1
|
Chakkingal Bhaskaran B, Meyermans R, Gorssen W, Van den Bogaert K, Bouhuijzen Wenger J, Maes GE, Buyse J, Janssens S, Buys N. Genome-wide transcriptome analysis reveals differentially expressed genes and key signalling pathways associated with cryptorchidism in pigs. Sci Rep 2025; 15:6307. [PMID: 39984550 PMCID: PMC11845729 DOI: 10.1038/s41598-025-90471-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/13/2025] [Indexed: 02/23/2025] Open
Abstract
Cryptorchidism, a prevalent congenital defect in pigs, raises animal welfare and economic concerns in the breeding industry. This study utilized a genome-wide transcriptome analysis, examining samples from the pituitary gland, cremaster muscle and testis of one-week-old piglets. In the cremaster muscle of cryptorchid piglets,1225 genes exhibited significant differential expression (log2FoldChange = |2.0|, p-adjusted value ≤ 0.01). Downregulated genes were linked to biological processes like muscle tissue development and actin cytoskeleton organization. Pathway analysis further revealed the suppression of metabolic pathways including 'Oxidative phosphorylation', 'TCA cycle' and 'Motor Proteins'. Notably, several genes integral to the motor protein pathway were significantly downregulated. Additionally, crucial genes in the noncanonical Wnt signalling pathway that regulates tissue morphogenesis and repair during the embryonic stage, were also suppressed. Our results indicate that a disruption in the normal testicular descent is accompanied by the suppression of major genes in the motor protein pathway, potentially hampering the presumed role of the cremaster muscle in testicular descent. However, we propose this to be a consequence of the down regulation of key genes in the noncanonical Wnt signalling pathway. Based on our findings, future research might be able to uncover causal mutations related to the expression of these genes.
Collapse
Affiliation(s)
- Bimal Chakkingal Bhaskaran
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Box 2472, Leuven, 3001, Belgium.
| | - Roel Meyermans
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Box 2472, Leuven, 3001, Belgium
| | - Wim Gorssen
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Box 2472, Leuven, 3001, Belgium
- Animal Genomics, Department of Environmental Systems Science, Universitätstrasse 2, Zurich, 8092, Switzerland
| | - Kasper Van den Bogaert
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Box 2472, Leuven, 3001, Belgium
| | - Jess Bouhuijzen Wenger
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Box 2472, Leuven, 3001, Belgium
| | | | - Johan Buyse
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Box 2472, Leuven, 3001, Belgium
| | - Steven Janssens
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Box 2472, Leuven, 3001, Belgium
| | - Nadine Buys
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Box 2472, Leuven, 3001, Belgium.
| |
Collapse
|
2
|
Liu S, Li Y, Huang D, Liu M, Zhang X, Zhao H, Liu H, Li Q, Chen Z. Single-Cell RNA-Seq and Histological Analysis Reveals Dynamic Lrig1 Expression During Salivary Gland Development. J Cell Physiol 2025; 240:e31487. [PMID: 39587709 DOI: 10.1002/jcp.31487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/28/2024] [Accepted: 11/05/2024] [Indexed: 11/27/2024]
Abstract
The development of the salivary gland (SG) is a complex process regulated by multiple signaling pathways in a spatiotemporal manner. Various stem/progenitor cell populations and respective cell lineages are involved in SG morphogenesis and postnatal maturation. Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) has been identified as critical regulator of stem cells by virtue of its ability to restrain stem cell proliferation, indicating its potential role in the development of several maxillofacial tissues and in the regulation of the quiescence in adult tissues. This study aimed to investigate the expression pattern and functions of Lrig1 in the developing and mature murine submandibular gland (SMG). To accomplish this objective, we collected the murine SMGs at different developmental stages and examined the expression pattern and levels of Lrig1 with qRT-PCR, immunofluorescent (IF) and RNAscope staining. We observed that Lrig1 was widely distributed in both epithelial and mesenchymal cells throughout embryonic and neonatal stages, with specific localization in the more mature epithelium. Furthermore, through single-cell RNA sequencing (scRNA-Seq) and IF techniques, we confirmed that LRIG1 is highly concentrated along with SMG progenitor markers in acinar and basal cells. Additionally, transcription factors (TFs) that could regulate LRIG1 expression were predicted from JASPAR databases and their motifs were identified by the UCSC browser's BLAT tool. Gene Ontology (GO) enrichment analyses on postnatal day 5 (PN5) scRNA-Seq data also provided insights into Lrig1's functions in SG development. Finally, we also conducted in vitro experiments on a human salivary gland (HSG) cell line to assess LRIG1's impact on HSG proliferation and migration, as well as its potential upstream regulatory TFs. Taken together, our study reveals that LRIG1 plays a vital role in SG development.
Collapse
Affiliation(s)
- Shumin Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuanyuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Delan Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ming Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinye Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hui Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qiuhui Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology & Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Reny SE, Mukherjee A, Mol PM. The curious case of testicular descent: factors controlling testicular descent with a note on cryptorchidism. AFRICAN JOURNAL OF UROLOGY 2023. [DOI: 10.1186/s12301-023-00342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Abstract
Background
The testicular descent is a uniquely complex process depending upon multiple factors like growth and reorganisation of the specific gonadal ligaments, hormones, etc., which interplay with each other. Though an unambiguous event, it is still laced with incredulity since the data interpretation were intermingled between different species creating more ambiguity in certain aspects of this process. In order to understand the aetiopathology of cryptorchidism the extensive study of the factors controlling the descent is necessitous.
Main body
Though testes originate in the abdomen, they migrate to an extra abdominal site the scrotum, which makes it vulnerable to pathological conditions associated with the descent. The hormones that play vital role in the first phase of descent are insulin-like hormone 3 (INSL3), Anti-müllerian hormone as well as testosterone, whereas androgens, genitofemoral nerve and its neurotransmitter calcitonin gene-related peptide (CGRP) influence the second phase. Despite the vast research regarding the complex nexus of events involving the descent there are disparities among the cross species studies. However all these discrepancies make testicular descent yet again fascinating and perplexing. Our aim is to provide a comprehensive review including recent advances which provides thorough coverage of anatomical and hormonal factors in the descent as well as cryptorchidism.
Conclusion
Though our understanding on testicular descent has evolved over the decades there still has obscurity surrounding it and the studies on the factors responsible for descent are becoming more intense with the time. Our knowledge on many factors such as INSL3 and CGRP is more established now; however, on the other hand the role of androgens still remains speculative. As the knowledge and understanding of the biological process of testicular descent increases it will pave ways to new treatment plans to treat cryptorchidism more effectively.
Collapse
|
4
|
Cao Y, Sun C, Huang J, Sun P, Wang L, He S, Liao J, Lu Z, Lu Y, Zhong C. Dysfunction of the Hippocampal-Lateral Septal Circuit Impairs Risk Assessment in Epileptic Mice. Front Mol Neurosci 2022; 15:828891. [PMID: 35571372 PMCID: PMC9103201 DOI: 10.3389/fnmol.2022.828891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Temporal lobe epilepsy, a chronic disease of the brain characterized by degeneration of the hippocampus, has impaired risk assessment. Risk assessment is vital for survival in complex environments with potential threats. However, the underlying mechanisms remain largely unknown. The intricate balance of gene regulation and expression across different brain regions is related to the structure and function of specific neuron subtypes. In particular, excitation/inhibition imbalance caused by hyperexcitability of glutamatergic neurons and/or dysfunction of GABAergic neurons, have been implicated in epilepsy. First, we estimated the risk assessment (RA) by evaluating the behavior of mice in the center of the elevated plus maze, and found that the kainic acid-induced temporal lobe epilepsy mice were specifically impaired their RA. This experiment evaluated approach-RA, with a forthcoming approach to the open arm, and avoid-RA, with forthcoming avoidance of the open arm. Next, results from free-moving electrophysiological recordings showed that in the hippocampus, ∼7% of putative glutamatergic neurons and ∼15% of putative GABAergic neurons were preferentially responsive to either approach-risk assessment or avoid-risk assessment, respectively. In addition, ∼12% and ∼8% of dorsal lateral septum GABAergic neurons were preferentially responsive to approach-risk assessment and avoid-risk assessment, respectively. Notably, during the impaired approach-risk assessment, the favorably activated dorsal dentate gyrus and CA3 glutamatergic neurons increased (∼9%) and dorsal dentate gyrus and CA3 GABAergic neurons decreased (∼7%) in the temporal lobe epilepsy mice. Then, we used RNA sequencing and immunohistochemical staining to investigate which subtype of GABAergic neuron loss may contribute to excitation/inhibition imbalance. The results show that temporal lobe epilepsy mice exhibit significant neuronal loss and reorganization of neural networks. In particular, the dorsal dentate gyrus and CA3 somatostatin-positive neurons and dorsal lateral septum cholecystokinin-positive neurons are selectively vulnerable to damage after temporal lobe epilepsy. Optogenetic activation of the hippocampal glutamatergic neurons or chemogenetic inhibition of the hippocampal somatostatin neurons directly disrupts RA, suggesting that an excitation/inhibition imbalance in the dHPC dorsal lateral septum circuit results in the impairment of RA behavior. Taken together, this study provides insight into epilepsy and its comorbidity at different levels, including molecular, cell, neural circuit, and behavior, which are expected to decrease injury and premature mortality in patients with epilepsy.
