1
|
Llorca T, Ruiz-Magaña MJ, Abadía AC, Ruiz-Ruiz C, Olivares EG. Decidual stromal cells: fibroblasts specialized in immunoregulation during pregnancy. Trends Immunol 2025; 46:138-152. [PMID: 39947975 DOI: 10.1016/j.it.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025]
Abstract
Decidual stromal cells (DSCs) are involved in immunoregulatory mechanisms that prevent fetal rejection by the mammalian maternal immune system. Recent studies using single-cell RNA sequencing demonstrated the existence of different types of human and mouse DSCs, highlighting corresponding differentiation (decidualization) pathways, and suggesting their involvement in the immune response during normal and pathological pregnancy. DSCs may be considered tissue-specialized fibroblasts because both DSCs and fibroblasts share phenotypic and functional similarities in immunologically challenged tissues, especially in terms of their immune functions. Indeed, fibroblasts can setup, support, and suppress immune responses and these functions are also performed by DSCs. Moreover, fibroblasts and DSCs can induce ectopic foci as tertiary lymphoid structures (TLSs), and endometriosis, respectively. Thus, understanding DSC immunoregulatory functions is of timely relevance.
Collapse
Affiliation(s)
- Tatiana Llorca
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - María José Ruiz-Magaña
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain; Departamento de Biología Celular, Universidad de Granada, Granada, Spain.
| | - Ana C Abadía
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain; Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Carmen Ruiz-Ruiz
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain; Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Enrique G Olivares
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain; Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain.
| |
Collapse
|
2
|
Bonavina G, Mamillapalli R, Krikun G, Zhou Y, Gawde N, Taylor HS. Bone marrow mesenchymal stem cell-derived exosomes shuttle microRNAs to endometrial stromal fibroblasts that promote tissue proliferation /regeneration/ and inhibit differentiation. Stem Cell Res Ther 2024; 15:129. [PMID: 38693588 PMCID: PMC11064399 DOI: 10.1186/s13287-024-03716-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/04/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Human bone marrow-derived stem cells (hBMDSCs) are well characterized mediators of tissue repair and regeneration. An increasing body of evidence indicates that these cells exert their therapeutic effects largely through their paracrine actions rather than clonal expansion and differentiation. Here we studied the role of microRNAs (miRNAs) present in extracellular vesicles (EVs) from hBMDSCs in tissue regeneration and cell differentiation targeting endometrial stromal fibroblasts (eSF). METHODS Extracellular vesicles (EVs) are isolated from hBMDSCs, characterized by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) techniques. Extracted total RNA from EVs was subjected to RNA seq analysis. Transfection and decidualization studies were carried out in endometrial stromal fibroblasts (eSF). Gene expression was analyzed by qRTPCR. Unpaired t-test with Welch's correction was used for data analysis between two groups. RESULTS We identified several microRNAs (miRNAs) that were highly expressed, including miR-21-5p, miR-100-5p, miR-143-3p and let7. MiR-21 is associated with several signaling pathways involved in tissue regeneration, quiescence, cellular senescence, and fibrosis. Both miR-100-5p and miR-143-3p promoted cell proliferation. MiR-100-5p specifically promoted regenerative processes by upregulating TGF-ß3, VEGFA, MMP7, and HGF. MiR-100-5p blocked differentiation or decidualization as evidenced by morphologic changes and downregulation of decidualization mediators including HOXA10, IGFBP1, PRL, PR-B, and PR. CONCLUSION EVs delivered to tissues by hBMDSCs contain specific miRNAs that prevent terminal differentiation and drive repair and regeneration. Delivery of microRNAs is a novel treatment paradigm with the potential to replace BMDSCs in cell-free regenerative therapies.
Collapse
Affiliation(s)
- Giulia Bonavina
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA.
| | - Graciela Krikun
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
| | - Yuping Zhou
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
| | - Nimisha Gawde
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
| |
Collapse
|
3
|
Yang D, Jeong Y, Ortinau L, Solidum J, Park D. Mx1 -labeled pulp progenitor cells are main contributors to postnatal odontoblasts and pulp cells in murine molars. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586156. [PMID: 38585950 PMCID: PMC10996506 DOI: 10.1101/2024.03.21.586156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Regeneration of dentin and odontoblasts from dental pulp stem cells (DPSCs) is essential for permanent tooth maintenance. However, the in vivo identity and role of endogenous DPSCs in reparative dentinogenesis are elusive. Here, using pulp single-cell analysis before and after molar eruption, we revealed that endogenous DPSCs are enriched in Cxcl12- GFP + coronal papilla-like cells with Mx1- Cre labeling. These Mx1 + Cxcl12- GFP + cells are long-term repopulating cells that contribute to the majority of pulp cells and new odontoblasts after eruption. Upon molar injury, Mx1 + DPSCs localize into the injury site and differentiate into new odontoblasts, forming scleraxis -GFP + and osteocalcin -GFP + dentinal tubules and reparative dentin. Single-cell and FACS analysis showed that Mx1 + Cxcl12- GFP + DPSCs are the most primitive cells with stem cell marker expression and odontoblast differentiation. Taken together, our findings demonstrate that Mx1 labels postnatal DSPCs, which are the main source of pulp cells and new odontoblasts with reparative dentinogenesis in vivo .
Collapse
|
4
|
Saad-Naguib MH, Kenfack Y, Sherman LS, Chafitz OB, Morelli SS. Impaired receptivity of thin endometrium: therapeutic potential of mesenchymal stem cells. Front Endocrinol (Lausanne) 2024; 14:1268990. [PMID: 38344687 PMCID: PMC10854221 DOI: 10.3389/fendo.2023.1268990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/26/2023] [Indexed: 02/15/2024] Open
Abstract
The endometrium is a resilient and highly dynamic tissue, undergoing cyclic renewal in preparation for embryo implantation. Cyclic endometrial regeneration depends on the intact function of several cell types, including parenchymal, endothelial, and immune cells, as well as adult stem cells that can arise from endometrial or extrauterine sources. The ability of the endometrium to undergo rapid, repeated regeneration without scarring is unique to this tissue. However, if this tissue renewal process is disrupted or dysfunctional, women may present clinically with infertility due to endometrial scarring or persistent atrophic/thin endometrium. Such disorders are rate-limiting in the treatment of female infertility and in the success of in vitro fertilization because of a dearth of treatment options specifically targeting the endometrium. A growing number of studies have explored the potential of adult stem cells, including mesenchymal stem cells (MSCs), to treat women with disorders of endometrial regeneration. MSCs are multipotent adult stem cells with capacity to differentiate into cells such as adipocytes, chondrocytes, and osteoblasts. In addition to their differentiation capacity, MSCs migrate toward injured sites where they secrete bioactive factors (e.g. cytokines, chemokines, growth factors, proteins and extracellular vesicles) to aid in tissue repair. These factors modulate biological processes critical for tissue regeneration, such as angiogenesis, cell migration and immunomodulation. The MSC secretome has therefore attracted significant attention for its therapeutic potential. In the uterus, studies utilizing rodent models and limited human trials have shown a potential benefit of MSCs and the MSC secretome in treatment of endometrial infertility. This review will explore the potential of MSCs to treat women with impaired endometrial receptivity due to a thin endometrium or endometrial scarring. We will provide context supporting leveraging MSCs for this purpose by including a review of mechanisms by which the MSC secretome promotes regeneration and repair of nonreproductive tissues.
Collapse
Affiliation(s)
- Michael H. Saad-Naguib
- Department of Obstetrics, Gynecology & Reproductive Health, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Yannick Kenfack
- Department of Medicine, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Lauren S. Sherman
- Department of Medicine, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Olivia B. Chafitz
- Department of Obstetrics & Gynecology, Hackensack University Medical Center, Hackensack, NJ, United States
| | - Sara S. Morelli
- Department of Obstetrics, Gynecology & Reproductive Health, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
5
|
Abstract
The uterine lining (endometrium) regenerates repeatedly over the life span as part of its normal physiology. Substantial portions of the endometrium are shed during childbirth (parturition) and, in some species, menstruation, but the tissue is rapidly rebuilt without scarring, rendering it a powerful model of regeneration in mammals. Nonetheless, following some assaults, including medical procedures and infections, the endometrium fails to regenerate and instead forms scars that may interfere with normal endometrial function and contribute to infertility. Thus, the endometrium provides an exceptional platform to answer a central question of regenerative medicine: Why do some systems regenerate while others scar? Here, we review our current understanding of diverse endometrial disruption events in humans, nonhuman primates, and rodents, and the associated mechanisms of regenerative success and failure. Elucidating the determinants of these disparate repair processes promises insights into fundamental mechanisms of mammalian regeneration with substantial implications for reproductive health.
Collapse
Affiliation(s)
- Claire J Ang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA;
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Taylor D Skokan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Kara L McKinley
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA;
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Diessler ME, Hernández R, Gomez Castro G, Barbeito CG. Decidual cells and decidualization in the carnivoran endotheliochorial placenta. Front Cell Dev Biol 2023; 11:1134874. [PMID: 37009475 PMCID: PMC10060884 DOI: 10.3389/fcell.2023.1134874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Decidualization is considered a distinctive feature of eutherian pregnancy, and has appeared during evolution along with the development of invasive forms of placentation, as the endotheliochorial placenta. Although decidualization is not massive in carnivores, as it is in most species developing hemochorial placentas, isolated or grouped cells regarded as decidual have been documented and characterized, mainly in bitches and queens. For the majority of the remaining species of the order, data in the bibliography are fragmentary. In this article, general morphological aspects of decidual stromal cells (DSCs), their time of appearance and lasting, data about the expression of cytoskeletal proteins and molecules considered as markers of decidualization were reviewed. From the data reviewed, it follows that carnivoran DSCs take part either in the secretion of progesterone, prostaglandins, relaxin, among other substances, or at least in the signaling pathways triggered by them. Beyond their physiological roles, some of those molecules are already being used, or are yet under study, for the non-invasive endocrine monitoring and reproductive control of domestic and wild carnivores. Only insulin-like growth factor binding protein 1, among the main decidual markers, has been undoubtedly demonstrated in both species. Laminin, on the contrary, was found only in feline DSCs, and prolactin was preliminary reported in dogs and cats. Prolactin receptor, on the other hand, was found in both species. While canine DSCs are the only placental cell type expressing the nuclear progesterone receptor (PGR), that receptor has not been demonstrated neither in feline DSCs, nor in any other cell in the queen placenta, although the use of PGR blockers leads to abortion. Against this background, and from the data gathered so far, it is unquestionable that DSCs in carnivorans do play a pivotal role in placental development and health. The knowledge about placental physiology is critical for medical care and breeding management, primarily in domestic carnivores; it is also absolutely crucial for a conservation approach in the management of endangered carnivore species.
Collapse
Affiliation(s)
- Mónica Elizabeth Diessler
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
- *Correspondence: Mónica Elizabeth Diessler,
| | - Rocío Hernández
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
| | - Gimena Gomez Castro
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FCV, UNLP, La Plata, Argentina
| | - Claudio Gustavo Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FCV, UNLP, La Plata, Argentina
| |
Collapse
|
7
|
Kirkwood PM, Gibson DA, Shaw I, Dobie R, Kelepouri O, Henderson NC, Saunders PTK. Single-cell RNA sequencing and lineage tracing confirm mesenchyme to epithelial transformation (MET) contributes to repair of the endometrium at menstruation. eLife 2022; 11:e77663. [PMID: 36524724 PMCID: PMC9873258 DOI: 10.7554/elife.77663] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The human endometrium experiences repetitive cycles of tissue wounding characterised by piecemeal shedding of the surface epithelium and rapid restoration of tissue homeostasis. In this study, we used a mouse model of endometrial repair and three transgenic lines of mice to investigate whether epithelial cells that become incorporated into the newly formed luminal epithelium have their origins in one or more of the mesenchymal cell types present in the stromal compartment of the endometrium. Using scRNAseq, we identified a novel population of PDGFRb + mesenchymal stromal cells that developed a unique transcriptomic signature in response to endometrial breakdown/repair. These cells expressed genes usually considered specific to epithelial cells and in silico trajectory analysis suggested they were stromal fibroblasts in transition to becoming epithelial cells. To confirm our hypothesis we used a lineage tracing strategy to compare the fate of stromal fibroblasts (PDGFRa+) and stromal perivascular cells (NG2/CSPG4+). We demonstrated that stromal fibroblasts can undergo a mesenchyme to epithelial transformation and become incorporated into the re-epithelialised luminal surface of the repaired tissue. This study is the first to discover a novel population of wound-responsive, plastic endometrial stromal fibroblasts that contribute to the rapid restoration of an intact luminal epithelium during endometrial repair. These findings form a platform for comparisons both to endometrial pathologies which involve a fibrotic response (Asherman's syndrome, endometriosis) as well as other mucosal tissues which have a variable response to wounding.
