1
|
Lazar-Contes I, Arzate-Mejia RG, Tanwar DK, Steg LC, Uzel K, Feudjio OU, Crespo M, Germain PL, Mansuy IM. Dynamics of transcriptional programs and chromatin accessibility in mouse spermatogonial cells from early postnatal to adult life. eLife 2025; 12:RP91528. [PMID: 40231607 PMCID: PMC11999699 DOI: 10.7554/elife.91528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
In mammals, spermatogonial cells (SPGs) are undifferentiated male germ cells in testis that are quiescent until birth and then self-renew and differentiate to produce spermatogenic cells and functional sperm from early postnatal life throughout adulthood. The transcriptome of SPGs is highly dynamic and timely regulated during postnatal development. We examined if such dynamics involves changes in chromatin organization by profiling the transcriptome and chromatin accessibility of SPGs from early postnatal stages to adulthood in mice using deep RNA-seq, ATAC-seq and computational deconvolution analyses. By integrating transcriptomic and epigenomic features, we show that SPGs undergo massive chromatin remodeling during postnatal development that partially correlates with distinct gene expression profiles and transcription factors (TF) motif enrichment. We identify genomic regions with significantly different chromatin accessibility in adult SPGs that are marked by histone modifications associated with enhancers and promoters. Some of the regions with increased accessibility correspond to transposable element subtypes enriched in multiple TFs motifs and close to differentially expressed genes. Our results underscore the dynamics of chromatin organization in developing germ cells and complement existing datasets on SPGs by providing maps of the regulatory genome at high resolution from the same cell populations at early postnatal, late postnatal and adult stages collected from single individuals.
Collapse
Affiliation(s)
- Irina Lazar-Contes
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | - Rodrigo G Arzate-Mejia
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | - Deepak K Tanwar
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | - Leonard C Steg
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | - Kerem Uzel
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | | | - Marion Crespo
- ADLIN Science, Pépinière «Genopole Entreprises»EvryFrance
| | - Pierre-Luc Germain
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute for Neuroscience, Department of Health Science and Technology of the ETH ZurichZurichSwitzerland
- Center for Neuroscience Zurich, ETH and University ZurichZurichSwitzerland
| |
Collapse
|
2
|
Jin C, Yan K, Wang M, Song W, Wang B, Men Y, Niu J, He Y, Zhang Q, Qi J. Dissecting the dynamic cellular transcriptional atlas of adult teleost testis development throughout the annual reproductive cycle. Development 2024; 151:dev202296. [PMID: 38477640 DOI: 10.1242/dev.202296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Teleost testis development during the annual cycle involves dramatic changes in cellular compositions and molecular events. In this study, the testicular cells derived from adult black rockfish at distinct stages - regressed, regenerating and differentiating - were meticulously dissected via single-cell transcriptome sequencing. A continuous developmental trajectory of spermatogenic cells, from spermatogonia to spermatids, was delineated, elucidating the molecular events involved in spermatogenesis. Subsequently, the dynamic regulation of gene expression associated with spermatogonia proliferation and differentiation was observed across spermatogonia subgroups and developmental stages. A bioenergetic transition from glycolysis to mitochondrial respiration of spermatogonia during the annual developmental cycle was demonstrated, and a deeper level of heterogeneity and molecular characteristics was revealed by re-clustering analysis. Additionally, the developmental trajectory of Sertoli cells was delineated, alongside the divergence of Leydig cells and macrophages. Moreover, the interaction network between testicular micro-environment somatic cells and spermatogenic cells was established. Overall, our study provides detailed information on both germ and somatic cells within teleost testes during the annual reproductive cycle, which lays the foundation for spermatogenesis regulation and germplasm preservation of endangered species.
Collapse
Affiliation(s)
- Chaofan Jin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Kai Yan
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
| | - Mengya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Weihao Song
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Yu Men
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
| | - Jingjing Niu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
| | - Yan He
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Quanqi Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Jie Qi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| |
Collapse
|
3
|
Rahbar M, Asadpour R, Mazaheri Z. The effect of epididymosomes on the development of frozen-thawed mouse spermatogonial stem cells after culture in a decellularized testicular scaffold and transplantation into azoospermic mice. J Assist Reprod Genet 2024; 41:2079-2098. [PMID: 38839698 PMCID: PMC11339233 DOI: 10.1007/s10815-024-03157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
PURPOSE This study examined SSC proliferation on an epididymosome-enriched decellularized testicular matrix (DTM) hydrogel and spermatogenesis induction in azoospermic mice. METHODS Epididymosomes were extracted and characterized using SEM and western blotting. After cryopreservation, thawed SSCs were cultured in a hydrogel-based three-dimensional (3D) culture containing 10 ng/mL GDNF or 20 µg/mL epididymosomes. SSCs were assessed using the MTT assay, flow cytometry, and qRT-PCR after two weeks of culture. The isolated SSCs were microinjected into the efferent ducts of busulfan-treated mice. DiI-labeled SSCs were followed, and cell homing was assessed after two weeks. After 8 weeks, the testes were evaluated using morphometric studies and immunohistochemistry. RESULTS The expression of PLZF, TGF-β, and miR-10b did not increase statistically significantly in the 3D + GDNF and 3D + epididymosome groups compared to the 3D group. Among the groups, the GDNF-treated group exhibited the highest expression of miR-21 (*P < 0.05). Caspase-3 expression was lower in the epididymosome-treated group than in the other groups (***P < 0.001). Compared to the 3D and negative control groups, the 3D + epididymosomes and 3D + GDNF groups showed an increase in spermatogenic cells. Immunohistochemical results confirmed the growth and differentiation of spermatogonial cells into spermatids in the treatment groups. CONCLUSION The DTM hydrogel containing 20 µg/mL epididymosomes or 10 ng/mL GDNF is a novel and safe culture system that can support SSC proliferation in vitro to obtain adequate SSCs for transplantation success. It could be a novel therapeutic agent that could recover deregulated SSCs in azoospermic patients.
Collapse
Affiliation(s)
- Maryam Rahbar
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Reza Asadpour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran
| |
Collapse
|
4
|
Zou D, Li K, Su L, Liu J, Lu Y, Huang R, Li M, Mang X, Geng Q, Li P, Tang J, Yu Z, Zhang Z, Chen D, Miao S, Yu J, Yan W, Song W. DDX20 is required for cell-cycle reentry of prospermatogonia and establishment of spermatogonial stem cell pool during testicular development in mice. Dev Cell 2024; 59:1707-1723.e8. [PMID: 38657611 DOI: 10.1016/j.devcel.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
RNA-binding proteins (RBPs), as key regulators of mRNA fate, are abundantly expressed in the testis. However, RBPs associated with human male infertility remain largely unknown. Through bioinformatic analyses, we identified 62 such RBPs, including an evolutionarily conserved RBP, DEAD-box helicase 20 (DDX20). Male germ-cell-specific inactivation of Ddx20 at E15.5 caused T1-propsermatogonia (T1-ProSG) to fail to reenter cell cycle during the first week of testicular development in mice. Consequently, neither the foundational spermatogonial stem cell (SSC) pool nor progenitor spermatogonia were ever formed in the knockout testes. Mechanistically, DDX20 functions to control the translation of its target mRNAs, many of which encode cell-cycle-related regulators, by interacting with key components of the translational machinery in prospermatogonia. Our data demonstrate a previously unreported function of DDX20 as a translational regulator of critical cell-cycle-related genes, which is essential for cell-cycle reentry of T1-ProSG and formation of the SSC pool.
Collapse
Affiliation(s)
- Dingfeng Zou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Luying Su
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Rong Huang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Mengzhen Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Qi Geng
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Pengyu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Jielin Tang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Zhixin Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Zexuan Zhang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Dingyao Chen
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Jia Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China; The Institute of Blood Transfusion, Chinese Academy of Medical Sciences, and Peking Union Medical College, Chengdu 610052, China.
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
5
|
Tian H, Wang X, Li X, Song W, Mi J, Zou K. Regulation of spermatogonial stem cell differentiation by Sertoli cells-derived exosomes through paracrine and autocrine signaling. J Cell Physiol 2024; 239:e31202. [PMID: 38291718 DOI: 10.1002/jcp.31202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/28/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
In the orchestrated environment of the testicular niche, the equilibrium between self-renewal and differentiation of spermatogonial stem cells (SSCs) is meticulously maintained, ensuring a stable stem cell reserve and robust spermatogenesis. Within this milieu, extracellular vesicles, specifically exosomes, have emerged as critical conveyors of intercellular communication. Despite their recognized significance, the implications of testicular exosomes in modulating SSC fate remain incompletely characterized. Given the fundamental support and regulatory influence of Sertoli cells (SCs) on SSCs, we were compelled to explore the role of SC-derived exosomes (SC-EXOs) in the SSC-testicular niche. Our investigation hinged on the hypothesis that SC-EXOs, secreted by SCs from the testes of 5-day-old mice-a developmental juncture marking the onset of SSC differentiation-participate in the regulation of this process. We discovered that exposure to SC-EXOs resulted in an upsurge of PLZF, MVH, and STRA8 expression in SSC cultures, concomitant with a diminution of ID4 and GFRA1 levels. Intriguingly, obstructing exosomal communication in a SC-SSC coculture system with the exosome inhibitor GW4869 attenuated SSC differentiation, suggesting that SC-EXOs may modulate this process via paracrine signaling. Further scrutiny revealed the presence of miR-493-5p within SC-EXOs, which suppresses Gdnf mRNA in SCs to indirectly restrain SSC differentiation through the modulation of GDNF expression-an indication of autocrine regulation. Collectively, our findings illuminate the complex regulatory schema by which SC-EXOs affect SSC differentiation, offering novel perspectives and laying the groundwork for future preclinical and clinical investigations.
