1
|
Fang J, Li G, Luo W, Hu Q. Understanding Genetic Regulation of Sex Differentiation in Hermaphroditic Fish. Animals (Basel) 2025; 15:119. [PMID: 39858119 PMCID: PMC11759146 DOI: 10.3390/ani15020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/24/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
As a fundamental taxonomic group within vertebrates, fish represent an invaluable resource for investigating the mechanisms underlying sex determination and differentiation owing to their extensive geographical distribution and rich biodiversity. Within this biological cohort, the processes of sex determination and differentiation are intricately governed by both genetic factors and the complex interplay of environmental cues. While variations in external environmental factors, particularly temperature, can exert a modulatory influence on sex differentiation in fish to a limited degree, genetic factors remain the primary determinants of sexual traits. Hermaphroditic fish display three distinct types of sexual transitions: protandry (male to female), protogyny (female-to-male), bidirectional sex change (both directions serially). These fish, characterized by their unique reproductive strategies and sexual plasticity, serve as exemplary natural models for elucidating the mechanisms of sex differentiation and sexual transitions in fish. The present review delves into the histological dynamics during gonadal development across three types of sequential hermaphroditic fish, meticulously delineating the pivotal characteristics at each stage, from the inception of primordial gonads to sexual specialization. Furthermore, it examines the regulatory genes and associated signaling pathways that orchestrate sex determination and differentiation. By systematically synthesizing these research advancements, this paper endeavors to offer a comprehensive and profound insight into the intricate mechanisms governing sex differentiation in sequential hermaphroditic fish.
Collapse
Affiliation(s)
- Junchao Fang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.F.); (G.L.)
| | - Guanglve Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.F.); (G.L.)
| | - Wenyin Luo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| | - Qiaomu Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.F.); (G.L.)
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| |
Collapse
|
2
|
Li C, Li Y, Qin C, Yu C, Hu J, Guo C, Wang Y. Determination of the timing of early gonadal differentiation in silver pomfret, Pampus argenteus. Anim Reprod Sci 2024; 261:107373. [PMID: 38211439 DOI: 10.1016/j.anireprosci.2023.107373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/03/2023] [Indexed: 01/13/2024]
Abstract
Silver pomfret is a species of global significance due to its high nutritional in fisheries sector. To accurately ascertain the timing of sex differentiation mechanism and mRNA level in this species, this study examined gonad morphology and patterns of gene expression related to sex differentiation in males and females from 51 to 180 days post hatch (dph), the temperature of water was maintained at 26 ± 1 ℃. Distinct morphological differentiation of the silver pomfret ovaries, marked by the emergence of primary oocytes, became apparent from 68 dph. By 108 dph, the testes began to differentiate, as evidenced by the appearance of the efferent duct. Early oocytes exhibited a diameter ranged from 0.077 mm to 0.682 mm, with an average diameter of 0.343 ± 0.051 mm. The proportions of various types of germ cells within the testes were subjected to analysis. The localization of Vasa during the early stages of sexual differentiation was a subject to analysis as well. Vasa was predominantly localized within the cytoplasm of gonocyte, peri-nucleolus stage oocytes, primary oocytes and type A spermatogonocytes, indicating that Vasa is involved in the early gonadal differentiation of silver pomfret. The study investigated the expression patterns of dmrt1, gsdf, amh, foxl2, cyp19a1a, cyp11a, sox3 and vasa, all of which are involved in the sex differentiation of teleosts. Among these genes, amh, gsdf, sox3, foxl2, vasa were indentified as crucial contributors to the early gonadal development of silver pomfret. Significant sex-related differences were observed in the expression patterns of amh, dmrt1, gsdf, cyp11a, sox3, cyp19a1a, vasa. This study provides novel insights into the timing of physiological changes associated with the sexual differentiation of silver pomfret. Collectively, the present data indicates that the differentiation of ovaries and testes take place approximately at 68 dph in females and 108 dph in males.
Collapse
Affiliation(s)
- Chang Li
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; College of marine Sciences, Ningbo University, Ningbo, China
| | - Yaya Li
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; College of marine Sciences, Ningbo University, Ningbo, China
| | - Chunlai Qin
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; College of marine Sciences, Ningbo University, Ningbo, China
| | - Changhang Yu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; College of marine Sciences, Ningbo University, Ningbo, China
| | - Jiabao Hu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; College of marine Sciences, Ningbo University, Ningbo, China
| | - Chunyang Guo
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; College of marine Sciences, Ningbo University, Ningbo, China.
| | - Yajun Wang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; College of marine Sciences, Ningbo University, Ningbo, China.
| |
Collapse
|
3
|
Adolfi MC, Depincé A, Wen M, Pan Q, Herpin A. Development of Ovaries and Sex Change in Fish: Bringing Potential into Action. Sex Dev 2023; 17:84-98. [PMID: 36878204 DOI: 10.1159/000526008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/08/2022] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Encompassing about half of the 60,000 species of vertebrates, fish display the greatest diversity of sex determination mechanisms among metazoans. As such that phylum offers a unique playground to study the impressive variety of gonadal morphogenetic strategies, ranging from gonochorism, with either genetic or environmental sex determination, to unisexuality, with either simultaneous or consecutive hermaphroditism. SUMMARY From the two main types of gonads, the ovaries embrace the important role to produce the larger and non-motile gametes, which is the basis for the development of a future organism. The production of the egg cells is complex and involves the formation of follicular cells, which are necessary for the maturation of the oocytes and the production of feminine hormones. In this vein, our review focuses on the development of ovaries in fish with special emphasis on the germ cells, including those that transition from one sex to the other as part of their life cycle and those that are capable of transitioning to the opposite sex depending on environmental cues. KEY MESSAGES Clearly, establishing an individual as either a female or a male is not accomplished by the sole development of two types of gonads. In most cases, that dichotomy, be it final or transient, is accompanied by coordinated transformations across the entire organism, leading to changes in the physiological sex as a whole. These coordinated transformations require both molecular and neuroendocrine networks, but also anatomical and behavioural adjustments. Remarkably, fish managed to tame the ins and outs of sex reversal mechanisms to take the most advantages of changing sex as adaptive strategies in some situations.
Collapse
Affiliation(s)
- Mateus Contar Adolfi
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiaowei Pan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Amaury Herpin
- Fish Physiology and Genomics, INRAE, UR 1037, Rennes, France
| |
Collapse
|
4
|
He X, Wu H, Ye Y, Gong X, Bao B. Transcriptome analysis revealed gene expression feminization of testis after exogenous tetrodotoxin administration in pufferfish Takifugu flavidus. BMC Genomics 2022; 23:553. [PMID: 35922761 PMCID: PMC9347094 DOI: 10.1186/s12864-022-08787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Tetrodotoxin (TTX) is a deadly neurotoxin and usually accumulates in large amounts in the ovaries but is non-toxic or low toxic in the testis of pufferfish. The molecular mechanism underlying sexual dimorphism accumulation of TTX in ovary and testis, and the relationship between TTX accumulation with sex related genes expression remain largely unknown. The present study investigated the effects of exogenous TTX treatment on Takifugu flavidus. The results demonstrated that exogenous TTX administration significantly incresed level of TTX concentration in kidney, cholecyst, skin, liver, heart, muscle, ovary and testis of the treatment group (TG) than that of the control group (CG). Transcriptome sequencing and analysis were performed to study differential expression profiles of mRNA and piRNA after TTX administration of the ovary and testis. The results showed that compared with female control group (FCG) and male control group (MCG), TTX administration resulted in 80 and 23 piRNAs, 126 and 223 genes up and down regulated expression in female TTX-treated group (FTG), meanwhile, 286 and 223 piRNAs, 2 and 443 genes up and down regulated expression in male TTX-treated group (MTG). The female dominant genes cyp19a1, gdf9 and foxl2 were found to be up-regulated in MTG. The cyp19a1, whose corresponding target piRNA uniq_554482 was identified as down-regulated in the MTG, indicating the gene expression feminization in testis after exogenous TTX administration. The KEGG enrichment analysis revealed that differentially expressed genes (DEGs) and piRNAs (DEpiRNAs) in MTG vs MCG group were more enriched in metabolism pathways, indicating that the testis produced more metabolic pathways in response to exogenous TTX, which might be a reason for the sexual dimorphism of TTX distribution in gonads. In addition, TdT-mediated dUTP-biotin nick end labeling staining showed that significant apoptosis was detected in the MTG testis, and the role of the cell apoptotic pathways was further confirmed. Overall, our research revealed that the response of the ovary and testis to TTX administration was largely different, the ovary is more tolerant whereas the testis is more sensitive to TTX. These data will deepen our understanding on the accumulation of TTX sexual dimorphism in Takifugu.
Collapse
Affiliation(s)
- Xue He
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hexing Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaping Ye
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaolin Gong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
5
|
Dynamics of sexual development in teleosts with a note on Mugil cephalus. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Tseng PW, Wu GC, Kuo WL, Tseng YC, Chang CF. The Ovarian Transcriptome at the Early Stage of Testis Removal-Induced Male-To-Female Sex Change in the Protandrous Black Porgy Acanthopagrus schlegelii. Front Genet 2022; 13:816955. [PMID: 35401660 PMCID: PMC8986339 DOI: 10.3389/fgene.2022.816955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Unlike gonochoristic fishes, sex is fixed after gonadal differentiation (primary sex determination), and sex can be altered in adults (secondary sex determination) of hermaphroditic fish species. The secondary sex determination of hermaphroditic fish has focused on the differences between testicular tissue and ovarian tissue during the sex change process. However, comprehensive studies analyzing ovarian tissue or testicular tissue independently have not been performed. Hermaphroditic black porgy shows a digonic gonad (ovarian tissue with testicular tissue separated by connective tissue). Protandrous black porgy has stable maleness during the first two reproductive cycles (<2 years old), and approximately 50% enter femaleness (natural sex change) during the third reproductive cycle. Precocious femaleness is rarely observed in the estradiol-17β (E2)-induced female phase (oocytes maintained at the primary oocyte stage), and a reversible female-to-male sex change is found after E2 is withdrawn in <2-year-old fish. However, precocious femaleness (oocytes entering the vitellogenic oocyte stage) is observed in testis-removed fish in <2-year-old fish. We used this characteristic to study secondary sex determination (femaleness) in ovarian tissue via transcriptomic analysis. Cell proliferation analysis showed that BrdU (5-bromo-2′-deoxyuridine)-incorporated germline cells were significantly increased in the testis-removed fish (female) compared to the control (sham) fish (male) during the nonspawning season (2 months after surgery). qPCR analysis showed that there were no differences in pituitary-releasing hormones (lhb and gtha) in pituitary and ovarian steroidogenesis-related factors (star, cyp11a1, hsd3b1, and cyp19a1a) or female-related genes (wnt4a, bmp15, gdf9, figla, and foxl2) in ovarian tissues between intact and testis-removed fish (2 months after surgery). Low expression of pituitary fshb and ovarian cyp17a1 was found after 2 months of surgery. However, we did find small numbers of genes (289 genes) showing sexual fate dimorphic expression in both groups by transcriptomic analysis (1 month after surgery). The expression profiles of these differentially expressed genes were further examined by qPCR. Our present work identified several candidate genes in ovarian tissue that may be involved in the early period of secondary sex determination (femaleness) in black porgy. The data confirmed our previous suggestion that testicular tissue plays an important role in secondary sex determination in protandrous black porgy.
