method. The expression levels of SMAD1, GDF9, BMP15, and SMAD2 in the CM+PRP group was significantly more than in the CM and PRP groups. In addition, live birth occurred in the CM+PRP group. Treatment with CM+PRP in infertile mice due to Cy exposure increased fertility and live-birth rate. In general, our study suggested that the CM and PRP combination could improve the growth of mice ovarian follicles in vivo.
Collapse
|
3
|
Sugiura K, Maruyama N, Akimoto Y, Matsushita K, Endo T. Paracrine regulation of granulosa cell development in the antral follicles in mammals. Reprod Med Biol 2023; 22:e12538. [PMID: 37638351 PMCID: PMC10457553 DOI: 10.1002/rmb2.12538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
Background Development of ovarian follicles is regulated by a complex interaction of intra- and extra-follicular signals. Oocyte-derived paracrine factors (ODPFs) play a central role in this process in cooperation with other signals. Methods This review provides an overview of the recent advances in our understanding of the paracrine regulation of antral follicle development in mammals. It specifically focuses on the regulation of granulosa cell development by ODPFs, along with other intrafollicular signals. Main Findings Bi-directional communication between oocytes and surrounding cumulus cells is a fundamental mechanism that determines cumulus cell differentiation. Along with estrogen, ODPFs promote the expression of forkhead box L2, a critical transcription factor required for mural granulosa cells. Follicle-stimulating hormone (FSH) facilitates these processes by stimulating estrogen production in mural granulosa cells. Conclusion Cooperative interactions among ODPFs, FSH, and estrogen are critical in determining the fate of cumulus and mural granulosa cells, as well as the development of oocytes.
Collapse
Affiliation(s)
- Koji Sugiura
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Natsumi Maruyama
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yuki Akimoto
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kodai Matsushita
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Tsutomu Endo
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
4
|
Ito H, Emori C, Kobayashi M, Maruyama N, Fujii W, Naito K, Sugiura K. Cooperative effects of oocytes and estrogen on the forkhead box L2 expression in mural granulosa cells in mice. Sci Rep 2022; 12:20158. [PMID: 36424497 PMCID: PMC9691737 DOI: 10.1038/s41598-022-24680-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
Forkhead box L2 (FOXL2) plays a critical role in the development and function of mammalian ovaries. In fact, the causative effects of FOXL2 misregulations have been identified in many ovarian diseases, such as primary ovarian insufficiency and granulosa cell tumor; however, the mechanism by which FOXL2 expression is regulated is not well studied. Here, we showed that FOXL2 expression in ovarian mural granulosa cells (MGCs) requires stimulation by both oocyte-derived signals and estrogen in mice. In the absence of oocytes or estrogen, expression of FOXL2 and its transcriptional targets, Cyp19a1 and Fst mRNA, in MGCs were significantly decreased. Moreover, expression levels of Sox9 mRNA, but not SOX9 protein, were significantly increased in the FOXL2-reduced MGCs. FOXL2 expression in MGCs was maintained with either oocytes or recombinant proteins of oocyte-derived paracrine factors, BMP15 and GDF9, together with estrogen, and this oocyte effect was abrogated with an ALK5 inhibitor, SB431542. In addition, the FOXL2 level was significantly decreased in MGCs isolated from Bmp15-/- /Gdf9+/- mice. Therefore, oocyte, probably with estrogen, plays a critical role in the regulation of FOXL2 expression in mural granulosa cells in mice.
Collapse
Affiliation(s)
- Haruka Ito
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chihiro Emori
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan ,grid.136593.b0000 0004 0373 3971Present Address: Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Mei Kobayashi
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Natsumi Maruyama
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Aboutalebi H, Alipour F, Ebrahimzadeh-Bideskan A. The protective effect of co-administration of platelet-rich plasma (PRP) and pentoxifylline (PTX) on cyclophosphamide-induced premature ovarian failure in mature and immature rats. Toxicol Mech Methods 2022; 32:588-596. [PMID: 35379072 DOI: 10.1080/15376516.2022.2057264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cyclophosphamide (CP), as an antineoplastic agent, causes premature ovarian failure (POF) due to ovarian toxicity and subsequent infertility in women. Platelet-rich plasma (PRP) has accumulated significant attention in regenerative medicine. Pentoxifylline (PTX) as a methylxanthine derivative has been shown to have antioxidant and antiapoptotic properties. The aim of this study was to evaluate the protective effect of PRP and PTX on CP-induced POF. Fifty mature and immature female rats were assigned into five groups: control, CP (75 mg/kg, intraperitoneal [ip] on days 1 and 10 to induce POF), CP + PRP (200 μl, ip, half an hour after CP injection on day 1 and 10), CP + PTX (50 mg/kg, orally, half an hour after CP injection daily for 21 day), and CP + PRP + PTX. At the end of experiments on day 21, measurement of body weight, ovarian parameters (ovarian volume, follicular granulosa cell layers diameter, oocyte diameter, and the number of granulosa cells), measurement of ovarian hormone in sera for estradiol (E2), and anti-Mullerian hormone (AMH), as well as biochemical assessment were performed.The results showed that CP significantly reduced the ovarian parameters, E2, AMH, superoxide dismutase (SOD) activity and increased Malondialdehyde (MDA) levels compared to the control group (p < 0.001). Our results also indicated that all histomorphometric parameters and biochemical markers in CP-induced POF, were preserved close to normal by PRP and PTX treatments in both mature and immature rats (p < 0.001). Therefore, it is concluded that the co-administration of PRP and PTX can protect the ovary from CP-induced POF.
Collapse
Affiliation(s)
- Hamideh Aboutalebi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Fatemeh Alipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
EMORI C, KANKE T, ITO H, AKIMOTO Y, FUJII W, NAITO K, SUGIURA K. Expression and regulation of estrogen receptor 2 and its coregulators in mouse granulosa cells. J Reprod Dev 2022; 68:137-143. [PMID: 35046244 PMCID: PMC8979806 DOI: 10.1262/jrd.2021-114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cooperative effects of estrogen and oocyte-derived paracrine factors (ODPFs) play critical roles in the normal development of ovarian follicles; however, the mechanism underlying this
cooperation has not been well studied. The present study aimed to determine whether ODPFs affect estrogen signaling by regulating the expression of estrogen receptor (ESR) and its
coregulators in mouse granulosa cells. Some transcripts encoding ESR coregulators were differentially expressed between cumulus and mural granulosa cells (MGCs). The transcript levels of ESR
coregulators, including nuclear receptor corepressor 1 and activator 2, in cumulus cells were significantly suppressed by ODPFs; however, they increased when cumulus cell-oocyte complexes
were treated with the transforming growth factor beta receptor I inhibitor, SB431542. Moreover, MGCs exhibited significantly higher ESR2 protein and transcript levels than those in cumulus
cells. ODPFs promoted Esr2 expression in cumulus cells but had no effect on that in MGCs. Overall, regulation of the expression of ESR2 and its coregulators in cumulus cells
by oocytes seems to be one of the mechanisms underlying estrogen-oocyte cooperation in well-developed antral follicles in mice.
Collapse
Affiliation(s)
- Chihiro EMORI
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takuya KANKE
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Haruka ITO
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yuki AKIMOTO
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Wataru FUJII
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kunihiko NAITO
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Koji SUGIURA
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
7
|
Emori C, Ito H, Fujii W, Naito K, Sugiura K. Oocytes suppress FOXL2 expression in cumulus cells in mice†. Biol Reprod 2021; 103:85-93. [PMID: 32307529 DOI: 10.1093/biolre/ioaa054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/07/2020] [Accepted: 04/16/2020] [Indexed: 11/15/2022] Open
Abstract
Cumulus cells and mural granulosa cells (MGCs) play distinct roles during follicular development, and normal development of these cell lineages is critical for the female fertility. Transcriptomic diversification between the two cell lineages is obviously a critical mechanism for their functional diversification; however, the transcriptional regulators responsible for this event have not been fully defined. In this study, we sought to identify key transcriptional regulators responsible for the differential gene expression between the two cell lineages. In silico analysis of transcriptomic comparison between cumulus cells and MGCs identified several candidate regulators responsible for the diversification of the two cell lineages. Among them, we herein focused on forkhead box L2 (FOXL2) and showed that expressions of FOXL2 as well as its target transcripts were differentially regulated between cumulus cells and MGCs. The lower expression of FOXL2 in cumulus cells seemed to be due to the suppression by oocyte-derived paracrine signals. These results suggest that FOXL2 is one of the critical transcription factors that determine cumulus cell and MGC lineages under the control of oocytes.