Collapse
Affiliation(s)
- Hairui Tian
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, China
| | - Xingju Wang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, China
| | - Xiaoxiao Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, China
| | - Weixiang Song
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, China
| | - Jiaqi Mi
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Zhang P, Jing K, Tian Y, Li Y, Chai Z, Cai X. Additional glial cell line-derived neurotrophic factor in vitro promotes the proliferation of undifferentiated spermatogonia from sterile cattleyak. Anim Reprod Sci 2024; 260:107385. [PMID: 38056175 DOI: 10.1016/j.anireprosci.2023.107385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Cattleyak is a typically male sterile species. The meiosis process is blocked and the scarcity of spermatogenic stems cells are both contributing factors to the inability of male cattleyak to produce sperm. While Glial cell line-derived neurotrophic factor (GDNF) is the first discovered growth factor known to promote the proliferation and self-renewal of spermatogenic stem cells, its relationship to the spermatogenesis arrest of cattleyak remains unclear. In this report, we studied the differential expression of GDNF in the testis of yak and cattleyak, and discussed the optimal concentration of GDNF in the culture medium of undifferentiated spermatogonia (UDSPG) of cattleyak in vitro and the effect of GDNF on the proliferation of cattleyak UDSPG. The results indicated that GDNF expression in the testicular tissue of cattleyak was inferior to that of yak. Moreover, the optimum value for the UDSPG in vitro culture was determined to be 20-30 ng/mL for cattleyak. In vitro, the proliferation activity of UDSPG was observed to increase with additional GDNF due to the up-regulation of proliferation-related genes and the down-regulation of differentiation-related genes. We hereby report that the scarcity of cattleyak UDSPG is due to insufficient expression of GDNF, and that the addition of GDNF in vitro can promote the proliferation of cattleyak UDSPG by regulating the expression of genes related to proliferation and differentiation. This work provides a new insight to solve the issue of spermatogenic arrest in cattleyak.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Kemin Jing
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yuan Tian
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yuqian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Yang XC, Wu XL, Li WH, Wu XJ, Shen QY, Li YX, Peng S, Hua JL. OCT6 inhibits differentiation of porcine-induced pluripotent stem cells through MAPK and PI3K signaling regulation. Zool Res 2022; 43:911-922. [PMID: 36052561 PMCID: PMC9700490 DOI: 10.24272/j.issn.2095-8137.2022.220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/01/2022] [Indexed: 08/18/2023] Open
Abstract
As a transcription factor of the Pit-Oct-Unc (POU) domain family, octamer-binding transcription factor 6 ( OCT6) participates in various aspects of stem cell development and differentiation. At present, however, its role in porcine-induced pluripotent stem cells (piPSCs) remains unclear. Here, we explored the function of OCT6 in piPSCs. We found that piPSCs overexpressing OCT6 maintained colony morphology and pluripotency under differentiation conditions, with a similar gene expression pattern to that of non-differentiated piPSCs. Functional analysis revealed that OCT6 attenuated the adverse effects of extracellular signal-regulated kinase (ERK) signaling pathway inhibition on piPSC pluripotency by activating phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT) signaling activity. Our research sheds new light on the mechanism by which OCT6 promotes PSC maintenance.
Collapse
Affiliation(s)
- Xin-Chun Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiao-Long Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wen-Hao Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiao-Jie Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Qiao-Yan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yun-Xiang Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jin-Lian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| |
Collapse
|
8
|
Chen KQ, Wei BH, Hao SL, Yang WX. The PI3K/AKT signaling pathway: How does it regulate development of Sertoli cells and spermatogenic cells? Histol Histopathol 2022; 37:621-636. [PMID: 35388905 DOI: 10.14670/hh-18-457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The PI3K/AKT signaling pathway is one of the most crucial regulatory mechanisms in animal cells, which can mainly regulate proliferation, survival and anti-apoptosis in cell lines. In the seminiferous epithelium, most studies were concentrated on the role of PI3K/AKT signaling in immature Sertoli cells (SCs) and spermatogonia stem cells (SSCs). PI3K/AKT signaling can facilitate the proliferation and anti-apoptosis of immature Sertoli cells and spermatogenic cells. Besides, in mature Sertoli cells, this pathway can disintegrate the structure of the blood-testis barrier (BTB) via regulatory protein synthesis and the cytoskeleton of Sertoli cells. All of these effects can directly and indirectly maintain and promote spermatogenesis in male testis.
Collapse
Affiliation(s)
- Kuang-Qi Chen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bang-Hong Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Yuan H, Sun J, Wang S, Xiang Z, Yang F, Yan Y, Duan Y, Li L, Wu X, Si W. Primary culture of germ cells that portray stem cell characteristics and recipient preparation for autologous transplantation in the rhesus monkey. J Cell Mol Med 2022; 26:1567-1578. [PMID: 35104031 PMCID: PMC8899175 DOI: 10.1111/jcmm.17197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 12/20/2022] Open
Abstract
Fertility preservation for prepubertal cancer patients prior to oncologic treatment is an emerging issue, and non‐human primates are considered to constitute suitable models due to the limited availability of human testicular tissues. However, the feasibility of spermatogonial stem cell (SSC) propagation in vitro and autologous testicular germ cell transplantation in vivo requires further exploration in monkeys. Herein, we characterized germ cells in macaque testes at 6 months (M), 18 M and 60 M of age, and effectively isolated the spermatogenic cells (including the spermatogonia) from macaque testes with high purity (over 80%) using combined approaches of STA‐PUT separation, Percoll gradients and differential plating. We also generated recipient monkey testes with ablated endogenous spermatogenesis using the alkylating agent busulfan in six macaques, and successfully mimicked autologous cell transplantation in the testes under ultrasonographic guidance. The use of trypan blue led to successful intratubular injection in 4 of 4 testes. Although SSCs in culture showed no significant propagation, we were able to maintain monkey testicular germ cells with stem cell characteristics for up to 3 weeks. Collectively, these data provided meaningful information for future fertility preservation and SSC studies on both non‐human primates and humans.
Collapse
Affiliation(s)
- Huaqin Yuan
- Cancer Center of Nanjing GaoChun People's Hospital, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jiachen Sun
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shengnan Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ziyi Xiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Fan Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yaping Yan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yanchao Duan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lufan Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
10
|
Use of alginate hydrogel to improve long-term 3D culture of spermatogonial stem cells: stemness gene expression and structural features. ZYGOTE 2021; 30:312-318. [PMID: 34641993 DOI: 10.1017/s0967199421000551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The quality and quantity of a spermatogonial stem-cell (SSC) culture can be measured in less time using a 3D culture in a scaffold. The present study investigated stemness gene expression and the morphological and structural characterization of SSCs encapsulated in alginate. SSCs were harvested from BALB/c neonatal mice testes through two-step mechanical and enzymatic digestion. The spermatogonial populations were separated using magnetic-activated cell sorting (MACS) using an anti-Thy1 antibody and c-Kit. The SSCs then were encapsulated in alginate hydrogel. After 2 months of SSC culturing, the alginate microbeads were extracted and stained to evaluate their histological properties. Real-time polymerase chain reaction (PCR) was performed to determine the stemness gene expression. Scanning electron microscopy (SEM) was performed to evaluate the SSC morphology, density and scaffold structure. The results showed that encapsulated SSCs had decreased expression of Oct4, Sox2 and Nanos2 genes, but the expression of Nanog, Bcl6b and Plzf genes was not significantly altered. Histological examination showed that SSCs with pale nuclei and numerous nucleolus formed colonies. SEM evaluation revealed that the alginate scaffold structure preserved the SSC morphology and density for more than 60 days. Cultivation of SSCs on alginate hydrogel can affect Oct4, Sox2 and Nanos2 expression.
Collapse
|
11
|
Tan K, Song HW, Wilkinson MF. RHOX10 drives mouse spermatogonial stem cell establishment through a transcription factor signaling cascade. Cell Rep 2021; 36:109423. [PMID: 34289349 PMCID: PMC8357189 DOI: 10.1016/j.celrep.2021.109423] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are essential for male fertility. Here, we report that mouse SSC generation is driven by a transcription factor (TF) cascade controlled by the homeobox protein, RHOX10, which acts by driving the differentiation of SSC precursors called pro-spermatogonia (ProSG). We identify genes regulated by RHOX10 in ProSG in vivo and define direct RHOX10-target genes using several approaches, including a rapid temporal induction assay: iSLAMseq. Together, these approaches identify temporal waves of RHOX10 direct targets, as well as RHOX10 secondary-target genes. Many of the RHOX10-regulated genes encode proteins with known roles in SSCs. Using an in vitro ProSG differentiation assay, we find that RHOX10 promotes mouse ProSG differentiation through a conserved transcriptional cascade involving the key germ-cell TFs DMRT1 and ZBTB16. Our study gives important insights into germ cell development and provides a blueprint for how to define TF cascades.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hye-Won Song
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Verta JP, Barton HJ, Pritchard V, Primmer CR. Genetic Drift Dominates Genome-Wide Regulatory Evolution Following an Ancient Whole-Genome Duplication in Atlantic Salmon. Genome Biol Evol 2021; 13:evab059. [PMID: 33749748 PMCID: PMC8140206 DOI: 10.1093/gbe/evab059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 11/23/2022] Open
Abstract
Whole-genome duplications (WGD) have been considered as springboards that potentiate lineage diversification through increasing functional redundancy. Divergence in gene regulatory elements is a central mechanism for evolutionary diversification, yet the patterns and processes governing regulatory divergence following events that lead to massive functional redundancy, such as WGD, remain largely unknown. We studied the patterns of divergence and strength of natural selection on regulatory elements in the Atlantic salmon (Salmo salar) genome, which has undergone WGD 100-80 Ma. Using ChIPmentation, we first show that H3K27ac, a histone modification typical to enhancers and promoters, is associated with genic regions, tissue-specific transcription factor binding motifs, and with gene transcription levels in immature testes. Divergence in transcription between duplicated genes from WGD (ohnologs) correlated with difference in the number of proximal regulatory elements, but not with promoter elements, suggesting that functional divergence between ohnologs after WGD is mainly driven by enhancers. By comparing H3K27ac regions between duplicated genome blocks, we further show that a longer polyploid state post-WGD has constrained regulatory divergence. Patterns of genetic diversity across natural populations inferred from resequencing indicate that recent evolutionary pressures on H3K27ac regions are dominated by largely neutral evolution. In sum, our results suggest that post-WGD functional redundancy in regulatory elements continues to have an impact on the evolution of the salmon genome, promoting largely neutral evolution of regulatory elements despite their association with transcription levels. These results highlight a case where genome-wide regulatory evolution following an ancient WGD is dominated by genetic drift.