Collapse
Affiliation(s)
- Peng-Wei Tseng
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- *Correspondence: Guan-Chung Wu, ; Yung-Che Tseng, ; Ching-Fong Chang,
| | - Wei-Lun Kuo
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Yung-Che Tseng
- Marine Research Station, Institute of Cellular and Organism Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Guan-Chung Wu, ; Yung-Che Tseng, ; Ching-Fong Chang,
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- *Correspondence: Guan-Chung Wu, ; Yung-Che Tseng, ; Ching-Fong Chang,
| |
Collapse
|
7
|
Lin CJ, Jeng SR, Lei ZY, Yueh WS, Dufour S, Wu GC, Chang CF. Involvement of Transforming Growth Factor Beta Family Genes in Gonadal Differentiation in Japanese Eel, Anguilla japonica, According to Sex-Related Gene Expressions. Cells 2021; 10:cells10113007. [PMID: 34831230 PMCID: PMC8616510 DOI: 10.3390/cells10113007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
The gonochoristic feature with environmental sex determination that occurs during the yellow stage in the eel provides an interesting model to investigate the mechanisms of gonadal development. We previously studied various sex-related genes during gonadal sex differentiation in Japanese eels. In the present study, the members of transforming growth factor beta (TGF-β) superfamily were investigated. Transcript levels of anti-Müllerian hormone, its receptor, gonadal soma-derived factor (amh, amhr2, and gsdf, respectively) measured by real-time polymerase chain reaction (qPCR) showed a strong sexual dimorphism. Transcripts were dominantly expressed in the testis, and their levels significantly increased with testicular differentiation. In contrast, the expressions of amh, amhr2, and gsdf transcripts were low in the ovary of E2-feminized female eels. In situ hybridization detected gsdf (but not amh) transcript signals in undifferentiated gonads. amh and gsdf signals were localized to Sertoli cells and had increased significantly with testicular differentiation. Weak gsdf and no amh signals were detected in early ovaries of E2-feminized female eels. Transcript levels of amh and gsdf (not amhr2) decreased during human chorionic gonadotropin (HCG)-induced spermatogenesis in males. This study suggests that amh, amhr2, and especially gsdf might be involved in the gene pathway regulating testicular differentiation of Japanese eels.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| | - Zhen-Yuan Lei
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
| | - Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d’Histoire Naturelle, CNRS, IRD, Sorbonne Université, CEDEX 05, 75231 Paris, France;
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Guan-Chung Wu
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| |
Collapse
|
8
|
Sex Determination and Differentiation in Teleost: Roles of Genetics, Environment, and Brain. BIOLOGY 2021; 10:biology10100973. [PMID: 34681072 PMCID: PMC8533387 DOI: 10.3390/biology10100973] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/19/2023]
Abstract
The fish reproductive system is a complex biological system. Nonetheless, reproductive organ development is conserved, which starts with sex determination and then sex differentiation. The sex of a teleost is determined and differentiated from bipotential primordium by genetics, environmental factors, or both. These two processes are species-specific. There are several prominent genes and environmental factors involved during sex determination and differentiation. At the cellular level, most of the sex-determining genes suppress the female pathway. For environmental factors, there are temperature, density, hypoxia, pH, and social interaction. Once the sexual fate is determined, sex differentiation takes over the gonadal developmental process. Environmental factors involve activation and suppression of various male and female pathways depending on the sexual fate. Alongside these factors, the role of the brain during sex determination and differentiation remains elusive. Nonetheless, GnRH III knockout has promoted a male sex-biased population, which shows brain involvement during sex determination. During sex differentiation, LH and FSH might not affect the gonadal differentiation, but are required for regulating sex differentiation. This review discusses the role of prominent genes, environmental factors, and the brain in sex determination and differentiation across a few teleost species.
Collapse
|
9
|
Casas L, Saborido-Rey F. Environmental Cues and Mechanisms Underpinning Sex Change in Fish. Sex Dev 2021; 15:108-121. [PMID: 34111868 DOI: 10.1159/000515274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/07/2021] [Indexed: 11/19/2022] Open
Abstract
Fishes are the only vertebrates that undergo sex change during their lifetime, but even within this group, a unique reproductive strategy is displayed by only 1.5% of the teleosts. This lability in alternating sexual fate is the result of the simultaneous suppression and activation of opposing male and female networks. Here, we provide a brief review summarizing recent advances in our understanding of the environmental cues that trigger sex change and their perception, integration, and translation into molecular cascades that convert the sex of an individual. We particularly focus on molecular events underpinning the complex behavioral and morphological transformation involved in sex change, dissecting the main molecular players and regulatory networks that shape the transformation of one sex into the opposite. We show that histological changes and molecular pathways governing gonadal reorganization are better described than the neuroendocrine basis of sex change and that, despite important advances, information is lacking for the majority of hermaphrodite species. We highlight significant gaps in our knowledge of how sex change takes place and suggest future research directions.
Collapse
Affiliation(s)
- Laura Casas
- Ecology and Marine Resources, Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Fran Saborido-Rey
- Ecology and Marine Resources, Institute of Marine Research (IIM-CSIC), Vigo, Spain
| |
Collapse
|
10
|
Oliveira MA, Martinez ERM, Butzge AJ, Doretto LB, Ricci JMB, Rodrigues MS, Vigoya AAA, Gómez-González NE, Stewart AB, Nóbrega RH. Molecular characterization and expression analysis of anti-Müllerian hormone in common carp (Cyprinus carpio) adult testes. Gene Expr Patterns 2021; 40:119169. [PMID: 33667682 DOI: 10.1016/j.gep.2021.119169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 11/24/2022]
Abstract
Anti-Müllerian hormone (Amh) is a member of the transforming growth factor-β (Tgf-β) superfamily required in the regression of Müllerian ducts during gonadal sex differentiation of higher vertebrates. Teleost fish lack Müllerian ducts, but identified Amh orthologs have been shown to exert crucial functions during sex determination and differentiation of several species of teleosts. However, the function of Amh during gametogenesis in adult fish remains poorly investigated. Therefore, to expand present knowledge on the role of Amh in teleosts, the present study aimed to isolate and clone full-length amh cDNA in the common carp, Cyprinus carpio, and examine its expression levels throughout the male reproductive cycle and in response to different hormone treatments of testicular explants. Molecular cloning and characterization showed that the common carp Amh precursor amino acid sequence shared common features to other fish Amh precursors, including a conserved C-terminus (Tgf-β domain) and a double proteolytic cleavage site (R-X-X-R-X-X-R) upstream to the Tgf-β domain. Expression analysis showed amh dimorphic expression in the adult gonads with higher expression in the testes than ovaries. In testes, amh mRNA was detected in Sertoli cells contacting different types of germ cells, although the expression was greatest in Sertoli cells associated with type A undifferentiated spermatogonia. Expression analysis during the reproductive cycle showed that amh transcripts were down-regulated during the developing phase, which is characterized by an increased proliferation of type A undifferentiated spermatogonia and Sertoli cells and appearance of spermatocytes (meiosis) in the testes. Furthermore, ex vivo experiments showed that a 7 day exposure to Fsh or estrogens was required to decrease amh mRNA levels in common carp testicular explants. In summary, this study provided information on the molecular characterization and transcript abundance of amh in common carp adult testes. Altogether, these data will be useful for further investigations on sex determination and differentiation in this species, and also to improved strategies for improved carp aquaculture, such as inhibiting precocious maturation of males.
Collapse
Affiliation(s)
- Marcos A Oliveira
- Aquaculture Program (CAUNESP), São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil; Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Emanuel R M Martinez
- Aquaculture Program (CAUNESP), São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil; Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Arno J Butzge
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Lucas B Doretto
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Juliana M B Ricci
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maira S Rodrigues
- Aquaculture Program (CAUNESP), São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil; Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Angel A A Vigoya
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil; Faculty of Veterinary Medicine and Animal Science, San Martín University Foundation (FUSM), Bogotá, Colombia
| | - Núria E Gómez-González
- Department of Cell Biology and Histology, Faculty of Biology, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Amanda B Stewart
- Department of Orthopaedics Muscle skeletal Research, West Virginia University, USA
| | - Rafael H Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
11
|
Khan EA, Zhang X, Hanna EM, Yadetie F, Jonassen I, Goksøyr A, Arukwe A. Application of quantitative transcriptomics in evaluating the ex vivo effects of per- and polyfluoroalkyl substances on Atlantic cod (Gadus morhua) ovarian physiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142904. [PMID: 33138996 DOI: 10.1016/j.scitotenv.2020.142904] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 10/02/2020] [Indexed: 05/22/2023]
Abstract
Because of their global consumption and persistence, per- and polyfluoroalkyl substances (PFASs), are ubiquitously distributed in the environment, as well as in wildlife and humans. In the present study, we have employed an ex vivo organ culture technique, based on the floating agarose method, of Atlantic cod ovarian tissue to investigate the effects of three different concentrations of PFOS, PFOA (1, 5 and 25 μM) and PFNA (0.5, 5 and 50 μM), used singly and in also in combination (1×, 20× and 100×). In the 1× exposure mixture, concentrations were decided based on their proportional levels (in molar equivalents) relative to PFOS, which is the most abundant PFAS in cod liver from a 2013 screening project. To investigate the detailed underlying mechanisms and biological processes, transcriptome sequencing was performed on exposed ovarian tissue. The number of differentially expressed genes (DEGs) having at least 0.75 log2-fold change was elevated in high, compared to low and medium concentration exposures. The highest PFNA, PFOA and PFOS concentrations, and the highest (100×) mixture exposure, showed 40, 68, 1295, and 802 DEGs, respectively. The latter two exposure groups shared a maximum of 438 DEGs. In addition, they both shared the majority of functionally enriched pathways belonging to biological processes such as cellular signaling, cell adhesion, lipid metabolism, immunological responses, cancer, reproduction and metabolism. Shortlisted DEGs that were specifically annotated to reproduction associated gene ontology (GO) terms were observed only in the highest PFOS and mixture exposure groups. These transcripts contributed to ovarian key events such as steroidogenesis (star, cyp19a1a), oocyte growth (amh), maturation (igfbp5b, tgfβ2, tgfβ3), and ovulation (pgr, mmp2). Contrary to other PFAS congeners, the highest PFOS concentration showed almost similar transcript expression patterns compared to the highest mixture exposure group. This indicates that PFOS is the active component of the mixture that significantly altered the normal functioning of female gonads, and possibly leading to serious reproductive consequences in teleosts.