Collapse
Affiliation(s)
- Yi Cao
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chongyang Sun
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Jianyu Huang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Peng Sun
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- College of Electronic and Information Engineering, Hebei University, Baoding, China
| | - Lulu Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Shuyu He
- Shenzhen Children’s Hospital, China Medical University, Shenzhen, China
| | - Jianxiang Liao
- Epilepsy Center, Shenzhen Children’s Hospital, Shenzhen, China
| | - Zhonghua Lu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Yi Lu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Cheng Zhong
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
5
|
Evidence for existence of insulin-like factor 3 (INSL3) hormone-receptor system in the ovarian corpus luteum and extra-ovarian reproductive organs during pregnancy in goats. Cell Tissue Res 2021; 385:173-189. [PMID: 33590284 DOI: 10.1007/s00441-021-03410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/01/2021] [Indexed: 10/22/2022]
Abstract
Insulin-like factor 3 (INSL3), initially described as a male hormone, is expressed in female reproductive organs during the estrous cycle and pregnancy but its function has not yet been established. This study explores the function of INSL3 in pregnant Saanen goats by characterizing the expression dynamics of INSL3 and its receptor, relaxin family peptide receptor 2 (RXFP2) and by demonstrating specific INSL3 binding in reproductive organs, using molecular and immunological approaches and ligand-receptor interaction assays. We demonstrate that the corpus luteum (CL) acts as both a source and target of INSL3 in pregnant goats, while extra-ovarian reproductive organs serve as additional INSL3 targets. The expression of INSL3 and RXFP2 in the CL reached maximum levels in middle pregnancy, followed by a decrease in late pregnancy; in contrast, RXFP2 expression levels in extra-ovarian reproductive organs were higher in the mammary glands but lower in the uterus, cervix and placenta and did not significantly change during pregnancy. The functional RXFP2 enabling INSL3 to bind was identified as an ~ 85 kDa protein in both the CL and mammary glands and localized in large and small luteal cells in the CL and in tubuloalveolar and ductal epithelial cells in the mammary glands. Additionally, INSL3 also bound to multiple cell types expressing RXFP2 in the uterus, cervix and placenta in a hormone-specific and saturable manner. These results provide evidence that an active intra- and extra-ovarian INSL3 hormone-receptor system operates during pregnancy in goats.
Collapse
|
6
|
Abstract
Insulin-like 3 peptide (INSL3) is a member of the insulin-like peptide superfamily and is the only known physiological ligand of relaxin family peptide receptor 2 (RXFP2), a G protein-coupled receptor (GPCR). In mammals, INSL3 is primarily produced both in testicular Leydig cells and in ovarian theca cells, but circulating levels of the hormone are much higher in males than in females. The INSL3/RXFP2 system has an essential role in the development of the gubernaculum for the initial transabdominal descent of the testis and in maintaining proper reproductive health in men. Although its function in female physiology has been less well-characterized, it was reported that INSL3 deletion affects antral follicle development during the follicular phase of the menstrual cycle and uterus function. Since the discovery of its role in the reproductive system, the study of INSL3/RXFP2 has expanded to others organs, such as skeletal muscle, bone, kidney, thyroid, brain, and eye. This review aims to summarize the various advances in understanding the physiological function of this ligand-receptor pair since its first discovery and elucidate its future therapeutic potential in the management of various diseases.
Collapse
Affiliation(s)
- Maria Esteban-Lopez
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Miami, Florida, USA
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| |
Collapse
|
7
|
Wang Y, Gray DR, Robbins AK, Crowgey EL, Chanock SJ, Greene MH, McGlynn KA, Nathanson K, Turnbull C, Wang Z, Devoto M, Barthold JS. Subphenotype meta-analysis of testicular cancer genome-wide association study data suggests a role for RBFOX family genes in cryptorchidism susceptibility. Hum Reprod 2019; 33:967-977. [PMID: 29618007 DOI: 10.1093/humrep/dey066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/09/2018] [Indexed: 12/25/2022] Open
Abstract
STUDY QUESTION Can subphenotype analysis of genome-wide association study (GWAS) data from subjects with testicular germ cell tumor (TGCT) provide insight into cryptorchidism (undescended testis, UDT) susceptibility? SUMMARY ANSWER Suggestive intragenic GWAS signals common to UDT, TGCT case-case and TGCT case-control analyses occur in genes encoding RBFOX RNA-binding proteins (RBPs) and their neurodevelopmental targets. WHAT IS KNOWN ALREADY UDT is a strong risk factor for TGCT, but while genetic risk factors for TGCT are well-known, genetic susceptibility to UDT is poorly understood and appears to be more complex. STUDY DESIGN, SIZE, DURATION We performed a secondary subphenotype analysis of existing GWAS data from the Testicular Cancer Consortium (TECAC) and compared these results with our previously published UDT GWAS data, and with data previously acquired from studies of the fetal rat gubernaculum. PARTICIPANTS/MATERIALS, SETTING, METHODS Studies from the National Cancer Institute (NCI), United Kingdom (UK) and University of Pennsylvania (Penn) that enrolled white subjects were the source of the TGCT GWAS data. We completed UDT subphenotype case-case (TGCT/UDT vs TGCT/non-UDT) and case-control (TGCT/UDT vs control), collectively referred to as 'TECAC' analyses, followed by a meta-analysis comprising 129 TGCT/UDT cases, 1771 TGCT/non-UDT cases, and 3967 unaffected controls. We reanalyzed our UDT GWAS results comprising 844 cases and 2718 controls by mapping suggestive UDT and TECAC signals (defined as P < 0.001) to genes using Ingenuity Pathway Analysis (IPA®). We compared associated pathways and enriched gene categories common to all analyses after Benjamini-Hochberg multiple testing correction, and analyzed transcript levels and protein expression using qRT-PCR and rat fetal gubernaculum confocal imaging, respectively. MAIN RESULTS AND THE ROLE OF CHANCE We found suggestive signals within 19 genes common to all three analyses, including RBFOX1 and RBFOX3, neurodevelopmental paralogs that encode RBPs targeting (U)GCATG-containing transcripts. Ten of the 19 genes participate in neurodevelopment and/or contribute to risk of neurodevelopmental disorders. Experimentally predicted RBFOX gene targets were strongly overrepresented among suggestive intragenic signals for the UDT (117 of 628 (19%), P = 3.5 × 10-24), TECAC case-case (129 of 711 (18%), P = 2.5 × 10-27) and TECAC case-control (117 of 679 (17%), P = 2 × 10-21) analyses, and a majority of the genes common to all three analyses (12 of 19 (63%), P = 3 × 10-9) are predicted RBFOX targets. Rbfox1, Rbfox2 and their encoded proteins are expressed in the rat fetal gubernaculum. Predicted RBFOX targets are also enriched among transcripts differentially regulated in the fetal gubernaculum during normal development (P = 3 × 10-31), in response to in vitro hormonal stimulation (P = 5 × 10-45) and in the cryptorchid LE/orl rat (P = 2 × 10-42). LARGE SCALE DATA GWAS data included in this study are available in the database of Genotypes and Phenotypes (dbGaP accession numbers phs000986.v1.p1 and phs001349.v1p1). LIMITATIONS, REASONS FOR CAUTION These GWAS data did not reach genome-wide significance for any individual analysis. UDT appears to have a complex etiology that also includes environmental factors, and such complexity may require much larger sample sizes than are currently available. The current methodology may also introduce bias that favors false discovery of larger genes. WIDER IMPLICATIONS OF THE FINDINGS Common suggestive intragenic GWAS signals suggest that RBFOX paralogs and other neurodevelopmental genes are potential UDT risk candidates, and potential TGCT susceptibility modifiers. Enrichment of predicted RBFOX targets among differentially expressed transcripts in the fetal gubernaculum additionally suggests a role for this RBP family in regulation of testicular descent. As RBFOX proteins regulate alternative splicing of Calca to generate calcitonin gene-related peptide, a protein linked to development and function of the gubernaculum, additional studies that address the role of these proteins in UDT are warranted. STUDY FUNDING/COMPETING INTEREST(S) The Eunice Kennedy Shriver National Institute for Child Health and Human Development (R01HD060769); National Center for Research Resources (P20RR20173), National Institute of General Medical Sciences (P20GM103464), Nemours Biomedical Research, the Testicular Cancer Consortium (U01CA164947), the Intramural Research Program of the NCI, a support services contract HHSN26120130003C with IMS, Inc., the Abramson Cancer Center at Penn, National Cancer Institute (CA114478), the Institute of Cancer Research, UK and the Wellcome Trust Case-Control Consortium (WTCCC) 2. None of the authors reports a conflict of interest.
