1
|
Jiang M, Cai N, Hu J, Han L, Xu F, Zhu B, Wang B. Genomic and algorithm-based predictive risk assessment models for benzene exposure. Front Public Health 2025; 12:1419361. [PMID: 39911783 PMCID: PMC11795664 DOI: 10.3389/fpubh.2024.1419361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/12/2024] [Indexed: 02/07/2025] Open
Abstract
Aim In this research, we leveraged bioinformatics and machine learning to pinpoint key risk genes associated with occupational benzene exposure and to construct genomic and algorithm-based predictive risk assessment models. Subject and methods We sourced GSE9569 and GSE21862 microarray data from the Gene Expression Omnibus. Utilizing R software, we performed an initial screen for differentially expressed genes (DEGs), which was followed by the enrichment analyses to elucidate the affected functions and pathways. Subsequent steps included the application of three machine learning algorithms for key gene identification, and the validation of these genes within both a cohort exposed to benzene and a benzene-exposed mice model. We then conducted a functional prediction analysis on these genes using four machine learning models, complemented by GSVA enrichment analysis. Results Out of the data, 40 DEGs were identified, primarily linked to cytokine signaling, lipopolysaccharide response, and chemokine pathways. NFKB1, PHACTR1, PTGS2, and PTX3 were pinpointed as significant through machine learning. Validation confirmed substantial changes in NFKB1 and PTX3 following exposure, with PTX3 emerging as paramount, suggesting its utility as a diagnostic biomarker for benzene damage. Conclusion Risk assessment models, informed by oxidative stress markers, successfully discriminated between benzene-injured patients and controls.
Collapse
Affiliation(s)
- Minyun Jiang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Province Center for Disease Prevention and Control, Institute of Occupational Disease Prevention, Nanjing, Jiangsu, China
| | - Na Cai
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Province Center for Disease Prevention and Control, Institute of Occupational Disease Prevention, Nanjing, Jiangsu, China
| | - Juan Hu
- School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Lei Han
- Jiangsu Province Center for Disease Prevention and Control, Institute of Occupational Disease Prevention, Nanjing, Jiangsu, China
- Jiangsu Preventive Medical Association, Nanjing, Jiangsu, China
| | - Fanwei Xu
- School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Baoli Zhu
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Province Center for Disease Prevention and Control, Institute of Occupational Disease Prevention, Nanjing, Jiangsu, China
- Jiangsu Preventive Medical Association, Nanjing, Jiangsu, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Boshen Wang
- Jiangsu Province Center for Disease Prevention and Control, Institute of Occupational Disease Prevention, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Imran FS, Al-Thuwaini TM. The Novel PTX3 Variant g.22645332G>T Is Strongly Related to Awassi and Hamdani Sheep Litter Size. Bioinform Biol Insights 2024; 18:11779322241248912. [PMID: 38681096 PMCID: PMC11047254 DOI: 10.1177/11779322241248912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024] Open
Abstract
The detection of polymorphisms in genes that control livestock reproduction could be highly beneficial for identifying and enhancing economic traits. One of these genes is pentraxin 3 (PTX3), which affects the reproduction of sheep. Therefore, this study investigated whether the variability of the PTX3 gene was related to the litter size of Awassi and Hamdani ewes. A total of 200 ewes (130 Awassi and 70 Hamdani) were used for genomic DNA extraction. Polymerase chain reaction was used to amplify the sequence fragments of exons 1, 2, 3, and 4 from the PTX3 gene (Oar_v4.0; Chr 1, NC_056054.1), resulting in products of 254, 312, 302, and 253, respectively. Two genotypes, GG and GT, were identified for 302 bp amplicon. A novel mutation was discovered through sequence analysis in the GT genotype at position g.22645332G>T. The statistical analysis revealed a significant association between single nucleotide polymorphism (SNP g.22645332G>T; Oar_v4.0; Chr 1, NC_056054.1) and litter size. The presence of the SNP g.22645332G>T (Oar_v4.0; Chr 1, NC_056054.1) genotype in ewes resulted in a significant difference compared to ewes with GG genotypes. The discrepancy became apparent in several aspects, including litter sizes, twinning rates, lambing rates, litter weight at birth, and days to lambing. There were fewer lambs born to ewes with the GG genotype than to ewes with the GT genotype. The variant SNP g.22645332G>T (Oar_v4.0; Chr 1, NC_056054.1) has positive effects on the litter size of Awassi and Hamdani sheep. The SNP g.22645332G>T (Oar_v4.0; Chr 1, NC_056054.1 has been associated with an increase in litter size and higher prolificacy in ewes.
Collapse
Affiliation(s)
- Faris S Imran
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Babil, Iraq
- Department of Public Health, Faculty of Veterinary Medicine, Kerbala University, Karbala, Iraq
| | - Tahreer M Al-Thuwaini
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Babil, Iraq
| |
Collapse
|
3
|
Massimino AM, Colella FE, Bottazzi B, Inforzato A. Structural insights into the biological functions of the long pentraxin PTX3. Front Immunol 2023; 14:1274634. [PMID: 37885881 PMCID: PMC10598717 DOI: 10.3389/fimmu.2023.1274634] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Soluble pattern recognition molecules (PRMs) are a heterogenous group of proteins that recognize pathogen- and danger-associated molecular patterns (PAMPs and DAMPs, respectively), and cooperate with cell-borne receptors in the orchestration of innate and adaptive immune responses to pathogenic insults and tissue damage. Amongst soluble PRMs, pentraxins are a family of highly conserved proteins with distinctive structural features. Originally identified in the early 1990s as an early inflammatory gene, PTX3 is the prototype of long pentraxins. Unlike the short pentraxin C reactive protein (CRP), whose expression is mostly confined to the liver, PTX3 is made by several immune and non-immune cells at sites of infection and inflammation, where it intercepts fundamental aspects of infection immunity, inflammation, and tissue remodeling. Of note, PTX3 cross talks to components of the complement system to control cancer-related inflammation and disposal of pathogens. Also, it is an essential component of inflammatory extracellular matrices (ECMs) through crosslinking of hyaluronic acid and turn-over of provisional fibrin networks that assemble at sites of tissue injury. This functional diversity is mediated by unique structural characteristics whose fine details have been unveiled only recently. Here, we revisit the structure/function relationships of this long pentraxin in light of the most recent advances in its structural biology, with a focus on the interplay with complement and the emerging roles as a component of the ECM. Differences to and similarities with the short pentraxins are highlighted and discussed.