Collapse
Affiliation(s)
| | - Xiaokang Zhang
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway
| | - Eileen Marie Hanna
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway
| | - Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, Norway
| | - Inge Jonassen
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Norway
| | | |
Collapse
|
12
|
Wu GC, Dufour S, Chang CF. Molecular and cellular regulation on sex change in hermaphroditic fish, with a special focus on protandrous black porgy, Acanthopagrus schlegelii. Mol Cell Endocrinol 2021; 520:111069. [PMID: 33127483 DOI: 10.1016/j.mce.2020.111069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022]
Abstract
In teleost fish, sex can be determined by genetic factors, environmental factors, or both. Unlike in gonochoristic fish, in which sex is fixed in adults, sex can change in adults of hermaphroditic fish species. Thus, sex is generated during the initial gonadal differentiation stage (primary sex differentiation) and later during sexual fate alternation (secondary sex differentiation) in hermaphroditic fish species. Depending on the species, sex phase alternation can be induced by endogenous cues (such as individual age and body size) or by social cues (such as sex ratio or relative body size within the population). In general, the fluctuation in plasma estradiol-17β (E2) levels is correlated with the sexual fate alternation in hermaphroditic fish. Hormonal treatments can artificially induce sexual phase alternation in sequential hermaphroditic fishes, but in a transient and reversible manner. This is the case for the E2-induced female phase in protandrous black porgy and the methyltestosterone (MT)- or aromatase inhibitor (AI)-induced male phase in protogynous grouper. Recent reviews have focused on the different forms of sex change in fish who undergo sequential sex change, especially in terms of gene expression and the role of hormones. In this review, we use the protandrous black porgy, a nonsocial cue-influenced hermaphroditic species, with digonic gonads (ovarian and testis separated by a connective tissue), as a model to describe our findings and discuss the molecular and cellular regulation of sexual fate determination in hermaphroditic fish.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231, Paris Cedex 05, France
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| |
Collapse
|
13
|
Li S, Lin G, Fang W, Huang P, Gao D, Huang J, Xie J, Lu J. Gonadal Transcriptome Analysis of Sex-Related Genes in the Protandrous Yellowfin Seabream ( Acanthopagrus latus). Front Genet 2020; 11:709. [PMID: 32765585 PMCID: PMC7378800 DOI: 10.3389/fgene.2020.00709] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Yellowfin seabream (Acanthopagrus latus), a protandrous hermaphroditic fish, is a good model for studying the mechanism of sex reversal. However, limited knowledge is known about the genetic information related to reproduction and sex differentiation in this species. Here, we performed de novo transcriptome sequencing analysis of the testis, ovotestis, and ovary to identify sex-related genes in yellowfin seabream. The results assembled 71,765 unigenes in which 16,126 and 17,560 unigenes were differentially expressed in the ovotestis and ovary compared to the testis, respectively. The most differentially expressed gene (DEG)-enriched Kyoto Encyclopedia of Genes and Genomes and GO pathways were closely associated with the synthesis of sex steroid hormones. Functional analyses identified 55 important sex-related DEGs, including 32 testis-biased DEGs (dmrt1, amh, and sox9, etc.), 20 ovary-biased DEGs (cyp19a, foxl2, and wnt4, etc.), and 3 ovotestis-biased DEGs (lhb, dmrt2, and foxh1). Furthermore, the testis-specific expression of dmrt1 and the brain-pituitary-ovary axis expression of foxl2 were characterized, suggesting that they might play important roles in sex differentiation in yellowfin seabream. Our present work provided an important molecular basis for elucidating the mechanisms underlying sexual transition and reproductional regulation in yellowfin seabream.
Collapse
Affiliation(s)
- Shizhu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Peilin Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Dong Gao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Jing Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Jingui Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
14
|
Wang W, Liang S, Zou Y, Wu Z, Wang L, Liu Y, You F. Amh dominant expression in Sertoli cells during the testicular differentiation and development stages in the olive flounder Paralichthys olivaceus. Gene 2020; 755:144906. [PMID: 32554048 DOI: 10.1016/j.gene.2020.144906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
The olive flounder Paralichthys olivaceus, an important marine fish, shows gender differences in growth. The mechanism on its gonadal differentiation direction affected with exogenous factors still needs to be clarified. The anti-Müllerian hormone (amh) gene is involved in fish testicular differentiation and maintenance. The aim of this study was to investigate the expression of the flounder amh in tissues and the gonads. The quantitative expression analysis results showed that it was highly expressed in the testis, especially in the testis at stages I - IV (P < 0.05). Also, amh was detected in Sertoli cells surrounding spermatogonia and peripheral seminiferous lobule of the testis with in situ hybridization (ISH) and immunohistochemistry (IHC). During the differentiation period, the amh expression in the testis of the tamoxifen treatment group (100 ppm) was higher than that in the ovary of the 17β-estradiol (E2, 5 ppm) group, and the expression levels of amh during process of the male differentiation in the tamoxifen group were higher than those in the 17ɑ-methyltestosterone (MT, 5 ppm) group (P < 0.05). ISH results also exhibited that amh was expressed in the somatic cells that surrounded the germ cells of juvenile flounder similar to adult ones. Furthermore, the flounder gonads in the tamoxifen group maintained more germ cells and somatic cells than those in the MT group from 20 to 80 mm total length (TL). Especially, at 60 and 80 mm TL, the numbers of germ and somatic cells in the tamoxifen group were significantly higher than those in the MT group (P < 0.05). In summary, amh might initiate the process of testicular differentiation, and is involved in the early development and maintenance of testis.
Collapse
Affiliation(s)
- Wenxiang Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shaoshuai Liang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Yuxia Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Lijuan Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Yan Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.
| |
Collapse
|
15
|
Analysis of DNA methylation differences in gonads of the large yellow croaker. Gene 2020; 749:144754. [PMID: 32376450 DOI: 10.1016/j.gene.2020.144754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 11/20/2022]
Abstract
DNA methylation is an essential epigenetic modification that significantly regulates gene expression during development and differentiation. In this study, genome-wide methylation analysis of different gonads of the large yellow croaker was performed using whole-genome bisulfite sequencing (WGBS), which has characterized DNA methylation patterns in gonad tissue and identified candidate regions for future studies. Clustering analysis revealed that male and neomale methylation patterns were close compared to female. Based on KEGG pathway analysis of differentially methylated genes, we obtained signaling pathways related to gonadal development. We further investigated the methylation status of previously reported sex determination genes, and found that these genes showed different methylation status in three types of gonads, which may provide important clues to reveal the sex determination genes in the large yellow croaker. Furthermore, combined with transcriptome analysis, we found 7 sex-related genes in three comparison groups where expression negatively correlated with methylation.
Collapse
|
16
|
Liu X, Xiao H, Jie M, Dai S, Wu X, Li M, Wang D. Amh regulate female folliculogenesis and fertility in a dose-dependent manner through Amhr2 in Nile tilapia. Mol Cell Endocrinol 2020; 499:110593. [PMID: 31560938 DOI: 10.1016/j.mce.2019.110593] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 10/26/2022]
Abstract
In the present study, Amh was found to be abundantly expressed in the granulosa cells of the primary growth follicles, and Amhr2 in the granulosa cells, oogonia and phase I oocytes in tilapia by immunohistochemistry. In addition, Amh and Amhr2 were also found to be expressed in the brain and pituitary. Heterozygous mutation of either amh or amhr2 resulted in increased primary growth follicles and decreased fertility, and homozygous mutation resulted in hypertrophic ovaries with significantly increased primary follicles and failed transition from primary to vitellogenic follicles. Expression of gnrh3 in the brain, fsh and lh in the pituitary and serum E2 concentration were significantly decreased in both mutants. Significantly increased apoptosis of follicle cells was observed in both mutants. However, administration of E2 failed to rescue the folliculogenesis defects of the mutants. Our results suggested that Amh acts in a dose-dependent manner by binding Amhr2 in tilapia.
Collapse
Affiliation(s)
- Xingyong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hesheng Xiao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Mimi Jie
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shengfei Dai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xin Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
17
|
Zhou Y, Sun W, Cai H, Bao H, Zhang Y, Qian G, Ge C. The Role of Anti-Müllerian Hormone in Testis Differentiation Reveals the Significance of the TGF-β Pathway in Reptilian Sex Determination. Genetics 2019; 213:1317-1327. [PMID: 31645361 PMCID: PMC6893390 DOI: 10.1534/genetics.119.302527] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/17/2019] [Indexed: 01/10/2023] Open
Abstract
Anti-Müllerian hormone (Amh, or Müllerian-inhibiting substance, Mis), a member of TGF-β superfamily, has been well documented in some vertebrates as initiator or key regulator in sexual development, and particularly in fish. However, its functional role has not yet been identified in reptiles. Here, we characterized the Amh gene in the Chinese soft-shelled turtle Pelodiscus sinensis, a typical reptilian species exhibiting ZZ/ZW sex chromosomes. The messenger RNA of Amh was initially expressed in male embryonic gonads by stage 15, preceding gonadal sex differentiation, and exhibited a male-specific expression pattern throughout embryogenesis. Moreover, Amh was rapidly upregulated during female-to-male sex reversal induced by aromatase inhibitor letrozole. Most importantly, Amh loss of function by RNA interference led to complete feminization of genetic male (ZZ) gonads, suppression of the testicular marker Sox9, and upregulation of the ovarian regulator Cyp19a1 Conversely, overexpression of Amh in ZW embryos resulted in female-to-male sex reversal, characterized by the formation of a testis structure, ectopic activation of Sox9, and a remarkable decline in Cyp19a1 Collectively, these findings provide the first solid evidence that Amh is both necessary and sufficient to drive testicular development in a reptilian species, P. sinensis, highlighting the significance of the TGF-β pathway in reptilian sex determination.
Collapse
Affiliation(s)
- Yingjie Zhou
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Sun
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Han Cai
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Haisheng Bao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Yu Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Guoying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Chutian Ge
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
18
|
Zhou H, Zhuang ZX, Sun YQ, Chen Q, Zheng XY, Liang YT, Mahboob S, Wang Q, Zhang R, Al-Ghanim KA, Shao CW, Li YJ. Changes in DNA methylation during epigenetic-associated sex reversal under low temperature in Takifugu rubripes. PLoS One 2019; 14:e0221641. [PMID: 31454376 PMCID: PMC6711519 DOI: 10.1371/journal.pone.0221641] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/12/2019] [Indexed: 01/29/2023] Open
Abstract
DNA methylation has frequently been implicated in sex determination and differentiation in teleost species. In order to detect the DNA methylation patterns established during sexual differentiation in tiger pufferfish T. rubripes, we performed comprehensive whole genome methylation sequencing and analyses of the gonads of male, female, and pseudo male. We obtained a total of 33.12, 32.44, and 31.60 Gb clean data for male, female, and pseudo male, with a sequencing depth of 66.44×, 60.47× and 54.86×, respectively. The methylation level of cytosine (C) residues in the genomic DNA from gonads was 11.016%, 10.428%, and 11.083% in male, female, and pseudo male, respectively. More than 65% of C methylation was at CpG sites, and less than 1% was at CHG and CHH sites. In each regulatory element, there were low methylation levels on both sides of the transcription start site, and higher methylation levels in exons, introns, and downstream of genes. The highest mCpG was on chromosome 8 and the lowest mCpG was on chromosome 5. Comparisons of whole-genome DNA methylation between pairs of samples revealed that there were 3,173 differentially methylated regions (DMRs) between female and male, and 3,037 DMRs between male and pseudo male, corresponding to 0.232% and 0.223% of the length of the genome, respectively. There were only 1,635 DMRs between female and pseudo male, representing 0.127% of the length of the genome. A number of differentially methylated genes (DMGs) related to sex determination and differentiation were selected, such as amhr2 and pfcyp19a. After Bisulfite Sequencing PCR (BSP) verification, amhr2 was exhibited low methylation level in normal males and pseudo male, and high methylation level in normal females but pfcyp19a showed low methylation level in normal females and high methylation level in normal males and pseudo males. These results provide information about the molecular epigenetic mechanisms of DNA methylation during low-temperature induced masculinization of tiger pufferfish, and increase our understanding of the mechanisms of sex determination and differentiation in this important aquaculture fish species.