Collapse
Affiliation(s)
- Jukka-Pekka Verta
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Finland
| | - Henry J Barton
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Finland
| | - Victoria Pritchard
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Finland
| | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Finland
| |
Collapse
|
13
|
Mao GP, Niu MH, Cui YH, Tang RL, Chen W, Liu B, He Z. Characterization, isolation, and culture of spermatogonial stem cells in Macaca fascicularis. Asian J Androl 2021; 23:240-248. [PMID: 33533740 PMCID: PMC8152426 DOI: 10.4103/aja.aja_95_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/02/2020] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial stem cells (SSCs) have great applications in both reproductive and regenerative medicine. Primates including monkeys are very similar to humans with regard to physiology and pathology. Nevertheless, little is known about the isolation, the characteristics, and the culture of primate SSCs. This study was designed to identify, isolate, and culture monkey SSCs. Immunocytochemistry was used to identify markers for monkey SSCs. Glial cell line-derived neurotrophic factor family receptor alpha-1 (GFRA1)-enriched spermatogonia were isolated from monkeys, namely Macaca fascicularis (M. fascicularis), by two-step enzymatic digestion and magnetic-activated cell sorting, and they were cultured on precoated plates in the conditioned medium. Reverse transcription-polymerase chain reaction (RT-PCR), immunocytochemistry, and RNA sequencing were used to compare phenotype and transcriptomes in GFRA1-enriched spermatogonia between 0 day and 14 days of culture, and xenotransplantation was performed to evaluate the function of GFRA1-enriched spermatogonia. SSCs shared some phenotypes with rodent and human SSCs. GFRA1-enriched spermatogonia with high purity and viability were isolated from M. fascicularis testes. The freshly isolated cells expressed numerous markers for rodent SSCs, and they were cultured for 14 days. The expression of numerous SSC markers was maintained during the cultivation of GFRA1-enriched spermatogonia. RNA sequencing reflected a 97.3% similarity in global gene profiles between 0 day and 14 days of culture. The xenotransplantation assay indicated that the GFRA1-enriched spermatogonia formed colonies and proliferated in vivo in the recipient c-KitW/W (W) mutant mice. Collectively, GFRA1-enriched spermatogonia are monkey SSCs phenotypically both in vitro and in vivo. This study suggests that monkey might provide an alternative to human SSCs for basic research and application in human diseases.
Collapse
Affiliation(s)
- Guo-Ping Mao
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Ming-Hui Niu
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying-Hong Cui
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Rui-Ling Tang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Wei Chen
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Bang Liu
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Zuping He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
14
|
Fan T, Huang Y. Accessible chromatin reveals regulatory mechanisms underlying cell fate decisions during early embryogenesis. Sci Rep 2021; 11:7896. [PMID: 33846424 PMCID: PMC8042068 DOI: 10.1038/s41598-021-86919-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
This study was conducted to investigate epigenetic landscape across multiple species and identify transcription factors (TFs) and their roles in controlling cell fate decision events during early embryogenesis. We made a comprehensively joint-research of chromatin accessibility of five species during embryogenesis by integration of ATAC-seq and RNA-seq datasets. Regulatory roles of candidate early embryonic TFs were investigated. Widespread accessible chromatin in early embryos overlapped with putative cis-regulatory sequences. Sets of cell-fate-determining TFs were identified. YOX1, a key cell cycle regulator, were found to homologous to clusters of TFs that are involved in neuron and epidermal cell-fate determination. Our research provides an intriguing insight into evolution of cell-fate decision during early embryogenesis among organisms.
Collapse
Affiliation(s)
- Tongqiang Fan
- grid.443483.c0000 0000 9152 7385State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 People’s Republic of China
| | - Youjun Huang
- grid.443483.c0000 0000 9152 7385State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 People’s Republic of China
| |
Collapse
|
15
|
Novel Gene Regulation in Normal and Abnormal Spermatogenesis. Cells 2021; 10:cells10030666. [PMID: 33802813 PMCID: PMC8002376 DOI: 10.3390/cells10030666] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
Spermatogenesis is a complex and dynamic process which is precisely controlledby genetic and epigenetic factors. With the development of new technologies (e.g., single-cell RNA sequencing), increasingly more regulatory genes related to spermatogenesis have been identified. In this review, we address the roles and mechanisms of novel genes in regulating the normal and abnormal spermatogenesis. Specifically, we discussed the functions and signaling pathways of key new genes in mediating the proliferation, differentiation, and apoptosis of rodent and human spermatogonial stem cells (SSCs), as well as in controlling the meiosis of spermatocytes and other germ cells. Additionally, we summarized the gene regulation in the abnormal testicular microenvironment or the niche by Sertoli cells, peritubular myoid cells, and Leydig cells. Finally, we pointed out the future directions for investigating the molecular mechanisms underlying human spermatogenesis. This review could offer novel insights into genetic regulation in the normal and abnormal spermatogenesis, and it provides new molecular targets for gene therapy of male infertility.
Collapse
|
16
|
Cheon YP, Choi D, Lee SH, Kim CG. YY1 and CP2c in Unidirectional Spermatogenesis and Stemness. Dev Reprod 2021; 24:249-262. [PMID: 33537512 PMCID: PMC7837418 DOI: 10.12717/dr.2020.24.4.249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/21/2020] [Accepted: 12/29/2020] [Indexed: 11/17/2022]
Abstract
Spermatogonial stem cells (SSCs) have stemness characteristics, including germ cell-specific imprints that allow them to form gametes. Spermatogenesis involves changes in gene expression such as a transition from expression of somatic to germ cell-specific genes, global repression of gene expression, meiotic sex chromosome inactivation, highly condensed packing of the nucleus with protamines, and morphogenesis. These step-by-step processes finally generate spermatozoa that are fertilization competent. Dynamic epigenetic modifications also confer totipotency to germ cells after fertilization. Primordial germ cells (PGCs) in embryos do not enter meiosis, remain in the proliferative stage, and are referred to as gonocytes, before entering quiescence. Gonocytes develop into SSCs at about 6 days after birth in rodents. Although chromatin structural modification by Polycomb is essential for gene silencing in mammals, and epigenetic changes are critical in spermatogenesis, a comprehensive understanding of transcriptional regulation is lacking. Recently, we evaluated the expression profiles of Yin Yang 1 (YY1) and CP2c in the gonads of E14.5 and 12-week-old mice. YY1 localizes at the nucleus and/or cytoplasm at specific stages of spermatogenesis, possibly by interaction with CP2c and YY1-interacting transcription factor. In the present article, we discuss the possible roles of YY1 and CP2c in spermatogenesis and stemness based on our results and a review of the relevant literature.
Collapse
Affiliation(s)
- Yong-Pil Cheon
- Division of Developmental Biology and Physiology, Institute for Basic Sciences, Sungshin University, Seoul 02844, Korea
| | - Donchan Choi
- Department of Life Science, College of Environmental Sciences, Yong-In University, Yongin 17092, Korea
| | - Sung-Ho Lee
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
17
|
Khanehzad M, Abbaszadeh R, Holakuyee M, Modarressi MH, Nourashrafeddin SM. FSH regulates RA signaling to commit spermatogonia into differentiation pathway and meiosis. Reprod Biol Endocrinol 2021; 19:4. [PMID: 33407539 PMCID: PMC7789255 DOI: 10.1186/s12958-020-00686-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Spermatogenesis is a complex process that is controlled by interactions between germ cells and somatic cells. The commitment of undifferentiated spermatogonia to differentiating spermatogonia and normal spermatogenesis requires the action of gonadotropins. Additionally, numerous studies revealed the role of retinoic acid signaling in induction of germ cell differentiation and meiosis entry. MAIN TEXT Recent studies have shown that expression of several RA signaling molecules including Rdh10, Aldh1a2, Crabp1/2 are influenced by changes in gonadotropin levels. Components of signaling pathways that are regulated by FSH signaling such as GDNF, Sohlh1/2, c-Kit, DMRT, BMP4 and NRGs along with transcription factors that are important for proliferation and differentiation of spermatogonia are also affected by retinoic acid signaling. CONCLUSION According to all studies that demonstrate the interface between FSH and RA signaling, we suggest that RA may trigger spermatogonia differentiation and initiation of meiosis through regulation by FSH signaling in testis. Therefore, to the best of our knowledge, this is the first time that the correlation between FSH and RA signaling in spermatogenesis is highlighted.
Collapse
Affiliation(s)
- Maryam Khanehzad
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Abbaszadeh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Seyed Mehdi Nourashrafeddin
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, USA.
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Sadakierska-Chudy A, Patrylak J, Janeczko J, Chudy J. Downregulation of gene expression and the outcome of ICSI in severe oligozoospermic patients: A preliminary study. Mol Reprod Dev 2020; 87:1219-1230. [PMID: 33241638 DOI: 10.1002/mrd.23442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 11/09/2022]
Abstract
Preimplantation embryo development might be influenced by a specific set of transcripts that are delivered to the oocyte by the sperm. The aim of the study was to determine the relationship between the level of selected transcripts in spermatozoa and preimplantation development of the embryos in couples with severe oligozoospermia undergoing intracytoplasmic sperm injection (ICSI) procedure. Therefore, we assessed messenger RNA (mRNA) levels of genes involved in fertilization events, oocyte activation, chromatin remodeling, and DNA repair in severe oligozoospermic compared with normozoospermic men as well as morphokinetic parameters of embryos using the time-lapse imaging system. mRNA profiling (44 genes), in mature sperm, was carried out with custom-designed 384-well TLDA Cards. The morphokinetic parameters of zygotes and embryos were recorded by using a time-lapse imaging system. The transcript levels of 21 genes were significantly decreased in the severe oligozoospermic group. Most were associated with fertilization events, oocyte activation and embryonic genome activation. Among them, mRNA of AKAP4 and PTK7 was greatly reduced, moreover, the transcripts of PLCζ and POU5F1, essential for OA and EGA, were not detected at all in patients with severe oligozoospermia. Moreover, the reduced expression of genes important for spermatogenesis, chromatin remodeling and DNA repair was also observed in this group. Time-lapse analysis revealed that fertilization failure occurred in 14% of retrieved oocytes and 90% of all degenerated embryos did not reach morula stage. This study provides preliminary results indicating a significant decrease in transcripts of genes important for spermatogenesis and early preimplantation development in the mature sperm of men with severe oligozoospermia.