Collapse
Affiliation(s)
- Phoebe M Kirkwood
- Centre for Inflammation Research, University of EdinburghEdinburghUnited Kingdom
| | - Douglas A Gibson
- Centre for Inflammation Research, University of EdinburghEdinburghUnited Kingdom
| | - Isaac Shaw
- Centre for Inflammation Research, University of EdinburghEdinburghUnited Kingdom
| | - Ross Dobie
- Centre for Inflammation Research, University of EdinburghEdinburghUnited Kingdom
| | - Olympia Kelepouri
- Centre for Inflammation Research, University of EdinburghEdinburghUnited Kingdom
| | - Neil C Henderson
- Centre for Inflammation Research, University of EdinburghEdinburghUnited Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of EdinburghEdinburghUnited Kingdom
| | - Philippa TK Saunders
- Centre for Inflammation Research, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
8
|
Ruiz-Magaña MJ, Llorca T, Martinez-Aguilar R, Abadia-Molina AC, Ruiz-Ruiz C, Olivares EG. Stromal cells of the endometrium and decidua: in search of a name and an identity. Biol Reprod 2022; 107:1166-1176. [PMID: 35947987 DOI: 10.1093/biolre/ioac158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/14/2022] Open
Abstract
Human endometrial and decidual stromal cells are the same cells in different environments (non-pregnancy and pregnancy, respectively). Although some authors consider decidual stromal cells to arise solely from the differentiation of endometrial stromal cells, this is a debatable issue given that decidualization processes do not end with the formation of the decidua, as shown by the presence of stromal cells from both the endometrium and decidua in both undifferentiated (non-decidualized) and decidualized states. Furthermore, recent functional and transcriptomic results have shown that there are differences in the decidualization process of endometrial and decidual stromal cells, with the latter having a greater decidualization capacity than the former. These differences suggest that in the terminology and study of their characteristics, endometrial and decidual stromal cells should be clearly distinguished, as should their undifferentiated or decidualized status. There is, however, considerable confusion in the designation and identification of uterine stromal cells. This confusion may impede a judicious understanding of the functional processes in normal and pathological situations. In the present article we analyse the different terms used in the literature for different types of uterine stromal cells, and propose that a combination of differentiation status (undifferentiated, decidualized) and localization (endometrium, decidua) criteria should be used to arrive at a set of accurate, unambiguous terms. The cell identity of uterine stromal cells is also a debatable issue: phenotypic, functional and transcriptomic studies in recent decades have related these cells to different established cells. We discuss the relevance of these associations in normal and pathological situations.
Collapse
Affiliation(s)
- Maria Jose Ruiz-Magaña
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - Tatiana Llorca
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain.,Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Rocio Martinez-Aguilar
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain.,Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Ana Clara Abadia-Molina
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain.,Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Carmen Ruiz-Ruiz
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain.,Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Enrique G Olivares
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain.,Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain.,Unidad de Gestión Clínica Laboratorios, Complejo Hospitalario Universitario de Granada, Granada, Spain
| |
Collapse
|
9
|
Kim J, Tomida K, Matsumoto T, Adachi T. Spheroid culture for chondrocytes triggers early stage of endochondral ossification. Biotechnol Bioeng 2022; 119:3311-3318. [PMID: 35923099 DOI: 10.1002/bit.28203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 07/07/2022] [Accepted: 07/30/2022] [Indexed: 11/11/2022]
Abstract
Endochondral ossification is the process of bone formation derived from growing cartilage during the development of the skeletal system. In previous studies, we have attempted to evoke the osteocyte differentiation of osteoblast precursor cells under a three-dimensional (3D) culture model. In order to recapitulate the endochondral ossification, the present study utilized the self-organized scaffold-free spheroid model reconstructed by pre-chondrocyte cells. Within 2-day cultivation in the absence of the chemically induced chondrogenesis supplements, the chondrocyte marker was greatly expressed in the inner region of the spheroid, whereas the hypertrophic chondrocyte marker was strongly detected in the surface region of the spheroid. Notably, we found out that the gene expression levels of osteocyte markers were also greatly up-regulated compared to the conventional 2D monolayer. Moreover, there was a hypertrophied morphologic change in the pre-chondrocyte spheroid from 4-day to 28-day cultivation. In this study, we highlighted the potentials of the 3D culture method to acquire the hypertrophic chondrocyte differentiation of the pre-chondrocyte cells to recapitulate the early stage of the endochondral ossification. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jeonghyun Kim
- Department of Mechanical Systems Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Kosei Tomida
- Department of Mechanical Systems Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Takeo Matsumoto
- Department of Mechanical Systems Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Taiji Adachi
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
10
|
Abuwala N, Tal R. Endometrial stem cells: origin, biological function, and therapeutic applications for reproductive disorders. Curr Opin Obstet Gynecol 2021; 33:232-240. [PMID: 33896919 PMCID: PMC9313610 DOI: 10.1097/gco.0000000000000702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Endometrial stem cells (ESCs) are multipotent cells that are thought to originate locally in the endometrium as well as in the bone marrow (BM). They have remarkable plasticity and hold promise as an autologous source for regenerative medicine. This review focuses on recent studies that have advanced our understanding of the biology and function of ESCs and BM-derived stem cells (BMDSCs) as related to physiological reproductive processes and pathologies. Moreover, it reviews recent data on potential therapeutic applications of stem cells to endometrial disorders that lead to reproductive failure. RECENT FINDINGS Growing evidence from basic and preclinical studies suggests that ESCs participate in endometrial tissue regeneration and repair. Recent evidence also suggests that ESCs and BMDSCs play important roles in physiological reproductive functions including decidualization, implantation, pregnancy maintenance, and postpartum uterine remodeling. Initial preclinical and clinical studies with ESCs and BMDSCs suggest they have the potential to provide new therapies for various endometrial disorders associated with reproductive failure. SUMMARY Uterine ESCs and BMDSCs appear to play an important biological role in reproductive success and failure, and have the potential to become treatment targets for reproductive diseases including recurrent implantation failure, thin endometrium, Asherman, and recurrent pregnancy loss.
Collapse
Affiliation(s)
- Nafeesa Abuwala
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Reshef Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Is It Possible to Treat Infertility with Stem Cells? Reprod Sci 2021; 28:1733-1745. [PMID: 33834375 DOI: 10.1007/s43032-021-00566-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023]
Abstract
Infertility is a major health problem, and despite improved treatments over the years, there are still some conditions that cannot be treated successfully using a conventional approach. Therefore, new options are being considered and one of them is cell therapy using stem cells. Stem cell treatments for infertility can be divided into two major groups, the first one being direct transplantation of stem cells or their paracrine factors into reproductive organs and the second one being in vitro differentiation into germ cells or gametes. In animal models, all of these approaches were able to improve the reproductive potential of tested animals, although in humans there is still too little evidence to suggest successful use. The reasons for lack of evidence are unavailability of proper material, the complexity of explored biological processes, and ethical considerations. Despite all of the above-mentioned hurdles, researchers were able to show that in women, it seems to be possible to improve some conditions, but in men, no similar clinically important improvement was achieved. To conclude, the data presented in this review suggest that the treatment of infertility with stem cells seems plausible, because some types of treatments have already been tested in humans, achieving live births, while others show great potential only in animal studies, for now.
Collapse
|
12
|
Yoon JY, de Kock L, Stewart CJR, McCluggage WG, Foulkes WD, Clarke BA, Rouzbahman M. Endometrial Stem/Progenitor cell (ES/PC) Marker Expression Profile in Adenosarcoma and Endometrial Stromal Sarcoma. Cancer Treat Res Commun 2021; 27:100363. [PMID: 33838572 DOI: 10.1016/j.ctarc.2021.100363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/28/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The uterus is one of the most dynamic organs in the human body, and this dynamic homeostasis is supported by endometrial stem/progenitor cells (ES/PCs), which are heterogeneous in their phenotype and degree of differentiation. ES/PCs are generally localized in the endometrial stroma, the site of origin for adenosarcoma and endometrial stromal sarcoma (ESS). Subsets of ESSs and adenosarcomas harbor SUZ12 or DICER1 gene alterations, two genes with roles in embryonic stem cell biology. However, the possible contribution of ES/PCs to tumorigenesis is unexplored. METHOD We examined the expression of eleven ES/PC markers, along with three proteins expressed in the mature endometrial stroma (ER, PR and CD10) in 60 uterine tumors (24 low-, 11 high-grade ESS, 25 adenosarcomas). Protein expression profiles were assessed by unsupervised hierarchical clustering. miRNA expression profiles were examined in a subset of adenosarcoma with/without DICER1 mutations, using the NanoString platform. RESULTS ES/PC markers were variably expressed, and the tumors exhibited limited immunophenotypic resemblance to different ES/PCs. Within the ESSs, the ES/PC marker clustering pattern was prognostic for both overall and disease-free survival. Comparing adenosarcomas and ESSs, most high-grade ESSs clustered with one another, while low-grade ESSs and adenosarcomas tended to cluster with one another. Among the adenosarcomas, the miRNA expression profiles were varied with respect to the DICER1 mutation status, with pathway analysis pointing to dysregulated signal transduction and stem cell biology. CONCLUSIONS ESSs and adenosarcomas exhibit varying immunophenotypic resemblance to ES/PCs. These expression profiles have prognostic implications and may be genetically driven.
Collapse
Affiliation(s)
- Ju-Yoon Yoon
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Pathology, St. Michael's Hospital, Toronto, ON, Canada.
| | - Leanne de Kock
- Department of Human Genetics, McGill University, Montréal, Québec, Canada; Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montréal, Québec, Canada; Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Colin J R Stewart
- School for Women's and Infants' Health, University of Western Australia, Perth, WA, Australia
| | - W Glenn McCluggage
- Department of Pathology, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montréal, Québec, Canada; Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montréal, Québec, Canada; Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Blaise A Clarke
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Pathology, Toronto General Hospital, Toronto, ON, Canada
| | - Marjan Rouzbahman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Pathology, Toronto General Hospital, Toronto, ON, Canada
| |
Collapse
|
13
|
Diniz-da-Costa M, Kong CS, Fishwick KJ, Rawlings T, Brighton PJ, Hawkes A, Odendaal J, Quenby S, Ott S, Lucas ES, Vrljicak P, Brosens JJ. Characterization of highly proliferative decidual precursor cells during the window of implantation in human endometrium. STEM CELLS (DAYTON, OHIO) 2021; 39:1067-1080. [PMID: 33764639 DOI: 10.1002/stem.3367] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/19/2021] [Indexed: 11/09/2022]
Abstract
Pregnancy depends on the wholesale transformation of the endometrium, a process driven by differentiation of endometrial stromal cells (EnSC) into specialist decidual cells. Upon embryo implantation, decidual cells impart the tissue plasticity needed to accommodate a rapidly growing conceptus and invading placenta, although the underlying mechanisms are unclear. Here we characterize a discrete population of highly proliferative mesenchymal cells (hPMC) in midluteal human endometrium, coinciding with the window of embryo implantation. Single-cell transcriptomics demonstrated that hPMC express genes involved in chemotaxis and vascular transmigration. Although distinct from resident EnSC, hPMC also express genes encoding pivotal decidual transcription factors and markers, most prominently prolactin. We further show that hPMC are enriched around spiral arterioles, scattered throughout the stroma, and occasionally present in glandular and luminal epithelium. The abundance of hPMC correlated with the in vitro colony-forming unit activity of midluteal endometrium and, conversely, clonogenic cells in culture express a gene signature partially conserved in hPMC. Cross-referencing of single-cell RNA-sequencing data sets indicated that hPMC differentiate into a recently discovered decidual subpopulation in early pregnancy. Finally, we demonstrate that recurrent pregnancy loss is associated with hPMC depletion. Collectively, our findings characterize midluteal hPMC as novel decidual precursors that are likely derived from circulating bone marrow-derived mesenchymal stem/stromal cells and integral to decidual plasticity in pregnancy.
Collapse
Affiliation(s)
- Maria Diniz-da-Costa
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Chow-Seng Kong
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Katherine J Fishwick
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Thomas Rawlings
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Paul J Brighton
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Amelia Hawkes
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Joshua Odendaal
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Siobhan Quenby
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK.,Centre for Early Life, University of Warwick, Coventry, UK
| | - Sascha Ott
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK.,Centre for Early Life, University of Warwick, Coventry, UK
| | - Emma S Lucas
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Centre for Early Life, University of Warwick, Coventry, UK
| | - Pavle Vrljicak
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jan J Brosens
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK.,Centre for Early Life, University of Warwick, Coventry, UK
| |
Collapse
|
14
|
Bazoobandi S, Tanideh N, Rahmanifar F, Zare S, Koohi-Hosseinabadi O, Razeghian-Jahromi I, Dianatpour M, Ahmadi M, Khoradmehr A, Nabipour I, Khodabandeh Z, Tamadon A. Preventive Effects of Intrauterine Injection of Bone Marrow-Derived Mesenchymal Stromal Cell-Conditioned Media on Uterine Fibrosis Immediately after Endometrial Curettage in Rabbit. Stem Cells Int 2020; 2020:8849537. [PMID: 33204278 PMCID: PMC7666625 DOI: 10.1155/2020/8849537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/11/2020] [Accepted: 10/20/2020] [Indexed: 11/25/2022] Open
Abstract
Uterine fibrosis is an acquired disorder leading to menstrual irregularities, implantation impairment, and abortion. Mesenchymal stromal cells (MSCs) have antifibrotic properties through chemokine secretion. MSC-conditioned media (MSC-CM) contain paracrine components-exosomes-with a great potential for repairing damaged tissue or preventing fibrosis. The main goal of this study was to evaluate the preventive effects of bone marrow-derived MSC-CM (BM-MSC-CM) on uterine fibrosis after uterine curettage in rabbits. This study included 12 female rabbits (24 uterine horns in total). Excised uteri of each of the 12 female rabbits were randomly divided into four groups of intact negative control, curettage positive control, BM-MSC injection, and BM-MSC-CM injection in the way that two corresponding uteri from a rabbit were allocated to different groups. The MSC-CM were collected from cultivated BM-MSCs 48 hours after having been washed three times and replaced in serum-free media. Through a surgical approach, the caudal parts of the uteri were submitted to traumatic endometrial curettage, except for the intact negative uteri. After suturing the uterine walls, BM-MSCs or BM-MSC-CM were injected in the curettage site. Endometrial regeneration was histologically evaluated 30 days after treatment. Based on the evaluation of histomorphometric indices, curettage with or without preventive injections increased the growth of endometrial layers. However, the amount of fibrotic tissue in the CM and the BM-MSC injection groups was the same as the normal control groups, and all were less than the curettage group. A single injection of CM of MSCs after 30 days prevented the fibrotic tissue formation induced by curettage in endometrial layers of rabbits. Injecting BM-MSC-CM immediately after curettage prevented and reduced the uterine fibrosis similar to BM-MSCs in a rabbit model.