Collapse
Affiliation(s)
- He Zhou
- Key Laboratory of Marine Bio-resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian, China
- Key Laboratory of Mariculture, Agriculature Ministry, PRC, Dalian Ocean University, Dalian, China
| | - Zi-Xin Zhuang
- Key Laboratory of Marine Bio-resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian, China
- Key Laboratory of Mariculture, Agriculature Ministry, PRC, Dalian Ocean University, Dalian, China
| | - Yu-Qing Sun
- Key Laboratory of Marine Bio-resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian, China
- Key Laboratory of Mariculture, Agriculature Ministry, PRC, Dalian Ocean University, Dalian, China
| | - Qi Chen
- Key Laboratory of Marine Bio-resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian, China
- Key Laboratory of Mariculture, Agriculature Ministry, PRC, Dalian Ocean University, Dalian, China
| | - Xin-Yi Zheng
- Key Laboratory of Marine Bio-resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian, China
- Key Laboratory of Mariculture, Agriculature Ministry, PRC, Dalian Ocean University, Dalian, China
| | - Yu-Ting Liang
- Key Laboratory of Marine Bio-resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian, China
- Key Laboratory of Mariculture, Agriculature Ministry, PRC, Dalian Ocean University, Dalian, China
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, Sandi Arabia
| | - Qian Wang
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qindao, China
| | - Rui Zhang
- Key Laboratory of Marine Bio-resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian, China
- Key Laboratory of Mariculture, Agriculature Ministry, PRC, Dalian Ocean University, Dalian, China
| | - Khalid A. Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, Sandi Arabia
| | - Chang-Wei Shao
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qindao, China
- * E-mail: (Y.-J.L.); (C.-W.S)
| | - Ya-Juan Li
- Key Laboratory of Marine Bio-resources Sustainable Utilization in Liaoning Province’s University, Dalian Ocean University, Dalian, China
- Key Laboratory of Mariculture, Agriculature Ministry, PRC, Dalian Ocean University, Dalian, China
- * E-mail: (Y.-J.L.); (C.-W.S)
| |
Collapse
|
19
|
Rodríguez R, Felip A, Zanuy S, Carrillo M. Advanced puberty triggered by bi-weekly changes in reproductive factors during the photolabile period in a male teleost fish, Dicentrarchus labrax L. Gen Comp Endocrinol 2019; 275:82-93. [PMID: 30738863 DOI: 10.1016/j.ygcen.2019.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/16/2019] [Accepted: 02/06/2019] [Indexed: 11/24/2022]
Abstract
This study evaluated the impact of continuous light (LL) within the photolabile period on advanced puberty in juvenile male European sea bass. The exposure to an LL regime for 1 month, from August 15 to September 15 (LLa/s), was compared to a constant simulated natural photoperiod (NP) and constant continuous light conditions year-round (LLy). Somatic growth, hormone plasma levels, rates of testicular maturation and spermiation, as well as the mRNA levels of some reproductive genes were analyzed. Our results demonstrated that both LLa/s and LLy treatments, which include LL exposure during the photolabile period, were highly effective in inhibiting the gametogenesis process that affects testicular development, and clearly reduced the early sexual maturation of males. Exposure to an LL photoperiod affected body weight and length of juvenile fish during early gametogenesis and throughout the first year of life. Interestingly, LL induced bi-weekly changes in some reproductive factors affecting Gnrh1 and Gnrh2 content in the brain, and also reduced pituitary fshβ expression and plasmatic levels of 11-KT, E2, Fsh throughout early gametogenesis. We suggest that low levels of E2 in early September in the LL groups, which would be concomitant with the reduced number of spermatogonial mitoses in these groups, might indicate a putative role for estrogens in spermatogonial proliferation during the early gonadal development of this species. Furthermore, a significant decrease in amh expression was observed, coinciding with low plasma levels of 11-KT under LL regimes, which is consistent with the idea that this growth factor may be crucial for the progress of spermatogenesis in male sea bass.
Collapse
Affiliation(s)
- Rafael Rodríguez
- Fish Reproductive Physiology Group, Instituto de Acuicultura Torre de la Sal (IATS), Consejo Superior de Investigaciones Científicas (CSIC), Ribera de Cabanes s/n, 12595 Castelló, Spain
| | - Alicia Felip
- Fish Reproductive Physiology Group, Instituto de Acuicultura Torre de la Sal (IATS), Consejo Superior de Investigaciones Científicas (CSIC), Ribera de Cabanes s/n, 12595 Castelló, Spain.
| | - Silvia Zanuy
- Fish Reproductive Physiology Group, Instituto de Acuicultura Torre de la Sal (IATS), Consejo Superior de Investigaciones Científicas (CSIC), Ribera de Cabanes s/n, 12595 Castelló, Spain
| | - Manuel Carrillo
- Fish Reproductive Physiology Group, Instituto de Acuicultura Torre de la Sal (IATS), Consejo Superior de Investigaciones Científicas (CSIC), Ribera de Cabanes s/n, 12595 Castelló, Spain.
| |
Collapse
|
20
|
Zhang K, Xu J, Zhang Z, Huang Y, Ruan Z, Chen S, Zhu F, You X, Jia C, Meng Q, Gu R, Lin X, Xu J, Xu P, Zhang Z, Shi Q. A comparative transcriptomic study on developmental gonads provides novel insights into sex change in the protandrous black porgy (Acanthopagrus schlegelii). Genomics 2018; 111:277-283. [PMID: 30439483 DOI: 10.1016/j.ygeno.2018.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Protandrous black porgy (Acanthopagrus schlegelii) is a popular and valuable commercial marine fish in China and East Asian countries. Controlling and managing its breeding has been an imperative step towards obtaining a sustainable supply of this fish in aquaculture production systems. Therefore, study on the molecular mechanisms of sex change in black porgy has both scientific and commercial importance. Previously, we identified some candidate genes related to sex determination and differentiation from a high-quality genome assembly of the black porgy. In the present study, transcriptome sequencing of developmental gonads (including testis, ovotestis and ovary) of black porgy was performed to further investigate the sex-change mechanisms. Our results showed that the highly expressed male-related genes (dmrt1, piwi1, piwi2, sox9, sox30 and amh) at the male phase were significantly down-regulated to a substantial degree at the intersexual stage, and the female-related genes (jnk1, vasa, wnt4, figla and foxl2) were distinctly up-regulated when the fish grows into a female adult, suggesting the potential roles of these genes in sex change of the black porgy. These data also support a previous hypothesis that the femaleness will be switched on when the testis is entering the degenerated stage through the diminished dmrt1 expression. Our transcriptome data provide a very useful genomic resource for future studies on sex change and practical aquaculture in the black porgy.
Collapse
Affiliation(s)
- Kai Zhang
- School of Animal and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Jin Xu
- Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China
| | - Zhiwei Zhang
- Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Zhiqiang Ruan
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Shuyin Chen
- Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China
| | - Fei Zhu
- Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Chaofeng Jia
- Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China
| | - Qian Meng
- Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China
| | - Ruobo Gu
- BGI-Zhenjiang Institute of Hydrobiology, BGI Marine, Zhenjiang 212000, China.
| | - Xueqiang Lin
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; Hainan BGI Marine Science and Technology Co. Ltd., BGI Marine, Wenchang 571327, China.
| | - Junmin Xu
- BGI-Zhenjiang Institute of Hydrobiology, BGI Marine, Zhenjiang 212000, China; School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan.
| | - Pao Xu
- Freshwater Fishery Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.
| | - Zhiyong Zhang
- Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China.
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; BGI-Zhenjiang Institute of Hydrobiology, BGI Marine, Zhenjiang 212000, China.
| |
Collapse
|
21
|
Breton TS, Kenter LW, Greenlaw K, Montgomery J, Goetz GW, Berlinsky DL, Luckenbach JA. Initiation of sex change and gonadal gene expression in black sea bass (Centropristis striata) exposed to exemestane, an aromatase inhibitor. Comp Biochem Physiol A Mol Integr Physiol 2018; 228:51-61. [PMID: 30414915 DOI: 10.1016/j.cbpa.2018.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 12/25/2022]
Abstract
Many teleost fishes exhibit sequential hermaphroditism, where male or female gonads develop first and later undergo sex change. Model sex change species are characterized by social hierarchies and coloration changes, which enable experimental manipulations to better understand these processes. However, other species such as the protogynous black sea bass (Centropristis striata) do not exhibit these characteristics and instead receive research attention due to their importance in fisheries or aquaculture. Black sea bass social structure is unknown, which makes sex change sampling difficult, and few molecular resources are available. The purpose of the present study was to induce sex change using exemestane, an aromatase inhibitor, and assess gonadal gene expression using sex markers (amh, zpc2) and genes involved in steroidogenesis (cyp19a1a, cyp11b), estrogen signaling (esr1, esr2b), and apoptosis or atresia (aen, casp9, fabp11, parg, pdcd4, rif1). Overall, dietary exemestane treatment was effective, and most exposed females exhibited early histological signs of sex change and significantly higher rates of ovarian atresia relative to control females. Genes associated with atresia did not reflect this, however, as expression patterns in sex changing gonads were overall similar to those of ovaries, likely due to a whole ovary dilution effect of the RNA. Still, small but insignificant expression decreases during early sex change were detected for ovary-related genes (aen, casp9, fabp11, zpc2) and anti-apoptotic factors (parg, rif1). Exemestane treatment did not impact spermatogenesis or testicular gene expression, but testes were generally characterized by elevated steroidogenic enzyme and estrogen receptor mRNAs. Further research will be needed to understand these processes in black sea bass, using isolated ovarian follicles and multiple stages of sex change.
Collapse
Affiliation(s)
- Timothy S Breton
- Division of Natural Sciences, University of Maine at Farmington, 173 High Street, Farmington, ME 04938, USA.
| | - Linas W Kenter
- Department of Biological Sciences, University of New Hampshire, 38 College Road, Durham, NH 03824, USA
| | - Katherine Greenlaw
- Division of Natural Sciences, University of Maine at Farmington, 173 High Street, Farmington, ME 04938, USA
| | - Jacob Montgomery
- Division of Natural Sciences, University of Maine at Farmington, 173 High Street, Farmington, ME 04938, USA
| | - Giles W Goetz
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - David L Berlinsky
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, 46 College Road, Durham, NH 03824, USA
| | - J Adam Luckenbach
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
22
|
Adolfi MC, Nakajima RT, Nóbrega RH, Schartl M. Intersex, Hermaphroditism, and Gonadal Plasticity in Vertebrates: Evolution of the Müllerian Duct and Amh/Amhr2 Signaling. Annu Rev Anim Biosci 2018; 7:149-172. [PMID: 30303691 DOI: 10.1146/annurev-animal-020518-114955] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In vertebrates, sex organs are generally specialized to perform a male or female reproductive role. Acquisition of the Müllerian duct, which gives rise to the oviduct, together with emergence of the Amh/Amhr2 system favored evolution of viviparity in jawed vertebrates. Species with high sex-specific reproductive adaptations have less potential to sex reverse, making intersex a nonfunctional condition. Teleosts, the only vertebrate group in which hermaphroditism evolved as a natural reproductive strategy, lost the Müllerian duct during evolution. They developed for gamete release complete independence from the urinary system, creating optimal anatomic and developmental preconditions for physiological sex change. The common and probably ancestral role of Amh is related to survival and proliferation of germ cells in early and adult gonads of both sexes rather than induction of Müllerian duct regression. The relationship between germ cell maintenance and sex differentiation is most evident in species in which Amh became the master male sex-determining gene.