Collapse
Affiliation(s)
- Chihiro Emori
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Haruka Ito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Relav L, Estienne A, Price CA. Dual-specificity phosphatase 6 (DUSP6) mRNA and protein abundance is regulated by fibroblast growth factor 2 in sheep granulosa cells and inhibits c-Jun N-terminal kinase (MAPK8) phosphorylation. Mol Cell Endocrinol 2021; 531:111297. [PMID: 33964319 DOI: 10.1016/j.mce.2021.111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/20/2022]
Abstract
Growth factors regulate ovarian follicle development and they signal through intracellular pathways including mitogen-activated protein kinase (MAPK) phosphorylation, which is negatively regulated by a subfamily of 23 dual-specificity phosphatases (DUSP). Using sheep granulosa cells as a model, we detected mRNA encoding 16 DUSPs in vivo and in vitro. Stimulation of cells in vitro with FGF2 increased (p < 0.05) abundance of DUSP1, DUSP2, DUSP5 and DUSP6 mRNA, and abundance of DUSP1 and DUSP6 proteins (p < 0.05). In contrast, neither FGF8b nor FGF18 had any major effect on DUSP mRNA abundance. Inhibition of DUSP6 action with the inhibitor BCI significantly increased (p < 0.05) MAPK8 (JNK) phosphorylation but not phosphoMAPK14 (p38) or MAPK3/1 (ERK1/2) abundance. This study suggests that FGFs stimulate DUSP protein abundance, that DUSP6 regulates MAPK8 phosphorylation in granulosa cells, and DUSPs are involved in the differential MAPK signaling of individual FGF ligands.
Collapse
Affiliation(s)
- Lauriane Relav
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, J2S 7C6, QC, Canada
| | - Anthony Estienne
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, J2S 7C6, QC, Canada
| | - Christopher A Price
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, J2S 7C6, QC, Canada.
| |
Collapse
|
9
|
Abotalebi H, Ebrahimi B, Shahriyari R, Shafieian R. Sex steroids-induced neurogenesis in adult brain: a better look at mechanisms and mediators. Horm Mol Biol Clin Investig 2021; 42:209-221. [PMID: 34058796 DOI: 10.1515/hmbci-2020-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 01/14/2021] [Indexed: 11/15/2022]
Abstract
Adult neurogenesis is the production of new nerve cells in the adult brain. Neurogenesis is a clear example of the neuroplasticity phenomenon which can be observed in most of mammalian species, including human beings. This phenomenon occurs, at least, in two regions of the brain: the subgranular zone of the dentate gyrus in hippocampus and the ventricular zone of lateral ventricles. Numerous studies have investigated the relationship between sex steroid hormones and neurogenesis of adult brain; of which, mostly concentrated on the role of estradiol. It has been shown that estrogen plays a significant role in this process through both classic and non-classic mechanisms, including a variety of different growth factors. Therefore, the objective of this review is to investigate the role of female sex steroids with an emphasis on estradiol and also its potential implications for regulating the neurogenesis in the adult brain.
Collapse
Affiliation(s)
- Hamideh Abotalebi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Babak Ebrahimi
- Department of Anatomy and Cell Biology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Raziyeh Shahriyari
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Shafieian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Schuermann Y, Siddappa D, Pansera M, Duggavathi R. Activated receptor tyrosine kinases in granulosa cells of ovulating follicles in mice. Mol Reprod Dev 2018; 85:316-324. [DOI: 10.1002/mrd.22966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/06/2018] [Accepted: 01/25/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Yasmin Schuermann
- Department of Animal Science; McGill University; Sainte-Anne-de-Bellevue Quebec Canada
| | - Dayananda Siddappa
- Department of Animal Science; McGill University; Sainte-Anne-de-Bellevue Quebec Canada
| | - Melissa Pansera
- Department of Animal Science; McGill University; Sainte-Anne-de-Bellevue Quebec Canada
| | - Raj Duggavathi
- Department of Animal Science; McGill University; Sainte-Anne-de-Bellevue Quebec Canada
| |
Collapse
|
11
|
Estienne A, Price CA. The fibroblast growth factor 8 family in the female reproductive tract. Reproduction 2018; 155:R53-R62. [DOI: 10.1530/rep-17-0542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/12/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022]
Abstract
Several growth factor families have been shown to be involved in the function of the female reproductive tract. One subfamily of the fibroblast growth factor (FGF) superfamily, namely the FGF8 subfamily (including FGF17 and FGF18), has become important as Fgf8 has been described as an oocyte-derived factor essential for glycolysis in mouse cumulus cells and aberrant expression ofFGF18has been described in ovarian and endometrial cancers. In this review, we describe the pattern of expression of these factors in normal ovaries and uteri in rodents, ruminants and humans, as well as the expression of their receptors and intracellular negative feedback regulators. Expression of these molecules in gynaecological cancers is also reviewed. The role of FGF8 and FGF18 in ovarian and uterine function is described, and potential differences between rodents and ruminants have been highlighted especially with respect to FGF18 signalling within the ovarian follicle. Finally, we identify major questions about the reproductive biology of FGFs that remain to be answered, including (1) the physiological concentrations within the ovary and uterus, (2) which cell types within the endometrial stroma and theca layer express FGFs and (3) which receptors are activated by FGF8 subfamily members in reproductive tissues.
Collapse
|
12
|
Govindaraj V, Krishnagiri H, Chakraborty P, Vasudevan M, Rao AJ. Age-related changes in gene expression patterns of immature and aged rat primordial follicles. Syst Biol Reprod Med 2017; 63:37-48. [PMID: 28045561 DOI: 10.1080/19396368.2016.1267820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Women are born with millions of primordial follicles which gradually decrease with increasing age and this irreversible supply of follicles completely exhausts at menopause. The fertility capacity of women diminishes in parallel with aging. The mechanisms for reproductive aging are not fully understood. We have observed a decline in Brca1 mediated DNA repair in aging rat primordial follicles. To further understand the age-related molecular changes, we performed microarray gene expression analysis using total RNA extracted from immature (18 to 20 day old) and aged (400 to 450 day old) rat primordial follicles. The results of current microarray study revealed that there were 1,011 (>1.5 fold, p<0.05) genes differentially expressed between two groups in which 422 genes were up-regulated and 589 genes were down-regulated in aged rat primordial follicles compared to immature primordial follicles. The gene ontology and pathway analysis of differentially expressed genes revealed a critical biological function such as cell cycle, oocyte meiosis, chromosomal stability, transcriptional activity, DNA replication, and DNA repair were affected by age. This considerable difference in gene expression profiles may have an adverse influence on oocyte quality. Our data provide information on the processes that may contribute to aging and age-related decline in fertility.
Collapse
Affiliation(s)
| | | | | | | | - A Jagannadha Rao
- a Department of Biochemistry , Indian Institute of Science , Bangalore , India
| |
Collapse
|
13
|
Melo EO, Cordeiro DM, Pellegrino R, Wei Z, Daye ZJ, Nishimura RC, Dode MAN. Identification of molecular markers for oocyte competence in bovine cumulus cells. Anim Genet 2016; 48:19-29. [PMID: 27650317 DOI: 10.1111/age.12496] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2016] [Indexed: 12/17/2022]
Abstract
Cumulus cells (CCs) have an important role during oocyte growth, competence acquisition, maturation, ovulation and fertilization. In an attempt to isolate potential biomarkers for bovine in vitro fertilization, we identified genes differentially expressed in bovine CCs from oocytes with different competence statuses, through microarray analysis. The model of follicle size, in which competent cumulus-oocyte complexes (COCs) were recovered from bigger follicles (≥8.0 mm in diameter) and less competent ones from smaller follicles (1-3 mm), was used. We identified 4178 genes that were differentially expressed (P < 0.05) in the two categories of CCs. The list was further enriched, through the use of a 2.5-fold change in gene expression as a cutoff value, to include 143 up-regulated and 80 down-regulated genes in CCs of competent COCs compared to incompetent COCs. These genes were screened according to their cellular roles, most of which were related to cell cycle, DNA repair, energy metabolism, metabolism of amino acids, cell signaling, meiosis, ovulation and inflammation. Three candidate genes up-regulated (FGF11, IGFBP4, SPRY1) and three down-regulated (ARHGAP22, COL18A1 and GPC4) in CCs from COCs of big follicles (≥8.1 mm) were selected for qPCR analysis. The selected genes showed the same expression patterns by qPCR and microarray analysis. These genes may be potential genetic markers that predict oocyte competence in in vitro fertilization routines.