Collapse
Affiliation(s)
- Sanaz Bazoobandi
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Rahmanifar
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Koohi-Hosseinabadi
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Ahmadi
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
15
|
Olsavszky V, Sticht C, Schmid CD, Winkler M, Wohlfeil SA, Olsavszky A, Schledzewski K, Géraud C, Goerdt S, Leibing T, Koch PS. Exploring the transcriptomic network of multi-ligand scavenger receptor Stabilin-1- and Stabilin-2-deficient liver sinusoidal endothelial cells. Gene 2020; 768:145284. [PMID: 33130055 DOI: 10.1016/j.gene.2020.145284] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
The Class H scavenger receptors Stabilin-1 (Stab1) and Stabilin-2 (Stab2) are two of the most highly expressed genes in liver sinusoidal endothelial cells (LSECs). While Stab1-deficient (Stab1KO) and Stab2-deficient (Stab2KO) mice are phenotypically unremarkable, Stab1/2-double-deficient (StabDKO) mice exhibit perisinusoidal liver fibrosis, glomerulofibrotic nephropathy and a reduced life expectancy. These conditions are caused by insufficiently scavenged circulating noxious blood factors. The effects of either Stab-single- or double-deficiency on LSEC differentiation and function, however, have not yet been thoroughly investigated. Therefore, we performed comprehensive transcriptomic analyses of primary LSECs from Stab1KO, Stab2KO and StabDKO mice. Microarray analysis revealed dysregulation of pathways and genes involved in established LSEC functions while sinusoidal endothelial marker gene expression was grossly unchanged. 82 genes were significantly altered in Stab1KO, 96 genes in Stab2KO and 238 genes in StabDKO compared with controls; 42 genes were found to be commonly dysregulated in all three groups and all of these genes were downregulated. These commonly downregulated genes (CDGs) were categorized as "potential scavengers," "cell adhesion molecules," "TGF-β/BMP-signaling" or "collagen and extracellular matrix (ECM) components". Among CDGs, Colec10, Lumican and Decorin, were the most strongly down-regulated genes and the corresponding proteins impact on the interaction of LSECs with chemokines, ECM components and carbohydrate structures. Similarly, "chemokine signaling," "cytokine-cytokine receptor interaction" and "ECM-receptor interaction," were the GSEA categories which represented most of the downregulated genes in Stab1KO and Stab2KO LSECs. In summary, our data show that loss of a single Stabilin scavenger receptor - and to a greater extent of both receptors - profoundly alters the transcriptomic repertoire of LSECs. These alterations may affect LSEC-specific functions, especially interactions of LSECs with the ECM and during inflammation as well as clearance of the peripheral blood.
Collapse
Affiliation(s)
- Victor Olsavszky
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany.
| | - Carsten Sticht
- Center for Medical Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68167, Germany
| | - Christian D Schmid
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany
| | - Manuel Winkler
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany
| | - Sebastian A Wohlfeil
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany; Section of Clinical and Molecular Dermatology, Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ana Olsavszky
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany; Section of Clinical and Molecular Dermatology, Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kai Schledzewski
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany; Section of Clinical and Molecular Dermatology, Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Sergij Goerdt
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany; European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Thomas Leibing
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany; Section of Clinical and Molecular Dermatology, Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp-Sebastian Koch
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany; European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| |
Collapse
|
16
|
Critchley HOD, Maybin JA, Armstrong GM, Williams ARW. Physiology of the Endometrium and Regulation of Menstruation. Physiol Rev 2020; 100:1149-1179. [DOI: 10.1152/physrev.00031.2019] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The physiological functions of the uterine endometrium (uterine lining) are preparation for implantation, maintenance of pregnancy if implantation occurs, and menstruation in the absence of pregnancy. The endometrium thus plays a pivotal role in reproduction and continuation of our species. Menstruation is a steroid-regulated event, and there are alternatives for a progesterone-primed endometrium, i.e., pregnancy or menstruation. Progesterone withdrawal is the trigger for menstruation. The menstruating endometrium is a physiological example of an injured or “wounded” surface that is required to rapidly repair each month. The physiological events of menstruation and endometrial repair provide an accessible in vivo human model of inflammation and tissue repair. Progress in our understanding of endometrial pathophysiology has been facilitated by modern cellular and molecular discovery tools, along with animal models of simulated menses. Abnormal uterine bleeding (AUB), including heavy menstrual bleeding (HMB), imposes a massive burden on society, affecting one in four women of reproductive age. Understanding structural and nonstructural causes underpinning AUB is essential to optimize and provide precision in patient management. This is facilitated by careful classification of causes of bleeding. We highlight the crucial need for understanding mechanisms underpinning menstruation and its aberrations. The endometrium is a prime target tissue for selective progesterone receptor modulators (SPRMs). This class of compounds has therapeutic potential for the clinical unmet need of HMB. SPRMs reduce menstrual bleeding by mechanisms still largely unknown. Human menstruation remains a taboo topic, and many questions concerning endometrial physiology that pertain to menstrual bleeding are yet to be answered.
Collapse
Affiliation(s)
- Hilary O. D. Critchley
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Jacqueline A. Maybin
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Gregory M. Armstrong
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Alistair R. W. Williams
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Monsef F, Artimani T, Ramazani M, Alizadeh Z, Solgi G, Yavangi M, Soleimani Asl S. Effects of adipose- derived stromal vascular fraction on asherman syndrome model. Acta Histochem 2020; 122:151556. [PMID: 32622423 DOI: 10.1016/j.acthis.2020.151556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/17/2020] [Accepted: 04/28/2020] [Indexed: 01/13/2023]
Abstract
Asherman's syndrome (AS) is an endometrial damage that results in infertility in women. Although stem cell therapy has been introduced as a potential treatment for this syndrome, its use in clinical settings remains challenging because of the likelihood of contamination and cell differentiation. Herein, we investigated the effects of adipose-derived stromal vascular fraction (SVF) transplantation on proliferation and angiogenesis in the endometrium in an AS model. The AS model was induced using scratch method in adult male Wistar rats, and SVF (5 × 10 (Simsir et al., 2019) cells) was locally administered into the damaged horns. Two weeks after cell transplantation, endometrial thickness, fibrosis, and expression of vascular endothelial growth factor (VEGF) were assessed by Hematoxylin & Eosin, Masson's trichrome, and immunofluorescence staining, respectively. We found thin endometrium, increased fibrosis, and decreased VEGF following AS induction all of which were reversed after SVF transplantation. We concluded that the local injection of SVF may serve as an effective alternative therapy for AS.
Collapse
|
18
|
Intrauterine infusion of platelet-rich plasma for severe Asherman syndrome: a cutting-edge approach. Updates Surg 2020; 73:2355-2362. [DOI: 10.1007/s13304-020-00828-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/31/2020] [Indexed: 12/16/2022]
|
19
|
Acquired contractile ability in human endometrial stromal cells by passive loading of cyclic tensile stretch. Sci Rep 2020; 10:9014. [PMID: 32488068 PMCID: PMC7265371 DOI: 10.1038/s41598-020-65884-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
The uterus plays an important and unique role during pregnancy and is a dynamic organ subjected to mechanical stimuli. It has been reported that infertility occurs when the peristalsis is prevented, although its mechanisms remain unknown. In this study, we found that mechanical strain mimicking the peristaltic motion of the uterine smooth muscle layer enabled the endometrial stromal cells to acquire contractility. In order to mimic the peristalsis induced by uterine smooth muscle cells, cyclic tensile stretch was applied to human endometrial stromal cells. The results showed that the strained cells exerted greater contractility in three-dimensional collagen gels in the presence of oxytocin, due to up-regulated alpha-smooth muscle actin expression via the cAMP signaling pathway. These in vitro findings underscore the plasticity of the endometrial stromal cell phenotype and suggest the possibility of acquired contractility by these cells in vivo and its potential contribution to uterine contractile activity. This phenomenon may be a typical example of how a tissue passively acquires new contractile functions under mechanical stimulation from a neighboring tissue, enabling it to support the adjacent tissue’s functions.
Collapse
|
20
|
Owusu-Akyaw A, Krishnamoorthy K, Goldsmith LT, Morelli SS. The role of mesenchymal-epithelial transition in endometrial function. Hum Reprod Update 2020; 25:114-133. [PMID: 30407544 DOI: 10.1093/humupd/dmy035] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/13/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The human uterine endometrium undergoes significant remodeling and regeneration on a rapid and repeated basis, after parturition, menstruation, and in some cases, injury. The ability of the adult endometrium to undergo cyclic regeneration and differentiation/decidualization is essential for successful human reproduction. Multiple key physiologic functions of the endometrium require the cells of this tissue to transition between mesenchymal and epithelial phenotypes, processes known as mesenchymal-epithelial transition (MET) and epithelial-mesenchymal transition (EMT). Although MET/EMT processes have been widely characterized in embryonic development and in the context of malignancy, mounting evidence demonstrates the importance of MET/EMT in allowing the endometrium the phenotypic and functional flexibility necessary for successful decidualization, regeneration/re-epithelialization and embryo implantation. OBJECTIVE AND RATIONALE The objective of this review is to provide a comprehensive summary of the observations concerning MET and EMT and their regulation in physiologic uterine functions, specifically in the context of endometrial regeneration, decidualization and embryo implantation. SEARCH METHODS Using variations of the search terms 'mesenchymal-epithelial transition', 'mesenchymal-epithelial transformation', 'epithelial-mesenchymal transition', 'epithelial-mesenchymal transformation', 'uterus', 'endometrial regeneration', 'endometrial decidualization', 'embryo implantation', a search of the published literature between 1970 and 2018 was conducted using the PubMed database. In addition, we searched the reference lists of all publications included in this review for additional relevant original studies. OUTCOMES Multiple studies demonstrate that endometrial stromal cells contribute to the regeneration of both the stromal and epithelial cell compartments of the uterus, implicating a role for MET in mechanisms responsible for endometrial regeneration and re-epithelialization. During decidualization, endometrial stromal cells undergo morphologic and functional changes consistent with MET in order to accommodate embryo implantation. Under the influence of estradiol, progesterone and multiple other factors, endometrial stromal fibroblasts acquire epithelioid characteristics, such as expanded cytoplasm and rough endoplasmic reticulum required for greater secretory capacity, rounded nuclei, increased expression of junctional proteins which allow for increased cell-cell communication, and a reorganized actin cytoskeleton. During embryo implantation, in response to both maternal and embryonic-derived signals, the maternal luminal epithelium as well as the decidualized stromal cells acquire the mesenchymal characteristics of increased migration/motility, thus undergoing EMT in order to accommodate the invading trophoblast. WIDER IMPLICATIONS Overall, the findings support important roles for MET/EMT in multiple endometrial functions required for successful reproduction. The endometrium may be considered a unique wound healing model, given its ability to repeatedly undergo repair without scarring or loss of function. Future studies to elucidate how MET/EMT mechanisms may contribute to scar-free endometrial repair will have considerable potential to advance studies of wound healing mechanisms in other tissues.