Collapse
Affiliation(s)
- Mateus Contar Adolfi
- Physiological Chemistry, Biocenter, University of Würzburg, D-97074 Würzburg, Germany;
| | - Rafael Takahiro Nakajima
- Integrative Genomics Laboratory, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo 01049-010, Brazil;
| | - Rafael Henrique Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo 01049-010, Brazil;
| | - Manfred Schartl
- Physiological Chemistry, Biocenter, University of Würzburg, D-97074 Würzburg, Germany; .,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, 97074 Würzburg, Germany.,Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas 77843, USA;
| |
Collapse
|
23
|
Domingos JA, Budd AM, Banh QQ, Goldsbury JA, Zenger KR, Jerry DR. Sex-specific dmrt1 and cyp19a1 methylation and alternative splicing in gonads of the protandrous hermaphrodite barramundi. PLoS One 2018; 13:e0204182. [PMID: 30226860 PMCID: PMC6143260 DOI: 10.1371/journal.pone.0204182] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/03/2018] [Indexed: 01/06/2023] Open
Abstract
Epigenetics is involved in sex differentiation of gonochoristic and hermaphroditic fish species, whereby two genes dmrt1 (pro-male) and cyp19a1 (pro-female) are known to play major roles. Barramundi, Lates calcarifer, is an important tropical aquaculture species that undergo natural and permanent male to female sex change, a process for which the exact underlying molecular mechanisms are still unknown. To elucidate whether DNA methylation is involved in sex control of barramundi, a next-generation bisulfite amplicon sequencing approach was used to target 146 CpG sites within proximal promoters and first exons of seven sex-related genes (dmrt1, cyp19a1, amh, foxl2, nr5a2, sox8 and sox9) of 24 testis and 18 ovaries of captive and wild adult barramundi. Moreover, comparative expression profiles of the key dmrt1 and cyp19a1 genes were further investigated using RT-qPCR and Sanger sequencing approaches, whereas expression levels of remaining targeted genes were based on available literature for the species. Results showed that cyp19a1 and amh were more methylated in males, whereas dmrt1 and nr5a2 were more methylated in females (P < 0.001), with no gender differences found for foxl2, sox8 or sox9 genes (P > 0.05). Sex-biased promoter DNA methylation was inversely related to gene expression only for dmrt1 and nr5a2, and directly related to amh expression, whereas no differences in cyp19a1 expression were found between testes and ovaries. Notably, unique sex-specific alternative splicing of dmrt1 and cyp19a1 were discovered, whereby males lacked the full-length aromatase coding cyp19a1 mRNA due to partial or total exon splicing, and females lacked the dmrt1 exon containing the DM-domain sequence. This study advances the current knowledge aiming to elucidate the genetic mechanisms within male and female gonads of this large protandrous hermaphrodite by providing the first evidence of epigenetics and alternative splicing simultaneously affecting key genes (cyp19a1 and dmrt1) central to sex differentiation pathways.
Collapse
Affiliation(s)
- Jose A. Domingos
- Tropical Futures Institute, James Cook University Singapore, Singapore
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- * E-mail:
| | - Alyssa M. Budd
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Quyen Q. Banh
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Julie A. Goldsbury
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Kyall R. Zenger
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Dean R. Jerry
- Tropical Futures Institute, James Cook University Singapore, Singapore
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
24
|
Wu GC, Chang CF. Primary males guide the femaleness through the regulation of testicular Dmrt1 and ovarian Cyp19a1a in protandrous black porgy. Gen Comp Endocrinol 2018; 261:198-202. [PMID: 28188743 DOI: 10.1016/j.ygcen.2017.01.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 11/30/2022]
Abstract
Controlling the development of the sexes is critically important for the broodstock management in aquaculture. Sex steroids are widely used for sex control of fish. However, hermaphroditic fish have a plastic sex, and a stable sex is difficult to maintain with sex steroids. We used the black porgy (Acanthopagrus schlegelii) as a model to understand the possible mechanism of sexual fate decision. Low exogenous estradiol (E2) induced male development. In contrast, high exogenous E2 induced the regression of the testis and the development of the ovary and resulted in an unstable expression of femaleness (passive femaleness, with ovaries containing only the primary oocytes). The removal of testicular tissue by surgery resulted in the early development of vitellogenic oocytes and active femaleness. Our data also demonstrated that the male-to-female sex change is blocked by the maintenance of male function with gonadotropin-induced dmrt1 expression in the testis. Furthermore, our data also indicated that ovarian cyp19a1a expression is regulated by the testis through epigenetic modifications. Therefore, the primary male guides the femaleness in the protandrous black porgy and the transition of sexual fate from male to female is determined by the status of the testicular tissue.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Ocean, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Ocean, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
25
|
Wu GC, Li HW, Tey WG, Lin CJ, Chang CF. Expression profile of amh/Amh during bi-directional sex change in the protogynous orange-spotted grouper Epinephelus coioides. PLoS One 2017; 12:e0185864. [PMID: 29016690 PMCID: PMC5634590 DOI: 10.1371/journal.pone.0185864] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/20/2017] [Indexed: 01/13/2023] Open
Abstract
Gonadal differentiation is tightly regulated by the initial sex determining gene and the downstream sex-related genes in vertebrates. However, sex change in fish can alter the sexual fate from one sex to the other. Chemical-induced maleness in the protogynous orange-spotted grouper is transient, and a reversible sex change occurs after the chemical treatment is withdrawn. We used these characteristics to study Amh signaling during bi-directional sex change in the grouper. We successfully induced the female-to-male sex change by chemical (aromatase inhibitor, AI, or methyltestosterone, MT) treatment. A dormant gonad (a low proliferation rate of early germ cells and no characteristics of both sexes) was found during the transient phase of reversible male-to-female sex change after the withdrawal of chemical administration. Our results showed that amh (anti-mullerian hormone) and its receptor amhr2 (anti-mullerian hormone receptor type 2) were significantly increased in the gonads during the process of female-to-male sex change. Amh is expressed in the Sertoli cells surrounding the type A spermatogonia in the female-to-male grouper. Male-related gene (dmrt1 and sox9) expression was immediately decreased in MT-terminated males during the reversible male-to-female sex change. However, Amh expression was found in the surrounding cells of type A spermatogonia-like cells during the transient phase of reversible male-to-female sex change. This phenomenon is correlated with the dormancy of type A spermatogonia-like cells. Thus, Amh signaling is suggested to play roles in regulating male differentiation during the female-to-male sex change and in inhibiting type-A spermatogonia-like cell proliferation/differentiation during the reversible male-to-female sex change. We suggest that Amh signaling might play dual roles during bi-directional sex change in grouper.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail: (GCW); (CFC)
| | - Hau-Wen Li
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Wei-Guan Tey
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail: (GCW); (CFC)
| |
Collapse
|
26
|
Blázquez M, Medina P, Crespo B, Gómez A, Zanuy S. Identification of conserved genes triggering puberty in European sea bass males (Dicentrarchus labrax) by microarray expression profiling. BMC Genomics 2017; 18:441. [PMID: 28583077 PMCID: PMC5460432 DOI: 10.1186/s12864-017-3823-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/25/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spermatogenesis is a complex process characterized by the activation and/or repression of a number of genes in a spatio-temporal manner. Pubertal development in males starts with the onset of the first spermatogenesis and implies the division of primary spermatogonia and their subsequent entry into meiosis. This study is aimed at the characterization of genes involved in the onset of puberty in European sea bass, and constitutes the first transcriptomic approach focused on meiosis in this species. RESULTS European sea bass testes collected at the onset of puberty (first successful reproduction) were grouped in stage I (resting stage), and stage II (proliferative stage). Transition from stage I to stage II was marked by an increase of 11ketotestosterone (11KT), the main fish androgen, whereas the transcriptomic study resulted in 315 genes differentially expressed between the two stages. The onset of puberty induced 1) an up-regulation of genes involved in cell proliferation, cell cycle and meiosis progression, 2) changes in genes related with reproduction and growth, and 3) a down-regulation of genes included in the retinoic acid (RA) signalling pathway. The analysis of GO-terms and biological pathways showed that cell cycle, cell division, cellular metabolic processes, and reproduction were affected, consistent with the early events that occur during the onset of puberty. Furthermore, changes in the expression of three RA nuclear receptors point at the importance of the RA-signalling pathway during this period, in agreement with its role in meiosis. CONCLUSION The results contribute to boost our knowledge of the early molecular and endocrine events that trigger pubertal development and the onset of spermatogenesis in fish. These include an increase in 11KT plasma levels and changes in the expression of several genes involved in cell proliferation, cell cycle progression, meiosis or RA-signalling pathway. Moreover, the results can be applied to study meiosis in this economically important fish species for Mediterranean countries, and may help to develop tools for its sustainable aquaculture.
Collapse
Affiliation(s)
- Mercedes Blázquez
- Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain. .,Instituto de Ciencias del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Passeig Maritim 37-49, 08003, Barcelona, Spain.
| | - Paula Medina
- Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain.,Instituto de Ciencias del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Passeig Maritim 37-49, 08003, Barcelona, Spain.,Present address: Universidad de Antofagasta, Avda Angamos 601, Antofagasta, Chile
| | - Berta Crespo
- Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain.,Present address: UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Ana Gómez
- Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| | - Silvia Zanuy
- Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain.
| |
Collapse
|
27
|
Todd EV, Liu H, Muncaster S, Gemmell NJ. Bending Genders: The Biology of Natural Sex Change in Fish. Sex Dev 2016; 10:223-241. [PMID: 27820936 DOI: 10.1159/000449297] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Indexed: 11/19/2022] Open
Abstract
Sexual fate is no longer seen as an irreversible deterministic switch set during early embryonic development but as an ongoing battle for primacy between male and female developmental trajectories. That sexual fate is not final and must be actively maintained via continuous suppression of the opposing sexual network creates the potential for flexibility into adulthood. In many fishes, sexuality is not only extremely plastic, but sex change is a usual and adaptive part of the life cycle. Sequential hermaphrodites begin life as one sex, changing sometime later to the other, and include species capable of protandrous (male-to-female), protogynous (female-to-male), or serial (bidirectional) sex change. Natural sex change involves coordinated transformations across multiple biological systems, including behavioural, anatomical, neuroendocrine, and molecular axes. We here review the biological processes underlying this amazing transformation, focussing particularly on its molecular basis, which remains poorly understood, but where new genomic technologies are significantly advancing our understanding of how sex change is initiated and progressed at the molecular level. Knowledge of how a usually committed developmental process remains plastic in sequentially hermaphroditic fishes is relevant to understanding the evolution and functioning of sexual developmental systems in vertebrates generally, as well as pathologies of sexual development in humans.
Collapse
Affiliation(s)
- Erica V Todd
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
28
|
Otake S, Park MK. Expressional changes of AMH signaling system in the quail testis induced by photoperiod. Reproduction 2016; 152:575-589. [DOI: 10.1530/rep-16-0175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/31/2016] [Indexed: 12/29/2022]
Abstract
Gonadal sex differentiation proceeds by the interplay of various genes including the transcription factors and secretory factors in a complex network. The sex-differentiating genes are expressed not only during early sex differentiation but also throughout the gonadal development and even in the adult gonads. In addition, the evidence that they actually function in the adult gonads have been accumulated from the studies using the conditional knockout mice. However, many previous studies were focused on one single gene though those genes function in a network. In this study, the expressions of various sex-differentiating genes were analyzed simultaneously in the adult testis of the Japanese quail (Coturnix japonica), whose testicular functions are dramatically changed by altering the photoperiod, to elucidate the roles of them in the adult gonad. Anti-Müllerian hormone (AMH) was significantly upregulated in the regressed testis induced by the short-day condition. The expressions of the transcription factors that promoteAMHexpression in mammals (SF1,SOX9,WT1andGATA4) were also increased in the regressed testis. Moreover, AMH receptor (AMHR2) showed similar expression pattern to its ligand. We also analyzed the expressions of other transforming growth factor beta (TGFB) superfamily members and their receptors. The expressions of the ligands and receptors of TGFB family, and follistatin and betaglycan in addition to inhibin subunits were increased in the regressed testis. These results suggest that AMH is involved in the adult testicular functions of the Japanese quail together with other TGFB superfamily members.