Collapse
Affiliation(s)
- E O Melo
- Embrapa- Genetic Resources and Biotechnology, Brasília, DF, 70770-917, Brazil
| | - D M Cordeiro
- School of Agriculture and Veterinary Medicine, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - R Pellegrino
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Z Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Z J Daye
- Division of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, 85721, USA
| | - R C Nishimura
- School of Agriculture and Veterinary Medicine, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - M A N Dode
- Embrapa- Genetic Resources and Biotechnology, Brasília, DF, 70770-917, Brazil
| |
Collapse
|
14
|
Cheng JC, Fang L, Chang HM, Sun YP, Leung PCK. hCG-induced Sprouty2 mediates amphiregulin-stimulated COX-2/PGE2 up-regulation in human granulosa cells: a potential mechanism for the OHSS. Sci Rep 2016; 6:31675. [PMID: 27539669 PMCID: PMC4990972 DOI: 10.1038/srep31675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/21/2016] [Indexed: 12/19/2022] Open
Abstract
Sprouty2 (SPRY2) is an important intracellular regulator for epidermal growth factor receptor (EGFR)-mediated ERK1/2 signaling. In human granulosa cells, although SPRY2 is expressed, its regulation and function remains complete unknown and must be defined. Our previous study has shown that human chorionic gonadotropin (hCG)/luteinizing hormone (LH) up-regulates the expression levels of EGF-like growth factor, amphiregulin (AREG), which subsequently contributes to the hCG/LH-induced COX-2 expression and PGE2 production. The aim of the present study was to investigate the effect of hCG on SPRY2 expression and the role of hCG-induced SPRY2 in AREG-stimulated COX-2 expression and PGE2 production in human granulosa cells. Our results demonstrated that the expression of SPRY2 was up-regulated by hCG treatment. Using pharmacological inhibitors and siRNA knockdown, we showed that activation of ERK1/2 signaling was required for hCG-induced up-regulation of SPRY2 expression. Further, SPRY2 knockdown attenuated the AREG-induced COX-2 expression and PGE2 production by inhibiting AREG-activated ERK1/2 signaling. Interestingly, we showed that SPRY2 expression levels were significantly increased in granulosa cells of ovarian hyperstimulation syndrome (OHSS) patients. These results for the first time elucidate the physiological roles of SPRY2 in human granulosa cells and suggest that aberrant expression of SPRY2 may contribute to the pathogenesis of OHSS.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, Child &Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Lanlan Fang
- Department of Obstetrics and Gynaecology, Child &Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada.,Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, Child &Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Ying-Pu Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child &Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| |
Collapse
|
15
|
Abstract
Fibroblast growth factors (FGFs) have been shown to alter growth and differentiation of reproductive tissues in a variety of species. Within the female reproductive tract, the effects of FGFs have been focused on the ovary, and the most studied one is FGF2, which stimulates granulosa cell proliferation and decreases differentiation (decreased steroidogenesis). Other FGFs have also been implicated in ovarian function, and this review summarizes the effects of members of two subfamilies on ovarian function; the FGF7 subfamily that also contains FGF10, and the FGF8 subfamily that also contains FGF18. There are data to suggest that FGF8 and FGF18 have distinct actions on granulosa cells, despite their apparent similar receptor binding properties. Studies of non-reproductive developmental biology also indicate that FGF8 is distinct from FGF18, and that FGF7 is also distinct from FGF10 despite similar receptor binding properties. In this review, the potential mechanisms of differential action of FGF7/FGF10 and FGF8/FGF18 during organogenesis will be reviewed and placed in the context of follicle development. A model is proposed in which FGF8 and FGF18 differentially activate receptors depending on the properties of the extracellular matrix in the follicle.
Collapse
Affiliation(s)
- Christopher A Price
- Faculty of Veterinary MedicineCentre de recherche en reproduction animale, University of Montreal, 3200 rue Sicotte, St-Hyacinthe, Quebec, Canada J2S 7C6
| |
Collapse
|
16
|
Wigglesworth K, Lee KB, Emori C, Sugiura K, Eppig JJ. Transcriptomic diversification of developing cumulus and mural granulosa cells in mouse ovarian follicles. Biol Reprod 2014; 92:23. [PMID: 25376232 DOI: 10.1095/biolreprod.114.121756] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cumulus cells and mural granulosa cells (MGCs) have functionally distinct roles in antral follicles, and comparison of their transcriptomes at a global and systems level can propel future studies on mechanisms underlying their functional diversity. These cells were isolated from small and large antral follicles before and after stimulation of immature mice with gonadotropins, respectively. Both cell types underwent dramatic transcriptomic changes, and differences between them increased with follicular growth. Although cumulus cells of both stages of follicular development are competent to undergo expansion in vitro, they were otherwise remarkably dissimilar with transcriptomic changes quantitatively equivalent to those of MGCs. Gene ontology analysis revealed that cumulus cells of small follicles were enriched in transcripts generally associated with catalytic components of metabolic processes, while those from large follicles were involved in regulation of metabolism, cell differentiation, and adhesion. Contrast of cumulus cells versus MGCs revealed that cumulus cells were enriched in transcripts associated with metabolism and cell proliferation while MGCs were enriched for transcripts involved in cell signaling and differentiation. In vitro and in vivo models were used to test the hypothesis that higher levels of transcripts in cumulus cells versus MGCs is the result of stimulation by oocyte-derived paracrine factors (ODPFs). Surprisingly ∼48% of transcripts higher in cumulus cells than MGCs were not stimulated by ODPFs. Those stimulated by ODPFs were mainly associated with cell division, mRNA processing, or the catalytic pathways of metabolism, while those not stimulated by ODPFs were associated with regulatory processes such as signaling, transcription, phosphorylation, or the regulation of metabolism.
Collapse
Affiliation(s)
| | - Kyung-Bon Lee
- Department of Biology Education, College of Education, Chonnam National University, Buk-gu, Gwangju, Korea
| | - Chihiro Emori
- Laboratory of Applied Genetics, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Laboratory of Applied Genetics, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
17
|
Lutwak E, Price CA, Abramovich SS, Rabinovitz S, Granot I, Dekel N, Ron D. Expression and regulation of the tumor suppressor, SEF, during folliculogenesis in humans and mice. Reproduction 2014; 148:507-17. [PMID: 25118304 DOI: 10.1530/rep-14-0070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Similar expression to FGF (Sef or IL17-RD), is a tumor suppressor and an inhibitor of growth factors as well as of pro-inflammatory cytokine signaling. In this study, we examined the regulation of Sef expression by gonadotropins during ovarian folliculogenesis. In sexually immature mice, in situ hybridization (ISH) localized Sef gene expression to early developing oocytes and granulosa cells (GC) but not to theca cells. Sef was also expressed in mouse ovarian endothelial cells, in the fallopian tube epithelium as well as in adipose tissue venules. SEF protein expression, determined by immunohistochemistry (IHC), correlated well with Sef mRNA expression in GC, while differential expression was noticed in oocytes. High Sef mRNA but undetectable SEF protein levels were observed in the oocytes of primary/secondary follicles, while an inverse correlation was found in the oocytes of preantral and small antral follicles. Sef mRNA expression dropped after pregnant mare's serum gonadotropin (PMSG) administration, peaked at 6-8 h after human chorionic gonadotropin (hCG) treatment, and declined by 12 h after this treatment. ISH and IHC localized the changes to oocytes and mural GC following PMSG treatment, whereas Sef expression increased in mural GC and declined in granulosa-lutein cells upon hCG treatment. The ovarian expression of SEF was confirmed using human samples. ISH localized SEF transcripts to human GC of antral follicles but not to corpora lutea. Furthermore, SEF mRNA was detected in human GC recovered from preovulatory follicles. These results are the first to demonstrate SEF expression in a healthy ovary during folliculogenesis. Hormonal regulation of its expression suggests that SEF may be an important factor involved in intra-ovarian control mechanisms.