Collapse
Affiliation(s)
- Anna Sadakierska-Chudy
- Department of Genetics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - J Patrylak
- Infertility Treatment Centre PARENS, Krakow, Poland
| | - J Janeczko
- Infertility Treatment Centre PARENS, Krakow, Poland
| | - J Chudy
- Department of Genetics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| |
Collapse
|
19
|
Xie Y, Wei BH, Ni FD, Yang WX. Conversion from spermatogonia to spermatocytes: Extracellular cues and downstream transcription network. Gene 2020; 764:145080. [PMID: 32858178 DOI: 10.1016/j.gene.2020.145080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Spermatocyte (spc) formation from spermatogonia (spg) differentiation is the first step of spermatogenesis which produces prodigious spermatozoa for a lifetime. After decades of studies, several factors involved in the functioning of a mouse were discovered both inside and outside spg. Considering the peculiar expression and working pattern of each factor, this review divides the whole conversion of spg to spc into four consecutive development processes with a focus on extracellular cues and downstream transcription network in each one. Potential coordination among Dmrt1, Sohlh1/2 and BMP families mediates Ngn3 upregulation, which marks progenitor spg, with other changes. After that, retinoic acid (RA), as a master regulator, promotes A1 spg formation with its helpers and Sall4. A1-to-B spg transition is under the control of Kitl and impulsive RA signaling together with early and late transcription factors Stra8 and Dmrt6. Finally, RA and its responsive effectors conduct the entry into meiosis. The systematic transcription network from outside to inside still needs research to supplement or settle the controversials in each process. As a step further ahead, this review provides possible drug targets for infertility therapy by cross-linking humans and mouse model.
Collapse
Affiliation(s)
- Yi Xie
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bang-Hong Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei-Da Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
20
|
Azarniad R, Razi M, Hasanzadeh S, Malekinejad H. Experimental diabetes negatively affects the spermatogonial stem cells' self-renewal by suppressing GDNF network interactions. Andrologia 2020; 52:e13710. [PMID: 32539191 DOI: 10.1111/and.13710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 01/09/2023] Open
Abstract
The present study was done to analyse the time-dependent effects of diabetes on Sertoli cells-spermatogonial stem cells' (SSCs) network interaction by focusing on glial cell line-derived neurotrophic factor (GDNF) and its special receptors, gfrα1 and c-RET as well as the Bcl-6b. In total, 40 Wistar rats were considered in; control, 20, 45 and 60 days diabetes-induced groups. An experimental diabetes was induced by STZ. The GDNF, gfrα1, c-RET and Bcl-6b expressions were evaluated. The serum level of testosterone, tubular repopulation (RI) and spermiogenesis (SPI) indices, general histological alterations, germ cells, mRNA damage, sperm count and viability were assessed. The diabetes, in a time-dependent manner, diminished mRNA and protein levels of GDNF, gfrα1, c-RET and Bcl-6b versus control group (p < .05), enhanced percentage of seminiferous tubules with negative RI, SPI, and diminished Leydig and Sertoli cells distribution, serum levels of testosterone, sperm count and viability. Finally, the number, percentage of cells and seminiferous tubules with normal mRNA content were significantly (p < .05) diminished. In conclusion, as a new data, we showed that the diabetes by inducing severe mRNA damage and suppressing GDNF, gfrα1, c-RET and Bcl-6b expressions, potentially affects the Sertoli-SSCs' network and consequently inhibits the SSCs' self-renewal process.
Collapse
Affiliation(s)
- Rozita Azarniad
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mazdak Razi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Shapour Hasanzadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hassan Malekinejad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.,Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
21
|
Xu B, Wei X, Chen M, Xie K, Zhang Y, Huang Z, Dong T, Hu W, Zhou K, Han X, Wu X, Xia Y. Glycylglycine plays critical roles in the proliferation of spermatogonial stem cells. Mol Med Rep 2019; 20:3802-3810. [PMID: 31485625 PMCID: PMC6755143 DOI: 10.3892/mmr.2019.10609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Glial cell line‑derived neurotrophic factor (GDNF) is critical for the proliferation of spermatogonial stem cells (SSCs), but the underlying mechanisms remain poorly understood. In this study, an unbiased metabolomic analysis was performed to examine the metabolic modifications in SSCs following GDNF deprivation, and 11 metabolites were observed to decrease while three increased. Of the 11 decreased metabolites identified, glycylglycine was observed to significantly rescue the proliferation of the impaired SSCs, while no such effect was observed by adding sorbitol. However, the expression of self‑renewal genes, including B‑cell CLL/lymphoma 6 member B, ETS variant 5, GDNF family receptor α1 and early growth response protein 4 remained unaltered following glycylglycine treatment. This finding suggests that although glycylglycine serves an important role in the proliferation of SSCs, it is not required for the self‑renewal of SSCs.
Collapse
Affiliation(s)
- Bo Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xiang Wei
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Kaipeng Xie
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
- Department of Women Health Care, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Yuqing Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Zhenyao Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Tianyu Dong
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
22
|
Maezawa S, Yukawa M, Alavattam KG, Barski A, Namekawa SH. Dynamic reorganization of open chromatin underlies diverse transcriptomes during spermatogenesis. Nucleic Acids Res 2019; 46:593-608. [PMID: 29126117 PMCID: PMC5778473 DOI: 10.1093/nar/gkx1052] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022] Open
Abstract
During spermatogenesis, germ cells undergo massive cellular reconstruction and dynamic chromatin remodeling to facilitate highly diverse transcriptomes, which are required for the production of functional sperm. However, it remains unknown how germline chromatin is organized to promote the dynamic, complex transcriptomes of spermatogenesis. Here, using ATAC-seq, we establish the varied landscape of open chromatin during spermatogenesis. We identify the reorganization of accessible chromatin in intergenic and intronic regions during the mitosis-to-meiosis transition. During the transition, mitotic-type open chromatin is closed while the de novo formation of meiotic-type open chromatin takes place. Contrastingly, differentiation processes such as spermatogonial differentiation and the meiosis-to-postmeiosis transition involve chromatin closure without the de novo formation of accessible chromatin. In spermiogenesis, the germline-specific Polycomb protein SCML2 promotes the closure of open chromatin at autosomes for gene suppression. Paradoxically, we identify the massive de novo formation of accessible chromatin when the sex chromosomes undergo meiotic sex chromosome inactivation, and this is also mediated by SCML2. These results reveal meiotic sex chromosome inactivation as an active process for chromatin organization. Together, our results unravel the genome-wide, dynamic reorganization of open chromatin and reveal mechanisms that underlie diverse transcriptomes during spermatogenesis.
Collapse
Affiliation(s)
- So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Masashi Yukawa
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA.,Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kris G Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA.,Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| |
Collapse
|
23
|
Kubota H, Brinster RL. Spermatogonial stem cells. Biol Reprod 2019; 99:52-74. [PMID: 29617903 DOI: 10.1093/biolre/ioy077] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the most primitive spermatogonia in the testis and have an essential role to maintain highly productive spermatogenesis by self-renewal and continuous generation of daughter spermatogonia that differentiate into spermatozoa, transmitting genetic information to the next generation. Since the 1950s, many experimental methods, including histology, immunostaining, whole-mount analyses, and pulse-chase labeling, had been used in attempts to identify SSCs, but without success. In 1994, a spermatogonial transplantation method was reported that established a quantitative functional assay to identify SSCs by evaluating their ability to both self-renew and differentiate to spermatozoa. The system was originally developed using mice and subsequently extended to nonrodents, including domestic animals and humans. Availability of the functional assay for SSCs has made it possible to develop culture systems for their ex vivo expansion, which dramatically advanced germ cell biology and allowed medical and agricultural applications. In coming years, SSCs will be increasingly used to understand their regulation, as well as in germline modification, including gene correction, enhancement of male fertility, and conversion of somatic cells to biologically competent male germline cells.
Collapse
Affiliation(s)
- Hiroshi Kubota
- Laboratory of Cell and Molecular Biology, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Ralph L Brinster
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Menon DU, Shibata Y, Mu W, Magnuson T. Mammalian SWI/SNF collaborates with a polycomb-associated protein to regulate male germline transcription in the mouse. Development 2019; 146:dev174094. [PMID: 31043422 PMCID: PMC6803380 DOI: 10.1242/dev.174094] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/23/2019] [Indexed: 12/25/2022]
Abstract
A deficiency in BRG1, the catalytic subunit of the SWI/SNF chromatin remodeling complex, results in a meiotic arrest during spermatogenesis. Here, we explore the causative mechanisms. BRG1 is preferentially enriched at active promoters of genes essential for spermatogonial pluripotency and meiosis. In contrast, BRG1 is also associated with the repression of somatic genes. Chromatin accessibility at these target promoters is dependent upon BRG1. These results favor a model in which BRG1 coordinates spermatogenic transcription to ensure meiotic progression. In spermatocytes, BRG1 interacts with SCML2, a testis-specific PRC1 factor that is associated with the repression of somatic genes. We present evidence to suggest that BRG1 and SCML2 concordantly regulate genes during meiosis. Furthermore, BRG1 is required for the proper localization of SCML2 and its associated deubiquitylase, USP7, to the sex chromosomes during pachynema. SCML2-associated mono-ubiquitylation of histone H2A lysine 119 (H2AK119ub1) and acetylation of histone lysine 27 (H3K27ac) are elevated in Brg1cKO testes. Coincidentally, the PRC1 ubiquitin ligase RNF2 is activated while a histone H2A/H2B deubiquitylase USP3 is repressed. Thus, BRG1 impacts the male epigenome by influencing the localization and expression of epigenetic modifiers. This mechanism highlights a novel paradigm of cooperativity between SWI/SNF and PRC1.
Collapse
Affiliation(s)
- Debashish U Menon
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA
| | - Yoichiro Shibata
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA
| | - Weipeng Mu
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA
| | - Terry Magnuson
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA
| |
Collapse
|
25
|
Wang JH, Li Y, Deng SL, Liu YX, Lian ZX, Yu K. Recent Research Advances in Mitosis during Mammalian Gametogenesis. Cells 2019; 8:cells8060567. [PMID: 31185583 PMCID: PMC6628140 DOI: 10.3390/cells8060567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/02/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
Mitosis is a highly sophisticated and well-regulated process during the development and differentiation of mammalian gametogenesis. The regulation of mitosis plays an essential role in keeping the formulation in oogenesis and gametogenesis. In the past few years, substantial research progress has been made by showing that cyclins/cyclin-dependent kinase (CDK) have roles in the regulation of meiosis. In addition, more functional signaling molecules have been discovered in mitosis. Growing evidence has also indicated that miRNAs influence cell cycling. In this review, we focus on specific genes, cyclins/Cdk, signaling pathways/molecules, and miRNAs to discuss the latest achievements in understanding their roles in mitosis during gametogenesis. Further elucidation of mitosis during gametogenesis may facilitate delineating all processes of mammalian reproduction and the development of disease treatments.
