1
|
Yan J, Zhang X, Zhu K, Yu M, Liu Q, De Felici M, Zhang T, Wang J, Shen W. Sleep deprivation causes gut dysbiosis impacting on systemic metabolomics leading to premature ovarian insufficiency in adolescent mice. Theranostics 2024; 14:3760-3776. [PMID: 38948060 PMCID: PMC11209713 DOI: 10.7150/thno.95197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024] Open
Abstract
Rationale: Currently, there are occasional reports of health problems caused by sleep deprivation (SD). However, to date, there remains a lack of in-depth research regarding the effects of SD on the growth and development of oocytes in females. The present work aimed to investigate whether SD influences ovarian folliculogenesis in adolescent female mice. Methods: Using a dedicated device, SD conditions were established in 3-week old female mice (a critical stage of follicular development) for 6 weeks and gut microbiota and systemic metabolomics were analyzed. Analyses were related to parameters of folliculogenesis and reproductive performance of SD females. Results: We found that the gut microbiota and systemic metabolomics were severely altered in SD females and that these were associated with parameters of premature ovarian insufficiency (POI). These included increased granulosa cell apoptosis, reduced numbers of primordial follicles (PmFs), correlation with decreased AMH, E2, and increased LH in blood serum, and a parallel increased number of growing follicles and changes in protein expression compatible with PmF activation. SD also reduced oocyte maturation and reproductive performance. Notably, fecal microbial transplantation from SD females into normal females induced POI parameters in the latter while niacinamide (NAM) supplementation alleviated such symptoms in SD females. Conclusion: Gut microbiota and alterations in systemic metabolomics caused by SD induced POI features in juvenile females that could be counteracted with NAM supplementation.
Collapse
Affiliation(s)
- Jiamao Yan
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Xiaoyuan Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Kexin Zhu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Mubin Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingchun Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Teng Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Junjie Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
2
|
Neff AM, Inman Z, Mourikes VE, Santacruz-Márquez R, Gonsioroski A, Laws MJ, Flaws JA. The role of the aryl hydrocarbon receptor in mediating the effects of mono(2-ethylhexyl) phthalate in mouse ovarian antral follicles†. Biol Reprod 2024; 110:632-641. [PMID: 38134965 PMCID: PMC10993471 DOI: 10.1093/biolre/ioad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a pervasive environmental toxicant used in the manufacturing of numerous consumer products, medical supplies, and building materials. DEHP is metabolized to mono(2-ethylhexyl) phthalate (MEHP). MEHP is an endocrine disruptor that adversely affects folliculogenesis and steroidogenesis in the ovary, but its mechanism of action is not fully understood. Thus, we tested the hypothesis that the aryl hydrocarbon receptor (AHR) plays a functional role in MEHP-mediated disruption of folliculogenesis and steroidogenesis. CD-1 mouse antral follicles were isolated and cultured with MEHP (0-400 μM) in the presence or absence of the AHR antagonist CH223191 (1 μM). MEHP treatment reduced follicle growth over a 96-h period, and this effect was partially rescued by co-culture with CH223191. MEHP exposure alone increased expression of known AHR targets, cytochrome P450 (CYP) enzymes Cyp1a1 and Cyp1b1, and this induction was blocked by CH223191. MEHP reduced media concentrations of estrone and estradiol compared to control. This effect was mitigated by co-culture with CH223191. Moreover, MEHP reduced the expression of the estrogen-sensitive genes progesterone receptor (Pgr) and luteinizing hormone/choriogonadotropin receptor (Lhcgr) and co-treatment with CH223191 blocked this effect. Collectively, these data indicate that MEHP activates the AHR to impair follicle growth and reduce estrogen production and signaling in ovarian antral follicles.
Collapse
Affiliation(s)
- Alison M Neff
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Zane Inman
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Vasiliki E Mourikes
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Ramsés Santacruz-Márquez
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Andressa Gonsioroski
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Mary J Laws
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
3
|
Koike H, Harada M, Kusamoto A, Xu Z, Tanaka T, Sakaguchi N, Kunitomi C, Azhary JMK, Takahashi N, Urata Y, Osuga Y. Roles of endoplasmic reticulum stress in the pathophysiology of polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1124405. [PMID: 36875481 PMCID: PMC9975510 DOI: 10.3389/fendo.2023.1124405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among reproductive-age women, affecting up to 15% of women in this group, and the most common cause of anovulatory infertility. Although its etiology remains unclear, recent research has revealed the critical role of endoplasmic reticulum (ER) stress in the pathophysiology of PCOS. ER stress is defined as a condition in which unfolded or misfolded proteins accumulate in the ER because of an imbalance in the demand for protein folding and the protein-folding capacity of the ER. ER stress results in the activation of several signal transduction cascades, collectively termed the unfolded protein response (UPR), which regulates various cellular activities. In principle, the UPR restores homeostasis and keeps the cell alive. However, if the ER stress cannot be resolved, it induces programmed cell death. ER stress has recently been recognized to play diverse roles in both physiological and pathological conditions of the ovary. In this review, we summarize current knowledge of the roles of ER stress in the pathogenesis of PCOS. ER stress pathways are activated in the ovaries of both a mouse model of PCOS and in humans, and local hyperandrogenism in the follicular microenvironment associated with PCOS is responsible for activating these. The activation of ER stress contributes to the pathophysiology of PCOS through multiple effects in granulosa cells. Finally, we discuss the potential for ER stress to serve as a novel therapeutic target for PCOS.