Collapse
Affiliation(s)
- Yanping Wang
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Dione R Gray
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Alan K Robbins
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Erin L Crowgey
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mark H Greene
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Katherine Nathanson
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Zhaoming Wang
- St. Jude Children's Research Hospital, Department of Computational Biology, Memphis, TN, USA
| | - Marcella Devoto
- Division of Genetics, Children's Hospital of Philadelphia and Departments of Biostatistics and Epidemiology, and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | | |
Collapse
|
8
|
Harrison SM, Bush NC, Wang Y, Mucher ZR, Lorenzo AJ, Grimsby GM, Schlomer BJ, Büllesbach EE, Baker LA. Insulin-Like Peptide 3 (INSL3) Serum Concentration During Human Male Fetal Life. Front Endocrinol (Lausanne) 2019; 10:596. [PMID: 31611843 PMCID: PMC6737488 DOI: 10.3389/fendo.2019.00596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/13/2019] [Indexed: 12/28/2022] Open
Abstract
Context: Insulin-like peptide 3 (INSL3), a protein hormone produced by Leydig cells, may play a crucial role in testicular descent as male INSL3 knockout mice have bilateral cryptorchidism. Previous studies have measured human fetal INSL3 levels in amniotic fluid only. Objective: To measure INSL3 serum levels and mRNA in fetal umbilical cord blood and fetal testes, respectively. Design: INSL3 concentrations were assayed on 50 μl of serum from male human fetal umbilical cord blood by a non-commercial highly sensitive and specific radioimmunoassay. For secondary confirmation, quantitative real-time PCR was used to measure INSL3 relative mRNA expression in 7 age-matched human fetal testes. Setting: UT Southwestern Medical Center, Dallas, TX and Medical University of South Carolina, Charleston, SC. Patients or other Participants: Twelve human male umbilical cord blood samples and 7 human male testes were obtained from fetuses 14-21 weeks gestation. Male sex was verified by leukocyte genomic DNA SRY PCR. Interventions: None. Main Outcome Measures: Human male fetal INSL3 cord blood serum concentrations and testicular relative mRNA expression. Results: INSL3 serum concentrations during human male gestational weeks 15-20 were 2-4 times higher than published prepubertal male levels and were 5-100 times higher than previous reports of INSL3 concentrations obtained from amniotic fluid. Testicular fetal INSL3 mRNA relative expression was low from weeks 14-16, rose significantly weeks 17 and 18, and returned to low levels at week 21. Conclusions: These findings further support the role of INSL3 in human testicular descent and could prove relevant in uncovering the pathophysiology of cryptorchidism.
Collapse
Affiliation(s)
- Steven M. Harrison
- Clinical R&D Sequencing Platform, Broad Institute, MIT and Harvard, Cambridge, MA, United States
| | | | - Yi Wang
- Endocrinology Division, Department of Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zachary R. Mucher
- Department of Urology, Memorial Hermann Health System, Houston, TX, United States
| | - Armando J. Lorenzo
- Department of Pediatric Urology, Hospital for Sick Children, Toronto, ON, Canada
| | | | - Bruce J. Schlomer
- Division of Pediatric Urology, Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Erika E. Büllesbach
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Linda A. Baker
- John W. Duckett MD Laboratory in Pediatric Urology, Division of Pediatric Urology, Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Linda A. Baker
| |
Collapse
|
9
|
Chen J, Sørensen HT, Miao M, Liang H, Ehrenstein V, Wang Z, Yuan W, Li J. Cryptorchidism and increased risk of neurodevelopmental disorders. J Psychiatr Res 2018; 96:153-161. [PMID: 29065375 DOI: 10.1016/j.jpsychires.2017.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/08/2017] [Accepted: 10/12/2017] [Indexed: 12/13/2022]
Abstract
Male congenital malformations as cryptorchidism may contribute to the development of neurodevelopmental disorders directly or via shared familial genetic and/or environmental factors, but the evidence is sparse. Using population-based health registries, we conducted a cohort study of all liveborn singleton boys in Denmark during 1979-2008. Boys with a diagnosis of cryptorchidism were categorized into the exposed cohort and the other boys into the unexposed comparison cohort. The outcomes were diagnoses of any neurodevelopmental disorders and their subtypes. We used Cox proportional hazards regression to compute hazard ratios (HRs), taking into consideration several potential confounders. Among 884,083 male infants, 27,505 received a diagnosis of cryptorchidism during follow-up. Boys with cryptorchidism were more likely to be diagnosed with intellectual disability (HR = 1.77; 95%confidence interval [CI]:1.59,1.97), autism spectrum disorders (ASD) (HR = 1.24; 95% CI:1.13,1.35), attention-deficit hyperactivity disorder (ADHD) (HR = 1.17; 95% CI: 1.08,1.26), anxiety (HR = 1.09; 95% CI: 1.01,1.17), and other behavioral/emotional disorders (HR = 1.16; 95% CI: 1.08,1.26) compared to boys without cryptorchidism. The observed risks of intellectual disability, ASD, and ADHD were increased further in boys with bilateral cryptorchidism. Except for anxiety, cryptorchid boys had higher risks of neurodevelopmental disorders than their non-cryptorchid full brothers. The observed increased risks were similar among boys who underwent orchiopexy, as well as among those with shorter waiting times for this surgery. Cryptorchidism may be associated with increased risks of intellectual disability, ASD, ADHD, and other behavioral/emotional disorders. Cryptorchidism and neurodevelopmental disorders may have shared genetic or in-utero/early postnatal risk factors, which need to be further investigated.
Collapse
Affiliation(s)
- Jianping Chen
- Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China; Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Toft Sørensen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Maohua Miao
- Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
| | - Hong Liang
- Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
| | - Vera Ehrenstein
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Ziliang Wang
- Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
| | - Wei Yuan
- Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China.
| | - Jiong Li
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Barthold JS, Ivell R. Perspective: A Neuro-Hormonal Systems Approach to Understanding the Complexity of Cryptorchidism Susceptibility. Front Endocrinol (Lausanne) 2018; 9:401. [PMID: 30083133 PMCID: PMC6065160 DOI: 10.3389/fendo.2018.00401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/28/2018] [Indexed: 12/26/2022] Open
Abstract
Nonsyndromic cryptorchidism is a common multifactorial, condition with long-term risks of subfertility and testicular cancer. Revealing the causes of cryptorchidism will likely improve prediction and prevention of adverse outcomes. Herein we provide our current perspective of cryptorchidism complexity in a synthesis of cumulative clinical and translational data generated by ourselves and others. From our recent comparison of genome-wide association study (GWAS) data of cryptorchidism with or without testicular germ cell tumor, we identified RBFOX family genes as candidate susceptibility loci. Notably, RBFOX proteins regulate production of calcitonin gene-related peptide (CGRP), a sensory neuropeptide linked to testicular descent in animal models. We also re-analyzed existing fetal testis transcriptome data from a rat model of inherited cryptorchidism (the LE/orl strain) for enrichment of Leydig cell progenitor genes. The majority are coordinately downregulated, consistent with known reduced testicular testosterone levels in the LE/orl fetus, and similarly suppressed in the gubernaculum. Using qRT-PCR, we found dysregulation of dorsal root ganglia (DRG) sensory transcripts ipsilateral to undescended testes. These data suggest that LE/orl cryptorchidism is associated with altered signaling in possibly related cell types in the testis and gubernaculum as well as DRG. Complementary rat and human studies thus lead us to propose a multi-level, integrated neuro-hormonal model of testicular descent. Variants in genes encoding RBFOX family proteins and/or their transcriptional targets combined with environmental exposures may disrupt this complex pathway to enhance cryptorchidism susceptibility. We believe that a systems approach is necessary to provide further insight into the causes and consequences of cryptorchidism.