Collapse
Affiliation(s)
| | | | - Barbara Bottazzi
- Laboratory of Cellular and Humoral Innate Immunity, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Antonio Inforzato
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Laboratory of Cellular and Humoral Innate Immunity, IRCCS Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
4
|
Zhang H, Wang R, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, Liu Z, Feng S, Peng Y, Liu Z, Cheng Q. Molecular insight into pentraxin-3: Update advances in innate immunity, inflammation, tissue remodeling, diseases, and drug role. Biomed Pharmacother 2022; 156:113783. [PMID: 36240615 DOI: 10.1016/j.biopha.2022.113783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Pentraxin-3 (PTX3) is the prototype of the long pentraxin subfamily, an acute-phase protein consisting of a C-terminal pentraxin domain and a unique N-terminal domain. PTX3 was initially isolated from human umbilical vein endothelial cells and human FS-4 fibroblasts. It was subsequently found to be also produced by synoviocytes, chondrocytes, osteoblasts, smooth muscle cells, myeloid dendritic cells, epithelial cells, and tumor cells. Various modulatory factors, such as miRNAs, cytokines, drugs, and hypoxic conditions, could regulate the expression level of PTX3. PTX3 is essential in regulating innate immunity, inflammation, angiogenesis, and tissue remodeling. Besides, PTX3 may play dual (pro-tumor and anti-tumor) roles in oncogenesis. PTX3 is involved in the occurrence and development of many non-cancerous diseases, including COVID-19, and might be a potential biomarker indicating the prognosis, activity,and severity of diseases. In this review, we summarize and discuss the potential roles of PTX3 in the oncogenesis and pathogenesis of non-cancerous diseases and potential targeted therapies based on PTX3.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China; Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, China
| | - Ruixuan Wang
- Department of Oncology, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; Department of Neurosurgery, and Department of Cellular & Molecular Physiology,Yale University School of Medicine, USA; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Jason Hu
- Department of Neonatology, Yale University School of Medicine, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, China
| | - Songshan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Zhengzheng Liu
- Department of Oncology, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China.
| |
Collapse
|
5
|
Pentraxin 3 deficiency exacerbates lipopolysaccharide-induced inflammation in adipose tissue. Int J Obes (Lond) 2019; 44:525-538. [PMID: 31209269 DOI: 10.1038/s41366-019-0402-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/12/2019] [Accepted: 04/27/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND/OBJECTIVES Pentraxin 3 (PTX3) has been characterized as a soluble and multifunctional pattern recognition protein in the regulation of innate immune response. However, little is known about its role in adipose tissue inflammation and obesity. Herein, we investigated the role of PTX3 in the regulation of lipopolysaccharide (LPS)-induced inflammation in adipocytes and adipose tissue, as well as high-fat diet (HFD)-induced metabolic inflammation in obesity. METHODS Ptx3 knockdown 3T3-L1 Cells were generated using shRNA for Ptx3 gene and treated with different inflammatory stimuli. For the in vivo studies, Ptx3 knockout mice were treated with 0.3 mg/kg of LPS for 6 h. Adipose tissues were collected for gene and protein expression by qPCR and western blotting, respectively. Ptx3 knockout mice were fed with HFD for 12 week since 6 week of age. RESULTS We observed that the expression of PTX3 in adipose tissue and serum PTX3 were markedly increased in response to LPS administration. Knocking down Ptx3 in 3T3-L1 cells reduced adipogenesis and caused a more profound and sustained upregulation of proinflammatory gene expression and signaling pathway activation during LPS-stimulated inflammation in 3T3-L1 adipocytes. In vivo studies showed that PTX3 deficiency significantly exacerbated the LPS-induced upregulation of inflammatory genes and downregulation of adipogeneic genes in visceral and subcutaneous adipose tissue of mice. Accordingly, LPS stimulation elicited increased activation of nuclear factor-κB (NF-κB) and p44/42 MAPK (Erk1/2) signaling pathways in visceral and subcutaneous adipose tissue. The expression of PTX3 in adipose tissue was also induced by HFD, and PTX3 deficiency led to the upregulation of proinflammatory genes in visceral adipose tissue of HFD-induced obese mice. CONCLUSIONS Our results suggest a protective role of PTX3 in LPS- and HFD-induced sustained inflammation in adipose tissue.
Collapse
|
6
|
Bonacina F, Moregola A, Porte R, Baragetti A, Bonavita E, Salatin A, Grigore L, Pellegatta F, Molgora M, Sironi M, Barbati E, Mantovani A, Bottazzi B, Catapano AL, Garlanda C, Norata GD. Pentraxin 3 deficiency protects from the metabolic inflammation associated to diet-induced obesity. Cardiovasc Res 2019; 115:1861-1872. [DOI: 10.1093/cvr/cvz068] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/23/2019] [Accepted: 03/11/2019] [Indexed: 01/18/2023] Open
Abstract
Abstract
Aims
Low-grade chronic inflammation characterizes obesity and metabolic syndrome. Here, we aim at investigating the impact of the acute-phase protein long pentraxin 3 (PTX3) on the immune-inflammatory response occurring during diet-induced obesity.
Methods and results
PTX3 deficiency in mice fed a high-fat diet for 20 weeks protects from weight gain and adipose tissue deposition in visceral and subcutaneous depots. This effect is not related to changes in glucose homeostasis and lipid metabolism but is associated with an improved immune cell phenotype in the adipose tissue of Ptx3 deficient animals, which is characterized by M2-macrophages polarization and increased angiogenesis. These findings are recapitulated in humans where carriers of a PTX3 haplotype (PTX3 h2/h2 haplotype), resulting in lower PTX3 plasma levels, presented with a reduced prevalence of obesity and decreased abdominal adiposity compared with non-carriers.