Collapse
Affiliation(s)
- Amma Owusu-Akyaw
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Kavitha Krishnamoorthy
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Laura T Goldsmith
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Sara S Morelli
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
21
|
Patterson AL, George JW, Chatterjee A, Carpenter TJ, Wolfrum E, Chesla DW, Teixeira JM. Putative human myometrial and fibroid stem-like cells have mesenchymal stem cell and endometrial stromal cell properties. Hum Reprod 2020; 35:44-57. [PMID: 31913469 PMCID: PMC6993861 DOI: 10.1093/humrep/dez247] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
STUDY QUESTION Can endometrial stromal stem/progenitor cell markers, SUSD2 and CD146/CD140b, enrich for human myometrial and fibroid stem/progenitor cells? SUMMARY ANSWER SUSD2 enriches for myometrial and fibroid cells that have mesenchymal stem cell (MSC) characteristics and can also be induced to decidualise. WHAT IS KNOWN ALREADY Mesenchymal stem-like cells have been separately characterised in the endometrial stroma and myometrium and may contribute to diseases in their respective tissues. STUDY DESIGN, SIZE, DURATION Normal myometrium, fibroids and endometrium were collected from hysterectomies with informed consent. Primary cells or tissues were used from at least three patient samples for each experiment. PARTICIPANTS/MATERIALS, SETTING, METHODS Flow cytometry, immunohistochemistry and immunofluorescence were used to characterise tissues. In vitro colony formation in normoxic and hypoxic conditions, MSC lineage differentiation (osteogenic and adipogenic) and decidualisation were used to assess stem cell activity. Xenotransplantation into immunocompromised mice was used to determine in vivo stem-like activity. Endpoint measures included quantitative PCR, colony formation, trichrome, Oil Red O and alkaline phosphatase activity staining. MAIN RESULTS AND THE ROLE OF CHANCE CD146+CD140b+ and/or SUSD2+ myometrial and fibroid cells were located in the perivascular region and formed more colonies in vitro compared to control cells and differentiated down adipogenic and osteogenic mesenchymal lineages in vitro. SUSD2+ myometrial cells had greater in vitro decidualisation potential, and SUSD2+ fibroid cells formed larger tumours in vivo compared to control cells. LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Markers used in this study enrich for cells with stem/progenitor cell activity; however, they do not distinguish stem from progenitor cells. SUSD2+ myometrial cells express markers of decidualisation when treated in vitro, but in vivo assays are needed to fully demonstration their ability to decidualise. WIDER IMPLICATIONS OF THE FINDINGS These results suggest a possible common MSC for the endometrial stroma and myometrium, which could be the tumour-initiating cell for uterine fibroids. STUDY FUNDING/COMPETING INTEREST(S) These studies were supported by NIH grants to JMT (R01OD012206) and to ALP (F32HD081856). The authors certify that we have no conflicts of interest to disclose.
Collapse
Affiliation(s)
- Amanda L Patterson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Division of Animal Sciences and Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO 65203, USA
| | - Jitu W George
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Anindita Chatterjee
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Tyler J Carpenter
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Emily Wolfrum
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - David W Chesla
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Office of Research, Spectrum Health, Grand Rapids, MI 49503, USA
| | - Jose M Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| |
Collapse
|
22
|
Tal R, Shaikh S, Pallavi P, Tal A, López-Giráldez F, Lyu F, Fang YY, Chinchanikar S, Liu Y, Kliman HJ, Alderman M, Pluchino N, Kayani J, Mamillapalli R, Krause DS, Taylor HS. Adult bone marrow progenitors become decidual cells and contribute to embryo implantation and pregnancy. PLoS Biol 2019; 17:e3000421. [PMID: 31513564 PMCID: PMC6742226 DOI: 10.1371/journal.pbio.3000421] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/09/2019] [Indexed: 12/22/2022] Open
Abstract
Decidua is a transient uterine tissue shared by mammals with hemochorial placenta and is essential for pregnancy. The decidua is infiltrated by many immune cells promoting pregnancy. Adult bone marrow (BM)-derived cells (BMDCs) differentiate into rare populations of nonhematopoietic endometrial cells in the uterus. However, whether adult BMDCs become nonhematopoietic decidual cells and contribute functionally to pregnancy is unknown. Here, we show that pregnancy mobilizes mesenchymal stem cells (MSCs) to the circulation and that pregnancy induces considerable adult BMDCs recruitment to decidua, where some differentiate into nonhematopoietic prolactin-expressing decidual cells. To explore the functional importance of nonhematopoietic BMDCs to pregnancy, we used Homeobox a11 (Hoxa11)-deficient mice, having endometrial stromal-specific defects precluding decidualization and successful pregnancy. Hoxa11 expression in BM is restricted to nonhematopoietic cells. BM transplant (BMT) from wild-type (WT) to Hoxa11-/- mice results in stromal expansion, gland formation, and marked decidualization otherwise absent in Hoxa11-/- mice. Moreover, in Hoxa11+/- mice, which have increased pregnancy losses, BMT from WT donors leads to normalized uterine expression of numerous decidualization-related genes and rescue of pregnancy loss. Collectively, these findings reveal that adult BMDCs have a previously unrecognized nonhematopoietic physiologic contribution to decidual stroma, thereby playing important roles in decidualization and pregnancy.
Collapse
Affiliation(s)
- Reshef Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Shafiq Shaikh
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Pallavi Pallavi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Aya Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Francesc López-Giráldez
- Yale Center for Genome Analysis (YCGA), Yale University, New Haven, Connecticut, United States of America
| | - Fang Lyu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Yuan-Yuan Fang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Shruti Chinchanikar
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Ying Liu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Harvey J. Kliman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Myles Alderman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Nicola Pluchino
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Jehanzeb Kayani
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Diane S. Krause
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
23
|
Muñoz-Fernández R, De La Mata C, Requena F, Martín F, Fernandez-Rubio P, Llorca T, Ruiz-Magaña MJ, Ruiz-Ruiz C, Olivares EG. Human predecidual stromal cells are mesenchymal stromal/stem cells and have a therapeutic effect in an immune-based mouse model of recurrent spontaneous abortion. Stem Cell Res Ther 2019; 10:177. [PMID: 31200769 PMCID: PMC6567662 DOI: 10.1186/s13287-019-1284-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background Human decidual stromal cells (DSCs) are involved in the maintenance and development of pregnancy, in which they play a key role in the induction of immunological maternal–fetal tolerance. Precursors of DSCs (preDSCs) are located around the vessels, and based on their antigen phenotype, previous studies suggested a relationship between preDSCs and mesenchymal stromal/stem cells (MSCs). This work aimed to further elucidate the MSC characteristics of preDSCs. Methods We established 15 human preDSC lines and 3 preDSC clones. Physiological differentiation (decidualization) of these cell lines and clones was carried out by in vitro culture with progesterone (P4) and cAMP. Decidualization was confirmed by the change in cellular morphology and prolactin (PRL) secretion, which was determined by enzyme immunoassay of the culture supernatants. We also studied MSC characteristics: (1) In mesenchymal differentiation, under appropriate culture conditions, these preDSC lines and clones differentiated into adipocytes, osteoblasts, and chondrocytes, and differentiation was confirmed by cytochemical assays and RT-PCR. (2) The expression of stem cell markers was determined by RT-PCR. (3) Cloning efficiency was evaluated by limited dilution. (4) Immunoregulatory activity in vivo was estimated in DBA/2-mated CBA/J female mice, a murine model of immune-based recurrent abortion. (5) Survival of preDSC in immunocompetent mice was analyzed by RT-PCR and flow cytometry. Results Under the effect of P4 and cAMP, the preDSC lines and clones decidualized in vitro: the cells became rounder and secreted PRL, a marker of physiological decidualization. PreDSC lines and clones also exhibited MSC characteristics. They differentiated into adipocytes, osteoblasts, and chondrocytes, and preDSC lines expressed stem cell markers OCT-4, NANOG, and ABCG2; exhibited a cloning efficiency of 4 to 15%; significantly reduced the embryo resorption rate (P < 0.001) in the mouse model of abortion; and survived for prolonged periods in immunocompetent mice. The fact that 3 preDSC clones underwent both decidualization and mesenchymal differentiation shows that the same type of cell exhibited both DSC and MSC characteristics. Conclusions Together, our results confirm that preDSCs are decidual MSCs and suggest that these cells are involved in the mechanisms of maternal–fetal immune tolerance. Electronic supplementary material The online version of this article (10.1186/s13287-019-1284-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raquel Muñoz-Fernández
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Claudia De La Mata
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Francisco Requena
- Departamento de Estadística e Investigación Operativa, Universidad de Granada, Granada, Spain
| | - Francisco Martín
- Human DNA Variability Department, GENYO - Centre for Genomic and Oncological Research (Pfizer/University of Granada/Andalusian Regional Government), PTS Granada, Granada, Spain
| | - Pablo Fernandez-Rubio
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Tatiana Llorca
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Maria José Ruiz-Magaña
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Carmen Ruiz-Ruiz
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain.,Departamento de Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, Avenida de la Investigación, 11, 18016, Granada, Spain
| | - Enrique G Olivares
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain. .,Departamento de Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, Avenida de la Investigación, 11, 18016, Granada, Spain. .,Unidad de Gestión Clínica Laboratorios, Hospital Universitario San Cecilio, Granada, Spain.
| |
Collapse
|
24
|
Santamaria X, Mas A, Cervelló I, Taylor H, Simon C. Uterine stem cells: from basic research to advanced cell therapies. Hum Reprod Update 2019; 24:673-693. [PMID: 30239705 DOI: 10.1093/humupd/dmy028] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/04/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Stem cell research in the endometrium and myometrium from animal models and humans has led to the identification of endometrial/myometrial stem cells and their niches. This basic knowledge is beginning to be translated to clinical use for incurable uterine pathologies. Additionally, the implication of bone marrow-derived stem cells (BMDSCs) in uterine physiology has opened the field for the exploration of an exogenous and autologous source of stem cells. OBJECTIVE AND RATIONALE In this review, we outline the progress of endometrial and myometrial stem/progenitor cells in both human and mouse models from their characterization to their clinical application, indicating roles in Asherman syndrome, atrophic endometrium and tissue engineering, among others. SEARCH METHODS A comprehensive search of PubMed and Google Scholar up to December 2017 was conducted to identify peer-reviewed literature related to the contribution of bone marrow, endometrial and myometrial stem cells to potential physiological regeneration as well as their implications in pathologies of the human uterus. OUTCOMES The discovery and main characteristics of stem cells in the murine and human endometrium and myometrium are presented together with the relevance of their niches and cross-regulation. The current state of advanced stem cell therapy using BMDSCs in the treatment of Asherman syndrome and atrophic endometrium is analyzed. In the myometrium, the understanding of genetic and epigenetic defects that result in the development of tumor-initiating cells in the myometrial stem niche and thus contribute to the growth of uterine leiomyoma is also presented. Finally, recent advances in tissue engineering based on the creation of novel three-dimensional scaffolds or decellularisation open up new perspectives for the field of uterine transplantation. WIDER IMPLICATIONS More than a decade after their discovery, the knowledge of uterine stem cells and their niches is crystalising into novel therapeutic approaches aiming to treat with cells those conditions that cannot be cured with drugs, particularly the currently incurable uterine pathologies. Additional work and improvements are needed, but the basis has been formed for this therapeutic application of uterine cells.
Collapse
Affiliation(s)
- Xavier Santamaria
- Reproductive Medicine Department, Igenomix Academy, Paterna (Valencia), Spain.,Reproductive Medicine Department, IVI Barcelona, Barcelona, Spain.,Department of Obstetrics and Gynecology, Biomedical Research Group in Gynecology, Vall Hebron Institut de Recerca, Barcelona, Spain
| | - Aymara Mas
- Reproductive Medicine Department, Igenomix Academy, Paterna (Valencia), Spain.,Department of Obstetrics and Gynecology, Reproductive Medicine Research Group, La Fe Health Research Institute, Valencia, Spain
| | - Irene Cervelló
- Department of Obstetrics and Gynecology, Fundación Instituto Valenciano de Infertilidad (FIVI), and Instituto Universitario IVI/INCLIVA, Valencia, Spain
| | - Hugh Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Carlos Simon
- Reproductive Medicine Department, Igenomix Academy, Paterna (Valencia), Spain.,Department of Pediatrics, Obstetrics, and Gynecology, Valencia University and INCLIVA, Valencia, Spain.,Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| |
Collapse
|
25
|
Naderain H, Khanlarkhani N, Ragerdi Kashani I, Atlasi A, Atlasi MA. Comparison of the effects of progesterone and 17 β-estradiol on Schwann cell markers expression in rat adipose-derived stem cells. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2019; 9:307-313. [PMID: 30713608 PMCID: PMC6346486 DOI: 10.30466/vrf.2018.33103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/21/2018] [Indexed: 11/22/2022]
Abstract
Steroids promote the myelination and regeneration in the peripheral nervous system. Whereas, little is known about the inducing effects by which the hormones exert their effects on Schwann cells differentiation. This could be revealed by the expression of Schwann cell markers in adipose-derived stem cells (ADSCs). The purpose of this study was to present the effects of progesterone and 17 β-estradiol on the Schwann cell markers in rat ADSCs. The mesenchymal stem cell markers (CD73, and CD90) were assayed by flow cytometry. Rat ADSCs were sequentially treated with β-mercaptoethanol, and all-trans-retinoic acid, followed by a mixture of basic fibrobroblast growth factor, platelet-derived growth factor, forskolin and heregulin. In experimental groups, forskolin and heregulin were substituted by progesterone and 17 β-estradiol. After induction, the expression of Schwann cell markers P0, and S-100 and the cellular immunocytochemical staining positive rate of anti-S100 and anti-glial fibrillary acidic protein (GFAP) antibodies were compared in the experimental and control groups. Progesterone and 17 β-estradiol triggered P0 and S-100 genes expression and induced a cellular immunocytochemical staining positive rate of S-100 and GFAP in rats ADSCs. Progesterone induced these changes stronger than 17 β-estradiol. Thus, progesterone may induce rat ADSCs toward Schwann-like cells by expression of Schwann cell markers and is more potent than 17 β-estradiol in the expression of these markers.