Collapse
Affiliation(s)
- Ela Lutwak
- Department of BiologyTechnion, Israel Institute of Technology, 32000 Haifa, IsraelFaculté de Médecine VétérinaireCentre de Recherche en Reproduction Animale, Université de Montréal, St-Hyacinthe, Quebec, CanadaDepartment of Biological RegulationThe Weizmann Institute of Science, Rehovot, IsraelIVF UnitDepartment of Obstetrics and Gynecology, Kaplan Medical Center (Affiliated to the Medical School of the Hebrew University and Hadassah, Jerusalem), Rehovot, Israel
| | - Christopher A Price
- Department of BiologyTechnion, Israel Institute of Technology, 32000 Haifa, IsraelFaculté de Médecine VétérinaireCentre de Recherche en Reproduction Animale, Université de Montréal, St-Hyacinthe, Quebec, CanadaDepartment of Biological RegulationThe Weizmann Institute of Science, Rehovot, IsraelIVF UnitDepartment of Obstetrics and Gynecology, Kaplan Medical Center (Affiliated to the Medical School of the Hebrew University and Hadassah, Jerusalem), Rehovot, Israel
| | - Sagit-Sela Abramovich
- Department of BiologyTechnion, Israel Institute of Technology, 32000 Haifa, IsraelFaculté de Médecine VétérinaireCentre de Recherche en Reproduction Animale, Université de Montréal, St-Hyacinthe, Quebec, CanadaDepartment of Biological RegulationThe Weizmann Institute of Science, Rehovot, IsraelIVF UnitDepartment of Obstetrics and Gynecology, Kaplan Medical Center (Affiliated to the Medical School of the Hebrew University and Hadassah, Jerusalem), Rehovot, Israel
| | - Shiri Rabinovitz
- Department of BiologyTechnion, Israel Institute of Technology, 32000 Haifa, IsraelFaculté de Médecine VétérinaireCentre de Recherche en Reproduction Animale, Université de Montréal, St-Hyacinthe, Quebec, CanadaDepartment of Biological RegulationThe Weizmann Institute of Science, Rehovot, IsraelIVF UnitDepartment of Obstetrics and Gynecology, Kaplan Medical Center (Affiliated to the Medical School of the Hebrew University and Hadassah, Jerusalem), Rehovot, Israel
| | - Irit Granot
- Department of BiologyTechnion, Israel Institute of Technology, 32000 Haifa, IsraelFaculté de Médecine VétérinaireCentre de Recherche en Reproduction Animale, Université de Montréal, St-Hyacinthe, Quebec, CanadaDepartment of Biological RegulationThe Weizmann Institute of Science, Rehovot, IsraelIVF UnitDepartment of Obstetrics and Gynecology, Kaplan Medical Center (Affiliated to the Medical School of the Hebrew University and Hadassah, Jerusalem), Rehovot, Israel
| | - Nava Dekel
- Department of BiologyTechnion, Israel Institute of Technology, 32000 Haifa, IsraelFaculté de Médecine VétérinaireCentre de Recherche en Reproduction Animale, Université de Montréal, St-Hyacinthe, Quebec, CanadaDepartment of Biological RegulationThe Weizmann Institute of Science, Rehovot, IsraelIVF UnitDepartment of Obstetrics and Gynecology, Kaplan Medical Center (Affiliated to the Medical School of the Hebrew University and Hadassah, Jerusalem), Rehovot, Israel
| | - Dina Ron
- Department of BiologyTechnion, Israel Institute of Technology, 32000 Haifa, IsraelFaculté de Médecine VétérinaireCentre de Recherche en Reproduction Animale, Université de Montréal, St-Hyacinthe, Quebec, CanadaDepartment of Biological RegulationThe Weizmann Institute of Science, Rehovot, IsraelIVF UnitDepartment of Obstetrics and Gynecology, Kaplan Medical Center (Affiliated to the Medical School of the Hebrew University and Hadassah, Jerusalem), Rehovot, Israel
| |
Collapse
|
18
|
Fenwick MA, Mora JM, Mansour YT, Baithun C, Franks S, Hardy K. Investigations of TGF-β signaling in preantral follicles of female mice reveal differential roles for bone morphogenetic protein 15. Endocrinology 2013; 154:3423-36. [PMID: 23782946 DOI: 10.1210/en.2012-2251] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) are 2 closely related TGF-β ligands implicated as key regulators of follicle development and fertility. Animals harboring mutations of these factors often exhibit a blockage in follicle development beyond the primary stage and therefore little is known about the role of these ligands during subsequent (preantral) stages. Preantral follicles isolated from immature mice were cultured with combinations of BMP15, GDF9, and activin receptor-like kinase (ALK) inhibitors. Individually, GDF9 and BMP15 promoted follicle growth during the first 24 hours, whereas BMP15 subsequently (48-72 h) caused follicle shrinkage and atresia with increased granulosa cell apoptosis. Inhibition of ALK6 prevented the BMP15-induced reduction in follicle size and under basal conditions promoted a rapid increase in granulosa cell proliferation, suggesting BMP15 signals through ALK6, which in turn acts to restrain follicle growth. In the presence of GDF9, BMP15 no longer promoted atresia and in fact follicle growth was increased significantly more than with either ligand alone. This cooperative effect was accompanied by differential expression of Id1-3, Smad6-7, and Has2 and was blocked by the same ALK5 inhibitor used to block GDF9 signaling. Immunostaining for SMAD2/3 and SMAD1/5/8, representing the 2 main branches of TGF-β signaling, supported the fact that both canonical pathways have the potential to be active in growing follicles, whereas primordial follicles only express SMAD2/3. Overall results highlight differential effects of the 2 main TGF-β signaling pathways during preantral follicle growth.
Collapse
Affiliation(s)
- Mark A Fenwick
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom.
| | | | | | | | | | | |
Collapse
|
19
|
Jiang Z, Guerrero-Netro HM, Juengel JL, Price CA. Divergence of intracellular signaling pathways and early response genes of two closely related fibroblast growth factors, FGF8 and FGF18, in bovine ovarian granulosa cells. Mol Cell Endocrinol 2013; 375:97-105. [PMID: 23707615 DOI: 10.1016/j.mce.2013.05.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 05/19/2013] [Indexed: 12/15/2022]
Abstract
Fibroblast growth factors (FGFs) modulate ovarian function, including FGF8 and FGF18. These FGFs activate the same receptors, although FGF18 is unusual in that it increases apoptosis in ovarian granulosa cells whereas the 'typical' response to FGF is increased proliferation. The objective of the present study was to determine which early response genes and pathways are activated by FGF8 and FGF18 in bovine granulosa cells. FGF8 increased abundance of mRNA encoding the FGF-responsive genes SPRY1, SPRY2, SPRY4, NR4A1 and NR4A3 whereas FGF18 did not. FGF8 increased but FGF18 decreased levels of mRNA encoding the growth arrest associated protein, GADD45B. FGF8 increased ERK1/2 phosphorylation but FGF18 did not. Microarray analysis identified EGR1, FOS, FOSL1, BAMBI, XIRP1 and PLK2 as other FGF8 immediate-early response genes, and FGF18 stimulated EGR1, FOSL1, BAMBI and PLK2, but not FOS or XIRP1. This study demonstrates that FGF8 and FGF18 signal through divergent pathways in ovarian granulosa cells, despite reportedly similar receptor activation patterns.
Collapse
Affiliation(s)
- Zhongliang Jiang
- College of Animal Science and Technology, Northwestern Agricultural and Forestry University, Yangling, Shaanxi, China
| | | | | | | |
Collapse
|
20
|
Shaw L, Sneddon SF, Zeef L, Kimber SJ, Brison DR. Global gene expression profiling of individual human oocytes and embryos demonstrates heterogeneity in early development. PLoS One 2013; 8:e64192. [PMID: 23717564 PMCID: PMC3661520 DOI: 10.1371/journal.pone.0064192] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/10/2013] [Indexed: 11/19/2022] Open
Abstract
Early development in humans is characterised by low and variable embryonic viability, reflected in low fecundity and high rates of miscarriage, relative to other mammals. Data from assisted reproduction programmes provides additional evidence that this is largely mediated at the level of embryonic competence and is highly heterogeneous among embryos. Understanding the basis of this heterogeneity has important implications in a number of areas including: the regulation of early human development, disorders of pregnancy, assisted reproduction programmes, the long term health of children which may be programmed in early development, and the molecular basis of pluripotency in human stem cell populations. We have therefore investigated global gene expression profiles using polyAPCR amplification and microarray technology applied to individual human oocytes and 4-cell and blastocyst stage embryos. In order to explore the basis of any variability in detail, each developmental stage is replicated in triplicate. Our data show that although transcript profiles are highly stage-specific, within each stage they are relatively variable. We describe expression of a number of gene families and pathways including apoptosis, cell cycle and amino acid metabolism, which are variably expressed and may be reflective of embryonic developmental competence. Overall, our data suggest that heterogeneity in human embryo developmental competence is reflected in global transcript profiles, and that the vast majority of existing human embryo gene expression data based on pooled oocytes and embryos need to be reinterpreted.
Collapse
Affiliation(s)
- Lisa Shaw
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- Department of Reproductive Medicine, Old St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Sharon F. Sneddon
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- Department of Reproductive Medicine, Old St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Leo Zeef
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Susan J. Kimber
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Daniel R. Brison
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- Department of Reproductive Medicine, Old St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Salhab M, Dhorne-Pollet S, Auclair S, Guyader-Joly C, Brisard D, Dalbies-Tran R, Dupont J, Ponsart C, Mermillod P, Uzbekova S. In vitro maturation of oocytes alters gene expression and signaling pathways in bovine cumulus cells. Mol Reprod Dev 2013; 80:166-82. [PMID: 23280668 DOI: 10.1002/mrd.22148] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/17/2012] [Indexed: 12/24/2022]
Abstract
In vitro maturation (IVM) of immature oocytes is widely used in assisted reproduction technologies in cattle, and is increasingly used to treat human infertility. The development competence of IVM oocytes, however, is lower than preovulatory, in vivo-matured oocytes. During maturation, cumulus cells (CC) are metabolically coupled with an oocyte and support the acquisition of its developmental potential. Our objective was to identify genes and pathways that were affected by IVM in bovine CC. Microarray transcriptomic analysis of CC enclosing in vitro- or in vivo-mature oocytes revealed 472 differentially expressed genes, including 28% related to apoptosis, correlating with twofold higher cell death after IVM than in vivo, as detected by TUNEL. Genes overexpressed after IVM were significantly enriched in functions involved in cell movement, focal adhesion, extracellular matrix function, and TGF-beta signaling, whereas under-expressed genes were enriched in regulating gene expression, energy metabolism, stress response, and MAP kinases pathway functions. Differential expression of 15 genes, including PAG11 (increased) and TXNIP (decreased), which were never detected in CC before, was validated by real-time RT-PCR. Moreover, protein quantification confirmed the lower abundance of glutathione S-transferase A1 and prostaglandin G/H synthase 2, and the higher abundance of hyaluronan synthase 2 and SMAD4, a member of TGF-beta pathway, in CC after IVM. Phosphorylation levels of SMAD2, MAPK3/1, and MAPK14, but not MAPK8, were higher after IVM that in vivo. In conclusion, IVM provokes the hyper-activation of TGF-beta and MAPK signaling components, modifies gene expression, leads to increased apoptosis in CC, and thus affects oocyte quality.