Collapse
|
29
|
Sex Change in Clownfish: Molecular Insights from Transcriptome Analysis. Sci Rep 2016; 6:35461. [PMID: 27748421 PMCID: PMC5066260 DOI: 10.1038/srep35461] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022] Open
Abstract
Sequential hermaphroditism is a unique reproductive strategy among teleosts that is displayed mainly in fish species living in the coral reef environment. The reproductive biology of hermaphrodites has long been intriguing; however, very little is known about the molecular pathways underlying their sex change. Here, we provide the first de novo transcriptome analyses of a hermaphrodite teleost´s undergoing sex change in its natural environment. Our study has examined relative gene expression across multiple groups-rather than just two contrasting conditions- and has allowed us to explore the differential expression patterns throughout the whole process. Our analysis has highlighted the rapid and complex genomic response of the brain associated with sex change, which is subsequently transmitted to the gonads, identifying a large number of candidate genes, some well-known and some novel, involved in the process. The present study provides strong evidence of the importance of the sex steroidogenic machinery during sex change in clownfish, with the aromatase gene playing a central role, both in the brain and the gonad. This work constitutes the first genome-wide study in a social sex-changing species and provides insights into the genetic mechanism governing social sex change and gonadal restructuring in protandrous hermaphrodites.
Collapse
|
30
|
Wu GC, Li HW, Huang CH, Lin HJ, Lin CJ, Chang CF. The Testis Is a Primary Factor That Contributes to Epigenetic Modifications in the Ovaries of the Protandrous Black Porgy, Acanthopagrus schlegelii1. Biol Reprod 2016; 94:132. [DOI: 10.1095/biolreprod.115.137463] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 04/12/2016] [Indexed: 12/31/2022] Open
|
31
|
Rocha A, Zanuy S, Gómez A. Conserved Anti-Müllerian Hormone: Anti-Müllerian Hormone Type-2 Receptor Specific Interaction and Intracellular Signaling in Teleosts. Biol Reprod 2016; 94:141. [PMID: 27226310 DOI: 10.1095/biolreprod.115.137547] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/29/2016] [Indexed: 12/24/2022] Open
Abstract
In higher vertebrates, anti-Müllerian hormone (AMH) is required for Müllerian duct regression in fetal males. AMH is also produced during postnatal life in both sexes regulating steroidogenesis and early stages of folliculogenesis. Teleosts lack Müllerian ducts, but Amh has been identified in several species including European sea bass. However, information on Amh type-2 receptor (Amhr2), the specific receptor for Amh binding, is restricted to a couple of fish species. Here, we report on cloning sea bass amhr2, the production of a recombinant sea bass Amh, and the functional analysis of this ligand-receptor couple. Phylogenetic analysis revealed that sea bass amhr2 segregates with Amhr2 from other vertebrates. This piscine receptor is capable of activating Smad proteins. Antibodies raised against sea bass Amh were used to study native and recombinant Amh, revealing proteins in the range of 66-70 kDa corresponding to the full length Amh. Once proteolytically treated, recombinant sea bass Amh generates a 12 kDa C-terminal mature protein, suggesting that contrary to what has been described for other fish Amh proteins, this protein is processed in a similar way as mammalian AMH. The mature sea bass Amh is a biologically active protein able to bind sea bass Amhr2 and, surprisingly, also human AMHR2. In prepubertal sea bass testes, Amh was detected by immunohistochemistry mostly in Sertoli cells surrounding early germ-cell generations. During spermatogenesis, a weaker staining signal could be observed in Sertoli cells surrounding spermatocytes.
Collapse
Affiliation(s)
- Ana Rocha
- Instituto de Acuicultura de Torre la Sal (Consejo Superior de Investigaciones Científicas), Torre la Sal, Castellón, Spain
| | - Silvia Zanuy
- Instituto de Acuicultura de Torre la Sal (Consejo Superior de Investigaciones Científicas), Torre la Sal, Castellón, Spain
| | - Ana Gómez
- Instituto de Acuicultura de Torre la Sal (Consejo Superior de Investigaciones Científicas), Torre la Sal, Castellón, Spain
| |
Collapse
|
32
|
Li M, Sun Y, Zhao J, Shi H, Zeng S, Ye K, Jiang D, Zhou L, Sun L, Tao W, Nagahama Y, Kocher TD, Wang D. A Tandem Duplicate of Anti-Müllerian Hormone with a Missense SNP on the Y Chromosome Is Essential for Male Sex Determination in Nile Tilapia, Oreochromis niloticus. PLoS Genet 2015; 11:e1005678. [PMID: 26588702 PMCID: PMC4654491 DOI: 10.1371/journal.pgen.1005678] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022] Open
Abstract
Variation in the TGF-β signaling pathway is emerging as an important mechanism by which gonadal sex determination is controlled in teleosts. Here we show that amhy, a Y-specific duplicate of the anti-Müllerian hormone (amh) gene, induces male sex determination in Nile tilapia. amhy is a tandem duplicate located immediately downstream of amhΔ-y on the Y chromosome. The coding sequence of amhy was identical to the X-linked amh (amh) except a missense SNP (C/T) which changes an amino acid (Ser/Leu92) in the N-terminal region. amhy lacks 5608 bp of promoter sequence that is found in the X-linked amh homolog. The amhΔ-y contains several insertions and deletions in the promoter region, and even a 5 bp insertion in exonVI that results in a premature stop codon and thus a truncated protein product lacking the TGF-β binding domain. Both amhy and amhΔ-y expression is restricted to XY gonads from 5 days after hatching (dah) onwards. CRISPR/Cas9 knockout of amhy in XY fish resulted in male to female sex reversal, while mutation of amhΔ-y alone could not. In contrast, overexpression of Amhy in XX fish, using a fosmid transgene that carries the amhy/amhΔ-y haplotype or a vector containing amhy ORF under the control of CMV promoter, resulted in female to male sex reversal, while overexpression of AmhΔ-y alone in XX fish could not. Knockout of the anti-Müllerian hormone receptor type II (amhrII) in XY fish also resulted in 100% complete male to female sex reversal. Taken together, these results strongly suggest that the duplicated amhy with a missense SNP is the candidate sex determining gene and amhy/amhrII signal is essential for male sex determination in Nile tilapia. These findings highlight the conserved roles of TGF-β signaling pathway in fish sex determination. Unlike mammals, the identity of the master sex-determining gene varies among fish species, and it is not yet clear if there is a common molecular pathway regulating gonadal sex determination across teleosts. Here we show that a Y-linked duplicate of the anti-Mullerian hormone (amhy) is essential for male sex determination in tilapia. Mutation of amhy resulted in male to female sex reversal, while overexpression of it resulted in female to male sex reversal. A missense single nucleotide polymorphisms (SNP) (C/T) in the open reading frame (ORF) of amhy might contribute to male sex determination in tilapia. Knockout of the anti-Müllerian hormone receptor type II (amhrII) also resulted in male to female sex reversal. Taken the amhy in Patagonian pejerrey, amhrII in Takifugu rubripes, gsdfY in Oryzias luzonensis into consideration, these data highlight an important role for TGF-β signaling in teleost sex determination.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Yunlv Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Jiue Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Hongjuan Shi
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Sheng Zeng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Kai Ye
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Dongneng Jiang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Yoshitaka Nagahama
- Solution-Oriented Research for Science and Technology (SORST), Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan; South Ehime Fisheries Research Center, Ehime University, Matsuyama, Japan
| | - Thomas D. Kocher
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
33
|
Hu Q, Guo W, Gao Y, Tang R, Li D. Molecular cloning and characterization of amh and dax1 genes and their expression during sex inversion in rice-field eel Monopterus albus. Sci Rep 2015; 5:16667. [PMID: 26578091 PMCID: PMC4649613 DOI: 10.1038/srep16667] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 10/19/2015] [Indexed: 11/25/2022] Open
Abstract
The full-length cDNAs of amh and dax1 in the hermaphrodite, rice-field eel (Monopterus albus), were cloned and characterized in this study. Multiple sequence alignment revealed Dax1 was well conserved among vertebrates, whereas Amh had a low degree of similarity between different vertebrates. Their expression profiles in gonads during the course of sex inversion and tissues were investigated. The tissue distribution indicated amh was expressed mostly in gonads and was scarcely detectable in other tissues, whereas the expression of dax1 was widespread among the different tissues, especially liver and gonads. amh was scarcely detectable in ovaries whereas it was abundantly expressed in both ovotestis and testis. By contrast, dax1 was highly expressed in ovaries, especially in ♀IV (ovaries in IV stage), but it was decreased significantly in ♀/♂I (ovotestis in I stage). Its expression was increased again in ♀/♂III (ovotestis in III stage), and then decreased to a low level in testis. These significant different expression patterns of amh and dax1 suggest the increase of amh expression and the decline of dax1 expression are important for the activation of testis development, and the high level of amh and a low level of dax1 expression are necessary for maintenance of testis function.
Collapse
Affiliation(s)
- Qing Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.,Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| | - Wei Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.,Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| | - Yu Gao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.,Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.,Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.,Life Science College, Hunan University of Arts and Science, Changde 415000, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.,Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| |
Collapse
|
34
|
Pfennig F, Standke A, Gutzeit HO. The role of Amh signaling in teleost fish--Multiple functions not restricted to the gonads. Gen Comp Endocrinol 2015; 223:87-107. [PMID: 26428616 DOI: 10.1016/j.ygcen.2015.09.025] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022]
Abstract
This review summarizes the important role of Anti-Müllerian hormone (Amh) during gonad development in fishes. This Tgfβ-domain bearing hormone was named after one of its known functions, the induction of the regression of Müllerian ducts in male mammalian embryos. Later in development it is involved in male and female gonad differentiation and extragonadal expression has been reported in mammals as well. Teleosts lack Müllerian ducts, but they have amh orthologous genes. amh expression is reported from 21 fish species and possible regulatory interactions with further factors like sex steroids and gonadotropic hormones are discussed. The gonadotropin Fsh inhibits amh expression in all fish species studied. Sex steroids show no consistent influence on amh expression. Amh is produced in male Sertoli cells and female granulosa cells and inhibits germ cell proliferation and differentiation as well as steroidogenesis in both sexes. Therefore, Amh might be a central player in gonad development and a target of gonadotropic Fsh. Furthermore, there is evidence that an Amh-type II receptor is involved in germ cell regulation. Amh and its corresponding type II receptor are also present in brain and pituitary, at least in some teleosts, indicating additional roles of Amh effects in the brain-pituitary-gonadal axis. Unraveling Amh signaling is important in stem cell research and for reproduction as well as for aquaculture and in environmental science.
Collapse
Affiliation(s)
- Frank Pfennig
- Institut für Zoologie, TU Dresden, D-01062 Dresden, Germany.
| | - Andrea Standke
- Institut für Zoologie, TU Dresden, D-01062 Dresden, Germany
| | | |
Collapse
|
35
|
McLennan IS, Pankhurst MW. Anti-Müllerian hormone is a gonadal cytokine with two circulating forms and cryptic actions. J Endocrinol 2015; 226:R45-57. [PMID: 26163524 DOI: 10.1530/joe-15-0206] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2015] [Indexed: 12/23/2022]
Abstract
Anti-Müllerian hormone (AMH) is a multi-faceted gonadal cytokine. It is present in all vertebrates with its original function in phylogeny being as a regulator of germ cells in both sexes, and as a prime inducer of the male phenotype. Its ancient functions appear to be broadly conserved in mammals, but with this being obscured by its overt role in triggering the regression of the Müllerian ducts in male embryos. Sertoli and ovarian follicular cells primarily release AMH as a prohormone (proAMH), which forms a stable complex (AMHN,C) after cleavage by subtilisin/kexin-type proprotein convertases or serine proteinases. Circulating AMH is a mixture of proAMH and AMHN,C, suggesting that proAMH is activated within the gonads and putatively by its endocrine target-cells. The gonadal expression of the cleavage enzymes is subject to complex regulation, and the preliminary data suggest that this influences the relative proportions of proAMH and AMHN,C in the circulation. AMH shares an intracellular pathway with the bone morphogenetic protein (BMP) and growth differentiation factor (GDF) ligands. AMH is male specific during the initial stage of development, and theoretically should produce male biases throughout the body by adding a male-specific amplification of BMP/GDF signalling. Consistent with this, some of the male biases in neuron number and the non-sexual behaviours of mice are dependent on AMH. After puberty, circulating levels of AMH are similar in men and women. Putatively, the function of AMH in adulthood maybe to add a gonadal influence to BMP/GDF-regulated homeostasis.