Collapse
Affiliation(s)
- Jia-Hao Wang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yan Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
26
|
Schiebinger G, Shu J, Tabaka M, Cleary B, Subramanian V, Solomon A, Gould J, Liu S, Lin S, Berube P, Lee L, Chen J, Brumbaugh J, Rigollet P, Hochedlinger K, Jaenisch R, Regev A, Lander ES. Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming. Cell 2019; 176:928-943.e22. [PMID: 30712874 PMCID: PMC6402800 DOI: 10.1016/j.cell.2019.01.006] [Citation(s) in RCA: 324] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/15/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022]
Abstract
Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for studying developmental time courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. We apply the method to reconstruct the landscape of reprogramming from 315,000 single-cell RNA sequencing (scRNA-seq) profiles, collected at half-day intervals across 18 days. The results reveal a wider range of developmental programs than previously characterized. Cells gradually adopt either a terminal stromal state or a mesenchymal-to-epithelial transition state. The latter gives rise to populations related to pluripotent, extra-embryonic, and neural cells, with each harboring multiple finer subpopulations. The analysis predicts transcription factors and paracrine signals that affect fates and experiments validate that the TF Obox6 and the cytokine GDF9 enhance reprogramming efficiency. Our approach sheds light on the process and outcome of reprogramming and provides a framework applicable to diverse temporal processes in biology.
Collapse
Affiliation(s)
- Geoffrey Schiebinger
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; MIT Center for Statistics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jian Shu
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | - Marcin Tabaka
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brian Cleary
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Computational and Systems Biology Program, MIT, Cambridge, MA 02142, USA
| | - Vidya Subramanian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aryeh Solomon
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joshua Gould
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Siyan Liu
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Biochemistry Program, Wellesley College, Wellesley, MA 02481, USA
| | - Stacie Lin
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter Berube
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lia Lee
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jenny Chen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Justin Brumbaugh
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Philippe Rigollet
- MIT Center for Statistics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Computational and Systems Biology Program, MIT, Cambridge, MA 02142, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Eric S Lander
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Systems Biology Harvard Medical School, Boston, MA 02125, USA.
| |
Collapse
|
27
|
Sisakhtnezhad S. In silico analysis of single‐cell RNA sequencing data from 3 and 7 days old mouse spermatogonial stem cells to identify their differentially expressed genes and transcriptional regulators. J Cell Biochem 2018; 119:7556-7569. [DOI: 10.1002/jcb.27066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
|
28
|
Wei C, Lin H, Cui S. The Forkhead Transcription Factor FOXC2 Is Required for Maintaining Murine Spermatogonial Stem Cells. Stem Cells Dev 2018; 27:624-636. [DOI: 10.1089/scd.2017.0233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Chao Wei
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Hao Lin
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Sheng Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
29
|
Navid S, Rastegar T, Baazm M, Alizadeh R, Talebi A, Gholami K, Khosravi-Farsani S, Koruji M, Abbasi M. In vitroeffects of melatonin on colonization of neonate mouse spermatogonial stem cells. Syst Biol Reprod Med 2017; 63:370-381. [DOI: 10.1080/19396368.2017.1358774] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shadan Navid
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Rafieh Alizadeh
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ali Talebi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keykavos Gholami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Khosravi-Farsani
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Koruji
- Cellular and Molecular Research Center & Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Helsel AR, Oatley MJ, Oatley JM. Glycolysis-Optimized Conditions Enhance Maintenance of Regenerative Integrity in Mouse Spermatogonial Stem Cells during Long-Term Culture. Stem Cell Reports 2017; 8:1430-1441. [PMID: 28392219 PMCID: PMC5425612 DOI: 10.1016/j.stemcr.2017.03.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 02/08/2023] Open
Abstract
The application of spermatogonial stem cell (SSC) transplantation for regenerating male fertility requires amplification of SSC number in vitro during which the integrity to re-establish spermatogenesis must be preserved. Conventional conditions supporting proliferation of SSCs from mouse pups have been the basis for developing methodology with adult human cells but are unrefined. We found that the integrity to regenerate spermatogenesis after transplantation declines with advancing time in primary cultures of pup SSCs and that the efficacy of deriving cultures from adult SSCs is limited with conventional conditions. To address these deficiencies, we optimized the culture environment to favor glycolysis as the primary bioenergetics process. In these conditions, regenerative integrity of pup and adult SSCs was significantly improved and the efficiency of establishing primary cultures was 100%. Collectively, these findings suggest that SSCs are primed for conditions favoring glycolytic activity, and matching culture environments to their bioenergetics is critical for maintaining functional integrity. Regenerative integrity of SSCs declines over time in conventional culture Glycolysis-optimized (GO) culture improves regenerative integrity of SSCs GO conditions enhance the long-term culture of SSCs from adult mice
Collapse
Affiliation(s)
- Aileen R Helsel
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Melissa J Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Jon M Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
31
|
Jin B, Cai B, Sun D, Zhang X, Cui Y, Deng W, Gao C. Yangjing Capsule extract promotes proliferation of GC-1 spg cells via up-regulated POU3F1 pathway. Biosci Trends 2017; 11:95-104. [PMID: 28154340 DOI: 10.5582/bst.2016.01211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As is similar to glial cell line-derived neurotrophic factor (GDNF), the Yangjing Capsule (YC) extract could also lead to proliferation of spermatogonial stem cells (SSCs) by stimulating the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway; however, the regulatory effect of YC extract on the expression of POU3F1 still remains unknown. The objective of this study is to determine whether the transcription factor POU3F1 is up-regulated by YC extract through the PI3K/AKT signaling pathway to regulate SSCs survival and proliferation. Cultured GC-1 spermatogonial (spg) cells were treated with 0.01, 0.1, and 1 mg/mL YC extract for 48 h. Cell viability was analyzed using MTT assay, while POU3F1 expression was quantitatively detected using real time-polymerase chain reaction and Western blot analysis. POU3F1, GDNF family receptor alpha1 (GFRα1) short interfering ribonucleic acid (siRNA), and LY294002 (PI3K inhibitor) were applied as blockers to explore the underlying pathway. After 48 h treatment with YC extract, GC-1 spg cells proliferated and POU3F1 expression was significantly increased in a dose-dependent manner. POU3F1 siRNA partially blocked those effects of YC extract. Both GFRα1 siRNA and LY294002, as upstream blockers, reduced POU3F1 expression induced by YC extract. The conclusion is that YC extract promotes proliferation of GC-1 spg cells via up-regulation of POU3F1. The potential mechanism is that YC extract triggers the activation of the PI3K/AKT pathway and then up-regulates POU3F1 expression.
Collapse
Affiliation(s)
- Baofang Jin
- Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University
| | | | | | | | | | | | | |
Collapse
|
32
|
Identification of CHD1L as an Important Regulator for Spermatogonial Stem Cell Survival and Self-Renewal. Stem Cells Int 2016; 2016:4069543. [PMID: 28003832 PMCID: PMC5149700 DOI: 10.1155/2016/4069543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022] Open
Abstract
Chromodomain helicase/ATPase DNA binding protein 1-like gene (Chd1l) participates in chromatin-dependent processes, including transcriptional activation and DNA repair. In this study, we have found for the first time that Chd1l is mainly expressed in the testicular tissues of prepubertal and adult mice and colocalized with PLZF, OCT4, and GFRα1 in the neonatal mouse testis and THY1+ undifferentiated spermatogonia or spermatogonial stem cells (SSCs). Knockdown of endogenous Chd1l in cultured mouse undifferentiated SSCs inhibited the expression levels of Oct4, Plzf, Gfrα1, and Pcna genes, suppressed SSC colony formation, and reduced BrdU incorporation, while increasing SSC apoptosis. Moreover, the Chd1l gene expression is activated by GDNF in the cultured mouse SSCs, and the GDNF signaling pathway was modulated by endogenous levels of Chd1l; as demonstrated by the gene expression levels of GDNF, inducible transcripts Etv5, Bcl6b, Pou3f, and Lhx1, but not that of GDNF-independent gene, Taf4b, were significantly downregulated by Chd1l knockdown in mouse SSCs. Taken together, this study provides the first evidence to support the notion that Chd1l is an intrinsic and novel regulator for SSC survival and self-renewal, and it exerts such regulation at least partially through a GDNF signaling pathway.
Collapse
|
33
|
Tian RH, Yang S, Zhu ZJ, Wang JL, Liu Y, Yao C, Ma M, Guo Y, Yuan Q, Hai Y, Huang YR, He Z, Li Z. NODAL secreted by male germ cells regulates the proliferation and function of human Sertoli cells from obstructive azoospermia and nonobstructive azoospermia patients. Asian J Androl 2016; 17:996-1005. [PMID: 26289399 PMCID: PMC4814958 DOI: 10.4103/1008-682x.159722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
This study was designed to explore the regulatory effects of male germ cell secreting factor NODAL on Sertoli cell fate decisions from obstructive azoospermia (OA) and nonobstructive azoospermia (NOA) patients. Human Sertoli cells and male germ cells were isolated using two-step enzymatic digestion and SATPUT from testes of azoospermia patients. Expression of NODAL and its multiple receptors in human Sertoli cells and male germ cells were characterized by reverse transcription-polymerase chain reaction (RT-PCR) and immunochemistry. Human recombinant NODAL and its receptor inhibitor SB431542 were employed to probe their effect on the proliferation of Sertoli cells using the CCK-8 assay. Quantitative PCR and Western blots were utilized to assess the expression of Sertoli cell functional genes and proteins. NODAL was found to be expressed in male germ cells but not in Sertoli cells, whereas its receptors ALK4, ALK7, and ACTR-IIB were detected in Sertoli cells and germ cells, suggesting that NODAL plays a regulatory role in Sertoli cells and germ cells via a paracrine and autocrine pathway, respectively. Human recombinant NODAL could promote the proliferation of human Sertoli cells. The expression of cell cycle regulators, including CYCLIN A, CYCLIN D1 and CYCLIN E, was not remarkably affected by NODAL signaling. NODAL enhanced the expression of essential growth factors, including GDNF, SCF, and BMP4, whereas SB431542 decreased their levels. There was not homogeneity of genes changes by NODAL treatment in Sertoli cells from OA and Sertoli cell-only syndrome (SCO) patients. Collectively, this study demonstrates that NODAL produced by human male germ cells regulates proliferation and numerous gene expression of Sertoli cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zuping He
- Department of Urology, Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University; State Key Laboratory of Oncogenes and Related Genes, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Cancer, Shanghai 200127, China
| | - Zheng Li
- Department of Urology, Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
34
|
Zheng Y, Phillips LJ, Hartman R, An J, Dann CT. Ectopic POU5F1 in the male germ lineage disrupts differentiation and spermatogenesis in mice. Reproduction 2016; 152:363-77. [PMID: 27486267 DOI: 10.1530/rep-16-0140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/01/2016] [Indexed: 01/15/2023]
Abstract
Expression levels of the pluripotency determinant, POU5F1, are tightly regulated to ensure appropriate differentiation during early embryogenesis. POU5F1 is also present in the spermatogonial stem cell/progenitor cell population in mice and it is downregulated as spermatogenesis progresses. To test if POU5F1 downregulation is required for SSCs to differentiate, we produced transgenic mice that ubiquitously express POU5F1 in Cre-expressing lineages. Using a Vasa-Cre driver to produce ectopic POU5F1 in all postnatal germ cells, we found that POU5F1 downregulation was necessary for spermatogonial expansion during the first wave of spermatogenesis and for the production of differentiated spermatogonia capable of undergoing meiosis. In contrast, undifferentiated spermatogonia were maintained throughout adulthood, consistent with a normal presence of POU5F1 in these cells. The results suggest that POU5F1 downregulation in differentiating spermatogonia is a necessary step for the progression of spermatogenesis. Further, the creation of a transgenic mouse model for conditional ectopic expression of POU5F1 may be a useful resource for studies of POU5F1 in other cell lineages, during tumorogenesis and cell fate reprogramming.