Conclusion
Our results support a critical role for PTX3 in the onset of obesity by promoting inflammation and limiting adipose tissue vascularization and delineate PTX3 targeting as a valuable strategy for the treatment of adipose tissue-associated inflammatory response.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, Milan, Italy
| | - Annalisa Moregola
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, Milan, Italy
| | - Rémi Porte
- IRCC Humanitas Clinical and Research Center, Rozzano, Italy
| | - Andrea Baragetti
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, Milan, Italy
- Centro SISA per lo Studio dell’Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, Italy
| | - Eduardo Bonavita
- Cancer Inflammation and Immunity Group, CRUK Manchester Institute, The University of Manchester, Manchester, UK
| | - Alice Salatin
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, Milan, Italy
| | - Liliana Grigore
- Centro SISA per lo Studio dell’Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, Italy
- IRCSS Multimedica, Milan, Italy
| | - Fabio Pellegatta
- Centro SISA per lo Studio dell’Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, Italy
- IRCSS Multimedica, Milan, Italy
| | | | - Marina Sironi
- IRCC Humanitas Clinical and Research Center, Rozzano, Italy
| | - Elisa Barbati
- IRCC Humanitas Clinical and Research Center, Rozzano, Italy
| | - Alberto Mantovani
- IRCC Humanitas Clinical and Research Center, Rozzano, Italy
- Humanitas University Rozzano, Italy
| | | | - Alberico Luigi Catapano
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, Milan, Italy
- IRCSS Multimedica, Milan, Italy
| | - Cecilia Garlanda
- IRCC Humanitas Clinical and Research Center, Rozzano, Italy
- Humanitas University Rozzano, Italy
| | - Giuseppe Danilo Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, Milan, Italy
- Centro SISA per lo Studio dell’Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, Italy
| |
Collapse
|
7
|
Bhat SA, Ahmad SM, Ibeagha-Awemu EM, Bhat BA, Dar MA, Mumtaz PT, Shah RA, Ganai NA. Comparative transcriptome analysis of mammary epithelial cells at different stages of lactation reveals wide differences in gene expression and pathways regulating milk synthesis between Jersey and Kashmiri cattle. PLoS One 2019; 14:e0211773. [PMID: 30721247 PMCID: PMC6363229 DOI: 10.1371/journal.pone.0211773] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 01/22/2019] [Indexed: 11/19/2022] Open
Abstract
Jersey and Kashmiri cattle are important dairy breeds that contribute significantly to the total milk production of the Indian northern state of Jammu and Kashmir. The Kashmiri cattle germplasm has been extensively diluted through crossbreeding with Jersey cattle with the goal of enhancing its milk production ability. However, crossbred animals are prone to diseases resulting to unsustainable milk production. This study aimed to provide a comprehensive transcriptome profile of mammary gland epithelial cells at different stages of lactation and to find key differences in genes and pathways regulating milk traits between Jersey and Kashmiri cattle. Mammary epithelial cells (MEC) isolated from milk obtained from six lactating cows (three Jersey and three Kashmiri cattle) on day 15 (D15), D90 and D250 in milk, representing early, mid and late lactation, respectively were used. RNA isolated from MEC was subjected to next-generation RNA sequencing and bioinformatics processing. Casein and whey protein genes were found to be highly expressed throughout the lactation stages in both breeds. Largest differences in differentially expressed genes (DEG) were between D15 vs D90 (1,805 genes) in Kashmiri cattle and, D15 vs D250 (3,392 genes) in Jersey cattle. A total of 1,103, 1,356 and 1,397 genes were differentially expressed between Kashmiri and Jersey cattle on D15, D90 and D250, respectively. Antioxidant genes like RPLPO and RPS28 were highly expressed in Kashmiri cattle. Differentially expressed genes in both Kashmiri and Jersey were enriched for multicellular organismal process, receptor activity, catalytic activity, signal transducer activity, macromolecular complex and developmental process gene ontology terms. Whereas, biological regulation, endopeptidase activity and response to stimulus were enriched in Kashmiri cattle and, reproduction and immune system process were enriched in Jersey cattle. Most of the pathways responsible for regulation of milk production like JAK-STAT, p38 MAPK pathway, PI3 kinase pathway were enriched by DEG in Jersey cattle only. Although Kashmiri has poor milk production efficiency, the present study suggests possible physicochemical and antioxidant properties of Kashmiri cattle milk that needs to be further explored.
Collapse
Affiliation(s)
- Shakil Ahmad Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, India
- * E-mail:
| | - Eveline M. Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Quebec, Canada
| | - Basharat A. Bhat
- Department of Life Science, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Mashooq Ahmad Dar
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, India
| | - Peerzada Tajamul Mumtaz
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, India
| | - Riaz A. Shah
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, India
| | - Nazir A. Ganai
- Division of Animal Genetics and Breeding, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, India
| |
Collapse
|
8
|
Camaioni A, Klinger FG, Campagnolo L, Salustri A. The Influence of Pentraxin 3 on the Ovarian Function and Its Impact on Fertility. Front Immunol 2018; 9:2808. [PMID: 30555480 PMCID: PMC6283082 DOI: 10.3389/fimmu.2018.02808] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/14/2018] [Indexed: 12/26/2022] Open
Abstract
Follicular development is a highly coordinated process that in humans takes more than 6 months. Pituitary gonadotropins and a variety of locally produced growth factors and cytokines are involved in determining a precise sequence of changes in cell metabolism, proliferation, vascularization, and matrix remodeling in order to obtain a follicle with full ovulatory and steroidogenic capability. A low-grade inflammation can alter such processes leading to premature arrest of follicular growth and female reproductive failure. On the other hand, factors that are involved in inflammatory response as well as in innate immunity are physiologically upregulated in the follicle at the final stage of maturation and play an essential role in ovulation and fertilization. The generation of pentraxin 3 (PTX3) deficient mice provided the first evidence that this humoral pattern recognition molecule of the innate immunity has a non-redundant role in female fertility. The expression, localization, and molecular interactions of PTX3 in the periovulatory follicle have been extensively studied in the last 10 years. In this review, we summarize findings demonstrating that PTX3 is synthesized before ovulation by cells surrounding the oocyte and actively participates in the organization of the hyaluronan-rich provisional matrix required for successful fertilization. Data in humans tend to confirm these findings, indicating PTX3 as a biomarker of oocyte quality. Moreover, we discuss the emerging evidence that in humans altered PTX3 systemic levels, determined by genetic variations and/or low-grade chronic inflammation, can also impact the growth and development of the follicle and affect the incidence of ovarian disorders.
Collapse
Affiliation(s)
- Antonella Camaioni
- Histology and Embryology Section, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Rome, Italy
| | - Francesca Gioia Klinger
- Histology and Embryology Section, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Rome, Italy
| | - Luisa Campagnolo
- Histology and Embryology Section, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Rome, Italy
| | - Antonietta Salustri
- Histology and Embryology Section, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Rome, Italy
| |
Collapse
|
9
|
Garlanda C, Bottazzi B, Magrini E, Inforzato A, Mantovani A. PTX3, a Humoral Pattern Recognition Molecule, in Innate Immunity, Tissue Repair, and Cancer. Physiol Rev 2018; 98:623-639. [PMID: 29412047 DOI: 10.1152/physrev.00016.2017] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Innate immunity includes a cellular and a humoral arm. PTX3 is a fluid-phase pattern recognition molecule conserved in evolution which acts as a key component of humoral innate immunity in infections of fungal, bacterial, and viral origin. PTX3 binds conserved microbial structures and self-components under conditions of inflammation and activates effector functions (complement, phagocytosis). Moreover, it has a complex regulatory role in inflammation, such as ischemia/reperfusion injury and cancer-related inflammation, as well as in extracellular matrix organization and remodeling, with profound implications in physiology and pathology. Finally, PTX3 acts as an extrinsic oncosuppressor gene by taming tumor-promoting inflammation in murine and selected human tumors. Thus evidence suggests that PTX3 is a key homeostatic component at the crossroad of innate immunity, inflammation, tissue repair, and cancer. Dissecting the complexity of PTX3 pathophysiology and human genetics paves the way to diagnostic and therapeutic exploitation.