Collapse
Affiliation(s)
- Homayoun Naderain
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Khanlarkhani
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirabbas Atlasi
- Student Research Committee, Faculty of Dentistry, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Atlasi
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
26
|
Endometrial Stem Cell Markers: Current Concepts and Unresolved Questions. Int J Mol Sci 2018; 19:ijms19103240. [PMID: 30347708 PMCID: PMC6214006 DOI: 10.3390/ijms19103240] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/07/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
The human endometrium is a highly regenerative organ undergoing over 400 cycles of shedding and regeneration over a woman’s lifetime. Menstrual shedding and the subsequent repair of the functional layer of the endometrium is a process unique to humans and higher-order primates. This massive regenerative capacity is thought to have a stem cell basis, with human endometrial stromal stem cells having already been extensively studied. Studies on endometrial epithelial stem cells are sparse, and the current belief is that the endometrial epithelial stem cells reside in the terminal ends of the basalis glands at the endometrial/myometrial interface. Since almost all endometrial pathologies are thought to originate from aberrations in stem cells that regularly regenerate the functionalis layer, expansion of our current understanding of stem cells is necessary in order for curative treatment strategies to be developed. This review critically appraises the postulated markers in order to identify endometrial stem cells. It also examines the current evidence supporting the existence of epithelial stem cells in the human endometrium that are likely to be involved both in glandular regeneration and in the pathogenesis of endometrial proliferative diseases such as endometriosis and endometrial cancer.
Collapse
|
27
|
Abstract
Oestrogen–progesterone signalling is highly versatile and critical for the maintenance of healthy endometrium in humans. The genomic and nongenomic signalling cascades initiated by these hormones in differentiated cells of endometrium have been the primary focus of research since 1920s. However, last decade of research has shown a significant role of stem cells in the maintenance of a healthy endometrium and the modulatory effects of hormones on these cells. Endometriosis, the growth of endometrium outside the uterus, is very common in infertile patients and the elusiveness in understanding of disease pathology causes hindrance in selection of treatment approaches to enhance fertility. In endometriosis, the stem cells are dysfunctional as it can confer progesterone resistance to their progenies resulting in disharmony of hormonal orchestration of endometrial homeostasis. The bidirectional communication between stem cell signalling pathways and oestrogen–progesterone signalling is found to be disrupted in endometriosis though it is not clear which precedes the other. In this paper, we review the intricate connection between hormones, stem cells and the cross-talks in their signalling cascades in normal endometrium and discuss how this is deregulated in endometriosis. Re-examination of the oestrogen–progesterone dependency of endometrium with a focus on stem cells is imperative to delineate infertility associated with endometriosis and thereby aid in designing better treatment modalities.
Collapse
|
28
|
Abstract
The "ovarian cycle" is an exquisite and dynamic endocrine system that includes ovarian events, hypothalamic-pituitary interactions, uterine endometrial and myometrial changes during implantation and pregnancy, cervical alterations in structure, and breast development. The ovarian cycle and the steroid hormones produced by the ovary also impact epithelial cancer development in the ovary, uterus, cervix, and breast. This chapter provides a personal view of recent developments that occur in this complex endocrine environment.
Collapse
Affiliation(s)
- JoAnne S Richards
- Baylor College of Medicine, Houston, TX, United States; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States; Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
29
|
In vitro evidence that platelet-rich plasma stimulates cellular processes involved in endometrial regeneration. J Assist Reprod Genet 2018; 35:757-770. [PMID: 29404863 DOI: 10.1007/s10815-018-1130-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/23/2018] [Indexed: 12/16/2022] Open
Abstract
PURPOSE The study aims to test the hypothesis that platelet-rich plasma (PRP) stimulates cellular processes involved in endometrial regeneration relevant to clinical management of poor endometrial growth or intrauterine scarring. METHODS Human endometrial stromal fibroblasts (eSF), endometrial mesenchymal stem cells (eMSC), bone marrow-derived mesenchymal stem cells (BM-MSC), and Ishikawa endometrial adenocarcinoma cells (IC) were cultured with/without 5% activated (a) PRP, non-activated (na) PRP, aPPP (platelet-poor-plasma), and naPPP. Treatment effects were evaluated with cell proliferation (WST-1), wound healing, and chemotaxis Transwell migration assays. Mesenchymal-to-epithelial transition (MET) was evaluated by cytokeratin and vimentin expression. Differential gene expression of various markers was analyzed by multiplex Q-PCR. RESULTS Activated PRP enhanced migration of all cell types, compared to naPRP, aPPP, naPPP, and vehicle controls, in a time-dependent manner (p < 0.05). The WST-1 assay showed increased stromal and mesenchymal cell proliferation by aPRP vs. naPRP, aPPP, and naPPP (p < 0.05), while IC proliferation was enhanced by aPRP and aPPP (p < 0.05). There was no evidence of MET. Expressions of MMP1, MMP3, MMP7, and MMP26 were increased by aPRP (p < 0.05) in eMSC and eSF. Transcripts for inflammation markers/chemokines were upregulated by aPRP vs. aPPP (p < 0.05) in eMSC and eSF. No difference in estrogen or progesterone receptor mRNAs was observed. CONCLUSIONS This is the first study evaluating the effect of PRP on different human endometrial cells involved in tissue regeneration. These data provide an initial ex vivo proof of principle for autologous PRP to promote endometrial regeneration in clinical situations with compromised endometrial growth and scarring.
Collapse
|
30
|
Shi Q, Gao J, Jiang Y, Sun B, Lu W, Su M, Xu Y, Yang X, Zhang Y. Differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells into endometrial cells. Stem Cell Res Ther 2017; 8:246. [PMID: 29096715 PMCID: PMC5667478 DOI: 10.1186/s13287-017-0700-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are a novel and promising strategy for tissue engineering because of their ability to differentiate into many cell types. We characterized the differentiation of WJ-MSCs into endometrial epithelial cell (EEC)-like and endometrial stromal cell (ESC)-like cells and assessed the effect of 17β-estradiol and 8-Br-cAMP on the differentiation system. METHODS WJ-MSCs were treated in two ways to differentiate into EEC-like and ESC-like cells respectively: cocultured with ESCs in control/differentiation medium (17β-estradiol, growth factors); and cultured in control/differentiation medium (8-Br-cAMP alone or 8-Br-cAMP plus 17β-estrogen and growth factors). Three signaling pathway inhibitors (SB203580, PD98059, H89) were used to investigate the mechanism of WJ-MSC differentiation into ESC-like cells. Immunofluorescence, western blot and flow cytometry analyses were used to analyze expression of epithelial markers and stromal cell markers. Enzyme-linked immunosorbent assays were used to test the production of secretory proteins associated with the differentiation of ESC-like cells. RESULTS 17β-estradiol at 1 μM downregulated vimentin and CD13 and upregulated cytokeratin and CD9 proteins, promoting the differentiation of WJ-MSCs into EEC-like cells in the coculture system. 8-Br-cAMP at 0.5 mM upregulated vimentin and CD13 and downregulated CK and CD9, promoting the differentiation of WJ-MSCs into ESC-like cells. Prolactin (PRL) and insulin-like growth factor-binding protein 1 (IGFBP1) were upregulated and the protein kinase A (PKA) signaling pathway was activated, whereas extracellular signal-regulated (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) were not affected. CONCLUSIONS 17β-estradiol at 1 μM is a good inducer for facilitating the differentiation of WJ-MSCs into EEC-like cells. 8-Br-cAMP plus estrogen and growth factors can induce the differentiation of WJ-MSCs into ESC-like cells. During the differentiation of WJ-MSCs into ESC-like cells, PRL and IGFBP1 were upregulated by the treatment and the PKA signaling pathway was activated, whereas ERK1/2 and p38 MAPK were not affected. These findings suggest a promising approach to the treatment of endometrial damage and other endometrial diseases and suggest new applications for WJ-MSCs in clinical practice.
Collapse
Affiliation(s)
- Qin Shi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - JingWei Gao
- Department of Obstetrics and Gynecology, Suzhou Municipal Hospital, Soochow, People's Republic of China
| | - Yao Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Soochow, People's Republic of China
| | - Baolan Sun
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Wei Lu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Min Su
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Yunzhao Xu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Xiaoqing Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China. .,Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University School of Medicine, 19 Xishi Road, Nantong, Jiangsu, 226006, People's Republic of China.
| | - Yuquan Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China. .,Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University School of Medicine, 19 Xishi Road, Nantong, Jiangsu, 226006, People's Republic of China.
| |
Collapse
|
31
|
Khatun M, Sorjamaa A, Kangasniemi M, Sutinen M, Salo T, Liakka A, Lehenkari P, Tapanainen JS, Vuolteenaho O, Chen JC, Lehtonen S, Piltonen TT. Niche matters: The comparison between bone marrow stem cells and endometrial stem cells and stromal fibroblasts reveal distinct migration and cytokine profiles in response to inflammatory stimulus. PLoS One 2017; 12:e0175986. [PMID: 28419140 PMCID: PMC5395216 DOI: 10.1371/journal.pone.0175986] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/03/2017] [Indexed: 12/17/2022] Open
Abstract
Objective Intrinsic inflammatory characteristics play a pivotal role in stem cell recruitment and homing through migration where the subsequent change in niche has been shown to alter these characteristics. The bone marrow mesenchymal stem cells (bmMSCs) have been demonstrated to migrate to the endometrium contributing to the stem cell reservoir and regeneration of endometrial tissue. Thus, the aim of the present study was to compare the inflammation-driven migration and cytokine secretion profile of human bmMSCs to endometrial mesenchymal stem cells (eMSCs) and endometrial fibroblasts (eSFs). Materials and methods The bmMSCs were isolated from bone marrow aspirates through culturing, whereas eMSCs and eSFs were FACS-isolated. All cell types were tested for their surface marker, proliferation profiles and migration properties towards serum and inflammatory attractants. The cytokine/chemokine secretion profile of 35 targets was analysed in each cell type at basal level along with lipopolysaccharide (LPS)-induced state. Results Both stem cell types, bmMSCs and eMSCs, presented with similar stem cell surface marker profiles as well as possessed high proliferation and migration potential compared to eSFs. In multiplex assays, the secretion of 16 cytokine targets was detected and LPS stimulation expanded the cytokine secretion pattern by triggering the secretion of several targets. The bmMSCs exhibited higher cytokine secretion of vascular endothelial growth factor (VEGF)-A, stromal cell-derived factor-1 alpha (SDF)-1α, interleukin-1 receptor antagonist (IL-1RA), IL-6, interferon-gamma inducible protein (IP)-10, monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)1α and RANTES compared to eMSCs and/or eSFs after stimulation with LPS. The basal IL-8 secretion was higher in both endometrial cell types compared to bmMSCs. Conclusion Our results highlight that similar to bmMSCs, the eMSCs possess high migration activity while the differentiation process towards stromal fibroblasts seemed to result in loss of stem cell surface markers, minimal migration activity and a subtler cytokine profile likely contributing to normal endometrial function.
Collapse
Affiliation(s)
- Masuma Khatun
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Anna Sorjamaa
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Marika Kangasniemi
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Meeri Sutinen
- Cancer and Translational Medicine Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Tuula Salo
- Cancer and Translational Medicine Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Annikki Liakka
- Department of Pathology, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Petri Lehenkari
- Department of Anatomy and Department of Internal Medicine, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Juha S. Tapanainen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | - Joseph C. Chen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, United States of America
| | - Siri Lehtonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Terhi T. Piltonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- * E-mail:
| |
Collapse
|
32
|
Zhao G, Cao Y, Zhu X, Tang X, Ding L, Sun H, Li J, Li X, Dai C, Ru T, Zhu H, Lu J, Lin C, Wang J, Yan G, Wang H, Wang L, Dai Y, Wang B, Li R, Dai J, Zhou Y, Hu Y. Transplantation of collagen scaffold with autologous bone marrow mononuclear cells promotes functional endometrium reconstruction via downregulating ΔNp63 expression in Asherman's syndrome. SCIENCE CHINA. LIFE SCIENCES 2017; 60:404-416. [PMID: 27921235 DOI: 10.1007/s11427-016-0328-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/13/2016] [Indexed: 12/28/2022]
Abstract
Asherman's syndrome (AS) is a common disease that presents endometrial regeneration disorder. However, little is known about its molecular features of this aregenerative endometrium in AS and how to reconstruct the functioning endometrium for the patients with AS. Here, we report that ΔNp63 is significantly upregulated in residual epithelial cells of the impaired endometrium in AS; the upregulated-ΔNp63 induces endometrial quiescence and alteration of stemness. Importantly, we demonstrate that engrafting high density of autologous bone marrow mononuclear cells (BMNCs) loaded in collagen scaffold onto the uterine lining of patients with AS downregulates ΔNp63 expression, reverses ΔNp63-induced pathological changes, normalizes the stemness alterations and restores endometrial regeneration. Finally, five patients achieved successful pregnancies and live births. Therefore, we conclude that ΔNp63 is a crucial therapeutic target for AS. This novel treatment significantly improves the outcome for the patients with severe AS.