Collapse
Affiliation(s)
- Yu Zheng
- Department of ChemistryIndiana University, Bloomington, Indiana, USA
| | - LeAnna J Phillips
- Department of ChemistryIndiana University, Bloomington, Indiana, USA
| | - Rachel Hartman
- Department of ChemistryIndiana University, Bloomington, Indiana, USA
| | - Junhui An
- Department of ChemistryIndiana University, Bloomington, Indiana, USA
| | - Christina T Dann
- Department of ChemistryIndiana University, Bloomington, Indiana, USA
| |
Collapse
|
35
|
Nayak G, Honguntikar SD, Kalthur SG, D'Souza AS, Mutalik S, Setty MM, Kalyankumar R, Krishnamurthy H, Kalthur G, Adiga SK. Ethanolic extract of Moringa oleifera Lam. leaves protect the pre-pubertal spermatogonial cells from cyclophosphamide-induced damage. JOURNAL OF ETHNOPHARMACOLOGY 2016; 182:101-109. [PMID: 26875643 DOI: 10.1016/j.jep.2016.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/12/2016] [Accepted: 02/06/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa oleifera Lam. is widely cultivated in Asian and African countries for its medicinal and dietary significance. The leaves are highly nutritious and are known to possess various biological activities. MATERIALS AND METHODS Pre-pubertal Swiss albino male mice were injected with single dose of cyclophosphamide (CP, 200mg/kg body weight) or ethanolic extract of Moringa oleifera leaves (MOE, 100mg/kg body weight) intraperitoneally. In combination group, MOE was administered 24h prior to CP injection. RESULTS CP induced a significant decrease in testicular weight (p<0.01) and depletion of germ cells (p<0.001) and higher level of DNA damage (p<0.001) compared to control. The expression of P53, Bax, Cytochrome C (Cyt C) was increased while there was a decrease in the expression of Bcl2, c-Kit and Oct4. Administration of MOE 24h prior to CP treatment ameliorated the depletion (p<0.001), DNA damage (p<0.001) and apoptosis (p<0.01) of germ cells induced by CP. The mitigating effect of MOE appears to be mediated by up-regulating the expression of c-Kit and Oct4 transcripts in P53-independent manner. CONCLUSION MOE protects the spermatogonial cells from CP-induced damage by modulating the apoptotic response elicited by CP and therefore can be considered as an efficient method of male fertility preservation.
Collapse
Affiliation(s)
- Guruprasad Nayak
- Center of Excellence in Clinical Embryology, Level 2, Central Research Lab, Kasturba Medical College, Manipal University, Manipal-576104, Karnataka, India
| | - Sachin D Honguntikar
- Center of Excellence in Clinical Embryology, Level 2, Central Research Lab, Kasturba Medical College, Manipal University, Manipal-576104, Karnataka, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal University, Manipal-576104, Karnataka, India
| | - Antony Sylvan D'Souza
- Department of Anatomy, Kasturba Medical College, Manipal University, Manipal-576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal-576104, Karnataka, India
| | - Manjunath M Setty
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal-576104, Karnataka, India
| | - Raksha Kalyankumar
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru-560065, India
| | | | - Guruprasad Kalthur
- Center of Excellence in Clinical Embryology, Level 2, Central Research Lab, Kasturba Medical College, Manipal University, Manipal-576104, Karnataka, India.
| | - Satish Kumar Adiga
- Center of Excellence in Clinical Embryology, Level 2, Central Research Lab, Kasturba Medical College, Manipal University, Manipal-576104, Karnataka, India
| |
Collapse
|
36
|
Abstract
Mammalian spermatogenesis requires a stem cell pool, a period of amplification of cell numbers, the completion of reduction division to haploid cells (meiosis), and the morphological transformation of the haploid cells into spermatozoa (spermiogenesis). The net result of these processes is the production of massive numbers of spermatozoa over the reproductive lifetime of the animal. One study that utilized homogenization-resistant spermatids as the standard determined that human daily sperm production (dsp) was at 45 million per day per testis (60). For each human that means ∼1,000 sperm are produced per second. A key to this level of gamete production is the organization and architecture of the mammalian testes that results in continuous sperm production. The seemingly complex repetitious relationship of cells termed the "cycle of the seminiferous epithelium" is driven by the continuous commitment of undifferentiated spermatogonia to meiosis and the period of time required to form spermatozoa. This commitment termed the A to A1 transition requires the action of retinoic acid (RA) on the undifferentiated spermatogonia or prospermatogonia. In stages VII to IX of the cycle of the seminiferous epithelium, Sertoli cells and germ cells are influenced by pulses of RA. These pulses of RA move along the seminiferous tubules coincident with the spermatogenic wave, presumably undergoing constant synthesis and degradation. The RA pulse then serves as a trigger to commit undifferentiated progenitor cells to the rigidly timed pathway into meiosis and spermatid differentiation.
Collapse
Affiliation(s)
- Michael D Griswold
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington
| |
Collapse
|
37
|
Chen Z, Li Z, He Z. Plasticity of male germline stem cells and their applications in reproductive and regenerative medicine. Asian J Androl 2016; 17:367-72. [PMID: 25532577 PMCID: PMC4430934 DOI: 10.4103/1008-682x.143739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spermatogonial stem cells (SSCs), also known as male germline stem cells, are a small subpopulation of type A spermatogonia with the potential of self-renewal to maintain stem cell pool and differentiation into spermatids in mammalian testis. SSCs are previously regarded as the unipotent stem cells since they can only give rise to sperm within the seminiferous tubules. However, this concept has recently been challenged because numerous studies have demonstrated that SSCs cultured with growth factors can acquire pluripotency to become embryonic stem-like cells. The in vivo and in vitro studies from peers and us have clearly revealed that SSCs can directly transdifferentiate into morphologic, phenotypic, and functional cells of other lineages. Direct conversion to the cells of other tissues has important significance for regenerative medicine. SSCs from azoospermia patients could be induced to differentiate into spermatids with fertilization and developmental potentials. As such, SSCs could have significant applications in both reproductive and regenerative medicine due to their unique and great potentials. In this review, we address the important plasticity of SSCs, with focuses on their self-renewal, differentiation, dedifferentiation, transdifferentiation, and translational medicine studies.
Collapse
Affiliation(s)
| | | | - Zuping He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Cancer, Shanghai 200127; Department of Urology, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001; Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai 200127; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| |
Collapse
|
38
|
Mei XX, Wang J, Wu J. Extrinsic and intrinsic factors controlling spermatogonial stem cell self-renewal and differentiation. Asian J Androl 2016; 17:347-54. [PMID: 25657085 PMCID: PMC4430931 DOI: 10.4103/1008-682x.148080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial stem cells (SSCs), the stem cells responsible for male fertility, are one of a small number of cells with the abilities of both self-renewal and generation of large numbers of haploid cells. Technology improvements, most importantly, transplantation assays and in vitro culture systems have greatly expanded our understanding of SSC self-renewal and differentiation. Many important molecules crucial for the balance between self-renewal and differentiation have been recently identified although the exact mechanism(s) remain largely undefined. In this review, we give a brief introduction to SSCs, and then focus on extrinsic and intrinsic factors controlling SSCs self-renewal and differentiation.
Collapse
Affiliation(s)
| | | | - Ji Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio X Institutes, Shanghai Jiao Tong University, Shanghai 200240; Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| |
Collapse
|
39
|
Merino-González C, Zuñiga FA, Escudero C, Ormazabal V, Reyes C, Nova-Lamperti E, Salomón C, Aguayo C. Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Angiogenesis: Potencial Clinical Application. Front Physiol 2016; 7:24. [PMID: 26903875 PMCID: PMC4746282 DOI: 10.3389/fphys.2016.00024] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/18/2016] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are adult multipotent stem cells that are able to differentiate into multiple specialized cell types including osteocytes, adipocytes, and chondrocytes. MSCs exert different functions in the body and have recently been predicted to have a major clinical/therapeutic potential. However, the mechanisms of self-renewal and tissue regeneration are not completely understood. It has been shown that the biological effect depends mainly on its paracrine action. Furthermore, it has been reported that the secretion of soluble factors and the release of extracellular vesicles, such as exosomes, could mediate the cellular communication to induce cell-differentiation/self-renewal. This review provides an overview of MSC-derived exosomes in promoting angiogenicity and of the clinical relevance in a therapeutic approach.