Collapse
Affiliation(s)
- Mohamad Salhab
- INRA, UR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Santos-Biase W, Biase F, Buratini J, Balieiro J, Watanabe Y, Accorsi M, Ferreira C, Stranieri P, Caetano A, Meirelles F. Single nucleotide polymorphisms in the bovine genome are associated with the number of oocytes collected during ovum pick up. Anim Reprod Sci 2012; 134:141-9. [DOI: 10.1016/j.anireprosci.2012.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/31/2012] [Accepted: 08/04/2012] [Indexed: 11/25/2022]
|
23
|
Jiang Z, Price CA. Differential actions of fibroblast growth factors on intracellular pathways and target gene expression in bovine ovarian granulosa cells. Reproduction 2012; 144:625-32. [PMID: 22956519 DOI: 10.1530/rep-12-0199] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Several fibroblast growth factors (FGFs), including FGF1, FGF4 and FGF10, alter ovarian granulosa cell function. These ligands exhibit different patterns of receptor activation, and their mechanisms of action on granulosa cells remain unknown. The objective of this study was to identify the major pathways and target genes activated by FGF1, FGF4 and FGF10 in primary oestrogenic granulosa cells cultured under serum-free conditions. FGF1 and FGF4 increased levels of mRNA encoding Sprouty family members, SPRY2 and SPRY4, and the orphan nuclear receptors NR4A1 and NR4A3. Both FGF1 and FGF4 decreased levels of mRNA encoding SPRY3 and the pro-apoptotic factor BAX. FGF1 but not FGF4 stimulated expression of the cell cycle regulator, GADD45B. In contrast, FGF10 altered the expression of none of these genes. Western blot demonstrated that FGF4 activated ERK1/2 and Akt signalling rapidly and transiently, whereas FGF10 elicited a modest and delayed activation of ERK1/2. These data show that FGF1 and FGF4 activate typical FGF signalling pathways in granulosa cells, whereas FGF10 activates atypical pathways.
Collapse
Affiliation(s)
- Zhongliang Jiang
- College of Animal Science and Technology, Northwestern A&F University, Yangling, ShaanXi, China
| | | |
Collapse
|
24
|
Miyoshi T, Otsuka F, Nakamura E, Inagaki K, Ogura-Ochi K, Tsukamoto N, Takeda M, Makino H. Regulatory role of kit ligand-c-kit interaction and oocyte factors in steroidogenesis by rat granulosa cells. Mol Cell Endocrinol 2012; 358:18-26. [PMID: 22366471 DOI: 10.1016/j.mce.2012.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 01/12/2012] [Accepted: 02/10/2012] [Indexed: 02/03/2023]
Abstract
Although kit ligand (KL)-c-kit interaction is known to be critical for oogenesis and folliculogenesis, its role in ovarian steroidogenesis has yet to be elucidated. We studied the impact of KL-c-kit interaction in regulation of steroidogenesis using rat oocyte/granulosa cell co-culture. In the presence of oocytes, soluble KL suppressed FSH-induced estradiol production and aromatase mRNA expression without affecting FSH-induced progesterone production. The KL effect on steroidogenesis was interrupted by an anti-c-kit neutralizing antibody, suggesting that KL-c-kit interaction is involved in suppression of estrogen by granulosa cells through oocyte c-kit action. The cAMP-PKA pathway activity was not directly involved in the estrogen regulation by KL-c-kit action. It was of note that KL treatment increased the expression levels of oocyte-derived FGF-8, GDF-9 and BMP-6, while it reduced the expression levels of oocyte-derived BMP-15 in the oocyte-granulosa cell co-culture. Given the findings that FGF-8, but not GDF-9, BMP-6 or -15, suppressed FSH-induced estrogen production by granulosa cells, oocyte-derived FGF-8 is linked to suppression of FSH-induced estrogen production through the KL-c-kit interaction. Furthermore, the suppression of FSH-induced estrogen production by KL in the co-culture was reversed by a FGF receptor kinase inhibitor and the effect of the inhibitor was enhanced in combination with extracellular-domain protein of BMPRII, which interferes with BMP-15 and GDF-9 activities. Thus, the actions of endogenous oocyte factors including FGF-8 and BMP-15/GDF-9 were involved in the KL activity that inhibited FSH-induced estradiol production. Collectively, the results indicate that KL-c-kit interaction plays a role in estrogenic regulation through oocyte-granulosa cell communication.
Collapse
Affiliation(s)
- Tomoko Miyoshi
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wathlet S, Adriaenssens T, Segers I, Verheyen G, Janssens R, Coucke W, Devroey P, Smitz J. New candidate genes to predict pregnancy outcome in single embryo transfer cycles when using cumulus cell gene expression. Fertil Steril 2012; 98:432-9.e1-4. [PMID: 22633264 DOI: 10.1016/j.fertnstert.2012.05.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/03/2012] [Accepted: 05/03/2012] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To relate the gene expression in cumulus cells surrounding an oocyte to the potential of the oocyte, as evaluated by the embryo morphology (days 3 and 5) and pregnancy obtained in single-embryo transfer cycles. DESIGN Retrospective analysis of individual human cumulus complexes using quantitative real-time polymerase chain reaction for 11 genes. SETTING University hospital IVF center. PATIENT(S) Thirty-three intracytoplasmic sperm injection patients, of which 16 were pregnant (4 biochemical and 12 live birth). INTERVENTION(S) Gene expression analysis in human cumulus complexes collected individually at pickup, allowing a correlation with the outcome of the corresponding oocyte. Multiparametric models were built for embryo morphology parameters and pregnancy prediction to find the most predictive genes. MAIN OUTCOME MEASURE(S) Gene expression profile of 99 cumulus complexes for 11 genes. RESULT(S) For embryo morphology prediction, TRPM7, ITPKA, STC2, CYP11A1, and HSD3B1 were often retained as informative. Models for pregnancy-biochemical or live birth-complemented or not with patient and cycle characteristics, always retained EFNB2 and CAMK1D together with STC1 or STC2. Positive and negative predictive values of the live birth models were >85%. CONCLUSION(S) EFNB2 and CAMK1D are promising genes that could help to choose the embryo to transfer with the highest chance of a pregnancy.
Collapse
Affiliation(s)
- Sandra Wathlet
- Follicle Biology Laboratory, Universitair Ziekenhuis Brussel, Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang K, Ealy AD. Disruption of fibroblast growth factor receptor signaling in bovine cumulus-oocyte complexes during in vitro maturation reduces subsequent embryonic development. Domest Anim Endocrinol 2012; 42:230-8. [PMID: 22264662 DOI: 10.1016/j.domaniend.2011.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 12/12/2011] [Accepted: 12/12/2011] [Indexed: 01/08/2023]
Abstract
Several fibroblast growth factors (FGF) mediate folliculogenesis and oogenesis in cattle but it is unclear whether FGFs are required during the final stages of oocyte maturation. The objectives of this work were to determine whether blocking FGF receptor (FGFR) activity during in vitro maturation (IVM) affects oocyte fertilization and embryo development; examine changes in FGFR transcript profiles in cumulus cells and oocytes during IVM; and evaluate whether gonadotropins modulate FGFR transcript abundance during IVM. In the first set of studies, bovine cumulus-oocyte complexes (COCs) were matured in the presence of one of two FGFR kinase inhibitors (SU5402 or PD173074). After maturation, COCs were washed and cultured without inhibitors. Inhibitors did not affect cleavage rates but the percentage of ≥ 8-cell embryos at d 3 and blastocysts at d 7 and d 8 postfertilization were decreased when COCs were matured with either inhibitor. Profiles of FGFR mRNA variants were examined in cumulus cells and oocytes separated either immediately before (0 h) or at 6 or 21 h after beginning IVM. In cumulus cells, increases in R1b, R2b, and R2c abundance were detected when cultured in the absence of follicle-stimulating hormone (FSH). Supplementing FSH (1 or 25 μM) increased the abundance of R1b, R1c, R2b, and R2c. In oocytes, no time- or FSH-dependent changes in FGFR transcript abundance were detected. These observations implicate FGFs as crucial components of bovine oocyte competency and indicate that FSH augments FGFR mRNA abundance in cumulus cells during the final stages of oocyte maturation.