Collapse
Affiliation(s)
- Julia S. Barthold
- Nemours Biomedical Research, Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- *Correspondence: Julia S. Barthold
| | - Richard Ivell
- School of Biosciences and School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
11
|
Pitia AM, Uchiyama K, Sano H, Kinukawa M, Minato Y, Sasada H, Kohsaka T. Functional insulin-like factor 3 (INSL3) hormone-receptor system in the testes and spermatozoa of domestic ruminants and its potential as a predictor of sire fertility. Anim Sci J 2016; 88:678-690. [PMID: 27592693 DOI: 10.1111/asj.12694] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/31/2016] [Accepted: 06/26/2016] [Indexed: 11/30/2022]
Abstract
Insulin-like factor 3 (INSL3) is essential for fetal testis descent, and has been implicated in the testicular and sperm functions in adult males; however, similar functions in domestic ruminants remain largely unknown. This study investigated the functional INSL3 hormone-receptor system in adult ruminant testes and spermatozoa, and explored its potential to diagnose the fertility of sires. Testes and spermatozoa were obtained from fertile bulls, rams and he-goats, whereas subfertile testes and spermatozoa were obtained only from bulls. As expected, INSL3 was visualized in Leydig cells, while we clearly demonstrated that the functional receptor, relaxin family peptide receptor 2 (RXFP2), enabling INSL3 to bind was identified in testicular germ cells and in the sperm equatorial segment of bulls, rams and he-goats. In comparison to fertile bulls, the percentage of INSL3- and RXFP2-expressing cells and their expression levels per cell were significantly reduced in the testes of subfertile bulls. In addition, the population of INSL3-binding spermatozoa was also significantly reduced in the semen of subfertile bulls. These results provide evidence for a functional INSL3 hormone-receptor system operating in ruminant testes and spermatozoa, and its potential to predict subfertility in sires.
Collapse
Affiliation(s)
- Ali M Pitia
- Division of Animal Resource Production, United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Laboratory of Animal Reproduction and Physiology, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Kyoko Uchiyama
- Division of Animal Reproduction, Maebashi Institute of Animal Science, Livestock Improvement Association of Japan (LIAJ), Maebashi, Japan
| | - Hiroaki Sano
- Department of Animal Science, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Masashi Kinukawa
- Division of Animal Reproduction, Maebashi Institute of Animal Science, Livestock Improvement Association of Japan (LIAJ), Maebashi, Japan
| | - Yoshiaki Minato
- Division of Animal Reproduction, Maebashi Institute of Animal Science, Livestock Improvement Association of Japan (LIAJ), Maebashi, Japan
| | - Hiroshi Sasada
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Tetsuya Kohsaka
- Division of Animal Resource Production, United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Laboratory of Animal Reproduction and Physiology, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
12
|
Leung MC, Phuong J, Baker NC, Sipes NS, Klinefelter GR, Martin MT, McLaurin KW, Setzer RW, Darney SP, Judson RS, Knudsen TB. Systems Toxicology of Male Reproductive Development: Profiling 774 Chemicals for Molecular Targets and Adverse Outcomes. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1050-61. [PMID: 26662846 PMCID: PMC4937872 DOI: 10.1289/ehp.1510385] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/24/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Trends in male reproductive health have been reported for increased rates of testicular germ cell tumors, low semen quality, cryptorchidism, and hypospadias, which have been associated with prenatal environmental chemical exposure based on human and animal studies. OBJECTIVE In the present study we aimed to identify significant correlations between environmental chemicals, molecular targets, and adverse outcomes across a broad chemical landscape with emphasis on developmental toxicity of the male reproductive system. METHODS We used U.S. EPA's animal study database (ToxRefDB) and a comprehensive literature analysis to identify 774 chemicals that have been evaluated for adverse effects on male reproductive parameters, and then used U.S. EPA's in vitro high-throughput screening (HTS) database (ToxCastDB) to profile their bioactivity across approximately 800 molecular and cellular features. RESULTS A phenotypic hierarchy of testicular atrophy, sperm effects, tumors, and malformations, a composite resembling the human testicular dysgenesis syndrome (TDS) hypothesis, was observed in 281 chemicals. A subset of 54 chemicals with male developmental consequences had in vitro bioactivity on molecular targets that could be condensed into 156 gene annotations in a bipartite network. CONCLUSION Computational modeling of available in vivo and in vitro data for chemicals that produce adverse effects on male reproductive end points revealed a phenotypic hierarchy across animal studies consistent with the human TDS hypothesis. We confirmed the known role of estrogen and androgen signaling pathways in rodent TDS, and importantly, broadened the list of molecular targets to include retinoic acid signaling, vascular remodeling proteins, G-protein coupled receptors (GPCRs), and cytochrome P450s. CITATION Leung MC, Phuong J, Baker NC, Sipes NS, Klinefelter GR, Martin MT, McLaurin KW, Setzer RW, Darney SP, Judson RS, Knudsen TB. 2016. Systems toxicology of male reproductive development: profiling 774 chemicals for molecular targets and adverse outcomes. Environ Health Perspect 124:1050-1061; http://dx.doi.org/10.1289/ehp.1510385.
Collapse
Affiliation(s)
- Maxwell C.K. Leung
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
- National Center for Computational Toxicology, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina
- Address correspondence to M.C.K. Leung, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA. Telephone: (919) 541-2721. E-mail: , or T.B. Knudsen, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA. Telephone: (919) 541-9776. E-mail:
| | - Jimmy Phuong
- National Center for Computational Toxicology, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina
| | | | - Nisha S. Sipes
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
- National Center for Computational Toxicology, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina
| | - Gary R. Klinefelter
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina
| | - Matthew T. Martin
- National Center for Computational Toxicology, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina
| | - Keith W. McLaurin
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
- National Center for Computational Toxicology, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina
| | - R. Woodrow Setzer
- National Center for Computational Toxicology, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina
| | - Sally Perreault Darney
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina
| | - Richard S. Judson
- National Center for Computational Toxicology, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina
| | - Thomas B. Knudsen
- National Center for Computational Toxicology, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina
- Address correspondence to M.C.K. Leung, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA. Telephone: (919) 541-2721. E-mail: , or T.B. Knudsen, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA. Telephone: (919) 541-9776. E-mail:
| |
Collapse
|
13
|
Barthold JS, Pugarelli J, MacDonald ML, Ren J, Adetunji MO, Polson SW, Mateson A, Wang Y, Sol-Church K, McCahan SM, Akins RE, Devoto M, Robbins AK. Polygenic inheritance of cryptorchidism susceptibility in the LE/orl rat. Mol Hum Reprod 2016; 22:18-34. [PMID: 26502805 PMCID: PMC4694052 DOI: 10.1093/molehr/gav060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/21/2015] [Accepted: 10/22/2015] [Indexed: 01/07/2023] Open
Abstract
STUDY HYPOTHESIS Susceptibility to inherited cryptorchidism in the LE/orl rat may be associated with genetic loci that influence developmental patterning of the gubernaculum by the fetal testis. STUDY FINDING Cryptorchidism in the LE/orl rat is associated with a unique combination of homozygous minor alleles at multiple loci, and the encoded proteins are co-localized with androgen receptor (AR) and Leydig cells in fetal gubernaculum and testis, respectively. WHAT IS KNOWN ALREADY Prior studies have shown aberrant perinatal gubernacular migration, muscle patterning defects and reduced fetal testicular testosterone in the LE/orl strain. In addition, altered expression of androgen-responsive, cytoskeletal and muscle-related transcripts in the LE/orl fetal gubernaculum suggest a role for defective AR signaling in cryptorchidism susceptibility. STUDY DESIGN, SAMPLES/MATERIALS, METHODS The long-term LE/orl colony and short-term colonies of outbred Crl:LE and Crl:SD, and inbred WKY/Ncrl rats were maintained for studies. Animals were intercrossed (LE/orl X WKY/Ncrl), and obligate heterozygotes were reciprocally backcrossed to LE/orl rats to generate 54 F2 males used for genotyping and/or linkage analysis. At least five fetuses per gestational time point from two or more litters were used for quantitative real-time RT-PCR (qRT-PCR) and freshly harvested embryonic (E) day 17 gubernaculum was used to generate conditionally immortalized cell lines. We completed genotyping and gene expression analyses using genome-wide microsatellite markers and single nucleotide polymorphism (SNP) arrays, PCR amplification, direct sequencing, restriction enzyme digest with fragment analysis, whole genome sequencing (WGS), and qRT-PCR. Linkage analysis was performed in Haploview with multiple testing correction, and qRT-PCR data were analyzed using ANOVA after log transformation. Imaging was performed using custom and commercial antibodies directed at candidate proteins in gubernaculum and testis tissues, and gubernaculum cell lines. MAIN RESULTS AND THE ROLE OF CHANCE LE/orl rats showed reduced fertility and fecundity, and higher risk of perinatal death as compared with Crl:LE rats, but there were no differences in breeding outcomes between normal and unilaterally cryptorchid males. Linkage analysis identified multiple peaks, and with selective breeding of outbred Crl:LE and Crl:SD strains for alleles within two of the most significant (P < 0.003) peaks on chromosomes 6 and 16, we were able to generate a non-LE/orl cryptorchid rat. Associated loci