Collapse
Affiliation(s)
- Cecilia Garlanda
- Humanitas Clinical and Research Center, Rozzano, Milan , Italy ; Humanitas University, Rozzano, Milan , Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan , Milan , Italy ; and The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Barbara Bottazzi
- Humanitas Clinical and Research Center, Rozzano, Milan , Italy ; Humanitas University, Rozzano, Milan , Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan , Milan , Italy ; and The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Elena Magrini
- Humanitas Clinical and Research Center, Rozzano, Milan , Italy ; Humanitas University, Rozzano, Milan , Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan , Milan , Italy ; and The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Antonio Inforzato
- Humanitas Clinical and Research Center, Rozzano, Milan , Italy ; Humanitas University, Rozzano, Milan , Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan , Milan , Italy ; and The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Rozzano, Milan , Italy ; Humanitas University, Rozzano, Milan , Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan , Milan , Italy ; and The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
10
|
van Exel E, Koopman JJE, van Bodegom D, Meij JJ, de Knijff P, Ziem JB, Finch CE, Westendorp RGJ. Effect of APOE ε4 allele on survival and fertility in an adverse environment. PLoS One 2017; 12:e0179497. [PMID: 28683096 PMCID: PMC5500260 DOI: 10.1371/journal.pone.0179497] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 05/31/2017] [Indexed: 11/22/2022] Open
Abstract
Background The apolipoprotein-ε4 allele (APOE-ε4) is strongly associated with detrimental outcomes in affluent populations including atherosclerotic disease, Alzheimer’s disease, and reduced lifespan. Despite these detrimental outcomes, population frequencies of APOE-ε4 are high. We hypothesize that the high frequency of APOE-ε4 was maintained because of beneficial effects during evolution when infectious pathogens were more prevalent and a major cause of mortality. We examined a rural Ghanaian population with a high pathogen exposure for selective advantages of APOE-ε4, to survival and or fertility. Methods and findings This rural Ghanaian population (n = 4311) has high levels of mortality from widespread infectious diseases which are the main cause of death. We examined whether APOE-ε4 was associated with survival (total follow-up time was 30,262 years) and fertility after stratifying by exposure to high or low pathogen levels. Households drawing water from open wells and rivers were classified as exposed to high pathogen levels while low pathogen exposure was classified as those drawing water from borehole wells. We found a non-significant, but positive survival benefit, i.e. the hazard ratio per APOE-ε4 allele was 0.80 (95% confidence interval: 0.69 to 1.05), adjusted for sex, tribe, and socioeconomic status. Among women aged 40 years and older (n = 842), APOE-ε4 was not associated with the lifetime number of children. However, APOE-ε4 was associated with higher fertility in women exposed to high pathogen levels. Compared with women not carrying an APOE-ε4 allele, those carrying one APOE-ε4 allele had on average one more child and those carrying two APOE-ε4 alleles had 3.5 more children (p = 0.018). Conclusions Contrary to affluent modern-day populations, APOE-ε4 did not carry a survival disadvantage in this rural Ghanaian population. Moreover, APOE-ε4 promotes fertility in highly infectious environments. Our findings suggest that APOE-ε4 may be considered as evolutionarily adaptive. Its adverse associations in affluent modern populations with later onset diseases of aging further characterize APOE-ε4 as an example of antagonistic pleiotropy.
Collapse
Affiliation(s)
- Eric van Exel
- Department of Psychiatry, VU University Medical Center/GGZinGeest, Amsterdam, the Netherlands
- EMGO Institute for Health and Care Research and Neuroscience Campus Amsterdam, the Netherlands
- * E-mail:
| | - Jacob J. E. Koopman
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - David van Bodegom
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
- Leyden Academy on Vitality and Ageing, Leiden, the Netherlands
| | - Johannes J. Meij
- University of Melbourne, Melbourne Academic Center of Health, Melbourne, Australia
| | - Peter de Knijff
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Juventus B. Ziem
- Department of Clinical Laboratory Sciences, School of Medicine and Health Sciences, University for Development Studies, Tamale, Ghana
| | - Caleb E. Finch
- Davis School of Gerontology and Dornsife College, Dept Biological Sciences, University of Southern California, Los Angeles, United States of America
| | - Rudi G. J. Westendorp
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
- Leyden Academy on Vitality and Ageing, Leiden, the Netherlands
- Department of Public Health, and Center for Healthy Ageing, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Zhu H, Yu W, Xie Y, Zhang H, Bi Y, Zhu D. Association of Pentraxin 3 Gene Polymorphisms with Susceptibility to Diabetic Nephropathy. Med Sci Monit 2017; 23:428-436. [PMID: 28119515 PMCID: PMC5289099 DOI: 10.12659/msm.902783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a major microvascular complication of diabetes. Pentraxin 3 (PTX3) is a member of the acute-phase reactants superfamily and altered plasma levels of PTX3 are associated with DN. We performed a case-control study to analyze the relationship between single nucleotide polymorphisms (SNPs) in PTX3 and the risk for DN in patients with type 2 diabetes. MATERIAL AND METHODS The study included 135 DN patients, 155 non-diabetic nephropathy (NDN) patients, and 152 normal controls (NC) (N=442). We genotyped eight PTX3 SNPs (rs2305619, rs2120243, rs1456099, rs7634847, rs1840680, rs2316706, rs2316709, and rs7616177) using the ABI PRISM SNapshot method. RESULTS The genotype frequencies of rs2305619 and rs2120243 differed significantly between the DN and the NDN groups (p=0.017 and p=0.033, respectively). Patients with the GG variant of rs2305619 showed 4.078-fold higher susceptibility to DN than those with the AA variant (OR=4.078, 95% CI=1.370-12.135, p=0.012); patients with the AA variant of rs2120243 had a lower risk of developing DN (OR=0.213, 95% CI=0.055-0.826, p=0.025). Haplotype analysis showed an association between the CAGGG haplotype in block 1 with DN (p=0.0319). CONCLUSIONS Our findings suggested that PTX3 polymorphisms were associated with an increased risk for DN in Chinese patients with type 2 diabetes.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Weihui Yu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Yuanyuan Xie
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Hailing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
12
|
Hwang N, Kwon MY, Cha JB, Chung SW, Woo JM. Tunicamycin-induced Endoplasmic Reticulum Stress Upregulates the Expression of Pentraxin 3 in Human Retinal Pigment Epithelial Cells. KOREAN JOURNAL OF OPHTHALMOLOGY 2016; 30:468-478. [PMID: 27980366 PMCID: PMC5156621 DOI: 10.3341/kjo.2016.30.6.468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/04/2016] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To investigate the production of long pentraxin 3 (PTX3) in response to tunicamycin-induced endoplasmic reticulum (ER) stress and its role in ER stress-associated cell death, PTX3 expression was evaluated in the human retinal pigment epithelial cell line, ARPE-19. METHODS PTX3 production in ARPE-19 cells was analyzed in the absence or presence of tunicamycin treatment by enzyme-linked immunosorbent assay. PTX3 protein and mRNA levels were estimated using western blot analysis and real-time reverse transcription-polymerase chain reaction, respectively. Protein and mRNA levels of CCAAT-enhancer-binding protein homologous protein (CHOP) and ARPE-19 cell viability were measured in the presence of tunicamycin-induced ER stress in control or PTX3 small hairpin RNA (shRNA)-transfected ARPE-19 cells. RESULTS The protein and mRNA levels of PTX3 were found to be significantly increased by tunicamycin treatment. PTX3 production was significantly decreased in inositol-requiring enzyme 1α shRNA-transfected ARPE-19 cells compared to control shRNA-transfected cells. Furthermore, pretreatment with the NF-κB inhibitor abolished tunicamycin-induced PTX3 production. Decreased cell viability and prolonged protein and mRNA expression of CHOP were observed under tunicamycin-induced ER stress in PTX3 shRNA transfected ARPE-19 cells. CONCLUSIONS These results suggest that PTX3 production increased in the presence of tunicamycin-induced ER stress. Therefore, PTX3 could be an important protector of ER stress-induced cell death in human retinal pigment epithelial cells. Inositol-requiring enzyme 1α and the NF-κB signaling pathway may serve as potential targets for regulation of PTX3 expression in the retina. Therefore, their role in PTX3 expression needs to be further investigated.