Collapse
Affiliation(s)
- Consuelo Merino-González
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción Concepción, Chile
| | - Felipe A Zuñiga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción Concepción, Chile
| | - Carlos Escudero
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Universidad del Bío-BíoChillán, Chile; Group of Research and Innovation in Vascular Health (GRIVAS Health)Chillán, Chile
| | - Valeska Ormazabal
- Department of Physiopathology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| | - Camila Reyes
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción Concepción, Chile
| | | | - Carlos Salomón
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland Brisbane, QLD, Australia
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of ConcepciónConcepción, Chile; Group of Research and Innovation in Vascular Health (GRIVAS Health)Chillán, Chile
| |
Collapse
|
40
|
Abstract
Mammalian spermatogenesis is a complex and highly ordered process by which male germ cells proceed through a series of differentiation steps to produce haploid flagellated spermatozoa. Underlying this process is a pool of adult stem cells, the spermatogonial stem cells (SSCs), which commence the spermatogenic lineage by undertaking a differentiation fate decision to become progenitor spermatogonia. Subsequently, progenitors acquire a differentiating spermatogonia phenotype and undergo a series of amplifying mitoses while becoming competent to enter meiosis. After spermatocytes complete meiosis, post-meiotic spermatids must then undergo a remarkable transformation from small round spermatids to a flagellated spermatozoa with extremely compacted nuclei. This chapter reviews the current literature pertaining to spermatogonial differentiation with an emphasis on the mechanisms controlling stem cell fate decisions and early differentiation events in the life of a spermatogonium.
Collapse
Affiliation(s)
- Jennifer M Mecklenburg
- Department of Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Brian P Hermann
- Department of Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
41
|
Abstract
Stem cells are necessary for the maintenance of many adult tissues. Signals within the stem cell microenvironment, or niche, regulate the self-renewal and differentiation capability of these cells. Misregulation of these signals through mutation or damage can lead to overgrowth or depletion of different stem cell pools. In this review, we focus on the Drosophila testis and ovary, both of which contain well-defined niches, as well as the mouse testis, which has become a more approachable stem cell system with recent technical advances. We discuss the signals that regulate gonadal stem cells in their niches, how these signals mediate self-renewal and differentiation under homeostatic conditions, and how stress, whether from mutations or damage, can cause changes in cell fate and drive stem cell competition.
Collapse
Affiliation(s)
- Leah Joy Greenspan
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; , ,
| | - Margaret de Cuevas
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; , ,
| | - Erika Matunis
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; , ,
| |
Collapse
|
42
|
Lambrot R, Lafleur C, Kimmins S. The histone demethylase KDM1A is essential for the maintenance and differentiation of spermatogonial stem cells and progenitors. FASEB J 2015; 29:4402-16. [PMID: 26243864 DOI: 10.1096/fj.14-267328] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/22/2015] [Indexed: 12/22/2022]
Abstract
Little is known of the fundamental processes governed by epigenetic mechanisms in the supplier cells of spermatogenesis, the spermatogonial stem cells (SSCs). The histone H3 lysine demethylase KDM1A is expressed in spermatogonia. We hypothesized that KDM1A serves in transcriptional regulation of SSCs and fertility. Using a conditional deletion of Kdm1a [conditional knockout (cKO)] in mouse spermatogonia, we determined that Kdm1a is essential for spermatogenesis as adult cKO males completely lack germ cells. Analysis of postnatal testis development revealed that undifferentiated and differentiating spermatogonial populations form in Kdm1a-cKO animals, yet the majority fail to enter meiosis. Loss of germ cells in the cKO was rapid with none remaining by postnatal day (PND) 21. To gain insight into the mechanistic implications of Kdm1a ablation, we isolated PND 6 spermatogonia enriched for SSCs and analyzed their transcriptome by RNA sequencing. Loss of Kdm1a was associated with altered transcription of 1206 genes. Importantly, differentially expressed genes between control and Kdm1a-cKO animals included those that are essential for SSC and progenitor maintenance and spermatogonial differentiation. The complete loss of fertility and failure to establish spermatogenesis indicate that Kdm1a is a master controller of gene transcription in spermatogonia and is required for SSC and progenitor maintenance and differentiation.
Collapse
Affiliation(s)
- Romain Lambrot
- *Department of Animal Science, McGill University, Sainte Anne de Bellevue, Quebec, Canada; and Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Christine Lafleur
- *Department of Animal Science, McGill University, Sainte Anne de Bellevue, Quebec, Canada; and Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Sarah Kimmins
- *Department of Animal Science, McGill University, Sainte Anne de Bellevue, Quebec, Canada; and Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
43
|
Guo Y, Hai Y, Yao C, Chen Z, Hou J, Li Z, He Z. Long-term culture and significant expansion of human Sertoli cells whilst maintaining stable global phenotype and AKT and SMAD1/5 activation. Cell Commun Signal 2015; 13:20. [PMID: 25880873 PMCID: PMC4380114 DOI: 10.1186/s12964-015-0101-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/16/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Sertoli cells play key roles in regulating spermatogenesis and testis development by providing structural and nutritional supports. Recent studies demonstrate that Sertoli cells can be converted into functional neural stem cells. Adult Sertoli cells have previously been considered the terminally differentiated cells with a fixed and unmodifiable population after puberty. However, this concept has been challenged. Since the number of adult human Sertoli cells is limited, it is essential to culture these cells for a long period and expand them to obtain sufficient cells for their basic research and clinic applications. Nevertheless, the studies on human Sertoli cells are restricted, because it is difficult to get access to human testis tissues. RESULTS Here we isolated adult human Sertoli cells with a high purity and viability from obstructive azoospermia patients with normal spermatogenesis. Adult human Sertoli cells were cultured with DMEM/F12 and fetal bovine serum for 2 months, and they could be expanded with a 59,049-fold increase of cell numbers. Morphology, phenotypic characteristics, and the signaling pathways of adult human Sertoli cells from different passages were compared. Significantly, adult human Sertoli cells assumed similar morphological features, stable global gene expression profiles and numerous proteins, and activation of AKT and SMAD1/5 during long-period culture. CONCLUSIONS This study demonstrates that adult human Sertoli cells can be cultured for a long period and expanded with remarkable increase of cell numbers whilst maintaining their primary morphology, phenotype and signaling pathways. This study could provide adequate human Sertoli cells for reproductive and regenerative medicine.
Collapse
Affiliation(s)
- Ying Guo
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Yanan Hai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Chencheng Yao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Zheng Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Jingmei Hou
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Zheng Li
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Andrology, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai, 200001, China.
| | - Zuping He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China. .,Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Andrology, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai, 200001, China. .,Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China. .,Shanghai Key Laboratory of Reproductive Medicine, Shanghai, 200025, China.
| |
Collapse
|
44
|
Xie W, Sun J, Wu J. Construction and analysis of a protein-protein interaction network related to self-renewal of mouse spermatogonial stem cells. MOLECULAR BIOSYSTEMS 2015; 11:835-43. [PMID: 25566695 DOI: 10.1039/c4mb00579a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Spermatogonial stem cells (SSCs) are responsible for sustained spermatogenesis throughout the reproductive life of the male. Extensive studies of SSCs have identified dozens of genes that play important roles in sustaining or controlling the pool of SSCs in the mammalian testis. However, there is still limited knowledge of whether or how these key genes interact with each other during SSC self-renewal. Here, we constructed a protein-protein interaction (PPI) network for SSC self-renewal based on interactions between 23 genes essential for SSC self-renewal, which were obtained from a text mining system, and the interacting partners of the 23 key genes, which were differentially expressed in SSCs. The SSC self-renewal PPI network consisted of 246 nodes connected by 844 edges. Topological analyses of the PPI network were conducted to identify genes essential for maintenance of SSC self-renewal. The subnetwork of the SSC self-renewal network suggested that the 23 key genes involved in SSC self-renewal were connected together through other 94 genes. Clustering of the whole network and subnetwork of SSC self-renewal revealed several densely connected regions, implying significant molecular interaction modules essential for SSC self-renewal. Notably, we found the 23 genes to be responsible for SSC self-renewal by forming a continuous PPI network centered on Pou5f1. Our study indicates that it is feasible to explore important proteins and regulatory pathways in biological activities by combining a PPI database with the high-throughput data of gene expression profiles.
Collapse
Affiliation(s)
- Wenhai Xie
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | |
Collapse
|
45
|
Chen SR, Liu YX. Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling. Reproduction 2014; 149:R159-67. [PMID: 25504872 DOI: 10.1530/rep-14-0481] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is a continuous and productive process supported by the self-renewal and differentiation of spermatogonial stem cells (SSCs), which arise from undifferentiated precursors known as gonocytes and are strictly controlled in a special 'niche' microenvironment in the seminiferous tubules. Sertoli cells, the only somatic cell type in the tubules, directly interact with SSCs to control their proliferation and differentiation through the secretion of specific factors. Spermatocyte meiosis is another key step of spermatogenesis, which is regulated by Sertoli cells on the luminal side of the blood-testis barrier through paracrine signaling. In this review, we mainly focus on the role of Sertoli cells in the regulation of SSC self-renewal and spermatocyte meiosis, with particular emphasis on paracrine and endocrine-mediated signaling pathways. Sertoli cell growth factors, such as glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2), as well as Sertoli cell transcription factors, such as ETS variant 5 (ERM; also known as ETV5), nociceptin, neuregulin 1 (NRG1), and androgen receptor (AR), have been identified as the most important upstream factors that regulate SSC self-renewal and spermatocyte meiosis. Other transcription factors and signaling pathways (GDNF-RET-GFRA1 signaling, FGF2-MAP2K1 signaling, CXCL12-CXCR4 signaling, CCL9-CCR1 signaling, FSH-nociceptin/OPRL1, retinoic acid/FSH-NRG/ERBB4, and AR/RB-ARID4A/ARID4B) are also addressed.