Collapse
Affiliation(s)
- Guangfeng Zhao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yun Cao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xianghong Zhu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaoqiu Tang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lijun Ding
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Haixiang Sun
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Juan Li
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xinan Li
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Chenyan Dai
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Tong Ru
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Hui Zhu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jingjie Lu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Caimei Lin
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jingmei Wang
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Guijun Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Huiyan Wang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lei Wang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yimin Dai
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Bin Wang
- Nanjing Center for Stem Cells and Biomaterials, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Ruotian Li
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jianwu Dai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yan Zhou
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, 94143, USA.
| | - Yali Hu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
33
|
Vanni VS, Viganò P, Papaleo E, Mangili G, Candiani M, Giorgione V. Advances in improving fertility in women through stem cell-based clinical platforms. Expert Opin Biol Ther 2017; 17:585-593. [PMID: 28351161 DOI: 10.1080/14712598.2017.1305352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Due to their regenerative ability, stem cells are looked at as a promising tool for improving infertility treatments in women. As the main limiting factor in female fertility is represented by the decrease of ovarian reserve, the main goals of stem cell-based clinical platforms would be to obtain in vitro or in vivo neo-oogenesis. Refractory endometrial factor infertility also represents an obstacle for female reproduction for which stem cells might provide novel treatment strategies. Areas covered: A systematic search of the literature was performed on MEDLINE/PubMed database to identify relevant articles using stem-cell based clinical or research platforms in the field of female infertility. Expert opinion: In vitro oogenesis has not so far developed beyond the stage of oocyte-like cells whose normal progression to mature oocytes and ability to be fertilized was not proved. Extensive epigenetic programming of gamete precursors and the complex interactions between somatic and germ cells required for human oogenesis likely represent the main obstacles in stem-cell-based neo-oogenesis. Also resuming oogenesis in vivo in adulthood still appears a distant hypothesis, as there is still a lack of consensus about the existence and functionality of adult ovarian stem cells.
Collapse
Affiliation(s)
- Valeria Stella Vanni
- a Obstetrics and Gynaecology Unit , IRCCS San Raffaele Hospital , Milano , Italy.,b Obstetrics and Gynaecology Unit , Vita-Salute San Raffaele University , Milano , Italy
| | - Paola Viganò
- c Division of Genetics and Cell Biology , IRCCS San Raffaele Hospital , Milano , Italy
| | - Enrico Papaleo
- a Obstetrics and Gynaecology Unit , IRCCS San Raffaele Hospital , Milano , Italy
| | - Giorgia Mangili
- a Obstetrics and Gynaecology Unit , IRCCS San Raffaele Hospital , Milano , Italy
| | - Massimo Candiani
- a Obstetrics and Gynaecology Unit , IRCCS San Raffaele Hospital , Milano , Italy.,b Obstetrics and Gynaecology Unit , Vita-Salute San Raffaele University , Milano , Italy
| | - Veronica Giorgione
- a Obstetrics and Gynaecology Unit , IRCCS San Raffaele Hospital , Milano , Italy.,b Obstetrics and Gynaecology Unit , Vita-Salute San Raffaele University , Milano , Italy
| |
Collapse
|
34
|
Taghizadeh M, Noruzinia M. Lovastatin Reduces Stemness via Epigenetic Reprograming of BMP2 and GATA2 in Human Endometrium and Endometriosis. CELL JOURNAL 2017; 19:50-64. [PMID: 28367417 PMCID: PMC5241518 DOI: 10.22074/cellj.2016.3894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/22/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The stem cell theory in the endometriosis provides an advanced avenue of targeting these cells as a novel therapy to eliminate endometriosis. In this regard, studies showed that lovastatin alters the cells from a stem-like state to more differentiated condition and reduces stemness. The aim of this study was to investigate whether lovastatin treatment could influence expression and methylation patterns of genes regulating differentiation of endometrial mesenchymal stem cells (eMSCs) such as BMP2, GATA2 and RUNX2 as well as eMSCs markers. MATERIALS AND METHODS In this experimental investigation, MSCs were isolated from endometrial and endometriotic tissues and treated with lovastatin and decitabin. To investigate the osteogenic and adipogenic differentiation of eMSCs treated with the different concentration of lovastatin and decitabin, BMP2, RUNX2 and GATA2 expressions were measured by real-time polymerase chain reaction (PCR). To determine involvement of DNA methylation in BMP2 and GATA2 gene regulations of eMSCs, we used quantitative Methylation Specific PCR (qMSP) for evaluation of the BMP2 promoter status and differentially methylated region of GATA2 exon 4. RESULTS In the present study, treatment with lovastatin increased expression of BMP2 and RUNX2 and induced BMP2 promoter demethylation. We also demonstrated that lovastatin treatment down-regulated GATA2 expression via inducing methylation. In addition, the results indicated that CD146 cell marker was decreased to 53% in response to lovastatin treatment compared to untreated group. CONCLUSION These findings indicated that lovastatin treatment could increase the differentiation of eMSCs toward osteogenic and adiogenic lineages, while it decreased expression of eMSCs markers and subsequently reduced the stemness.
Collapse
Affiliation(s)
| | - Mehrdad Noruzinia
- P.O.Box: 11115-331Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
35
|
Zhu Y, Hu J, Yu T, Ren Y, Hu L. High Molecular Weight Hyaluronic Acid Inhibits Fibrosis of Endometrium. Med Sci Monit 2016; 22:3438-3445. [PMID: 27670361 PMCID: PMC5042123 DOI: 10.12659/msm.896028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 02/03/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Elevated fibrosis has been found in patients with intrauterine adhesion, which indicates that fibrotic factors may play a critical role in formation of intrauterine adhesion. The aim of this study was to identify the effect of hyaluronic acid (HA) at high and low molecular weight on fibrosis of the endometrium in a mouse model of Asherman's syndrome. MATERIAL AND METHODS Endometrial fibrosis in a mouse model of Asherman's syndrome was confirmed. Then HA at high and low molecular weight was injected into the uterine cavity. Endometrial fibrosis was compared among the control group, LMW-HA, and HMW-HA group. The extent of endometrial fibrosis was calculated using Masson stain. The fibrosis markers (TGFβ1, CTGF, collagen I, and collagen III) in endometrial tissue were detected using immunohistochemistry and Western blotting. RESULTS The ratio of the area with endometrial fibrosis to total endometrial area in the HMW-HA group was significantly decreased compared to the control group (P<0.05). The expression of fibrosis markers (TGFβ1, CTGF, collagen I, and collagen III) in the endometrium was attenuated in the HMW-HA group compared to the control group, but the LMW-HA group had no similar effect. CONCLUSIONS Hyaluronic acid at high molecular weight may attenuate the degree of endometrial fibrosis after endometrial damage, which may contribute to preventing formation of intrauterine adhesions.
Collapse
Affiliation(s)
| | | | | | | | - Lina Hu
- Corresponding Author: Lina Hu, e-mail:
| |
Collapse
|
36
|
Aghajanova L, Altmäe S, Kasvandik S, Salumets A, Stavreus-Evers A, Giudice LC. Stanniocalcin-1 expression in normal human endometrium and dysregulation in endometriosis. Fertil Steril 2016; 106:681-691.e1. [PMID: 27322879 PMCID: PMC5010972 DOI: 10.1016/j.fertnstert.2016.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/19/2016] [Accepted: 05/25/2016] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To determine expression of stanniocalcin-1 (STC1) in human endometrium with and without endometriosis and its regulation by steroid hormones. DESIGN Laboratory study. SETTING University. PATIENT(S) Nineteen women with endometriosis and 33 control women. INTERVENTION(S) Endometrial biopsy and fluid sampling. MAIN OUTCOME MEASURE(S) Analysis of early secretory (ESE) and midsecretory (MSE) endometrial secretomes from fertile women with the use of nano-liquid chromatography-dual mass spectrometry; real-time quantitative polymerase chain reaction, and immunohistochemistry for STC1 and its receptor calcium-sensing receptor (CASR) mRNA and proteins in endometrium with and without endometriosis; evaluation of STC1 and CASR mRNA expression in endometrial stromal fibroblasts (eSF) from women with and without endometriosis decidualized with the use of E2P or 8-bromo-cyclic adenosine monophosphate (cAMP). RESULT(S) STC1 protein was strongly up-regulated in MSE versus ESE in endometrial fluid of fertile women. STC1 mRNA significantly increased in MSE from women with, but not from those without, endometriosis, compared with proliferative endometrium or ESE, with no significant difference throughout the menstrual cycle between groups. STC1 mRNA in eSF from control women increased >230-fold on decidualization with the use of cAMP versus 45-fold from women with endometriosis, which was not seen on decidualization with E2/P. CASR mRNA did not exhibit significant differences in any condition and was not expressed in isolated eSF. STC1 protein immunoexpression in eSF was significantly lower in women with endometriosis compared with control women. CONCLUSION(S) STC1 protein is significantly up-regulated in MSE endometrial fluid and is dysregulated in eutopic endometrial tissue from women with endometriosis. It is likely regulated by cAMP and may be involved in the pathogenesis of decidualization defects.
Collapse
Affiliation(s)
- Lusine Aghajanova
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, California.
| | - Signe Altmäe
- Competence Center on Health Technologies, Tartu, Estonia; Department of Pediatrics, School of Medicine, University of Granada, Granada, Spain
| | - Sergo Kasvandik
- Competence Center on Health Technologies, Tartu, Estonia; Proteomics Core Facility, Institute of Technology, University of Tartu, Tartu, Estonia; Tartu University Women's Clinic, Tartu, Estonia
| | - Andres Salumets
- Competence Center on Health Technologies, Tartu, Estonia; Tartu University Women's Clinic, Tartu, Estonia
| | | | - Linda C Giudice
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, California
| |
Collapse
|
37
|
Gargett CE, Gurung S. Endometrial Mesenchymal Stem/Stromal Cells, Their Fibroblast Progeny in Endometriosis, and More. Biol Reprod 2016; 94:129. [PMID: 27146030 DOI: 10.1095/biolreprod.116.141325] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia Department of Obstetrics and Gynaecology, Monash University, Monash Medical Centre, Clayton, Victoria, Australia
| | - Shanti Gurung
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
38
|
Barragan F, Irwin JC, Balayan S, Erikson DW, Chen JC, Houshdaran S, Piltonen TT, Spitzer TLB, George A, Rabban JT, Nezhat C, Giudice LC. Human Endometrial Fibroblasts Derived from Mesenchymal Progenitors Inherit Progesterone Resistance and Acquire an Inflammatory Phenotype in the Endometrial Niche in Endometriosis. Biol Reprod 2016; 94:118. [PMID: 27075616 PMCID: PMC4939744 DOI: 10.1095/biolreprod.115.136010] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/24/2016] [Indexed: 12/18/2022] Open
Abstract
Human endometrium undergoes cyclic regeneration involving stem/progenitor cells, but the role of resident endometrial mesenchymal stem cells (eMSC) as progenitors of endometrial stromal fibroblasts (eSF) has not been definitively demonstrated. In endometriosis, eSF display progesterone (P4) resistance with impaired decidualization in vivo and in vitro. To investigate eMSC as precursors of eSF and whether endometriosis P4 resistance is inherited from eMSC, we analyzed transcriptomes of eutopic endometrium eMSC and eSF isolated by fluorescence-activated cell sorting (FACS) from endometriosis (eMSCendo, eSFendo) and controls (eMSCcontrol, eSFcontrol) and their derived primary cultures. Differentially expressed lineage-associated genes (LG) of FACS-isolated eMSC and eSF were largely conserved in endometriosis. In culture, eSFcontrol maintained in vitro expression of a subset of eSF LG and decidualized in vitro with P4 The eMSCcontrol cultures differentiated in vitro to eSF lineage, down-regulating eMSC LG and up-regulating eSF LG, showing minimal transcriptome differences versus eSFcontrol cultures and decidualizing in vitro. Cultured eSFendo displayed less in vitro LG stability and did not decidualize in vitro. In vitro, eMSCendo differentiated to eSF lineage but showed more differentially expressed genes versus eSFendo cultures, and did not decidualize in vitro, demonstrating P4 resistance inherited from eMSCendo Compared to controls, cultures from tissue-derived eSFendo uniquely had a pro-inflammatory phenotype not present in eMSCendo differentiated to eSF in vitro, suggesting divergent niche effects for in vivo versus in vitro lineage differentiation. These findings substantiate eMSC as progenitors of eSF and reveal eSF in endometriosis as having P4 resistance inherited from eMSC and a pro-inflammatory phenotype acquired within the endometrial niche.