Collapse
Affiliation(s)
- Ian S McLennan
- Department of AnatomyUniversity of Otago, PO Box 913, Dunedin 9054, New Zealand
| | - Michael W Pankhurst
- Department of AnatomyUniversity of Otago, PO Box 913, Dunedin 9054, New Zealand
| |
Collapse
|
36
|
Wu GC, Li HW, Luo JW, Chen C, Chang CF. The Potential Role of Amh to Prevent Ectopic Female Development in Testicular Tissue of the Protandrous Black Porgy, Acanthopagrus schlegelii1. Biol Reprod 2015; 92:158. [DOI: 10.1095/biolreprod.114.126953] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/03/2015] [Indexed: 11/01/2022] Open
|
37
|
Chauvigné F, Zapater C, Crespo D, Planas JV, Cerdà J. Fsh and Lh direct conserved and specific pathways during flatfish semicystic spermatogenesis. J Mol Endocrinol 2014; 53:175-90. [PMID: 25024405 DOI: 10.1530/jme-14-0087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The current view of the control of spermatogenesis by Fsh and Lh in non-mammalian vertebrates is largely based on studies carried out in teleosts with cystic and cyclic spermatogenesis. Much less is known concerning the specific actions of gonadotropins during semicystic germ cell development, a type of spermatogenesis in which germ cells are released into the tubular lumen where they transform into spermatozoa. In this study, using homologous gonadotropins and a candidate gene approach, for which the genes' testicular cell-type-specific expression was established, we investigated the regulatory effects of Fsh and Lh on gene expression during spermatogenesis in Senegalese sole (Solea senegalensis), a flatfish with asynchronous and semicystic germ cell development. During early spermatogenesis, Fsh and Lh upregulated steroidogenesis-related genes and nuclear steroid receptors, expressed in both somatic and germ cells, through steroid-dependent pathways, although Lh preferentially stimulated the expression of downstream genes involved in androgen and progestin syntheses. In addition, Lh specifically promoted the expression of spermatid-specific genes encoding spermatozoan flagellar proteins through direct interaction with the Lh receptor in these cells. Interestingly, at this spermatogenic stage, Fsh primarily regulated genes encoding Sertoli cell growth factors with potentially antagonistic effects on germ cell proliferation and differentiation through steroid mediation. During late spermatogenesis, fewer genes were regulated by Fsh or Lh, which was associated with a translational and posttranslational downregulation of the Fsh receptor in different testicular compartments. These results reveal that conserved and specialized gonadotropic pathways regulate semicystic spermatogenesis in flatfish, which may spatially adjust cell germ development to maintain a continuous reservoir of spermatids in the testis.
Collapse
Affiliation(s)
- François Chauvigné
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del MarConsejo Superior de Investigaciones Científicas (CSIC), Passeig marítim 37-49, 08003 Barcelona, SpainDepartament de Fisiologia i ImmunologiaFacultat de Biologia, Universitat de Barcelona, i Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
| | - Cinta Zapater
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del MarConsejo Superior de Investigaciones Científicas (CSIC), Passeig marítim 37-49, 08003 Barcelona, SpainDepartament de Fisiologia i ImmunologiaFacultat de Biologia, Universitat de Barcelona, i Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
| | - Diego Crespo
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del MarConsejo Superior de Investigaciones Científicas (CSIC), Passeig marítim 37-49, 08003 Barcelona, SpainDepartament de Fisiologia i ImmunologiaFacultat de Biologia, Universitat de Barcelona, i Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
| | - Josep V Planas
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del MarConsejo Superior de Investigaciones Científicas (CSIC), Passeig marítim 37-49, 08003 Barcelona, SpainDepartament de Fisiologia i ImmunologiaFacultat de Biologia, Universitat de Barcelona, i Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
| | - Joan Cerdà
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del MarConsejo Superior de Investigaciones Científicas (CSIC), Passeig marítim 37-49, 08003 Barcelona, SpainDepartament de Fisiologia i ImmunologiaFacultat de Biologia, Universitat de Barcelona, i Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
| |
Collapse
|
38
|
Manousaki T, Tsakogiannis A, Lagnel J, Sarropoulou E, Xiang JZ, Papandroulakis N, Mylonas CC, Tsigenopoulos CS. The sex-specific transcriptome of the hermaphrodite sparid sharpsnout seabream (Diplodus puntazzo). BMC Genomics 2014; 15:655. [PMID: 25099474 PMCID: PMC4133083 DOI: 10.1186/1471-2164-15-655] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/30/2014] [Indexed: 12/13/2022] Open
Abstract
Background Teleosts are characterized by a remarkable breadth of sexual mechanisms including various forms of hermaphroditism. Sparidae is a fish family exhibiting gonochorism or hermaphroditism even in closely related species. The sparid Diplodus puntazzo (sharpsnout seabream), exhibits rudimentary hermaphroditism characterized by intersexual immature gonads but single-sex mature ones. Apart from the intriguing reproductive biology, it is economically important with a continuously growing aquaculture in the Mediterranean Sea, but limited available genetic resources. Our aim was to characterize the expressed transcriptome of gonads and brains through RNA-Sequencing and explore the properties of genes that exhibit sex-biased expression profiles. Results Through RNA-Sequencing we obtained an assembled transcriptome of 82,331 loci. The expression analysis uncovered remarkable differences between male and female gonads, while male and female brains were almost identical. Focused search for known targets of sex determination and differentiation in vertebrates built the sex-specific expression profile of sharpsnout seabream. Finally, a thorough genetic marker discovery pipeline led to the retrieval of 85,189 SNPs and 29,076 microsatellites enriching the available genetic markers for this species. Conclusions We obtained a nearly complete source of transcriptomic sequence as well as marker information for sharpsnout seabream, laying the ground for understanding the complex process of sex differentiation of this economically valuable species. The genes involved include known candidates from other vertebrate species, suggesting a conservation of the toolkit between gonochorists and hermaphrodites. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-655) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Costas S Tsigenopoulos
- Institute of Marine Biology, Biotechnology and Aquaculture (I,M,B,B,C,), Hellenic Centre for Marine Research (H,C,M,R,), Heraklion, Greece.
| |
Collapse
|
39
|
Shen ZG, Wang HP. Molecular players involved in temperature-dependent sex determination and sex differentiation in Teleost fish. Genet Sel Evol 2014; 46:26. [PMID: 24735220 PMCID: PMC4108122 DOI: 10.1186/1297-9686-46-26] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 03/24/2014] [Indexed: 12/11/2022] Open
Abstract
The molecular mechanisms that underlie sex determination and differentiation are conserved and diversified. In fish species, temperature-dependent sex determination and differentiation seem to be ubiquitous and molecular players involved in these mechanisms may be conserved. Although how the ambient temperature transduces signals to the undifferentiated gonads remains to be elucidated, the genes downstream in the sex differentiation pathway are shared between sex-determining mechanisms. In this paper, we review recent advances on the molecular players that participate in the sex determination and differentiation in fish species, by putting emphasis on temperature-dependent sex determination and differentiation, which include temperature-dependent sex determination and genetic sex determination plus temperature effects. Application of temperature-dependent sex differentiation in farmed fish and the consequences of temperature-induced sex reversal are discussed.
Collapse
Affiliation(s)
| | - Han-Ping Wang
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, Ohio 45661, USA.
| |
Collapse
|
40
|
Shao C, Li Q, Chen S, Zhang P, Lian J, Hu Q, Sun B, Jin L, Liu S, Wang Z, Zhao H, Jin Z, Liang Z, Li Y, Zheng Q, Zhang Y, Wang J, Zhang G. Epigenetic modification and inheritance in sexual reversal of fish. Genome Res 2014; 24:604-15. [PMID: 24487721 PMCID: PMC3975060 DOI: 10.1101/gr.162172.113] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Environmental sex determination (ESD) occurs in divergent, phylogenetically unrelated taxa, and in some species, co-occurs with genetic sex determination (GSD) mechanisms. Although epigenetic regulation in response to environmental effects has long been proposed to be associated with ESD, a systemic analysis on epigenetic regulation of ESD is still lacking. Using half-smooth tongue sole (Cynoglossus semilaevis) as a model—a marine fish that has both ZW chromosomal GSD and temperature-dependent ESD—we investigated the role of DNA methylation in transition from GSD to ESD. Comparative analysis of the gonadal DNA methylomes of pseudomale, female, and normal male fish revealed that genes in the sex determination pathways are the major targets of substantial methylation modification during sexual reversal. Methylation modification in pseudomales is globally inherited in their ZW offspring, which can naturally develop into pseudomales without temperature incubation. Transcriptome analysis revealed that dosage compensation occurs in a restricted, methylated cytosine enriched Z chromosomal region in pseudomale testes, achieving equal expression level in normal male testes. In contrast, female-specific W chromosomal genes are suppressed in pseudomales by methylation regulation. We conclude that epigenetic regulation plays multiple crucial roles in sexual reversal of tongue sole fish. We also offer the first clues on the mechanisms behind gene dosage balancing in an organism that undergoes sexual reversal. Finally, we suggest a causal link between the bias sex chromosome assortment in the offspring of a pseudomale family and the transgenerational epigenetic inheritance of sexual reversal in tongue sole fish.
Collapse
Affiliation(s)
- Changwei Shao
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ravi P, Jiang J, Liew WC, Orbán L. Small-scale transcriptomics reveals differences among gonadal stages in Asian seabass (Lates calcarifer). Reprod Biol Endocrinol 2014; 12:5. [PMID: 24405829 PMCID: PMC3896769 DOI: 10.1186/1477-7827-12-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/25/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The Asian seabass (Lates calcarifer) is a protandrous hermaphrodite that typically matures as a male at approximately 2-4 years of age and then changes sex in subsequent years. Although several sexual maturation stages have been described histologically for both testis and ovary, the underlying gene expression profiles remain lacking. The development of a gene expression platform is therefore necessary to improve our understanding of the gonad development of this cultured teleost species. METHODS Thirty Asian seabass gonads were collected from farms in Singapore, examined histologically and staged according to their sex and gonadal maturation status. Partial coding sequences of 24 sex-related genes were cloned using degenerate primers and were sequenced. Additional 13 cDNA sequences were obtained through next-generation sequencing. A real-time qPCR was then performed using the microfluidic-based Fluidigm 48.48 Dynamic arrays. RESULTS We obtained 17 ovaries and 13 testes at various stages of sexual maturation. Of the 37 genes that were tested, 32 (86%) showed sexually dimorphic expression. These genes included sex-related genes, sox9, wt1, amh, nr5a2, dmrt1 and nr0b1, which showed testis-enhanced expression similar to other vertebrate species. Known male- and female-enhanced germ cells markers, which were established from studies in other species, similarly showed testis- and ovary-enhanced expression, respectively, in the Asian seabass. Three pro-Wnt signaling genes were also upregulated in the ovary, consistent with existing studies that suggested the role of Wnt signaling in ovarian differentiation in teleosts and mammals. The expression patterns of genes involved in steroidogenesis, retinoic acid metabolism, apoptosis and NF-κB signaling were also described. We were able to classify gonads according to sex and gonadal maturation stages, based on their small-scale transcriptomic profiles, and to uncover a wide variation in expression profiles among individuals of the same sex. CONCLUSIONS The analysis of a selected set of genes related to reproduction and in sufficient number of individuals using a qPCR array can elucidate new insights into the molecular mechanisms involved in Asian seabass gonad development. Given the conservation of gene expression patterns found in this study, these insights may also help us draw parallels with other teleosts.