Collapse
Affiliation(s)
- Narae Hwang
- School of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, Korea
| | - Min-Young Kwon
- School of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, Korea
| | - Jae Bong Cha
- Department of Ophthalmology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Su Wol Chung
- School of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, Korea
| | - Je Moon Woo
- Department of Ophthalmology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| |
Collapse
|
13
|
Abstract
The genetic factors underlying female infertility in humans are only partially understood. Here, we performed a genome-wide association study of female infertility in 25 inbred mouse strains by using publicly available SNP data. As a result, a total of four SNPs were identified after chromosome-wise multiple test correction. The first SNP rs29972765 is located in a gene desert on chromosome 18, about 72 kb upstream of Skor2 (SKI family transcriptional corepressor 2). The second SNP rs30415957 resides in the intron of Plce1 (phospholipase C epsilon 1). The remaining two SNPs (rs30768258 and rs31216810) are close to each other on chromosome 19, in the vicinity of Sorbs1 (sorbin and SH3 domain containing 1). Using quantitative RT-PCR, we found that Sorbs1 is highly expressed in the mouse uterus during embryo implantation. Knockdown of Sorbs1 by siRNA attenuates the induction of differentiation marker gene Prl8a2 (decidual prolactin-related protein) in an in vitro model of decidualization using mouse endometrial stromal cells, suggesting that Sorbs1 may be a potential candidate gene for female infertility in mice. Our results may represent an opportunity to further understand female infertility in humans.
Collapse
|
14
|
Chaireti R, Lindahl TL, Byström B, Bremme K, Larsson A. Inflammatory and endothelial markers during the menstrual cycle. Scandinavian Journal of Clinical and Laboratory Investigation 2016; 76:190-4. [PMID: 26963835 DOI: 10.3109/00365513.2015.1129670] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The menstrual cycle exhibits a pattern of repeated inflammatory activity. The present study aims to evaluate inflammatory and endothelial markers during the two phases of a menstrual cycle. METHODS The study cohort consisted of 102 women with regular menstrual cycles. Inflammatory and endothelial markers (interleukin-6 [IL-6], pentraxin-3 [PTX-3], hs-C reactive protein [hs-CRP], sE-selectin, sP-selectin, intracellular and vascular cell adhesion molecules [ICAM-1 and VCAM-1] and cathepsins L, B and S) were measured during the early follicular and the late luteal phase of a normal menstrual cycle. RESULTS Pentraxin-3 (PTX-3) and hs-CRP were significantly higher during the follicular phase compared to the luteal phase (p < 0.001 respectively p = 0.025). The other inflammatory and endothelial markers, with the exception of cathepsin B, were higher, albeit not significantly, during the follicular phase. CONCLUSIONS Inflammatory activity, expressed mainly by members of the pentraxin family, is higher during the early follicular compared to the luteal phase. This could be associated to menstruation but the exact mechanisms behind this pattern are unclear and might involve the ovarian hormones or an effect on hepatocytes.
Collapse
Affiliation(s)
- Roza Chaireti
- a Department of Molecular Medicine and Surgery , Karolinska Institutet , Stockholm
| | - Tomas L Lindahl
- b Department of Clinical and Experimental Medicine , Linköping University , Linköping
| | - Birgitta Byström
- c Department of Women's and Children's Health, Division of Obstetrics and Gynecology , Karolinska Institutet , Stockholm
| | - Katarina Bremme
- c Department of Women's and Children's Health, Division of Obstetrics and Gynecology , Karolinska Institutet , Stockholm
| | - Anders Larsson
- d Department of Medical Sciences , Uppsala University , Uppsala , Sweden
| |
Collapse
|
15
|
Zandifar A, Iraji N, Taheriun M, Tajaddini M, Javanmard SH. Association of the long pentraxin PTX3 gene polymorphism (rs3816527) with migraine in an Iranian population. J Neurol Sci 2015; 349:185-9. [PMID: 25604633 DOI: 10.1016/j.jns.2015.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 12/25/2014] [Accepted: 01/10/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Migraine is a common neurovascular disorder with multifactorial and polygenic inheritance. It has been shown that migraine may be a form of sterile neurogenic inflammation. Pentaxins 3 (PTX3) has been detected in brain during inflammatory responses. The aim of our study was to investigate the association of rs3816527 polymorphism of the PTX3 gene and migraine in an Iranian population. METHOD We included 103 newly diagnosed migraine patients and 148 healthy subjects as control group. Genomic DNA samples extracted from the peripheral blood and genotypes of PTX3 rs3816527 gene polymorphism were determined. The patients filled out HIT-6 questionnaire as a scale to evaluate the severity of headache. RESULTS The genotype frequency of PTX3 was significantly different between the migraine patients and the control subjects. CC variant homozygote genotype was statistically more frequent in the patients than in the controls (P<0.05; OR=1.74, 95% CI=1.04-2.94). Also the C allele was not significantly more frequent in the patients (P=0.096; OR=1.27, 95% CI=0.88-1.85). A separate analysis in male and female subjects showed no significant differences between the different genotypes and phenotypes of PTX3 rs3816527 gene and susceptibility to migraine in female subjects. Total HIT-6 score was significantly different between three PTX3 genotypes (P=0.008). CONCLUSION In conclusion our results showed the association between the PTX3 rs3816527 gene polymorphism with susceptibility to migraine only in the male patients. Also total HIT-6 scores as a scale for assessment of the severity were related to the PTX3 rs3816527 gene polymorphism. But this relation was not established by headache frequency.