Collapse
Affiliation(s)
- Fatima Barragan
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California
| | - Juan C Irwin
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California
| | - Shaina Balayan
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California
| | - David W Erikson
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California Oregon National Primate Research Center/Oregon Health & Science University, Endocrine Technologies Support Core, Beaverton, Oregon
| | - Joseph C Chen
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California Siemens Healthcare Diagnostics, Berkeley, California
| | - Sahar Houshdaran
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California
| | - Terhi T Piltonen
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California Department of Obstetrics and Gynecology and Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Trimble L B Spitzer
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California Reproductive Endocrinology and Infertility Division, Women's Health, Naval Medical Center, Portsmouth, Virginia
| | - Ashley George
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California Department of Animal Sciences, Rutgers University, New Brunswick, New Jersey
| | - Joseph T Rabban
- Department of Pathology, University of California, San Francisco, San Francisco, California
| | - Camran Nezhat
- Department of Obstetrics and Gynecology, Stanford University, Stanford, California
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California
| |
Collapse
|
39
|
Santamaria X, Cabanillas S, Cervelló I, Arbona C, Raga F, Ferro J, Palmero J, Remohí J, Pellicer A, Simón C. Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Asherman's syndrome and endometrial atrophy: a pilot cohort study. Hum Reprod 2016; 31:1087-96. [PMID: 27005892 DOI: 10.1093/humrep/dew042] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 02/04/2016] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Could cell therapy using autologous peripheral blood CD133+ bone marrow-derived stem cells (BMDSCs) offer a safe and efficient therapeutic approach for patients with refractory Asherman's syndrome (AS) and/or endometrial atrophy (EA) and a wish to conceive? SUMMARY ANSWER In the first 3 months, autologous cell therapy, using CD133+ BMDSCs in conjunction with hormonal replacement therapy, increased the volume and duration of menses as well as the thickness and angiogenesis processes of the endometrium while decreasing intrauterine adhesion scores. WHAT IS KNOWN ALREADY AS is characterized by the presence of intrauterine adhesions and EA prevents the endometrium from growing thicker than 5 mm, resulting in menstruation disorders and infertility. Many therapies have been attempted for these conditions, but none have proved effective. STUDY DESIGN, SIZE, DURATION This was a prospective, experimental, non-controlled study. There were 18 patients aged 30-45 years with refractory AS or EA were recruited, and 16 of these completed the study. Medical history, physical examination, endometrial thickness, intrauterine adhesion score and neoangiogenesis were assessed before and 3 and 6 months after cell therapy. PARTICIPANTS/MATERIALS, SETTING, METHODS After the initial hysteroscopic diagnosis, BMDSC mobilization was performed by granulocyte-CSF injection, then CD133+ cells were isolated through peripheral blood aphaeresis to obtain a mean of 124.39 million cells (range 42-236), which were immediately delivered into the spiral arterioles by catheterization. Subsequently, endometrial treatment after stem cell therapy was assessed in terms of restoration of menses, endometrial thickness (by vaginal ultrasound), adhesion score (by hysteroscopy), neoangiogenesis and ongoing pregnancy rate. The study was conducted at Hospital Clínico Universitario of Valencia and IVI Valencia (Spain). MAIN RESULTS AND THE ROLE OF CHANCE All 11 AS patients exhibited an improved uterine cavity 2 months after stem cell therapy. Endometrial thickness increased from an average of 4.3 mm (range 2.7-5) to 6.7 mm (range 3.1-12) ( ITALIC! P = 0.004). Similarly, four of the five EA patients experienced an improved endometrial cavity, and endometrial thickness increased from 4.2 mm (range 2.7-5) to 5.7 mm (range 5-12) ( ITALIC! P = 0.03). The beneficial effects of the cell therapy increased the mature vessel density and the duration and intensity of menses in the first 3 months, with a return to the initial levels 6 months after the treatment. Three patients became pregnant spontaneously, resulting in one baby boy born, one ongoing pregnancy and a miscarriage. Furthermore, seven pregnancies were obtained after fourteen embryo transfers, resulting in three biochemical pregnancies, one miscarriage, one ectopic pregnancy, one baby born and one ongoing pregnancy. LIMITATIONS, REASONS FOR CAUTION Limitations of this pilot study include the small sample size and the lack of control group. WIDER IMPLICATIONS OF THE FINDINGS This novel autologous cell therapy is a promising therapeutic option for patients with these incurable pathologies and a wish to conceive. STUDY FUNDING/COMPETING INTERESTS This study was funded by the Spanish Ministry of Science and Innovation (SAF 2012-31017, Principal Investigator C.S.), Spanish Ministry of Health (EC11-299, Principal Investigator C.S.) and Regional Valencian Ministry of Education (PROMETEOII/2013/018, Principal Investigator C.S.). Four authors (X.S., I.C., A.P. and C.S.) are co-inventors of the patent resulting from this work (Application number: 62/013,121). S.C., C.A., F.R., J.F., J.P. and J.R. have no conflict of interest in relation to this work. TRIAL REGISTRATION NUMBER This study was registered with ClinicalTrials.gov (NCT02144987).
Collapse
Affiliation(s)
- Xavier Santamaria
- Fundaciœn Instituto Valenciano de Infertilidad (FIVI), Department of Obstetrics & Gynecology, School of Medicine, Valencia University and Instituto Universitario IVI/INCLIVA, Valencia, Spain Instituto Valenciano Infertilidad (IVI) Barcelona, Barcelona, Spain
| | | | - Irene Cervelló
- Fundaciœn Instituto Valenciano de Infertilidad (FIVI), Department of Obstetrics & Gynecology, School of Medicine, Valencia University and Instituto Universitario IVI/INCLIVA, Valencia, Spain
| | - Cristina Arbona
- Department of Hematology, Hospital ClÚnico Universitario/INCLIVA, Valencia, Spain
| | - Francisco Raga
- Department of Obstetrics & Gynecology, Hospital ClÚnico Universitario/INCLIVA, Valencia, Spain
| | - Jaime Ferro
- Instituto Valenciano Infertilidad (IVI) Valencia, Valencia, Spain
| | - Julio Palmero
- Department of Radiology, Hospital ClÚnico Universitario/INCLIVA, Valencia, Spain
| | - Jose Remohí
- Fundaciœn Instituto Valenciano de Infertilidad (FIVI), Department of Obstetrics & Gynecology, School of Medicine, Valencia University and Instituto Universitario IVI/INCLIVA, Valencia, Spain Instituto Valenciano Infertilidad (IVI) Valencia, Valencia, Spain
| | - Antonio Pellicer
- Fundaciœn Instituto Valenciano de Infertilidad (FIVI), Department of Obstetrics & Gynecology, School of Medicine, Valencia University and Instituto Universitario IVI/INCLIVA, Valencia, Spain Instituto Valenciano Infertilidad (IVI) Valencia, Valencia, Spain
| | - Carlos Simón
- Fundaciœn Instituto Valenciano de Infertilidad (FIVI), Department of Obstetrics & Gynecology, School of Medicine, Valencia University and Instituto Universitario IVI/INCLIVA, Valencia, Spain Instituto Valenciano Infertilidad (IVI) Valencia, Valencia, Spain Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford University, Stanford, California Igenomix, Parc Cientific Valencia University, Paterna, Valencia, Spain
| |
Collapse
|
40
|
Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update 2015; 22:137-63. [PMID: 26552890 PMCID: PMC4755439 DOI: 10.1093/humupd/dmv051] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The existence of stem/progenitor cells in the endometrium was postulated many years ago, but the first functional evidence was only published in 2004. The identification of rare epithelial and stromal populations of clonogenic cells in human endometrium has opened an active area of research on endometrial stem/progenitor cells in the subsequent 10 years. METHODS The published literature was searched using the PubMed database with the search terms ‘endometrial stem cells and menstrual blood stem cells' until December 2014. RESULTS Endometrial epithelial stem/progenitor cells have been identified as clonogenic cells in human and as label-retaining or CD44+ cells in mouse endometrium, but their characterization has been modest. In contrast, endometrial mesenchymal stem/stromal cells (MSCs) have been well characterized and show similar properties to bone marrow MSCs. Specific markers for their enrichment have been identified, CD146+PDGFRβ+ (platelet-derived growth factor receptor beta) and SUSD2+ (sushi domain containing-2), which detected their perivascular location and likely pericyte identity in endometrial basalis and functionalis vessels. Transcriptomics and secretomics of SUSD2+ cells confirm their perivascular phenotype. Stromal fibroblasts cultured from endometrial tissue or menstrual blood also have some MSC characteristics and demonstrate broad multilineage differentiation potential for mesodermal, endodermal and ectodermal lineages, indicating their plasticity. Side population (SP) cells are a mixed population, although predominantly vascular cells, which exhibit adult stem cell properties, including tissue reconstitution. There is some evidence that bone marrow cells contribute a small population of endometrial epithelial and stromal cells. The discovery of specific markers for endometrial stem/progenitor cells has enabled the examination of their role in endometrial proliferative disorders, including endometriosis, adenomyosis and Asherman's syndrome. Endometrial MSCs (eMSCs) and menstrual blood stromal fibroblasts are an attractive source of MSCs for regenerative medicine because of their relative ease of acquisition with minimal morbidity. Their homologous and non-homologous use as autologous and allogeneic cells for therapeutic purposes is currently being assessed in preclinical animal models of pelvic organ prolapse and phase I/II clinical trials for cardiac failure. eMSCs and stromal fibroblasts also exhibit non-stem cell-associated immunomodulatory and anti-inflammatory properties, further emphasizing their desirable properties for cell-based therapies. CONCLUSIONS Much has been learnt about endometrial stem/progenitor cells in the 10 years since their discovery, although several unresolved issues remain. These include rationalizing the terminology and diagnostic characteristics used for distinguishing perivascular stem/progenitor cells from stromal fibroblasts, which also have considerable differentiation potential. The hierarchical relationship between clonogenic epithelial progenitor cells, endometrial and decidual SP cells, CD146+PDGFR-β+ and SUSD2+ cells and menstrual blood stromal fibroblasts still needs to be resolved. Developing more genetic animal models for investigating the role of endometrial stem/progenitor cells in endometrial disorders is required, as well as elucidating which bone marrow cells contribute to endometrial tissue. Deep sequencing and epigenetic profiling of enriched populations of endometrial stem/progenitor cells and their differentiated progeny at the population and single-cell level will shed new light on the regulation and function of endometrial stem/progenitor cells.
Collapse
Affiliation(s)
- Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Victoria, Australia Department of Obstetrics and Gynaecology, Monash University, Monash Medical Centre, 246 Clayton Road, Clayton 3168, Victoria, Australia
| | - Kjiana E Schwab
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Victoria, Australia
| | - James A Deane
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Victoria, Australia Department of Obstetrics and Gynaecology, Monash University, Monash Medical Centre, 246 Clayton Road, Clayton 3168, Victoria, Australia
| |
Collapse
|
41
|
Abstract
Endometriosis is a complex gynecologic condition affecting 6-10% of reproductive aged women and is a major cause of chronic pain and infertility. Mechanisms of disease pathogenesis are poorly understood. Considerable evidence supports the existence of a stem cell population in the endometrium which provides a physiologic source of regenerative endometrial cells, and multiple lines of evidence now support a key role for stem cells in the pathogenesis of endometriosis. In addition, new blood vessel formation is critical for the establishment and maintenance of endometriotic implants, a process in which endothelial progenitor cells may play an integral role. These new insights into disease pathogenesis present exciting opportunities to develop targeted and more effective therapeutic options in the management of this common and challenging disease.
Collapse
Affiliation(s)
- Amy S Dhesi
- Rutgers, New Jersey Medical School, Department of Obstetrics, Gynecology & Women's Health, Newark, NJ, USA
| | | |
Collapse
|
42
|
Kin K, Nnamani MC, Lynch VJ, Michaelides E, Wagner GP. Cell-type phylogenetics and the origin of endometrial stromal cells. Cell Rep 2015; 10:1398-409. [PMID: 25732829 DOI: 10.1016/j.celrep.2015.01.062] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 12/23/2014] [Accepted: 01/28/2015] [Indexed: 12/23/2022] Open
Abstract
A challenge of genome annotation is the identification of genes performing specific biological functions. Here, we propose a phylogenetic approach that utilizes RNA-seq data to infer the historical relationships among cell types and to trace the pattern of gene-expression changes on the tree. The hypothesis is that gene-expression changes coincidental with the origin of a cell type will be important for the function of the derived cell type. We apply this approach to the endometrial stromal cells (ESCs), which are critical for the initiation and maintenance of pregnancy. Our approach identified well-known regulators of ESCs, PGR and FOXO1, as well as genes not yet implicated in female fertility, including GATA2 and TFAP2C. Knockdown analysis confirmed that they are essential for ESC differentiation. We conclude that phylogenetic analysis of cell transcriptomes is a powerful tool for discovery of genes performing cell-type-specific functions.