contain potentially functional minor alleles (0.25-0.36 in tested rat strains) including an exonic deletion in Syne2, a large intronic insertion in Ncoa4 (an AR coactivator) and potentially deleterious variants in Solh/Capn15, Ankrd28, and Hsd17b2. Existing WGS data indicate that homozygosity for these combined alleles does not occur in any other sequenced rat strain. We observed a modifying effect of the Syne2(del) allele on expression of other candidate genes, particularly Ncoa4, and for muscle and hormone-responsive transcripts. The selected candidate genes/proteins are highly expressed, androgen-responsive and/or co-localized with developing muscle and AR in fetal gubernaculum, and co-localized with Leydig cells in fetal testis. LIMITATIONS, REASONS FOR CAUTION The present study identified multiple cryptorchidism-associated linkage peaks in the LE/orl rat, containing potentially causal alleles. These are strong candidate susceptibility loci, but further studies are needed to demonstrate functional relevance to the phenotype. WIDER IMPLICATIONS OF THE FINDINGS Association data from both human and rat models of spontaneous, nonsyndromic cryptorchidism support a polygenic etiology of the disease. Both the present study and a human genome-wide association study suggest that common variants with weak effects contribute to susceptibility, and may exist in genes encoding proteins that participate in AR signaling in the developing gubernaculum. These findings have potential implications for the gene-environment interaction in the etiology of cryptorchidism. LARGE SCALE DATA Sequences were deposited in the Rat Genome Database (RGD, http://rgd.mcw.edu/). STUDY FUNDING AND COMPETING INTERESTS This work was supported by: R01HD060769 from the Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD), 2P20GM103446 and P20GM103464 from the National Institute of General Medical Sciences (NIGMS), and Nemours Biomedical Research. The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Julia Spencer Barthold
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Joan Pugarelli
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Madolyn L MacDonald
- Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Jia Ren
- Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Modupeore O Adetunji
- Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Shawn W Polson
- Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Abigail Mateson
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Yanping Wang
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Katia Sol-Church
- Biomolecular Core Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Suzanne M McCahan
- Bioinformatics Core, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Robert E Akins
- Tissue Engineering and Regenerative Medicine Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Marcella Devoto
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Department of Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Alan K Robbins
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| |
Collapse
|
14
|
Barthold JS, Wang Y, Kolon TF, Kollin C, Nordenskjöld A, Olivant Fisher A, Figueroa TE, BaniHani AH, Hagerty JA, Gonzaléz R, Noh PH, Chiavacci RM, Harden KR, Abrams DJ, Kim CE, Li J, Hakonarson H, Devoto M. Pathway analysis supports association of nonsyndromic cryptorchidism with genetic loci linked to cytoskeleton-dependent functions. Hum Reprod 2015; 30:2439-51. [PMID: 26209787 PMCID: PMC4573451 DOI: 10.1093/humrep/dev180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/16/2015] [Accepted: 06/30/2015] [Indexed: 12/30/2022] Open
Abstract
STUDY QUESTION What are the genetic loci that increase susceptibility to nonsyndromic cryptorchidism, or undescended testis? SUMMARY ANSWER A genome-wide association study (GWAS) suggests that susceptibility to cryptorchidism is heterogeneous, with a subset of suggestive signals linked to cytoskeleton-dependent functions and syndromic forms of the disease. WHAT IS KNOWN ALREADY Population studies suggest moderate genetic risk of cryptorchidism and possible maternal and environmental contributions to risk. Previous candidate gene analyses have failed to identify a major associated locus, although variants in insulin-like 3 (INSL3), relaxin/insulin-like family peptide receptor 2 (RXFP2) and other hormonal pathway genes may increase risk in a small percentage of patients. STUDY DESIGN, SIZE, DURATION This is a case-control GWAS of 844 boys with nonsyndromic cryptorchidism and 2718 control subjects without syndromes or genital anomalies, all of European ancestry. PARTICIPANTS/MATERIALS, SETTING, METHODS All boys with cryptorchidism were diagnosed and treated by a pediatric specialist. In the discovery phase, DNA was extracted from tissue or blood samples and genotyping performed using the Illumina HumanHap550 and Human610-Quad (Group 1) or OmniExpress (Group 2) platform. We imputed genotypes genome-wide, and combined single marker association results in meta-analyses for all cases and for secondary subphenotype analyses based on testis position, laterality and age, and defined genome-wide significance as P = 7 × 10(-9) to correct for multiple testing. Selected markers were genotyped in an independent replication group of European cases (n = 298) and controls (n = 324). We used several bioinformatics tools to analyze top (P < 10(-5)) and suggestive (P < 10(-3)) signals for significant enrichment of signaling pathways, cellular functions and custom gene lists after multiple testing correction. MAIN RESULTS AND THE ROLE OF CHANCE In the full analysis, we identified 20 top loci, none reaching genome-wide significance, but one passing this threshold in a subphenotype analysis of proximal testis position (rs55867206, near SH3PXD2B, odds ratio = 2.2 (95% confidence interval 1.7, 2.9), P = 2 × 10(-9)). An additional 127 top loci emerged in at least one secondary analysis, particularly of more severe phenotypes. Cytoskeleton-dependent molecular and cellular functions were prevalent in pathway analysis of suggestive signals, and may implicate loci encoding cytoskeletal proteins that participate in androgen receptor signaling. Genes linked to human syndromic cryptorchidism, including hypogonadotropic hypogonadism, and to hormone-responsive and/or differentially expressed genes in normal and cryptorchid rat gubernaculum, were also significantly overrepresented. No tested marker showed significant replication in an independent population. The results suggest heterogeneous, multilocus and potentially multifactorial susceptibility to nonsyndromic cryptorchidism. LIMITATIONS, REASONS FOR CAUTION The present study failed to identify genome-wide significant markers associated with cryptorchidism that could be replicated in an independent population, so further studies are required to define true positive signals among suggestive loci. WIDER IMPLICATIONS OF THE FINDINGS As the only GWAS to date of nonsyndromic cryptorchidism, these data will provide a basis for future efforts to understand genetic susceptibility to this common reproductive anomaly and the potential for additive risk from environmental exposures. STUDY FUNDING/COMPETING INTERESTS This work was supported by R01HD060769 (the Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD)), P20RR20173 (the National Center for Research Resources (NCRR), currently P20GM103464 from the National Institute of General Medical Sciences (NIGMS)), an Institute Development Fund to the Center for Applied Genomics at The Children's Hospital of Philadelphia, and Nemours Biomedical Research. The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Julia Spencer Barthold
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Yanping Wang
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Thomas F Kolon
- Division of Urology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Claude Kollin
- Department of Women's and Children's Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Agneta Nordenskjöld
- Department of Women's and Children's Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Alicia Olivant Fisher
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - T Ernesto Figueroa
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Ahmad H BaniHani
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Jennifer A Hagerty
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Ricardo Gonzaléz
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA Present address: Auf der Bult Kinder- und Jugendkrankenhaus, Hannover, Germany
| | - Paul H Noh
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA Present address: Division of Pediatric Urology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rosetta M Chiavacci
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kisha R Harden
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Debra J Abrams
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Cecilia E Kim
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jin Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcella Devoto
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
15
|
Expression of insulin-like factor 3 hormone-receptor system in the reproductive organs of male goats. Cell Tissue Res 2015; 362:407-20. [PMID: 26017634 DOI: 10.1007/s00441-015-2206-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
Relaxin-like factor (RLF), generally known as insulin-like factor 3 (INSL3), is essential for testis descent during fetal development. However, its role in adult males is not fully understood. We investigate the function of INSL3 in male Saanen goats by identifying cell types expressing its receptor, relaxin/insulin-like family peptide receptor (RXFP)2 and by characterizing the developmental expression pattern of INSL3 and RXFP2 and the binding of INSL3 to target cells in the male reproductive system. A highly specific RXFP2 antibody that co-localizes with an anti-FLAG antibody in HEK-293 cells recognizes RXFP2-transcript-expressing cells in the testis. INSL3 and RXFP2 mRNA expression is upregulated in the testis, starting from puberty. INSL3 mRNA and protein expression has been detected in Leydig cells, whereas RXFP2 mRNA and protein localize to Leydig cells, to meiotic and post-meiotic germ cells and to the epithelium and smooth muscle of the cauda epididymis and vas deferens. INSL3 binds to all of these tissues and cell types, with the exception of Leydig cells, in a hormone-specific and saturable manner. These results provide evidence for a functional intra- and extra-testicular INSL3 ligand-receptor system in adult male goats.