Collapse
Affiliation(s)
- Alireza Zandifar
- Applied Physiology Research Center, Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran; Medical Student Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Niloufar Iraji
- Applied Physiology Research Center, Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran; Medical Student Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Taheriun
- Applied Physiology Research Center, Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran; Medical Student Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohamadhasan Tajaddini
- Applied Physiology Research Center, Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran; School of Pharmacy, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
16
|
Ketter PM, Guentzel MN, Schaffer B, Herzig M, Wu X, Montgomery RK, Parida BK, Fedyk CG, Yu JJ, Jorgensen J, Chambers JP, Cap AP, Arulanandam BP. Severe Acinetobacter baumannii sepsis is associated with elevation of pentraxin 3. Infect Immun 2014; 82:3910-8. [PMID: 25001601 PMCID: PMC4187799 DOI: 10.1128/iai.01958-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/27/2014] [Indexed: 12/18/2022] Open
Abstract
Multidrug-resistant Acinetobacter baumannii is among the most prevalent bacterial pathogens associated with trauma-related wound and bloodstream infections. Although septic shock and disseminated intravascular coagulation have been reported following fulminant A. baumannii sepsis, little is known about the protective host immune response to this pathogen. In this study, we examined the role of PTX3, a soluble pattern recognition receptor with reported antimicrobial properties and stored within neutrophil granules. PTX3 production by murine J774a.1 macrophages was assessed following challenge with A. baumannii strains ATCC 19606 and clinical isolates (CI) 77, 78, 79, 80, and 86. Interestingly, only CI strains 79, 80, and 86 induced PTX3 synthesis in murine J774a.1 macrophages, with greatest production observed following CI 79 and 86 challenge. Subsequently, C57BL/6 mice were challenged intraperitoneally with CI 77 and 79 to assess the role of PTX3 in vivo. A. baumannii strain CI 79 exhibited significantly (P < 0.0005) increased mortality, with an approximate 50% lethal dose (LD50) of 10(5) CFU, while an equivalent dose of CI 77 exhibited no mortality. Plasma leukocyte chemokines (KC, MCP-1, and RANTES) and myeloperoxidase activity were also significantly elevated following challenge with CI 79, indicating neutrophil recruitment/activation associated with significant elevation in serum PTX3 levels. Furthermore, 10-fold-greater PTX3 levels were observed in mouse serum 12 h postchallenge, comparing CI 79 to CI 77 (1,561 ng/ml versus 145 ng/ml), with concomitant severe pathology (liver and spleen) and coagulopathy. Together, these results suggest that elevation of PTX3 is associated with fulminant disease during A. baumannii sepsis.
Collapse
Affiliation(s)
| | | | - Beverly Schaffer
- United States Army Institute for Surgical Research, San Antonio Military Medical Center, San Antonio, Texas, USA
| | - Maryanne Herzig
- United States Army Institute for Surgical Research, San Antonio Military Medical Center, San Antonio, Texas, USA
| | - Xiaowu Wu
- United States Army Institute for Surgical Research, San Antonio Military Medical Center, San Antonio, Texas, USA
| | - Robbie K Montgomery
- United States Army Institute for Surgical Research, San Antonio Military Medical Center, San Antonio, Texas, USA
| | - Bijaya K Parida
- United States Army Institute for Surgical Research, San Antonio Military Medical Center, San Antonio, Texas, USA
| | - Chriselda G Fedyk
- United States Army Institute for Surgical Research, San Antonio Military Medical Center, San Antonio, Texas, USA
| | - Jieh-Juen Yu
- University of Texas at San Antonio, San Antonio, Texas, USA
| | - James Jorgensen
- University of Texas Health Science Center, San Antonio, Texas, USA
| | | | - Andrew P Cap
- United States Army Institute for Surgical Research, San Antonio Military Medical Center, San Antonio, Texas, USA
| | | |
Collapse
|
17
|
Leary PJ, Jenny NS, Barr RG, Bluemke DA, Harhay MO, Heckbert SR, Kronmal RA, Lima JA, Mikacenic C, Tracy RP, Kawut SM. Pentraxin-3 and the right ventricle: the Multi-Ethnic Study of Atherosclerosis-Right Ventricle Study. Pulm Circ 2014; 4:250-9. [PMID: 25006444 DOI: 10.1086/675988] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/09/2013] [Indexed: 12/21/2022] Open
Abstract
Pentraxin-3 (PTX3) is a protein mediator of innate immunity that is elevated in the setting of left heart disease and pulmonary arterial hypertension. The relationship between PTX3 and right ventricular (RV) structure and function is not known. We included men and women with magnetic resonance imaging assessment of RV structure and function and measurement of PTX3 from the Multi-Ethnic Study of Atherosclerosis, a study of individuals free of clinical cardiovascular disease. Multivariable linear regression estimated associations between PTX3 protein levels and RV measures after adjusting for demographic characteristics, anthropometrics, smoking status, diabetes mellitus, hypertension, and corresponding left ventricular (LV) parameters. Instrumental variable analysis exploiting Mendelian randomization was attempted using two-stage least squares regression. The study sample included 1,779 participants with available PTX3 levels, RV measures, and all covariables. Mean PTX3 level was 2.1 ng/mL. Higher PTX3 was independently associated with greater RV mass and larger RV end-diastolic volume with and without adjustment for the corresponding LV parameters or C-reactive protein (all P < .05). There was no association between PTX3 and RV ejection fraction or stroke volume. Single-nucleotide polymorphisms were not associated with PTX3 protein levels or RV measures after accounting for race. Instrumental variable analysis could not be reliably performed. Higher PTX3 protein levels were associated with greater RV mass and larger RV end-diastolic volume. These associations were independent of common cardiovascular risk factors and LV morphologic changes. Inflammation is associated with differences in the pulmonary circulation-RV axis in adults without clinical cardiovascular disease.
Collapse
Affiliation(s)
- Peter J Leary
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington, USA
| | - Nancy S Jenny
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - R Graham Barr
- Departments of Medicine and Epidemiology, Columbia University, New York, New York, USA
| | - David A Bluemke
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Michael O Harhay
- Department of Medicine, Center for Clinical Epidemiology and Biostatistics, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan R Heckbert
- Departments of Epidemiology and Pharmacy, University of Washington, Seattle, Washington, USA
| | - Richard A Kronmal
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - João A Lima
- Departments of Medicine and Radiology, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Carmen Mikacenic
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Steven M Kawut
- Department of Medicine, Center for Clinical Epidemiology and Biostatistics, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
The Humoral Pattern Recognition Molecule PTX3 Is a Key Component of Innate Immunity against Urinary Tract Infection. Immunity 2014; 40:621-32. [DOI: 10.1016/j.immuni.2014.02.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 02/14/2014] [Indexed: 11/17/2022]
|
19
|
Cunha C, Aversa F, Lacerda JF, Busca A, Kurzai O, Grube M, Löffler J, Maertens JA, Bell AS, Inforzato A, Barbati E, Almeida B, Santos e Sousa P, Barbui A, Potenza L, Caira M, Rodrigues F, Salvatori G, Pagano L, Luppi M, Mantovani A, Velardi A, Romani L, Carvalho A. Genetic PTX3 deficiency and aspergillosis in stem-cell transplantation. N Engl J Med 2014; 370:421-32. [PMID: 24476432 DOI: 10.1056/nejmoa1211161] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The soluble pattern-recognition receptor known as long pentraxin 3 (PTX3) has a nonredundant role in antifungal immunity. The contribution of single-nucleotide polymorphisms (SNPs) in PTX3 to the development of invasive aspergillosis is unknown. METHODS We screened an initial cohort of 268 patients undergoing hematopoietic stem-cell transplantation (HSCT) and their donors for PTX3 SNPs modifying the risk of invasive aspergillosis. The analysis was also performed in a multicenter study involving 107 patients with invasive aspergillosis and 223 matched controls. The functional consequences of PTX3 SNPs were investigated in vitro and in lung specimens from transplant recipients. RESULTS Receipt of a transplant from a donor with a homozygous haplotype (h2/h2) in PTX3 was associated with an increased risk of infection, in both the discovery study (cumulative incidence, 37% vs. 15%; adjusted hazard ratio, 3.08; P=0.003) and the confirmation study (adjusted odds ratio, 2.78; P=0.03), as well as with defective expression of PTX3. Functionally, PTX3 deficiency in h2/h2 neutrophils, presumably due to messenger RNA instability, led to impaired phagocytosis and clearance of the fungus. CONCLUSIONS Genetic deficiency of PTX3 affects the antifungal capacity of neutrophils and may contribute to the risk of invasive aspergillosis in patients treated with HSCT. (Funded by the European Society of Clinical Microbiology and Infectious Diseases and others.).