Collapse
Affiliation(s)
- Su-Ren Chen
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Xun Liu
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
46
|
Zhou Q, Guo Y, Zheng B, Shao B, Jiang M, Wang G, Zhou T, Wang L, Zhou Z, Guo X, Huang X. Establishment of a proteome profile and identification of molecular markers for mouse spermatogonial stem cells. J Cell Mol Med 2014; 19:521-34. [PMID: 25352495 PMCID: PMC4369810 DOI: 10.1111/jcmm.12407] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 07/18/2014] [Indexed: 12/17/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are undifferentiated cells that are required to maintain spermatogenesis throughout the reproductive life of mammals. Although SSC transplantation and culture provide a powerful tool to identify the mechanisms regulating SSC function, the precise signalling mechanisms governing SSC self-renewal and specific surface markers for purifying SSCs remain to be clearly determined. In the present study, we established a steady SSC culture according to the method described by Shinohara's lab. Fertile progeny was produced after transplantation of cultured SSCs into infertile mouse testis, and the red fluorescence exhibited by the culture cell membranes was stably and continuously transmitted to the offspring. Next, via advanced mass spectrometry and an optimized proteomics platform, we constructed the proteome profile, with 682 proteins expressed in SSCs. Furthermore bioinformatics analysis showed that the list contained several known molecules that are regulated in SSCs. Several nucleoproteins and membrane proteins were chosen for further exploration using immunofluorescence and RT-PCR. The results showed that SALL1, EZH2, and RCOR2 are possibly involved in the self-renewal mechanism of SSCs. Furthermore, the results of tissue-specific expression analysis showed that Gpat2 and Pld6 were uniquely and highly expressed in mouse testes and cultured SSCs. The cellular localization of PLD6 was further explored and the results showed it was primarily expressed in the spermatogonial membrane of mouse testes and cultured SSCs. The proteins identified in this study form the basis for further exploring the molecular mechanism of self-renewal in SSCs and for identifying specific surface markers of SSCs.
Collapse
Affiliation(s)
- Quan Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Eirin A, Riester SM, Zhu XY, Tang H, Evans JM, O'Brien D, van Wijnen AJ, Lerman LO. MicroRNA and mRNA cargo of extracellular vesicles from porcine adipose tissue-derived mesenchymal stem cells. Gene 2014; 551:55-64. [PMID: 25158130 DOI: 10.1016/j.gene.2014.08.041] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/22/2014] [Indexed: 12/14/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) are clinically useful for cell-based therapy, but concerns regarding their ability to replicate limit their human application. MSCs release extracellular vesicles (EVs) that mediate at least in part the paracrine effects of the parental cells. To understand the molecular basis of their biological properties, we characterized the RNA cargo of EVs from porcine adipose-tissue derived MSCs. Comprehensive characterization of mRNA and miRNA gene expression using high-throughput RNA sequencing (RNA-seq) revealed that EVs are selectively enriched for distinct classes of RNAs. For example, EVs preferentially express mRNA for transcription factors (e.g. MDFIC, POU3F1, NRIP1) and genes involved in angiogenesis (e.g. HGF, HES1, TCF4) and adipogenesis (e.g. CEBPA, KLF7). EVs also express Golgi apparatus genes (ARRB1, GOLGA4) and genes involved in TGF-β signaling. In contrast, mitochondrial, calcium signaling, and cytoskeleton genes are selectively excluded from EVs, possibly because these genes remain sequestered in organelles or intracellular compartments. RNA-seq generated reads for at least 386 annotated miRNAs, but only miR148a, miR532-5p, miR378, and let-7f were enriched in EVs compared to MSCs. Gene ontology analysis indicates that these miRNAs target transcription factors and genes that participate in several cellular pathways, including angiogenesis, cellular transport, apoptosis, and proteolysis. Our data suggest that EVs transport gene regulatory information to modulate angiogenesis, adipogenesis, and other cell pathways in recipient cells. These observations may contribute to development of regenerative strategies using EVs to overcome potential complications of cell-based therapy.
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Scott M Riester
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Jared M Evans
- Health Sciences Research & Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Daniel O'Brien
- Health Sciences Research & Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
48
|
Gautier A, Bosseboeuf A, Auvray P, Sourdaine P. Maintenance of potential spermatogonial stem cells in vitro by GDNF treatment in a chondrichthyan model (Scyliorhinus canicula L.). Biol Reprod 2014; 91:91. [PMID: 25143357 DOI: 10.1095/biolreprod.113.116020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Previous work in dogfish, Scyliorhinus canicula, has identified the testicular germinative area as the spermatogonial stem cell niche. In the present study, an in vitro co-culture system of spermatogonia and somatic cells from the germinative area was developed. Long-term maintenance of spermatogonia has been successful, and addition of GDNF has promoted the development of clones of spermatogonia expressing stem cell characteristics such as alkaline phosphatase activity and has allowed maintenance of self-renewal in spermatogonia for at least 5 mo under culture conditions, notably by decreasing cell apoptosis. Furthermore, clones of spermatogonia expressed the receptor of GDNF, GFRalpha1, which is consistent with the effect of GDNF on cells despite the lack of identification of a GDNF sequence in the dogfish's transcriptome. However, a sequence homologous to artemin has been identified, and in silico analysis supports the hypothesis that artemin could replace GDNF in the germinative area in dogfish. This study, as the first report on long-term in vitro maintenance of spermatogonia in a chondrichthyan species, suggests that the GFRalpha1 signaling function in self-renewal of spermatogonial stem cells is probably conserved in gnathostomes.
Collapse
Affiliation(s)
- Aude Gautier
- Normandie University, Caen, France University of Caen Basse-Normandie, BOREA, Caen, France Centre National de la Recherche Scientifique, UMR 7208, Caen, France
| | - Adrien Bosseboeuf
- Normandie University, Caen, France University of Caen Basse-Normandie, BOREA, Caen, France Centre National de la Recherche Scientifique, UMR 7208, Caen, France Kelia, Group Cellis Pharma, Parc Technopolitain Atalante Saint Malo, Saint Malo, France
| | - Pierrick Auvray
- Kelia, Group Cellis Pharma, Parc Technopolitain Atalante Saint Malo, Saint Malo, France
| | - Pascal Sourdaine
- Normandie University, Caen, France University of Caen Basse-Normandie, BOREA, Caen, France Centre National de la Recherche Scientifique, UMR 7208, Caen, France
| |
Collapse
|
49
|
Sahare M, Otomo A, Komatsu K, Minami N, Yamada M, Imai H. The role of signaling pathways on proliferation and self-renewal of cultured bovine primitive germ cells. Reprod Med Biol 2014; 14:17-25. [PMID: 29259399 DOI: 10.1007/s12522-014-0189-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/13/2014] [Indexed: 12/22/2022] Open
Abstract
Purpose Gonocytes are primitive male germ cells residing in the neonatal testes and are unipotent in nature, but also have pluripotent stem cell ability in mice under appropriate culture conditions. This study was performed to elucidate the molecular mechanisms of self-renewal and survival of cultured bovine gonocytes. Methods Gonocytes were isolated from neonatal bull calves and were cultured in DMEM/F12 supplemented with 15 % knock-out serum replacement (KSR) and glial cell-derived neurotrophic factor (GDNF). Cells were analyzed six days after culturing for cell-signaling molecular markers. Results Colony formation was observed 3-4 days after being cultured. Addition of GDNF enhanced mitogen-activated protein kinase 1/2 (MAPK1/2) phosphorylation and activated the MAPK signaling pathway. Inhibition of MAPK signaling reduced cell proliferation and abolished colony formation. However, inhibition of phosphoinositide 3-kinase-AKT (PI3K-AKT) signaling, a dominant pathway for self-renewal of mouse germ cells, did not show any effects on cultured bovine gonocytes. Expression of cell cycle-related regulators cyclin D2 and cyclin-dependent kinase 2 (CDK2) was downregulated with inhibition of MAPK signaling. Conclusions These results indicate activation of MAPK plays a critical role in self-renewal and survival of bovine gonocytes via cyclin D1 and CDK2.
Collapse
Affiliation(s)
- Mahesh Sahare
- Laboratory of Reproductive Biology, Graduate School of Agriculture Kyoto University 606-8502 Kyoto Japan
| | - Ayagi Otomo
- Laboratory of Reproductive Biology, Graduate School of Agriculture Kyoto University 606-8502 Kyoto Japan
| | - Kana Komatsu
- Laboratory of Reproductive Biology, Graduate School of Agriculture Kyoto University 606-8502 Kyoto Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agriculture Kyoto University 606-8502 Kyoto Japan
| | - Masayasu Yamada
- Laboratory of Reproductive Biology, Graduate School of Agriculture Kyoto University 606-8502 Kyoto Japan
| | - Hiroshi Imai
- Laboratory of Reproductive Biology, Graduate School of Agriculture Kyoto University 606-8502 Kyoto Japan
| |
Collapse
|
50
|
Valli H, Sukhwani M, Dovey SL, Peters KA, Donohue J, Castro CA, Chu T, Marshall GR, Orwig KE. Fluorescence- and magnetic-activated cell sorting strategies to isolate and enrich human spermatogonial stem cells. Fertil Steril 2014; 102:566-580.e7. [PMID: 24890267 DOI: 10.1016/j.fertnstert.2014.04.036] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine the molecular characteristics of human spermatogonia and optimize methods to enrich spermatogonial stem cells (SSCs). DESIGN Laboratory study using human tissues. SETTING Research institute. PATIENT(S) Healthy adult human testicular tissue. INTERVENTION(S) Human testicular tissue was fixed or digested with enzymes to produce a cell suspension. Human testis cells were fractionated by fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS). MAIN OUTCOME MEASURE(S) Immunostaining for selected markers, human-to-nude mouse xenotransplantation assay. RESULT(S) Immunohistochemistry costaining revealed the relative expression patterns of SALL4, UTF1, ZBTB16, UCHL1, and ENO2 in human undifferentiated spermatogonia as well as the extent of overlap with the differentiation marker KIT. Whole mount analyses revealed that human undifferentiated spermatogonia (UCHL1+) were typically arranged in clones of one to four cells whereas differentiated spermatogonia (KIT+) were typically arranged in clones of eight or more cells. The ratio of undifferentiated-to-differentiated spermatogonia is greater in humans than in rodents. The SSC colonizing activity was enriched in the THY1dim and ITGA6+ fractions of human testes sorted by FACS. ITGA6 was effective for sorting human SSCs by MACS; THY1 and EPCAM were not. CONCLUSION(S) Human spermatogonial differentiation correlates with increased clone size and onset of KIT expression, similar to rodents. The undifferentiated-to-differentiated developmental dynamics in human spermatogonia is different than rodents. THY1, ITGA6, and EPCAM can be used to enrich human SSC colonizing activity by FACS, but only ITGA6 is amenable to high throughput sorting by MACS.
Collapse
Affiliation(s)
- Hanna Valli
- Department of Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Meena Sukhwani
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Serena L Dovey
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Karen A Peters
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Julia Donohue
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Carlos A Castro
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Tianjiao Chu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Gary R Marshall
- Department of Natural Sciences, Chatham University, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania.
| |
Collapse
|