Collapse
|
16
|
Gáspár R, Deák BH, Klukovits A, Ducza E, Tekes K. Effects of nociceptin and nocistatin on uterine contraction. VITAMINS AND HORMONES 2015; 97:223-40. [PMID: 25677774 DOI: 10.1016/bs.vh.2014.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The presence and effects of nociceptin (N/OFQ) and nocistatin (NST) in the central nervous system have been reasonably well described, but less data are available on their peripheral functions. Besides their presence in several peripheral organs (white blood cells, airway, liver, skin, vascular and intestinal smooth muscles, ovary, and testis), they have been found in the pregnant myometrium in both rat and human. The level of their precursor prepronociceptin is elevated in the preterm human myometrium as compared with full-term samples, whereas it gradually increases toward term in the pregnant rat uterus. Both N/OFQ and NST inhibit myometrial contractions, an effect which can be enhanced by naloxone and blocked by Ca²⁺-dependent K⁺ channel (BK(Ca)) inhibitors. Both compounds increase the myometrial cAMP level which may be responsible for the activation of this channel and subsequent intracellular hyperpolarization. NST releases calcitonin gene-related peptide from the sensory nerve ends, which explains its cAMP-elevating effect. In contrast with the nervous system, where they behave as antagonists, N/OFQ and NST are able to potentiate the uterine-relaxing effect of each other in both rat and human tissues. Further studies are required to clarify the roles of N/OFQ and NST in the regulation of the myometrial contractions and the perception of pain during delivery.
Collapse
Affiliation(s)
- Róbert Gáspár
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary.
| | - Beáta H Deák
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Anna Klukovits
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Kornélia Tekes
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
17
|
Barthold JS, Wang Y, Kolon TF, Kollin C, Nordenskjöld A, Olivant Fisher A, Figueroa TE, BaniHani AH, Hagerty JA, Gonzalez R, Noh PH, Chiavacci RM, Harden KR, Abrams DJ, Kim CE, Mateson AB, Robbins AK, Li J, Akins RE, Hakonarson H, Devoto M. Phenotype specific association of the TGFBR3 locus with nonsyndromic cryptorchidism. J Urol 2014; 193:1637-45. [PMID: 25390077 DOI: 10.1016/j.juro.2014.10.097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2014] [Indexed: 11/19/2022]
Abstract
PURPOSE Based on a genome-wide association study of testicular dysgenesis syndrome showing a possible association with TGFBR3, we analyzed data from a larger, phenotypically restricted cryptorchidism population for potential replication of this signal. MATERIALS AND METHODS We excluded samples based on strict quality control criteria, leaving 844 cases and 2,718 controls of European ancestry that were analyzed in 2 separate groups based on genotyping platform (ie Illumina® HumanHap550, version 1 or 3, or Human610-Quad, version 1 BeadChip in group 1 and Human OmniExpress 12, version 1 BeadChip platform in group 2). Analyses included genotype imputation at the TGFBR3 locus, association analysis of imputed data with correction for population substructure, subsequent meta-analysis of data for groups 1 and 2, and selective genotyping of independent cases (330) and controls (324) for replication. We also measured Tgfbr3 mRNA levels and performed TGFBR3/betaglycan immunostaining in rat fetal gubernaculum. RESULTS We identified suggestive (p ≤ 1× 10(-4)) association of markers in/near TGFBR3, including rs9661103 (OR 1.40; 95% CI 1.20, 1.64; p = 2.71 × 10(-5)) and rs10782968 (OR 1.58; 95% CI 1.26, 1.98; p = 9.36 × 10(-5)) in groups 1 and 2, respectively. In subgroup analyses we observed strongest association of rs17576372 (OR 1.42; 95% CI 1.24, 1.60; p = 1.67 × 10(-4)) with proximal and rs11165059 (OR 1.32; 95% CI 1.15, 1.38; p = 9.42 × 10(-4)) with distal testis position, signals in strong linkage disequilibrium with rs9661103 and rs10782968, respectively. Association of the prior genome-wide association study signal (rs12082710) was marginal (OR 1.13; 95% CI 0.99, 1.28; p = 0.09 for group 1), and we were unable to replicate signals in our independent cohort. Tgfbr3/betaglycan was differentially expressed in wild-type and cryptorchid rat fetal gubernaculum. CONCLUSIONS These data suggest complex or phenotype specific association of cryptorchidism with TGFBR3 and the gubernaculum as a potential target of TGFβ signaling.
Collapse
Affiliation(s)
- Julia S Barthold
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware; Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, Delaware.
| | - Yanping Wang
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Thomas F Kolon
- Division of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Claude Kollin
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordenskjöld
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Alicia Olivant Fisher
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - T Ernesto Figueroa
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Ahmad H BaniHani
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Jennifer A Hagerty
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Ricardo Gonzalez
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Paul H Noh
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Rosetta M Chiavacci
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kisha R Harden
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Debra J Abrams
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Cecilia E Kim
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Abigail B Mateson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Alan K Robbins
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Jin Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Robert E Akins
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marcella Devoto
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
18
|
Barthold JS, Robbins A, Wang Y, Pugarelli J, Mateson A, Anand-Ivell R, Ivell R, McCahan SM, Akins RE. Cryptorchidism in the orl rat is associated with muscle patterning defects in the fetal gubernaculum and altered hormonal signaling. Biol Reprod 2014; 91:41. [PMID: 24966393 DOI: 10.1095/biolreprod.114.119560] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cryptorchidism, or undescended testis, is a common male genital anomaly of unclear etiology. Hormonal stimulation of the developing fetal gubernaculum by testicular androgens and insulin-like 3 (INSL3) is required for testicular descent. In studies of the orl fetal rat, one of several reported strains with inherited cryptorchidism, we studied hormone levels, gene expression in intact and hormone-stimulated gubernaculum, and imaging of the developing cremaster muscle facilitated by a tissue clearing protocol to further characterize development of the orl gubernaculum. Abnormal localization of the inverted gubernaculum was visible soon after birth. In the orl fetus, testicular testosterone, gubernacular androgen-responsive transcript levels, and muscle-specific gene expression were reduced. However, the in vitro transcriptional response of the orl gubernaculum to androgen was largely comparable to wild type (wt). In contrast, increases in serum INSL3, gubernacular INSL3-responsive transcript levels, expression of the INSL3 receptor, Rxfp2, and the response of the orl gubernaculum to INSL3 in vitro all suggest enhanced activation of INSL3/RXFP2 signaling in the orl rat. However, DNA sequence analysis did not identify functional variants in orl Insl3. Finally, combined analysis of the present and previous studies of the orl transcriptome confirmed altered expression of muscle and cellular motility genes, and whole mount imaging revealed aberrant muscle pattern formation in the orl fetal gubernaculum. The nature and prevalence of developmental muscle defects in the orl gubernaculum are consistent with the cryptorchid phenotype in this strain. These data suggest impaired androgen and enhanced INSL3 signaling in the orl fetus accompanied by defective cremaster muscle development.