Collapse
Affiliation(s)
- Koryu Kin
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA; Yale Systems Biology Institute, Yale University, New Haven, CT 06516, USA
| | - Mauris C Nnamani
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA; Yale Systems Biology Institute, Yale University, New Haven, CT 06516, USA
| | - Vincent J Lynch
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA; Yale Systems Biology Institute, Yale University, New Haven, CT 06516, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | | | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA; Yale Systems Biology Institute, Yale University, New Haven, CT 06516, USA.
| |
Collapse
|
43
|
Song T, Zhao X, Sun H, Li X, Lin N, Ding L, Dai J, Hu Y. Regeneration of uterine horns in rats using collagen scaffolds loaded with human embryonic stem cell-derived endometrium-like cells. Tissue Eng Part A 2015; 21:353-361. [PMID: 25097004 PMCID: PMC4292859 DOI: 10.1089/ten.tea.2014.0052] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 08/01/2014] [Indexed: 12/31/2022] Open
Abstract
A variety of diseases may lead to hysterectomies or uterine injuries, which may form a scar and lead to infertility. Due to the limitation of native materials, there are a few effective methods to treat such damages. Tissue engineering combines cell and molecular biology with materials and mechanical engineering to replace or repair damaged organs and tissues. The use of human embryonic stem cells (hESCs) as a donor cell source for the replacement therapy will require the development of simple and reliable cell differentiation protocols. This study aimed at efficiently generating endometrium-like cells from the hESCs and at using these cells with collagen scaffold to repair uterine damage. The hESCs were induced by co-culturing with endometrial stromal cells, and simultaneously added cytokines: epidermal growth factor (EGF), platelet-derived growth factor-b (PDGF-b), and E2. Expression of cell specific markers was analyzed by immunofluorescence and reverse trascription-polymerase chain reaction to monitor the progression toward an endometrium-like cell fate. After differentiation, the majority of cells (>80%) were positive for cytokeratin-7, and the expression of key transcription factors related to endometrial development, such as Wnt4, Wnt7a, Wnt5a, Hoxa11, and factors associated with endometrial epithelial cell function: Hoxa10, Intergrinβ3, LIF, ER, and PR were also detected. Then, we established the uterine full-thickness-injury rat models to test cell function in vivo. hESC-derived cells were dropped onto collagen scaffolds and transplanted into the animal model. Twelve weeks after transplantation, we discovered that the hESC-derived cells could survive and recover the structure and function of uterine horns in a rat model of severe uterine damage. The experimental system presented here provides a reliable protocol to produce endometrium-like cells from hESCs. Our results encourage the use of hESCs in cell-replacement therapy for severe uterine damage in future.
Collapse
Affiliation(s)
- Tianran Song
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xia Zhao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Haixiang Sun
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xin'an Li
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Nacheng Lin
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Lijun Ding
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Jianwu Dai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
44
|
Role of the urokinase-fibrinolytic system in epithelial-mesenchymal transition during lung injury. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:55-68. [PMID: 25447049 DOI: 10.1016/j.ajpath.2014.08.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 08/04/2014] [Accepted: 08/28/2014] [Indexed: 01/10/2023]
Abstract
Alveolar type II epithelial (ATII) cell injury precedes development of pulmonary fibrosis. Mice lacking urokinase-type plasminogen activator (uPA) are highly susceptible, whereas those deficient in plasminogen activator inhibitor (PAI-1) are resistant to lung injury and pulmonary fibrosis. Epithelial-mesenchymal transition (EMT) has been considered, at least in part, as a source of myofibroblast formation during fibrogenesis. However, the contribution of altered expression of major components of the uPA system on ATII cell EMT during lung injury is not well understood. To investigate whether changes in uPA and PAI-1 by ATII cells contribute to EMT, ATII cells from patients with idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease, and mice with bleomycin-, transforming growth factor β-, or passive cigarette smoke-induced lung injury were analyzed for uPA, PAI-1, and EMT markers. We found reduced expression of E-cadherin and zona occludens-1, whereas collagen-I and α-smooth muscle actin were increased in ATII cells isolated from injured lungs. These changes were associated with a parallel increase in PAI-1 and reduced uPA expression. Further, inhibition of Src kinase activity using caveolin-1 scaffolding domain peptide suppressed bleomycin-, transforming growth factor β-, or passive cigarette smoke-induced EMT and restored uPA expression while suppressing PAI-1. These studies show that induction of PAI-1 and inhibition of uPA during fibrosing lung injury lead to EMT in ATII cells.
Collapse
|
45
|
Zhu H, Hou CC, Luo LF, Hu YJ, Yang WX. Endometrial stromal cells and decidualized stromal cells: origins, transformation and functions. Gene 2014; 551:1-14. [PMID: 25168894 DOI: 10.1016/j.gene.2014.08.047] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 07/24/2014] [Accepted: 08/24/2014] [Indexed: 10/24/2022]
Abstract
Decidualization of endometrium, which is characterized by endometrial stromal cell (ESC) decidualization, vascular reconstruction, immune cell recruitment, and plentiful molecule production, is a crucial step for uterus to become receptive for embryo. When implantation takes place, ESCs surround and directly interact with embryo. Decidualized stromal cells (DSCs) are of great importance in endometrial decidualization, having a broad function in regulating immune activity and vascular remodeling of uterus. DSCs are shown to have a higher metabolic level and looser cytoskeleton than ESCs. What's the origin of ESCs and how ESCs successfully transform into DSCs had puzzled scientists in the last decades. Breakthrough had been achieved recently, and many studies had elucidated some of the characters and functions of DSCs. However, several questions still remain unclear. This paper reviews current understanding of where ESCs come from and how ESCs differentiate into DSCs, summarizes some characters and functions of DSCs, analyzes current studies and their limitations and points out research areas that need further investigation.
Collapse
Affiliation(s)
- Ha Zhu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cong-Cong Hou
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ling-Feng Luo
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan-Jun Hu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
46
|
Gaafar T, Osman O, Osman A, Attia W, Hamza H, El Hawary R. Gene expression profiling of endometrium versus bone marrow-derived mesenchymal stem cells: upregulation of cytokine genes. Mol Cell Biochem 2014; 395:29-43. [PMID: 24880484 DOI: 10.1007/s11010-014-2109-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/15/2014] [Indexed: 12/20/2022]
Abstract
Postulated Stem/progenitor cells involved in endometrium regeneration are epithelial, mesenchymal, and endothelial. Bone marrow (BM) has been implicated in endometrial stem cells. We aimed at studying gene expression profiling of endometrial mesenchymal stem cells compared to BM MSCS to better understand their nature and functional phenotype. Endometrial tissues were obtained from premenopausal hysterectomies (n = 3), minced and enzymatically digested as well as Normal BM aspirates (n=3). Immunophenotyping, differentiation to mesoderm, and proliferation were studied. The expression profile of 84 genes relevant to mesenchymal stem cells was performed. Fold change calculations were determined with SA Biosciences data analysis software. VEGF, G-CSF, and GM-CSF in cultures supernatants of MSCs were assayed by Luminex immunoassay. Endo MSCs possess properties similar to BM MSCs. Cumulative population doubling was significantly higher in Endo MSCs compared to BM MSCs (p < 0.001). 52 core genes were shared between both generated MSCs including stemness, self-renewal, members of the Notch, TGFB, FGF, and WNT.16 downregulated genes (VCAM, IGF1)and 16 upregulated in Endo MSCs compared to BM (p < 0.05 → fourfolds). They included mostly cytokine and growth factor genes G-CSF, GM-CSF, VWF, IL1b, GDF15, and KDR. VEGF and G-CSF levels were higher in Endo MSCs supernatants (p < 0.0001). Cells sharing MSC and endothelial cell characteristics could be isolated from the human endometrium. Endo MSCs share a core genetic profile with BM MSCs including stemness. They show upregulation of genes involved in vasculogenesis, angiogenesis, cell adhesion, growth proliferation, migration, and differentiation of endothelial cells, all contributing to endometrial function.
Collapse
Affiliation(s)
- Taghrid Gaafar
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University [Stem Cell Research Unit, Pediatric Hospital, Cairo University], Kasr El Aini, Cairo, 11562, Egypt,
| | | | | | | | | | | |
Collapse
|
47
|
Ding L, Li X, Sun H, Su J, Lin N, Péault B, Song T, Yang J, Dai J, Hu Y. Transplantation of bone marrow mesenchymal stem cells on collagen scaffolds for the functional regeneration of injured rat uterus. Biomaterials 2014; 35:4888-4900. [PMID: 24680661 DOI: 10.1016/j.biomaterials.2014.02.046] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 02/23/2014] [Indexed: 02/06/2023]
Abstract
Serious injuries of endometrium in women of reproductive age are often followed by uterine scar formation and a lack of functional endometrium predisposing to infertility or miscarriage. Bone marrow-derived mesenchymal stem cells (BM-MSCs) have shown great promise in clinical applications. In the present study, BM-MSCs loaded onto degradable collagen membranes were constructed. Collagen membranes provided 3-dimmensional architecture for the attachment, growth and migration of rat BM-MSCs and did not impair the expression of the stemness genes. We then investigated the effect of collagen/BM-MSCs constructs in the healing of severe uterine injury in rats (partial full thickness uterine excision). At four weeks after the transplantation of collagen/BM-MSCs constructs, BM-MSCs were mainly located to the basal membrane of regenerative endometrium. The wounded tissue adjacent to collagen/BM-MSCs constructs expressed higher level of bFGF, IGF-1, TGFβ1 and VEGF than the corresponding tissue in rats receiving collagen construct alone or in spontaneous regeneration group. Moreover, the collagen/BM-MSCs system increased proliferative abilities of uterine endometrial and muscular cells, facilitated microvasculature regeneration, and restored the ability of endometrium to receive the embryo and support its development to a viable stage. Our findings indicate that BM-MSCs may support uterine tissue regeneration.
Collapse
Affiliation(s)
- Lijun Ding
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing 210008, China; Nanjing Center for Stem Cells and Biomaterials, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing 210008, China
| | - Xin'an Li
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing 210008, China
| | - Haixiang Sun
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing 210008, China
| | - Jing Su
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing 210008, China
| | - Nacheng Lin
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing 210008, China
| | - Bruno Péault
- Center for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Tianran Song
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing 210008, China
| | - Jun Yang
- Department of Pathology, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, 321 Zhongshan Rd. Nanjing 210008, China
| | - Jianwu Dai
- Nanjing Center for Stem Cells and Biomaterials, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing 210008, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100190, China.
| | - Yali Hu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing 210008, China; Nanjing Center for Stem Cells and Biomaterials, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing 210008, China; Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing 210008, China.
| |
Collapse
|
48
|
Derivation of human decidua-like cells from amnion and menstrual blood. Sci Rep 2014; 4:4599. [PMID: 24710473 PMCID: PMC3978502 DOI: 10.1038/srep04599] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/10/2014] [Indexed: 12/20/2022] Open
Abstract
We induced differentiation of human amnion-derived mesenchymal stem cells (AMCs) and menstrual blood-derived mesenchymal stem cells (MMCs) into endometrial stroma-like cells, which could be useful for cell therapy to support embryo implantation. Interestingly, the expression patterns of surface markers were similar among AMCs, MMCs, and endometrial stromal cells. In addition, whereas treatment with estrogen and progesterone was not very effective for decidualizing AMCs and MMCs, treatment with 8-Br-cAMP prompted remarkable morphological changes in these cells as well as increased expression of decidualization markers (prolactin and insulin-like growth factor binding protein-1) and attenuated expression of surface markers unique to mesenchymal stem cells. These results demonstrated that bone marrow-derived stem cells, which are considered a potential source of endometrial progenitor cells, as well as AMCs and MMCs show in vitro decidualization potential, which is characteristic of endometrial stromal cells.
Collapse
|
49
|
Regenerating endometrium from stem/progenitor cells: is it abnormal in endometriosis, Asherman's syndrome and infertility? Curr Opin Obstet Gynecol 2013; 25:193-200. [PMID: 23562953 DOI: 10.1097/gco.0b013e32836024e7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Stem/progenitor cells are present in human and rodent endometrium and have a key role in endometrial regeneration in normal cycling and after parturition. We review emerging evidence of multiple types of endometrial stem/progenitor cells, and that abnormalities in their location and function may contribute to endometriosis. RECENT FINDINGS Candidate human endometrial stem/progenitors have been identified as clonogenic, Side Population and possessing tissue reconstitution activity. Markers have been identified for human endometrial mesenchymal stem cells, showing their perivascular location in functionalis and basalis endometrium. Human embryonic stem cells can be induced to develop endometrial epithelium, recapitulating endometrial development. In rodent studies, endometrial stem/progenitor cells were identified as label-retaining cells and their role in endometrial repair and regeneration revealed, perhaps via mesenchymal to epithelial transition. Studies of Wnt signalling in the regulation of endometrial stem/progenitor cells may yield insights into their function in endometrial regeneration. Stem/progenitor cells can be isolated from endometrial biopsy or menstrual blood and may be used autologously to regenerate endometrium in Asherman's syndrome. SUMMARY There is much to be learnt about endometrial stem/progenitor cell biology and their role in endometriosis. Endometrial stem/progenitor cells hold great promise for new treatments for infertility associated disorders, including thin dysfunctional endometrium and Asherman's syndrome.
Collapse
|
50
|
Pittatore G, Moggio A, Benedetto C, Bussolati B, Revelli A. Endometrial Adult/Progenitor Stem Cells. Reprod Sci 2013; 21:296-304. [DOI: 10.1177/1933719113503405] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- G. Pittatore
- Department of Surgical Sciences, Physiopathology of Reproduction and IVF Unit, University of Torino, S. Anna Hospital, Torino, Italy
| | - A. Moggio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - C. Benedetto
- Department of Surgical Sciences, Physiopathology of Reproduction and IVF Unit, University of Torino, S. Anna Hospital, Torino, Italy
| | - B. Bussolati
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - A. Revelli
- Department of Surgical Sciences, Physiopathology of Reproduction and IVF Unit, University of Torino, S. Anna Hospital, Torino, Italy
| |
Collapse
|