Collapse
|
20
|
Martín-Antonio B, Granell M, Urbano-Ispizua Á. Genomic polymorphisms of the innate immune system and allogeneic stem cell transplantation. Expert Rev Hematol 2014; 3:411-27. [DOI: 10.1586/ehm.10.40] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Cushman RA, Miles JR, Rempel LA, McDaneld TG, Kuehn LA, Chitko-McKown CG, Nonneman D, Echternkamp SE. Identification of an ionotropic glutamate receptor AMPA1/GRIA1 polymorphism in crossbred beef cows differing in fertility. J Anim Sci 2013; 91:2640-6. [PMID: 23478821 DOI: 10.2527/jas.2012-5950] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A proposed functional polymorphism in the ionotropic glutamate receptor AMPA1 (GRIA1) has been reported to influence antral follicle numbers and fertility in cows. Repeat breeder cows that fail to produce a calf in multiple seasons have been reported to have reduced numbers of small (1 to 3 mm) antral follicles in their ovaries. Therefore, we tested the hypothesis that this GRIA1 polymorphism was affecting antral follicle numbers in repeat breeder cows. Repeat breeder cows (n = 64) and control cows (n = 72) that had always produced a calf were housed in a dry lot and observed twice daily for behavioral estrus. Blood samples were collected, and cows were genotyped for this GRIA1 polymorphism and for a polymorphism in the GnRH receptor (GnRHR) that was proposed to influence age at puberty. On d 3 to 8 after estrus cows were slaughtered, and reproductive organs were collected to determine antral follicle count, ovary size, and uterine horn diameter. Repeat breeder cows were older at first calving than control cows (P = 0.006). The length (P = 0.03) and height (P = 0.02) of the ovary contralateral to the corpus luteum (CL) were greater in control cows than repeat breeder cows. The endometrial diameter in the horn ipsilateral to the CL was greater in the control cows than the repeat breeder cows. Repeat breeder cows had fewer small (1 to 5 mm) antral follicles than control cows (P = 0.003); however, there was no association between GRIA1 genotype and antral follicle number. The GnRHR polymorphism was associated with age at first calving because cows that were homozygous for the C allele had a greater age at first calving than heterozygous cows or cows that were homozygous for the T allele (P = 0.01). In the granulosa cells from small (1 to 5 mm) antral follicles, mRNA abundances of 2 markers of oocyte quality, anti-Müllerian hormone and pentraxin 3, did not differ between fertility groups (P ≥ 0.12). We conclude that this GRIA1 polymorphism exists in beef cows but that it does not influence antral follicle numbers. The association between GnRHR genotype and age at first calving is likely not causal as this polymorphism is not functional. The utility of this polymorphism as a genetic marker for early conception in heifers will require further validation. Screening postpartum cows by ultrasonography to determine antral follicle numbers may aid in making culling decisions.
Collapse
Affiliation(s)
- R A Cushman
- USDA-ARS, Roman L. Hruska U. S. Meat Animal Research Center, P.O. Box 166, Clay Center, NE 68933, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Biology of Human Pentraxin 3 (PTX3) in Acute and Chronic Kidney Disease. J Clin Immunol 2013; 33:881-90. [DOI: 10.1007/s10875-013-9879-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/18/2013] [Indexed: 12/13/2022]
|
23
|
Influence of pentraxin 3 (PTX3) genetic variants on myocardial infarction risk and PTX3 plasma levels. PLoS One 2012; 7:e53030. [PMID: 23285251 PMCID: PMC3532160 DOI: 10.1371/journal.pone.0053030] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 11/22/2012] [Indexed: 12/22/2022] Open
Abstract
PTX3 is a long pentraxin of the innate immune system produced by different cell types (mononuclear phagocytes, dendritic cells, fibroblasts and endothelial cells) at the inflammatory site. It appears to have a cardiovascular protective function by acting on the immune-inflammatory balance in the cardiovascular system. PTX3 plasma concentration is an independent predictor of mortality in patients with acute myocardial infarction (AMI) but the influence of PTX3 genetic variants on PTX3 plasma concentration has been investigated very little and there is no information on the association between PTX3 variations and AMI. Subjects of European origin (3245, 1751 AMI survivors and 1494 controls) were genotyped for three common PTX3 polymorphisms (SNPs) (rs2305619, rs3816527, rs1840680). Genotype and allele frequencies of the three SNPs and the haplotype frequencies were compared for the two groups. None of the genotypes, alleles or haplotypes were significantly associated with the risk of AMI. However, analysis adjusted for age and sex indicated that the three PTX3 SNPs and the corresponding haplotypes were significantly associated with different PTX3 plasma levels. There was also a significant association between PTX3 plasma concentrations and the risk of all-cause mortality at three years in AMI patients (OR 1.10, 95% CI: 1.01–1.20, p = 0.02). Our study showed that PTX3 plasma levels are influenced by three PTX3 polymorphisms. Genetically determined high PTX3 levels do not influence the risk of AMI, suggesting that the PTX3 concentration itself is unlikely to be even a modest causal factor for AMI. Analysis also confirmed that PTX3 is a prognostic marker after AMI.