Collapse
Affiliation(s)
- K Zhang
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA
| | | |
Collapse
|
27
|
Zhang K, Ealy AD. Supplementing fibroblast growth factor 2 during bovine oocyte <i>in vitro</i> maturation promotes subsequent embryonic development. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojas.2012.22017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Fenwick MA, Mansour YT, Franks S, Hardy K. Identification and regulation of bone morphogenetic protein antagonists associated with preantral follicle development in the ovary. Endocrinology 2011; 152:3515-26. [PMID: 21791559 DOI: 10.1210/en.2011-0229] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TGFβ superfamily comprises several bone morphogenetic proteins (BMP) capable of exerting gonadotropin-independent effects on the development of small preantral follicles. In embryonic tissues, BMP concentration gradients, partly formed by antagonistic factors, are essential for establishing phenotypic fate. By examining the expression of candidate genes whose protein products are known to interact with BMP ligands, we set out to determine which antagonists would most likely contribute toward regulation of paracrine signaling during early follicle development. Juvenile mouse ovaries of 4, 8, 12, and 21 d of age enriched with follicles at successive developmental stages were used to assess changes in candidate gene transcripts by quantitative RT-PCR. Although some antagonists were found to be positively associated with the emergence of developing follicles (Nog, Htra1, Fst, Bmper, Vwc2), two (Sostdc1, Chrd) showed a corresponding reduction in expression. At each age, twisted gastrulation homolog 1 (Twsg1), Htra1, Nbl1, and Fst were consistently highly expressed and localization of these genes by in situ hybridization, and immunohistochemistry further highlighted a clear pattern of expression in granulosa cells of developing follicles. Moreover, with the exception of Nbl1, levels of these antagonists did not change in preantral follicles exposed to FSH in vitro, suggesting regulation by local factors. The presence of multiple antagonists in the juvenile ovary and their high level of expression in follicles imply the actions of certain growth factors are subject to local modulation and further highlights another important level of intraovarian regulation of follicle development.
Collapse
Affiliation(s)
- Mark A Fenwick
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom.
| | | | | | | |
Collapse
|
29
|
Lisanti MP, Martinez-Outschoorn UE, Lin Z, Pavlides S, Whitaker-Menezes D, Pestell RG, Howell A, Sotgia F. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: the seed and soil also needs "fertilizer". Cell Cycle 2011; 10:2440-9. [PMID: 21734470 PMCID: PMC3180186 DOI: 10.4161/cc.10.15.16870] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 06/18/2011] [Indexed: 01/13/2023] Open
Abstract
In 1889, Dr. Stephen Paget proposed the "seed and soil" hypothesis, which states that cancer cells (the seeds) need the proper microenvironment (the soil) for them to grow, spread and metastasize systemically. In this hypothesis, Dr. Paget rightfully recognized that the tumor microenvironment has an important role to play in cancer progression and metastasis. In this regard, a series of recent studies have elegantly shown that the production of hydrogen peroxide, by both cancer cells and cancer-associated fibroblasts, may provide the necessary "fertilizer," by driving accelerated aging, DNA damage, inflammation and cancer metabolism, in the tumor microenvironment. By secreting hydrogen peroxide, cancer cells and fibroblasts are mimicking the behavior of immune cells (macrophages/neutrophils), driving local and systemic inflammation, via the innate immune response (NFκB). Thus, we should consider using various therapeutic strategies (such as catalase and/or other anti-oxidants) to neutralize the production of cancer-associated hydrogen peroxide, thereby preventing tumor-stroma co-evolution and metastasis. The implications of these findings for overcoming chemo-resistance in cancer cells are also discussed in the context of hydrogen peroxide production and cancer metabolism.
Collapse
Affiliation(s)
- Michael P Lisanti
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Jiang ZL, Ripamonte P, Buratini J, Portela VM, Price CA. Fibroblast growth factor-2 regulation of Sprouty and NR4A genes in bovine ovarian granulosa cells. J Cell Physiol 2011; 226:1820-7. [PMID: 21506113 DOI: 10.1002/jcp.22509] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fibroblast growth factors (FGFs) alter ovarian function, at least in part by inhibiting steroid hormone secretion and affecting survival of granulosa cells. The mechanism of action of FGFs in ovarian follicle cells is largely unknown; in the present study we identified the major pathways used by FGF2 in non-luteinizing granulosa cells cultured under serum-free conditions. FGF2 increased abundance of mRNA encoding SPRY1, 2, and 4, but not SPRY3. Common pathways employed by FGF2 in the regulation of SPRY1, 2, and 4, as demonstrated by immunoblot and inhibitor studies, included ERK1/2 and Akt signaling. In contrast, PKC activation was necessary for FGF2-stimulated expression of SPRY1 and 4, but not for SPRY2. Intracellular calcium flux is critical and sufficient for SPRY2 expression, but not for SPRY1 and 4. We also identified the orphan nuclear receptor NR4A1 as a potential early response gene in FGF2 signaling, whose expression, like that of SPRY2, is critically dependent on calcium signaling. Together, these data identify FGF2-target genes in follicular granulosa cells, and demonstrate alternative pathway use for the differential control of SPRY genes.
Collapse
Affiliation(s)
- Z L Jiang
- College of Animal Science and Technology, Northwestern A&F University, Yangling, Shaanxi, China
| | | | | | | | | |
Collapse
|
31
|
Otsuka F, Inagaki K. Unique bioactivities of bone morphogenetic proteins in regulation of reproductive endocrine functions. Reprod Med Biol 2011; 10:131-142. [PMID: 29662354 DOI: 10.1007/s12522-011-0082-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 03/29/2011] [Indexed: 01/28/2023] Open
Abstract
Remarkable progress has been made in understanding the mechanism by which growth factors and oocytes can regulate the development and function of granulosa cells. Insufficiency of two oocyte-specific growth factors, growth differentiation factor-9 and bone morphogenetic protein (BMP)-15, cause female infertility. Expression of mRNA and/or protein for the BMP system components, including ligands, receptors and intracellular signal transduction factors, was demonstrated in cell components of growing preantral follicles, and biofunctional experiments have further revealed many important roles of the BMP system in regulation of reproductive function. In this review, recent advances in studies on biological actions of BMPs in ovarian folliculogenesis and in related endocrine tissues are discussed.
Collapse
Affiliation(s)
- Fumio Otsuka
- Endocrine Center of Okayama University Hospital 2-5-1 Shikata-cho, Kitaku 700-8558 Okayama Japan
| | - Kenichi Inagaki
- Endocrine Center of Okayama University Hospital 2-5-1 Shikata-cho, Kitaku 700-8558 Okayama Japan
| |
Collapse
|
32
|
Sugiura K, Konuma R, Kano K, Naito K. Role of Oocyte-derived Factors in Ovarian Follicular Development and Ovulation. ACTA ACUST UNITED AC 2011. [DOI: 10.1274/jmor.28.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Zuccotti M, Merico V, Cecconi S, Redi CA, Garagna S. What does it take to make a developmentally competent mammalian egg? Hum Reprod Update 2011; 17:525-40. [DOI: 10.1093/humupd/dmr009] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
34
|
Otsuka F, McTavish KJ, Shimasaki S. Integral role of GDF-9 and BMP-15 in ovarian function. Mol Reprod Dev 2011; 78:9-21. [PMID: 21226076 DOI: 10.1002/mrd.21265] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 11/16/2010] [Indexed: 11/10/2022]
Abstract
The oocyte plays an important role in regulating and promoting follicle growth, and thereby its own development, by the production of oocyte growth factors that predominantly act on supporting granulosa cells via paracrine signaling. Genetic studies in mice demonstrated critical roles of two key oocyte-derived growth factors belonging to the transforming growth factor-β (TGF-β) superfamily, growth and differentiation factor-9 (GDF-9) and bone morphogenetic protein-15 (BMP-15), in ovarian function. The identification of Bmp15 and Gdf9 gene mutations as the causal mechanism underlying the highly prolific or infertile nature of several sheep strains in a dosage-sensitive manner also highlighted the crucial role these two genes play in ovarian function. Similarly, large numbers of mutations in the GDF9 and BMP15 genes have been identified in women with premature ovarian failure and in mothers of dizygotic twins. The purpose of this article is to review the genetic studies of GDF-9 and BMP-15 mutations identified in women and sheep, as well as describing the various knockout and overexpressing mouse models, and to summarize the molecular and biological functions that underlie the crucial role of these two oocyte factors in female fertility.
Collapse
Affiliation(s)
- Fumio Otsuka
- Endocrine Center of Okayama University Hospital, Okayama, Japan.
| | | | | |
Collapse
|
35
|
Aktan TM, Görkemli H, Gezginç K, Saylan A, Duman S, Yılmaz FY. Improvement in embryo quality and pregnancy rates by using autologous cumulus body during icsi cycles. J Turk Ger Gynecol Assoc 2011; 12:162-7. [PMID: 24591985 DOI: 10.5152/jtgga.2011.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 08/07/2011] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To determine whether the addition of intact cumulus cell mass (ICM) to both embryo culture (EC) and embryo transfer (ET) improves embryo quality and pregnancy rates. MATERIAL AND METHODS A total of 133 infertile couples were included, of which 67 received ICM (study group) and 66 did not (control group). The ICM was obtained from a simple cutting of the cumulus corona oocyte complex (CCOC). A case control study design was used. RESULTS The clinical characteristics of the two groups before the embryo culturing step were similar with respect to age, estradiol level on the day of hCG and endometrial thickness on the day of embryo transfer (p>0.05). On the other hand study group with ICM had higher number of high quality embryos (3.1±1.4 vs 2.4±1.1, p=0.03), higher implantation rate (53.7% vs 34.8%, p=0.02) and higher ultrasound confirmation of gestational sac and fetal heart beat as ongoing pregnancy rates (44.7% vs 27.2%, p=0.04) compared to the control group without ICM. CONCLUSION Addition of ICM improves embryo quality and pregnancy rates. This is a cost-and time-effective simple procedure that shows great promise for the improvement of infertility treatment.