Collapse
Affiliation(s)
- Julia S Barthold
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Alan Robbins
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Yanping Wang
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Joan Pugarelli
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Abigail Mateson
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Ravinder Anand-Ivell
- Division of Animal Sciences, University of Nottingham, Leicestershire, United Kingdom
| | - Richard Ivell
- Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Suzanne M McCahan
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Robert E Akins
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| |
Collapse
|
19
|
Barthold JS, Wang Y, Robbins A, Pike J, McDowell E, Johnson KJ, McCahan SM. Transcriptome analysis of the dihydrotestosterone-exposed fetal rat gubernaculum identifies common androgen and insulin-like 3 targets. Biol Reprod 2013; 89:143. [PMID: 24174575 DOI: 10.1095/biolreprod.113.112953] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Androgens and insulin-like 3 (INSL3) are required for development of the fetal gubernaculum and testicular descent. Previous studies suggested that the INSL3-exposed fetal gubernacular transcriptome is enriched for genes involved in neural pathways. In the present study, we profiled the transcriptome of fetal gubernaculum explants exposed to dihydrotestosterone (DHT) and compared this response to that with INSL3. We exposed fetal (Embryonic Day 17) rat gubernacula to DHT for 24 h (10 and 30 nM) or 6 h (1 and 10 nM) in organ culture and analyzed gene expression relative to that of vehicle-treated controls using Affymetrix arrays. Results were annotated using functional, pathway, and promoter analyses and independently validated for selected transcripts using quantitative RT-PCR (qRT-PCR). Transcripts were differentially expressed after 24 h but not 6 h. Most highly overrepresented functional categories included those related to gene expression, skeletal and muscular development and function, and Wnt signaling. Promoter response elements enriched in the DHT-specific transcriptome included consensus sequences for c-ETS1, ELK1, CREB, CRE-BP1/c-June, NRF2, and USF. We observed that 55% of DHT probe sets were also differentially expressed after INSL3 exposure and that the direction of change was the same in 96%. The qRT-PCR results confirmed that DHT increased expression of the INSL3-responsive genes Crlf1 and Chrdl2 but reduced expression of Wnt4. We also validated reduced Tgfb2 and Cxcl12 and increased Slit3 expression following DHT exposure. These data suggest a robust overlap in the DHT- and INSL3-regulated transcriptome that may be mediated in part by CREB signaling and a common Wnt pathway response for both hormones in the fetal gubernaculum.
Collapse
Affiliation(s)
- Julia S Barthold
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | | | | | | | | | | | | |
Collapse
|
20
|
Hutson JM, Southwell BR, Li R, Lie G, Ismail K, Harisis G, Chen N. The regulation of testicular descent and the effects of cryptorchidism. Endocr Rev 2013; 34:725-52. [PMID: 23666148 DOI: 10.1210/er.2012-1089] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The first half of this review examines the boundary between endocrinology and embryonic development, with the aim of highlighting the way hormones and signaling systems regulate the complex morphological changes to enable the intra-abdominal fetal testes to reach the scrotum. The genitoinguinal ligament, or gubernaculum, first enlarges to hold the testis near the groin, and then it develops limb-bud-like properties and migrates across the pubic region to reach the scrotum. Recent advances show key roles for insulin-like hormone 3 in the first step, with androgen and the genitofemoral nerve involved in the second step. The mammary line may also be involved in initiating the migration. The key events in early postnatal germ cell development are then reviewed because there is mounting evidence for this to be crucial in preventing infertility and malignancy later in life. We review the recent advances in what is known about the etiology of cryptorchidism and summarize the syndromes where a specific molecular cause has been found. Finally, we cover the recent literature on timing of surgery, the issues around acquired cryptorchidism, and the limited role of hormone therapy. We conclude with some observations about the differences between animal models and baby boys with cryptorchidism.
Collapse
Affiliation(s)
- John M Hutson
- Urology Department, Royal Children's Hospital, Parkville 3052, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
21
|
LASAGNA-Search: an integrated web tool for transcription factor binding site search and visualization. Biotechniques 2013; 54:141-53. [PMID: 23599922 DOI: 10.2144/000113999] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The release of ChIP-seq data from the ENCyclopedia Of DNA Elements (ENCODE) and Model Organism ENCyclopedia Of DNA Elements (modENCODE) projects has significantly increased the amount of transcription factor (TF) binding affinity information available to researchers. However, scientists still routinely use TF binding site (TFBS) search tools to scan unannotated sequences for TFBSs, particularly when searching for lesser-known TFs or TFs in organisms for which ChIP-seq data are unavailable. The sequence analysis often involves multiple steps such as TF model collection, promoter sequence retrieval, and visualization; thus, several different tools are required. We have developed a novel integrated web tool named LASAGNA-Search that allows users to perform TFBS searches without leaving the web site. LASAGNA-Search uses the LASAGNA (Length-Aware Site Alignment Guided by Nucleotide Association) algorithm for TFBS alignment. Important features of LASAGNA-Search include (i) acceptance of unaligned variable-length TFBSs, (ii) a collection of 1726 TF models, (iii) automatic promoter sequence retrieval, (iv) visualization in the UCSC Genome Browser, and (v) gene regulatory network inference and visualization based on binding specificities. LASAGNA-Search is freely available at http://biogrid.engr.uconn.edu/lasagna_search/.
Collapse
|
22
|
Aquaporin water channels in the canine gubernaculum testis. Acta Histochem 2013; 115:541-8. [PMID: 23305875 DOI: 10.1016/j.acthis.2012.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 01/13/2023]
Abstract
The jelly-like gubernaculum testis (GT) is a hydrated structure consisting of a concentric sheath of dense connective tissue around a loose mesenchymal core, with two cords of skeletal muscle cells asymmetrically placed alongside. Expansion of the GT occurs during the transabdominal phase of testicular descent, linked to cell proliferation together with modifications of the hydric content of the organ. The aim of this study was to detect immunohistochemically the presence of aquaporins (AQPs), integral membrane proteins permitting passive transcellular water movement, in the canine GTs. Samples (n=15) were obtained from pregnancies of 9 medium sized bitches and dissected from healthy fetuses. Five fetuses were aged 35-45 days of gestation, 10 fetuses from 46 days of gestation to delivery, thus offering us the opportunity to study the progressive maturation of the gubernacula. The presence of AQP3, 4, 7, 8 and -9 was assessed in the muscular components of the GT, some of them (AQP3, AQP4, AQP7) with increasing intensity through the second half of pregnancy up to term. AQP1 was localized in the capillary and venous endothelia in the younger fetuses, also in the artery adventitia and in the nerve perineurium in progressively older fetuses. These data demonstrate the potential importance and contribution of AQP-mediated water flux in hydration and volume modification of the growing GT in a canine model.
Collapse
|
23
|
Harisis GN, Chen N, Farmer PJ, Bodemer D, Li R, Sourial M, Southwell BR, Balic A, Hutson JM. Wnt signalling in testicular descent: a candidate mechanism for cryptorchidism in Robinow syndrome. J Pediatr Surg 2013; 48:1573-7. [PMID: 23895974 DOI: 10.1016/j.jpedsurg.2012.08.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/31/2012] [Accepted: 08/31/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND/AIMS Robinow syndrome is caused by mutations in Wnt-5a or its receptor Ror2 and can lead to cryptorchidism, though the mechanisms are unclear. Wnt-5a knock-out mice fail to undergo gubernacular swelling, similar to insulin-like hormone 3 (INSl-3) knock-out mice. We aimed to characterise Wnt-5a and Ror2 expression in rat gubernacula to better understand how Wnt-5a signalling affects testicular descent. METHODS Sprague-Dawley rats (n = 27) were collected with ethics approval (A644) at embryonic days (E) 15, 17, 19 and postnatal day (D) 2. Control and antiandrogen-treated groups were processed for immunohistochemistry for Wnt-5a, Ror2 and β-catenin. Sagittal sections were examined using confocal microscopy. RESULTS Wnt-5a and Ror2 were strongly expressed in the gubernacular bulb at E17 controls, their levels declining at E19 and almost absent by D2. Wnt-5a significantly co-localised with the important transcription factor β-catenin at E17. There was no obvious difference in staining with androgen blockade. CONCLUSION Wnt-5a, through Ror2 and β-catenin may play a vital role in regulating the gubernacular swelling reaction downstream of INSL-3. Human mutations in Wnt-5a or Ror2 could prevent early gubernacular growth, as suggested by undescended testes in 70% of patients with Robinow Syndrome.