Collapse
Affiliation(s)
- Preethi Ravi
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604, Singapore
- Present address: National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK, Bellary Road, Bangalore 560065, India
| | - Junhui Jiang
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
- Agri-Food and Veterinary Authority of Singapore, 5 Maxwell Rd, Singapore 069110, Singapore
| | - Woei Chang Liew
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604, Singapore
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore
| | - László Orbán
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
- Department of Animal Sciences and Animal Husbandry, Georgikon Faculty, University of Pannonia, H-8360, Keszthely, Hungary
| |
Collapse
|
42
|
Hattori RS, Strüssmann CA, Fernandino JI, Somoza GM. Genotypic sex determination in teleosts: insights from the testis-determining amhy gene. Gen Comp Endocrinol 2013; 192:55-9. [PMID: 23602719 DOI: 10.1016/j.ygcen.2013.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/18/2013] [Accepted: 03/26/2013] [Indexed: 01/22/2023]
Abstract
The master sex-determining genes identified so far in fishes are clearly not conserved, as evidenced by several unrelated genes reported to play critical roles in sex determination. In this study, we reviewed the molecular process of sex determination in the Patagonian pejerrey Odontesthes hatcheri, an emerging model due to the recent discovery that a Y-chromosome linked, duplicated copy of the anti-Müllerian hormone gene, amhy plays a pivotal role in sex determination. A comparative analysis with other newly found sex-determining genes of teleost fish, DMY/dmrt1bY, sdY, amhr2, and gsdf(Y) is performed and alternative ideas are proposed to explain the mechanism involved in the rise of various types of non-homologous sex-determining genes.
Collapse
Affiliation(s)
- Ricardo Shohei Hattori
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7 Minato, Tokyo, Japan.
| | | | | | | |
Collapse
|
43
|
Mankiewicz JL, Godwin J, Holler BL, Turner PM, Murashige R, Shamey R, Daniels HV, Borski RJ. Masculinizing effect of background color and cortisol in a flatfish with environmental sex-determination. Integr Comp Biol 2013; 53:755-65. [PMID: 23946267 DOI: 10.1093/icb/ict093] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Environmental sex-determination (ESD) is the phenomenon by which environmental factors regulate sex-determination, typically occurring during a critical period of early development. Southern flounder (Paralichthys lethostigma) exhibit temperature-dependent sex-determination that appears to be restricted to the presumed XX female genotype with the extremes of temperature, both high and low, skewing sex ratios toward males. In order to evaluate other environmental factors that may influence sex-determination, we investigated the influence of background color and cortisol on sex-determination in southern flounder. Experiments involving three sets of tanks, each painted a different color, were conducted at different temperatures using southern flounder of mixed XX-XY genotype. The studies involved rearing juvenile southern flounder in either black, gray, or blue tanks and sex-determination was assessed by gonadal histology. In both studies, blue tanks showed significant male-biased sex ratios (95 and 75% male) compared with black and gray tanks. The stress corticosteroid cortisol may mediate sex-determining processes associated with environmental variables. Cortisol from the whole body was measured throughout the second experiment and fishes in blue tanks had higher levels of cortisol during the period of sex-determination. These data suggest that background color can be a cue for ESD, with blue acting as a stressor during the period of sex-determination, and ultimately producing male-skewed populations. In a separate study using XX populations of southern flounder, cortisol was applied at 0, 100, or 300 mg/kg of gelatin-coated feed. Fish were fed intermittently prior to, and just through, the period of sex-determination. Levels of gonadal P450 aromatase (cyp19a1) and forkhead transcription factor L2 (FoxL2) messenger RNA (mRNA) were measured by qRT-PCR as markers for differentiation into females. Müllerian-inhibiting substance mRNA was used as a marker of males' gonadal development. Control fish showed female-biased sex ratios approaching 100%, whereas treatment with 100 mg/kg cortisol produced 28.57% females and treatment with 300 mg/kg cortisol produced only 13.33% females. These results suggest that cortisol is a critical mediator of sex-determination in southern flounder by promoting masculinization. This linkage between the endocrine stress axis and conserved sex-determination pathways may provide a mechanism for adaptive modification of sex ratio in a spatially and temporally variable environment.
Collapse
Affiliation(s)
- Jamie L Mankiewicz
- *Department of Biology, Box 7617, North Carolina State University, Raleigh, NC 27695-7617, USA; Textile Engineering, Chemistry and Science, Box 8301, North Carolina State University, Raleigh, NC 27695-8301, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ribas L, Pardo BG, Fernández C, Alvarez-Diós JA, Gómez-Tato A, Quiroga MI, Planas JV, Sitjà-Bobadilla A, Martínez P, Piferrer F. A combined strategy involving Sanger and 454 pyrosequencing increases genomic resources to aid in the management of reproduction, disease control and genetic selection in the turbot (Scophthalmus maximus). BMC Genomics 2013; 14:180. [PMID: 23497389 PMCID: PMC3700835 DOI: 10.1186/1471-2164-14-180] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/27/2013] [Indexed: 02/02/2023] Open
Abstract
Background Genomic resources for plant and animal species that are under exploitation primarily for human consumption are increasingly important, among other things, for understanding physiological processes and for establishing adequate genetic selection programs. Current available techniques for high-throughput sequencing have been implemented in a number of species, including fish, to obtain a proper description of the transcriptome. The objective of this study was to generate a comprehensive transcriptomic database in turbot, a highly priced farmed fish species in Europe, with potential expansion to other areas of the world, for which there are unsolved production bottlenecks, to understand better reproductive- and immune-related functions. This information is essential to implement marker assisted selection programs useful for the turbot industry. Results Expressed sequence tags were generated by Sanger sequencing of cDNA libraries from different immune-related tissues after several parasitic challenges. The resulting database (“Turbot 2 database”) was enlarged with sequences generated from a 454 sequencing run of brain-hypophysis-gonadal axis-derived RNA obtained from turbot at different development stages. The assembly of Sanger and 454 sequences generated 52,427 consensus sequences (“Turbot 3 database”), of which 23,661 were successfully annotated. A total of 1,410 sequences were confirmed to be related to reproduction and key genes involved in sex differentiation and maturation were identified for the first time in turbot (AR, AMH, SRY-related genes, CYP19A, ZPGs, STAR FSHR, etc.). Similarly, 2,241 sequences were related to the immune system and several novel key immune genes were identified (BCL, TRAF, NCK, CD28 and TOLLIP, among others). The number of genes of many relevant reproduction- and immune-related pathways present in the database was 50–90% of the total gene count of each pathway. In addition, 1,237 microsatellites and 7,362 single nucleotide polymorphisms (SNPs) were also compiled. Further, 2,976 putative natural antisense transcripts (NATs) including microRNAs were also identified. Conclusions The combined sequencing strategies employed here significantly increased the turbot genomic resources available, including 34,400 novel sequences. The generated database contains a larger number of genes relevant for reproduction- and immune-associated studies, with an excellent coverage of most genes present in many relevant physiological pathways. This database also allowed the identification of many microsatellites and SNP markers that will be very useful for population and genome screening and a valuable aid in marker assisted selection programs.
Collapse
Affiliation(s)
- Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wu GC, Chang CF. The switch of secondary sex determination in protandrous black porgy, Acanthopagrus schlegeli. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:33-38. [PMID: 22411079 DOI: 10.1007/s10695-012-9618-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/09/2012] [Indexed: 05/31/2023]
Abstract
Hermaphrodites have both sexes during their life, including an initial primary sex determination and in later stage maintenance one of the sexual fates (secondary sex determination). Sex change (secondary sex determination) occurs in animals, but it is lost in amphibians through, mammals in vertebrates. Teleosts have various strategies and mechanisms of sex determination including genetic and environmental cues. However, the mechanisms by which the cues guide sex change are complicated in fish. This manuscript reviews our understanding of these processes in protandrous black porgy at the gonadal and neuroendocrine levels. Our studies addressed the process of sex change through brain-pituitary-gonad axis, and then secondary sex determination was switched by the fate of testis.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | | |
Collapse
|
46
|
Wu GC, Chang CF. Oocytes Survive in the Testis by Altering the Soma Fate from Male to Female in the Protandrous Black Porgy, Acanthopagrus schlegeli1. Biol Reprod 2013. [DOI: 10.1095/biolreprod.112.104398] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
47
|
Wu GC, Chiu PC, Lin CJ, Lyu YS, Lan DS, Chang CF. Testicular dmrt1 Is Involved in the Sexual Fate of the Ovotestis in the Protandrous Black Porgy1. Biol Reprod 2012; 86:41. [DOI: 10.1095/biolreprod.111.095695] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
48
|
Skaar KS, Nóbrega RH, Magaraki A, Olsen LC, Schulz RW, Male R. Proteolytically activated, recombinant anti-mullerian hormone inhibits androgen secretion, proliferation, and differentiation of spermatogonia in adult zebrafish testis organ cultures. Endocrinology 2011; 152:3527-40. [PMID: 21750047 DOI: 10.1210/en.2010-1469] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Anti-Müllerian hormone (Amh) is in mammals known as a TGFβ type of glycoprotein processed to yield a bioactive C-terminal homodimer that directs regression of Müllerian ducts in the male fetus and regulates steroidogenesis and early stages of folliculogenesis. Here, we report on the zebrafish Amh homologue. Zebrafish, as all teleost fish, do not have Müllerian ducts. Antibodies raised against the N- and C-terminal part of Amh were used to study the processing of endogenous and recombinant Amh. The N-terminally directed antibody detected a 27-kDa protein, whereas the C-terminally directed one recognized a 32-kDa protein in testes extracts, both apparently not glycosylated. The C-terminal fragment was present as a monomeric protein, because reducing conditions did not change its apparent molecular mass. Recombinant zebrafish Amh was cleaved with plasmin to N- and C-terminal fragments that after deglycosylation were similar in size to endogenous Amh fragments. Mass spectrometry and N-terminal sequencing revealed a 21-residue N-terminal leader sequence and a plasmin cleavage site after Lys or Arg within Lys-Arg-His at position 263-265, which produce theoretical fragments in accordance with the experimental results. Experiments using adult zebrafish testes tissue cultures showed that plasmin-cleaved, but not uncleaved, Amh inhibited gonadotropin-stimulated androgen production. However, androgens did not modulate amh expression that was, on the other hand, down-regulated by Fsh. Moreover, plasmin-cleaved Amh inhibited androgen-stimulated proliferation as well as differentiation of type A spermatogonia. In conclusion, zebrafish Amh is processed to become bioactive and has independent functions in inhibiting both steroidogenesis and spermatogenesis.
Collapse
Affiliation(s)
- K S Skaar
- Department of Molecular Biology, University of Bergen, P.O. Box 7800, N-5020 Bergen, Norway
| | | | | | | | | | | |
Collapse
|