Collapse
Affiliation(s)
- Tahsin Murad Aktan
- Department of Histology and Embryology, Meram Faculty of Medicine, Selçuk University, Konya, Turkey
| | - Hüseyin Görkemli
- Department of Obstetrics and Gynecology, Meram Faculty of Medicine, Selçuk University, Konya, Turkey
| | - Kazım Gezginç
- Department of Obstetrics and Gynecology, Meram Faculty of Medicine, Selçuk University, Konya, Turkey
| | - Aslı Saylan
- Department of Histology and Embryology, Meram Faculty of Medicine, Selçuk University, Konya, Turkey
| | - Selçuk Duman
- Department of Histology and Embryology, Meram Faculty of Medicine, Selçuk University, Konya, Turkey
| | - Fatma Yazıcı Yılmaz
- Department of Obstetrics and Gynecology, Meram Faculty of Medicine, Selçuk University, Konya, Turkey
| |
Collapse
|
36
|
Sugiura K, Su YQ, Li Q, Wigglesworth K, Matzuk MM, Eppig JJ. Estrogen promotes the development of mouse cumulus cells in coordination with oocyte-derived GDF9 and BMP15. Mol Endocrinol 2010; 24:2303-14. [PMID: 21047911 DOI: 10.1210/me.2010-0260] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The differentiation and function of cumulus cells depend upon oocyte-derived paracrine factors, but studies on the estrogen receptor knockout mice suggested that estrogen also participates in these processes. This study investigates the possible coordination of estrogen and oocytes in the development and function of cumulus cells using cumulus expansion and the expression of transcripts required for expansion as functional endpoints. Preantral granulosa cell-oocyte complexes developed in vitro with 17β-estradiol (E2) exhibited increased levels of cumulus expansion and Has2 transcripts, encoding hyaluronan synthase 2, compared with those developed without E2. Moreover, cumulus cell-oocyte complexes (COCs) isolated from antral follicles and maintained in culture without E2 exhibited reduced cumulus expansion and Has2 mRNA levels compared with freshly isolated COCs. Exogenous E2, provided during the maintenance culture, alleviated these deficiencies. However, when oocytes were removed from COCs, E2 supplementation did not maintain competence to undergo expansion; the presence in culture of either fully grown oocytes or recombinant growth differentiation factor 9 (GDF9) was required. Recombinant bone morphogenetic protein 15, but not fibroblast growth factor 8, augmented the GDF9 effect. Oocytes or GDF9 suppressed cumulus cell levels of Nrip1 transcripts encoding nuclear receptor-interacting protein 1, a potential inhibitor of estrogen receptor signals. Therefore, E2 and oocyte-derived paracrine factors GDF9 and bone morphogenetic protein 15 coordinate to promote the development of cumulus cells and maintain their competence to undergo expansion. Furthermore, suppression of Nrip1 expression in cumulus cells by oocyte may be one mechanism mediating cross talk between oocyte and E2 signals that promotes follicular development.
Collapse
Affiliation(s)
- Koji Sugiura
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | |
Collapse
|
37
|
Zhang K, Hansen PJ, Ealy AD. Fibroblast growth factor 10 enhances bovine oocyte maturation and developmental competence in vitro. Reproduction 2010; 140:815-26. [PMID: 20876224 DOI: 10.1530/rep-10-0190] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ability of oocytes to resume meiosis, become fertilized, and generate viable pregnancies is controlled during folliculogenesis by several endocrine and paracrine factors. The aim of this work is to determine whether fibroblast growth factor 10 (FGF10) is an oocyte competent factor. Transcripts for each of the four FGF receptor types (FGFR) were present in cumulus and oocytes after their extraction from the follicles. FGFR1 transcripts predominated in cumulus cells whereas FGFR2 was most abundant in oocytes. Exposing the cumulus-oocyte complexes to FGF10 during in vitro maturation did not affect cleavage rates, but increases (P<0.05) in the percentage of embryos at the 8-16-cell stage on day 3 and at the blastocyst stage on day 7, which were evident in FGF10-supplemented oocytes. The progression of oocytes through meiosis and cumulus expansion was increased (P<0.05) by FGF10. The importance of the endogenous sources of FGFs was examined by adding anti-FGF10 IgG during oocyte maturation. Blocking endogenous FGF10 activity decreased (P<0.05) the percentage of oocytes developing into blastocysts and limited (P<0.05) cumulus expansion. Expression profiles of putative cumulus and oocyte competency markers were examined for their involvement in FGF10-mediated responses. FGF10 influenced the expression of CTSB and SPRY2 in cumulus cells and BMP15 in oocytes. In summary, this work provides new insight into the importance of FGFRs and locally derived FGF10 during oocyte maturation in cattle. Its subsequent impact on in vitro embryo development implicates it as a noteworthy oocyte competent factor.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, PO Box 110910, Gainesville, Florida 32611-0910, USA
| | | | | |
Collapse
|
38
|
Miyoshi T, Otsuka F, Yamashita M, Inagaki K, Nakamura E, Tsukamoto N, Takeda M, Suzuki J, Makino H. Functional relationship between fibroblast growth factor-8 and bone morphogenetic proteins in regulating steroidogenesis by rat granulosa cells. Mol Cell Endocrinol 2010; 325:84-92. [PMID: 20434519 DOI: 10.1016/j.mce.2010.04.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/08/2010] [Accepted: 04/13/2010] [Indexed: 12/17/2022]
Abstract
Bone morphogenetic proteins (BMPs) have been recognized as crucial molecules in regulating ovarian physiology, with different BMPs having differential actions in FSH-induced estradiol production. To identify the roles of oocyte factors that modulate steroidogenesis controlled by BMPs, we here investigated the effects of FGF-8 in rat granulosa/oocyte co-cultures. FGF-8 potently suppressed FSH-induced estradiol production, but did not affect cAMP-induced estradiol produced by rat granulosa cells. FGF-8 had no effects on progesterone and cAMP production induced by FSH and forskolin. The inhibitory effects of FGF-8 on FSH-induced estradiol production were not altered by BMP-2, -4, -6 or -7. In the presence of FGF-8, BMPs suppressed FSH-induced progesterone by reducing cAMP, suggesting that FGF-8 and BMP independently regulate FSH receptor signaling. Notably, FGF-8-induced ERK and SAPK/JNK phosphorylation in granulosa cells, in which ERK activation was further enhanced by FSH and oocytes. Inhibition of ERK and SAPK/JNK reduced FSH-induced progesterone and cAMP levels, suggesting that the activation of these pathways enhances FSH-induced cAMP signaling. In addition, ERK inhibition upregulated FSH-induced estradiol synthesis, indicating that ERK pathway is also involved in suppressing aromatase activity in granulosa cells. Interestingly, FGF-8 enhanced BMP-induced Smad1/5/8 and Id-1-promoter activities with decreased expression of Smad6/7. Since the SAPK/JNK inhibitor inhibited FGF-8 effects in upregulating Id-1 transcription, SAPK/JNK appears to be involved in the mechanism by which FGF-8 enhances BMP-Smad signaling. Furthermore, in the presence of oocytes, the inhibition of endogenous FGF receptor signaling suppressed FSH- and forskolin-induced progesterone and cAMP, showing that endogenous FGF system is involved in activation of FSH-induced cAMP-PKA signaling via ERK and SAPK/JNK. Thus, the oocyte factor, FGF-8, not only suppresses FSH-induced estradiol production by activating ERK, but also enhances BMP-Smad signaling in granulosa cells. This interaction between FGF-8 and BMPs may play a key role in regulating steroidogenesis through oocyte-granulosa cell communication.
Collapse
Affiliation(s)
- Tomoko Miyoshi
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sugiura K, Su YQ, Eppig JJ. Does bone morphogenetic protein 6 (BMP6) affect female fertility in the mouse? Biol Reprod 2010; 83:997-1004. [PMID: 20702851 DOI: 10.1095/biolreprod.110.086777] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bone morphogenetic protein 6 (BMP6) is a transforming growth factor beta superfamily member produced by mammalian oocytes as well as other cell types. Despite well-characterized effects of recombinant BMP6 on granulosa cells in vitro, the function of BMP6 in vivo has been ill-defined. Therefore, the effects of genetic deletion of the Bmp6 gene on female mouse fertility were assessed. The mean litter size of Bmp6(-/-) females was reduced by 22% (P < 0.05) compared to Bmp6(+/+) controls. Not only did Bmp6(-/-) females naturally ovulate 24% fewer eggs, but competence of in vitro-matured oocytes to complete preimplantation development after fertilization in vitro was decreased by 50%. No apparent effect of Bmp6 deletion on either the morphology or the dynamics of follicular development was apparent. Nevertheless, levels of luteinizing hormone (LH)/human chorionic gonadotropin (hCG)-induced transcripts, which encode proteins required for cumulus expansion (HAS2, PTGS2, PTX3, and TNFAIP6), and of epidermal growth factor-like peptides (AREG, BTC, and EREG) were lower in Bmp6(-/-) mice than in controls after administration of a reduced dose of hCG (1 IU) in vivo. LH receptor (Lhcgr) transcript levels were not significantly lower in Bmp6(-/-) granulosa cells, suggesting that BMP6 is required for processes downstream of LH receptors. To assess whether another oocyte-derived BMP, BMP15, could have BMP6-redundant functions in vivo, the fertility of Bmp15/Bmp6 double mutants was assessed. Fertility was not significantly reduced in double-homozygous mutants compared with that in double-heterozygous controls. Therefore, BMP6 promotes normal fertility in female mice, at least in part, by enabling appropriate responses to LH and normal oocyte quality. Thus, Bmp6 probably is part of the complex genetic network that determines female fertility.