Collapse
Affiliation(s)
- George N Harisis
- Douglas Stephens Surgical Research Laboratory, Murdoch Children's Research Institute, Melbourne, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bathgate RAD, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiol Rev 2013; 93:405-80. [PMID: 23303914 DOI: 10.1152/physrev.00001.2012] [Citation(s) in RCA: 394] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There are seven relaxin family peptides that are all structurally related to insulin. Relaxin has many roles in female and male reproduction, as a neuropeptide in the central nervous system, as a vasodilator and cardiac stimulant in the cardiovascular system, and as an antifibrotic agent. Insulin-like peptide-3 (INSL3) has clearly defined specialist roles in male and female reproduction, relaxin-3 is primarily a neuropeptide involved in stress and metabolic control, and INSL5 is widely distributed particularly in the gastrointestinal tract. Although they are structurally related to insulin, the relaxin family peptides produce their physiological effects by activating a group of four G protein-coupled receptors (GPCRs), relaxin family peptide receptors 1-4 (RXFP1-4). Relaxin and INSL3 are the cognate ligands for RXFP1 and RXFP2, respectively, that are leucine-rich repeat containing GPCRs. RXFP1 activates a wide spectrum of signaling pathways to generate second messengers that include cAMP and nitric oxide, whereas RXFP2 activates a subset of these pathways. Relaxin-3 and INSL5 are the cognate ligands for RXFP3 and RXFP4 that are closely related to small peptide receptors that when activated inhibit cAMP production and activate MAP kinases. Although there are still many unanswered questions regarding the mode of action of relaxin family peptides, it is clear that they have important physiological roles that could be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- R A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Lowery JW, LaVigne AW, Kokabu S, Rosen V. Comparative genomics identifies the mouse Bmp3 promoter and an upstream evolutionary conserved region (ECR) in mammals. PLoS One 2013; 8:e57840. [PMID: 23451274 PMCID: PMC3579780 DOI: 10.1371/journal.pone.0057840] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/26/2013] [Indexed: 11/18/2022] Open
Abstract
The Bone Morphogenetic Protein (BMP) pathway is a multi-member signaling cascade whose basic components are found in all animals. One member, BMP3, which arose more recently in evolution and is found only in deuterostomes, serves a unique role as an antagonist to both the canonical BMP and Activin pathways. However, the mechanisms that control BMP3 expression, and the cis-regulatory regions mediating this regulation, remain poorly defined. With this in mind, we sought to identify the Bmp3 promoter in mouse (M. musculus) through functional and comparative genomic analyses. We found that the minimal promoter required for expression in resides within 0.8 kb upstream of Bmp3 in a region that is highly conserved with rat (R. norvegicus). We also found that an upstream region abutting the minimal promoter acts as a repressor of the minimal promoter in HEK293T cells and osteoblasts. Strikingly, a portion of this region is conserved among all available eutherian mammal genomes (47/47), but not in any non-eutherian animal (0/136). We also identified multiple conserved transcription factor binding sites in the Bmp3 upstream ECR, suggesting that this region may preserve common cis-regulatory elements that govern Bmp3 expression across eutherian mammals. Since dysregulation of BMP signaling appears to play a role in human health and disease, our findings may have application in the development of novel therapeutics aimed at modulating BMP signaling in humans.
Collapse
Affiliation(s)
- Jonathan W. Lowery
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Anna W. LaVigne
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Shoichiro Kokabu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
Chawengsaksophak K, Svingen T, Ng ET, Epp T, Spiller CM, Clark C, Cooper H, Koopman P. Loss of Wnt5a Disrupts Primordial Germ Cell Migration and Male Sexual Development in Mice1. Biol Reprod 2012; 86:1-12. [DOI: 10.1095/biolreprod.111.095232] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
27
|
Cytokine-like factor 1 (CLF1): life after development? Cytokine 2011; 55:325-9. [PMID: 21715184 DOI: 10.1016/j.cyto.2011.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/22/2011] [Accepted: 05/26/2011] [Indexed: 12/12/2022]
Abstract
Cytokine-like factor 1 (CLF1) is a secreted receptor belonging to the interleukin-6 family of cytokines. CLF1 and its physiologic partner, cardiotrophin-like cytokine (CLC) are secreted as a heterodimer and engage the tripartite signaling complex of ciliary neurotrophic factor receptor (CNTFR), leukemia inhibitory factor (LIFR) and gp130. Ligation of this receptor complex leads to activation of the STAT3 and MAPK pathways and mediates survival pathways in neurons. Mutations in CLF1, CLC, or CNTFR in mice lead to the birth of mice that die on post-natal day 1 because of an inability to nurse. These animals exhibit significant decreases in the number of motor neurons in the facial nucleus and the spinal cord. CLF1 or CLC deficiency is associated with the development of the human cold-induced sweating syndromes. A growing body of research suggests that CLF1 expression may be associated with several post-natal disease processes. In this review, we summarize the current understanding of CLF1 expression and suggest future studies to understand the potentially important role of CLF1 in postnatal life and disease.
Collapse
|
28
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2011; 18:231-4. [PMID: 21844704 DOI: 10.1097/med.0b013e3283473d73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Abstract
PURPOSE OF REVIEW Insulin-like peptide 3 (INSL3) is the subject of a fast expanding literature reflecting increasing clinical application, particularly as a diagnostic parameter. This review summarizes the recent INSL3 literature published within the last 12-18 months. RECENT FINDINGS Significant inroads have been made to understand how INSL3 is working in testicular descent. It also has other functions in the adult, for example in bone metabolism, extending its role as a largely gender-specific hormone. Advances in molecular pharmacology have increased our understanding of INSL3 interaction with its specific receptor, RXFP2, and delivered new high-affinity antagonists. INSL3 is increasingly being used to assess Leydig cell functional capacity within the testis, independently of factors affecting the hypothalamic-pituitary-gonadal axis, being a robust parameter by comparison with testosterone. Particularly in the aging male, metabolic syndrome, and the effects of adiposity on testis function, INSL3 is a valuable adjunct to the standard clinical repertoire. SUMMARY The Leydig cell hormone INSL3 is responsible for the first phase of testicular descent during pregnancy and may have multiple roles as a gender-specific circulating hormone in the adult reflecting Leydig cell functional capacity. In women, INSL3 is a paracrine factor within the ovary and probably placenta, in which it may have a fetal gender-specific role.
Collapse
Affiliation(s)
- Richard Ivell
- School of Molecular and Biomedical Science, University of Adelaide, Australia.
| | | |
Collapse
|
30
|
Abstract
Complete testicular descent is a sign of, and a prerequisite for, normal testicular function in adult life. The process of testis descent is dependent on gubernacular growth and reorganization, which is regulated by the Leydig cell hormones insulin-like peptide 3 (INSL3) and testosterone. Investigation of the role of INSL3 and its receptor, relaxin-family peptide receptor 2 (RXFP2), has contributed substantially to our understanding of the hormonal control of testicular descent. Cryptorchidism is a common congenital malformation, which is seen in 2-9% of newborn boys, and confers an increased risk of infertility and testicular cancer in adulthood. Although some cases of isolated cryptorchidism in humans can be ascribed to known genetic defects, such as mutations in INSL3 or RXFP2, the cause of cryptorchidism remains unknown in most patients. Several animal and human studies are currently underway to test the hypothesis that in utero factors, including environmental and maternal lifestyle factors, may be involved in the etiology of cryptorchidism. Overall, the etiology of isolated cryptorchidism seems to be complex and multifactorial, involving both genetic and nongenetic components.
Collapse
|
31
|
Affiliation(s)
- Jacques J Tremblay
- Reproduction, Perinatal and Child Health, CHUQ Research Centre, Laval University, Quebec City, Quebec, Canada.
| |
Collapse
|