Collapse
|
24
|
Ibrahim MI, Harb HM, Ellaithy MI, Elkabarity RH, Abdelgwad MH. First trimester assessment of pentraxin-3 levels in women with primary unexplained recurrent pregnancy loss. Eur J Obstet Gynecol Reprod Biol 2012; 165:37-41. [PMID: 22889492 DOI: 10.1016/j.ejogrb.2012.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 06/08/2012] [Accepted: 07/21/2012] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To evaluate the potential role of measuring first-trimester maternal Pentraxin-3 levels in patients with primary unexplained recurrent pregnancy loss. STUDY DESIGN A case control study was conducted in Ain Shams University Maternity Hospital. Cases included 45 women with primary unexplained recurrent pregnancy loss and early pregnancy failure admitted for medical or surgical termination of pregnancy. Controls (45 women) included a matched group of apparently healthy pregnant women who had at least one previous uneventful pregnancy with no previous obstetric history of adverse pregnancy outcomes. Maternal venous blood samples were collected for assay of Pentraxin-3 using enzyme-linked immunosorbent assay. The main outcome measure was the pregnancy outcome in women with elevated Pentraxin-3 levels. RESULTS 90 participants were statistically analyzed. In the patient group, the mean Pentraxin-3 level was 12.00 ± 4.07 ng/ml, while in the control group it was 1.69 ± 0.91 ng/ml. The difference was statistically significant (p<0.001). In the patient group, Pentraxin-3 showed a significant positive correlation with the number of previous miscarriages (p=0.038). CONCLUSION Abnormally elevated Pentraxin-3 levels indicate the presence of an abnormally exaggerated intrauterine inflammatory or innate immune response that may cause pregnancy failure in women with primary unexplained recurrent pregnancy loss.
Collapse
|
25
|
Parasitic infections and immune function: effect of helminth infections in a malaria endemic area. Immunobiology 2012; 218:706-11. [PMID: 22999162 DOI: 10.1016/j.imbio.2012.08.273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 08/10/2012] [Indexed: 11/24/2022]
Abstract
According to the hygiene hypothesis, reduced exposure to infections could explain the rise of atopic diseases in high-income countries. Helminths are hypothesised to alter the host's immune response in order to avoid elimination and, as a consequence, also reduce the host responsiveness to potential allergens. To elucidate the effect of current helminth infections on immune responsiveness in humans, we measured cytokine production in a rural Ghanaian population in an area with multiple endemic parasites including malaria, intestinal helminths and protozoa. Multiplex real-time PCR in stool samples was used for the detection of four gastrointestinal helminths, of which only Necator americanus was commonly present. A similar assay was used to test for Giardia lamblia in stool samples and malaria infection in venous blood samples. Levels of the cytokines interleukin (IL)-10, tumour necrosis factor (TNF)-α, IL-17, IL-6, IL-13, and interferon (IFN)-γ were determined in whole-blood samples ex vivo-stimulated either with lipopolysaccharide (LPS) and zymosan (for innate cytokine production) or the T-cell mitogen phytohaemagglutinin (PHA). There were no significant differences in either innate or PHA-stimulated cytokine production dependent on current N. americanus infection. Plasmodium falciparum malarial infection was associated with a pro-inflammatory response indicated by increased innate production of TNF-α, IL-17 and IL-6. There was no clear pattern in cytokine responses dependent on G. lamblia-infection. In conclusion, in this rural Ghanaian population current N. americanus infections are not associated with altered immune function, while infection with P. falciparum is associated with pro-inflammatory innate immune responses.
Collapse
|
26
|
Sirugo G, Edwards DRV, Ryckman KK, Bisseye C, White MJ, Kebbeh B, Morris GAJ, Adegbola RA, Tacconelli A, Predazzi IM, Novelli G, Vannberg FO, Odunsi K, Page GP, Williams SM. PTX3 genetic variation and dizygotic twinning in the Gambia: could pleiotropy with innate immunity explain common dizygotic twinning in Africa? Ann Hum Genet 2012; 76:454-63. [PMID: 22834944 DOI: 10.1111/j.1469-1809.2012.00723.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dizygotic (DZ) twinning has a genetic component and is common among sub-Saharan Africans; in The Gambia its frequency is up to 3% of live births. Variation in PTX3, encoding Pentraxin 3, a soluble pattern recognition receptor that plays an important role both in innate immunity and in female fertility, has been associated with resistance to Mycobacterium tuberculosis pulmonary disease and to Pseudomonas aeruginosa infection in cystic fibrosis patients. We tested whether PTX3 variants in Gambian women associate with DZ twinning, by genotyping five PTX3 single nucleotide polymorphisms (SNPs) in 130 sister pairs (96 full sibs and 34 half sibs) who had DZ twins. Two, three and five SNP haplotypes differed in frequency between twinning mothers and those without a history of twinning (from P = 0.006 to 3.03e-06 for two SNP and three SNP haplotypes, respectively). Twinning mothers and West African tuberculosis-controls from a previous study shared several frequent haplotypes. Most importantly, our data are consistent with an independently reported association of PTX3 and female fertility in a sample from Ghana. Taken together, these results indicate that selective pressure on PTX3 variants that affect the innate immune response to infectious agents, could also produce the observed high incidence of DZ twinning in Gambians.
Collapse
|
27
|
Juutilainen A, Vänskä M, Pulkki K, Hämäläinen S, Nousiainen T, Jantunen E, Koivula I. Pentraxin 3 predicts complicated course of febrile neutropenia in haematological patients, but the decision level depends on the underlying malignancy. Eur J Haematol 2011; 87:441-7. [DOI: 10.1111/j.1600-0609.2011.01666.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
The influence of genetic variation on innate immune activation in an environment with high infectious pressure. Genes Immun 2011; 13:103-8. [PMID: 21833021 DOI: 10.1038/gene.2011.57] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interleukin-10 (IL-10) production is under tight genetic control in populations living in affluent environments. However, little is known about the role of IL10 genetics on cytokine production in populations living in environments with high infectious pressure. We have previously reported that, in a rural Ghanaian population, the most common IL10 haplotype associates with a pro-inflammatory response. Here, we aim to replicate these findings in an independent sample of the same population 2 years later. IL-10 and tumour necrosis factor-α (TNF-α) protein concentrations were determined in whole-blood samples ex vivo stimulated with lipopolysaccharide and zymosan in 2006 (n=615) and 2008 (n=647). The association between IL10 single nucleotide polymorphisms and Z-scores of IL-10 and TNF-α levels was analysed in each population subset. The most common IL10 haplotype was associated with a significantly lower IL-10 production and nonsignificantly increased TNF-α levels. The correlation between repeated cytokine assays, based on 111 individuals with measurements in both 2006 and 2008, was r=0.53 (P<0.001) for IL-10 and r=0.36 (P<0.001) for TNF-α. The replication of our previously found effect of variation in the IL10 gene on IL-10 production and the correlation between repeated cytokine stimulation assays provide evidence that IL10 genetics have an important role in regulating the host response under high infectious pressure.
Collapse
|
29
|
Inforzato A, Jaillon S, Moalli F, Barbati E, Bonavita E, Bottazzi B, Mantovani A, Garlanda C. The long pentraxin PTX3 at the crossroads between innate immunity and tissue remodelling. ACTA ACUST UNITED AC 2011; 77:271-82. [DOI: 10.1111/j.1399-0039.2011.01645.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|