Collapse
|
40
|
Sánchez F, Adriaenssens T, Romero S, Smitz J. Different follicle-stimulating hormone exposure regimens during antral follicle growth alter gene expression in the cumulus-oocyte complex in mice. Biol Reprod 2010; 83:514-24. [PMID: 20592308 DOI: 10.1095/biolreprod.109.083311] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Follicle-stimulating hormone (FSH) and oocyte-secreted factors influence granulosa cell differentiation and follicle development. Whereas FSH stimulates the expression of mural cell transcripts, oocyte-secreted factors regulate specific cumulus cell genes and suppress the appearance of mural cell transcripts. This study addresses the extent to which clinically relevant changes in FSH doses applied during antral follicle development in vitro could alter the expression of oocyte and cumulus cell transcripts. A 12-day culture system in which mouse ovarian preantral follicles can grow to preovulatory follicles was used. The following three FSH regimens were considered: 1) continuous exposure to an FSH level of 10 mIU/ml (control), 2) decreasing concentrations of FSH (low FSH), and 3) an FSH level of 25 mIU/ml (high FSH) as soon as the antrum is formed. Transcripts in oocytes (Gdf9, Bmp15, and Fgf8) and in cumulus cells (Amh, Lhcgr, Ar, and Pfkp) were quantified by real-time PCR. Under high FSH, the three oocyte transcripts were upregulated, while in cumulus cells a shutdown of the Amh signal and substantial increases in Lhcgr and Ar expression were measured. In contrast, low FSH tended to reduce Lhcgr to levels comparable to those in vivo. Levels of Pfkp were not affected by FSH doses. These results demonstrate that a 2.5-fold increase in FSH changes both oocyte and cumulus cell transcript levels. Conversely, a decrease in FSH does not affect transcript levels but seems to limit inappropriate Lhcgr expression. Modulating FSH within physiological ranges during the antral phase of culture alters cumulus cell differentiation.
Collapse
Affiliation(s)
- Flor Sánchez
- Follicle Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | |
Collapse
|
41
|
Nautiyal J, Steel JH, Rosell MM, Nikolopoulou E, Lee K, Demayo FJ, White R, Richards JS, Parker MG. The nuclear receptor cofactor receptor-interacting protein 140 is a positive regulator of amphiregulin expression and cumulus cell-oocyte complex expansion in the mouse ovary. Endocrinology 2010; 151:2923-32. [PMID: 20308529 PMCID: PMC2875814 DOI: 10.1210/en.2010-0081] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The nuclear receptor cofactor receptor-interacting protein 140 (RIP140) is essential for cumulus cell-oocyte complex (COC) expansion, follicular rupture, and oocyte release during ovulation. The expression of many genes necessary for COC expansion is impaired in the absence of RIP140, but the studies herein document that their expression can be restored and COC expansion rescued by treatment with the epidermal growth factor (EGF)-like factor amphiregulin (AREG) both in vitro and in vivo. We demonstrate by several approaches that RIP140 is required for the expression of the EGF-like factors in granulosa cells, but the dependence of genes involved in cumulus expansion, including Ptgs2 Has2, Tnfaip6, and Ptx3, is indirect because they are induced by AREG. Treatment of granulosa cells with forskolin to mimic the effects of LH increases AREG promoter activity in a RIP140-dependent manner that 1) requires an intact cAMP response element in the proximal promoter region of the Areg gene and 2) involves its actions as a coactivator for cAMP response element-binding protein/c-Jun transcription factors. Although human chorionic gonadotropin and AREG coadministration is sufficient to restore ovulation fully in RIP140 heterozygous mice in vivo, both follicular rupture and ovulation remain impaired in the RIP140 null mice. Thus, we conclude that although the level of RIP140 expression in the ovary is a crucial factor required for the transient expression of EGF-like factors necessary for cumulus expansion, it also plays a role in other signaling pathways that induce follicular rupture.
Collapse
Affiliation(s)
- Jaya Nautiyal
- Molecular Endocrinology Laboratory, Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Su YQ, Sugiura K, Li Q, Wigglesworth K, Matzuk MM, Eppig JJ. Mouse oocytes enable LH-induced maturation of the cumulus-oocyte complex via promoting EGF receptor-dependent signaling. Mol Endocrinol 2010; 24:1230-9. [PMID: 20382892 DOI: 10.1210/me.2009-0497] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
LH triggers the maturation of the cumulus-oocyte complex (COC), which is followed by ovulation. These ovarian follicular responses to LH are mediated by epidermal growth factor (EGF)-like growth factors produced by granulosa cells and require the participation of oocyte-derived paracrine factors. However, it is not clear how oocytes coordinate with the EGF receptor (EGFR) signaling to achieve COC maturation. The aim of the present study was to test the hypothesis that oocytes promote the expression of EGFR by cumulus cells, thus enabling them to respond to the LH-induced EGF-like peptides. Egfr mRNA and protein expression were dramatically reduced in cumulus cells of mutant mice deficient in the production of the oocyte-derived paracrine factors growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15). Moreover, microsurgical removal of oocytes from wild-type COCs dramatically reduced expression of Egfr mRNA and protein, and these levels were restored by either coculture with oocytes or treatment with recombinant GDF9 or GDF9 plus recombinant BMP15. Blocking Sma- and Mad-related protein (SMAD)2/3 phosphorylation in vitro inhibited Egfr expression in wild-type COCs and in GDF9-treated wild-type cumulus cells, and conditional deletion of Smad2 and Smad3 genes in granulosa cells in vivo resulted in the reduction of Egfr mRNA in cumulus cells. These results indicate that oocytes promote expression of Egfr in cumulus cells, and a SMAD2/3-dependent pathway is involved in this process. At least two oocyte-derived growth factors, GDF9 and BMP15, are required for EGFR expression by cumulus cells.
Collapse
Affiliation(s)
- You-Qiang Su
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | |
Collapse
|
43
|
Adriaenssens T, Wathlet S, Segers I, Verheyen G, De Vos A, Van der Elst J, Coucke W, Devroey P, Smitz J. Cumulus cell gene expression is associated with oocyte developmental quality and influenced by patient and treatment characteristics. Hum Reprod 2010; 25:1259-70. [PMID: 20228394 DOI: 10.1093/humrep/deq049] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Gene expression of cumulus cells (CC) could predict oocyte developmental quality. Knowledge of the genes involved in determining oocyte quality is scanty. The aim was to correlate clinical and biological characteristics during ovarian stimulation with the expression of 10 selected genes in CC. METHODS Sixty-three ICSI patients were stimulated with GnRH-agonist plus highly purified hMG (n = 35) or recombinant FSH (n = 28). Thirteen variables were analyzed: Age, BMI, duration of stimulation, serum concentrations of progesterone, 17beta-estradiol, FSH and LH on day of hCG, Ovarian Response, Oocyte Maturity, 2 pronuclei and three embryo morphology related variables: > or =7 cells, Low Fragmentation, Good Quality Embryos score. Expression of HAS2, VCAN, SDC4, ALCAM, GREM1, PTGS1, PTGS2, DUSP16, SPROUTY4 and RPS6KA2 was analyzed in pooled CC using quantitative PCR, and the relationship to the 13 variables was evaluated by multivariable analysis. RESULTS All 10 genes are expressed at oocyte retrieval, with PTGS1, SPROUTY4, DUSP16 and RPS6KA2 described in human ovary for the first time. The three variables that correlated most often with differential expression were Age, BMI and serum FSH level. Significant correlation was found with Oocyte Maturity (VCAN, P < 0.005), Low Fragmentation (RPS6KA2, P < 0.05), Embryos with > or =7 cells (ALCAM and GREM1, P < 0.05). The expression of the other genes was also correlated to oocyte developmental quality but to a less extent. SDC4, VCAN, GREM1, SPROUTY4 and RPS6KA2 showed gonadotrophin preparation-dependent expression and/or interactions (all P < 0.05). CONCLUSION The expression of ovulation related genes in CC is associated with patient and treatment characteristics, oocyte developmental potential and differs with the type of gonadotrophin used.
Collapse
Affiliation(s)
- T Adriaenssens
- Follicle Biology Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 101, B 1090 Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|