Collapse
Affiliation(s)
- Hiroshi Koike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- *Correspondence: Miyuki Harada,
| | - Akari Kusamoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Zixin Xu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsurugi Tanaka
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nanoka Sakaguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chisato Kunitomi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jerilee M. K. Azhary
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nozomi Takahashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoko Urata
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Devillers MM, Mhaouty-Kodja S, Guigon CJ. Deciphering the Roles & Regulation of Estradiol Signaling during Female Mini-Puberty: Insights from Mouse Models. Int J Mol Sci 2022; 23:ijms232213695. [PMID: 36430167 PMCID: PMC9693133 DOI: 10.3390/ijms232213695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Mini-puberty of infancy is a short developmental phase occurring in humans and other mammals after birth. In females, it corresponds to transient and robust activation of the hypothalamo-pituitary-ovarian (HPO) axis revealed by high levels of gonadotropin hormones, follicular growth, and increased estradiol production by the ovary. The roles of estradiol signaling during this intriguing developmental phase are not yet well known, but accumulating data support the idea that it aids in the implementation of reproductive function. This review aims to provide in-depth information on HPO activity during this particular developmental phase in several mammal species, including humans, and to propose emerging hypotheses on the putative effect of estradiol signaling on the development and function of organs involved in female reproduction.
Collapse
Affiliation(s)
- Marie M. Devillers
- Sorbonne Paris Cité, Université de Paris Cité, CNRS, Inserm, Biologie Fonctionnelle et Adaptative UMR 8251, Physiologie de l’Axe Gonadotrope U1133, CEDEX 13, 75205 Paris, France
| | - Sakina Mhaouty-Kodja
- Neuroscience Paris Seine—Institut de Biologie Paris Seine, Sorbonne Université, CNRS UMR 8246, INSERM U1130, 75005 Paris, France
| | - Céline J. Guigon
- Sorbonne Paris Cité, Université de Paris Cité, CNRS, Inserm, Biologie Fonctionnelle et Adaptative UMR 8251, Physiologie de l’Axe Gonadotrope U1133, CEDEX 13, 75205 Paris, France
- Correspondence:
| |
Collapse
|
5
|
Vignault C, Cadoret V, Jarrier-Gaillard P, Papillier P, Téteau O, Desmarchais A, Uzbekova S, Binet A, Guérif F, Elis S, Maillard V. Bisphenol S Impairs Oestradiol Secretion during In Vitro Basal Folliculogenesis in a Mono-Ovulatory Species Model. TOXICS 2022; 10:toxics10080437. [PMID: 36006116 PMCID: PMC9412475 DOI: 10.3390/toxics10080437] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 05/28/2023]
Abstract
Bisphenol S (BPS) affects terminal folliculogenesis by impairing steroidogenesis in granulosa cells from different species. Nevertheless, limited data are available on its effects during basal folliculogenesis. In this study, we evaluate in vitro the effects of a long-term BPS exposure on a model of basal follicular development in a mono-ovulatory species. We cultured ovine preantral follicles (180−240 μm, n = 168) with BPS (0.1 μM (possible human exposure dose) or 10 μM (high dose)) and monitored antrum appearance and follicular survival and growth for 15 days. We measured hormonal secretions (oestradiol (at day 13 [D13]), progesterone and anti-Müllerian hormone [D15]) and expression of key follicular development and redox status genes (D15) in medium and whole follicles, respectively. BPS (0.1 µM) decreased oestradiol secretion compared with the control (−48.8%, p < 0.001), without significantly impairing antrum appearance, follicular survival and growth, anti-Müllerian hormone and progesterone secretion and target gene expression. Thus, BPS could also impair oestradiol secretion during basal folliculogenesis as it is the case during terminal folliculogenesis. It questions the use of BPS as a safe BPA substitute in the human environment. More studies are required to elucidate mechanisms of action of BPS and its effects throughout basal follicular development.
Collapse
Affiliation(s)
- Claire Vignault
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, 37000 Tours, France
| | - Véronique Cadoret
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, 37000 Tours, France
| | - Peggy Jarrier-Gaillard
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Pascal Papillier
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Ophélie Téteau
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Alice Desmarchais
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Svetlana Uzbekova
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Aurélien Binet
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
- Service de Chirurgie Pédiatrique Viscérale, Urologique, Plastique et Brûlés, CHRU de Tours, 37000 Tours, France
| | - Fabrice Guérif
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, 37000 Tours, France
| | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Virginie Maillard
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| |
Collapse
|
6
|
Szychowski KA, Skóra B, Wójtowicz AK. Involvement of sirtuins (Sirt1 and Sirt3) and aryl hydrocarbon receptor (AhR) in the effects of triclosan (TCS) on production of neurosteroids in primary mouse cortical neurons cultures. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105131. [PMID: 35715069 DOI: 10.1016/j.pestbp.2022.105131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Epidemiological studies have shown the presence of triclosan (TCS) in the brain due to its widespread use as an antibacterial ingredient. One of the confirmed mechanisms of its action is the interaction with the aryl hydrocarbon receptor (AhR). In nerve cells, sirtuins (Sirt1 and Sirt3) act as cellular sensors detecting energy availability and modulate metabolic processes. Moreover, it has been found that Sirt1 inhibits the activation of estrogen receptors, regulates the androgen receptor, and may interact with the AhR receptor. It is also known that Sirt3 stimulates the production of estradiol (E2) via the estradiol receptor β (Erβ). Therefore, the aim of the present study was to evaluate the effect of TCS alone or in combination with synthetic flavonoids on the production of neurosteroids such as progesterone (P4), testosterone (T), and E2 in primary neural cortical neurons in vitro. The contribution of Sirt1 and Sirt3 as well as AhR to these TCS-induced effects was investigated as well. The results of the experiments showed that both short and long exposure of neurons to TCS increased the expression of the Sirt1 and Sirt3 proteins in response to AhR stimulation. After an initial increase in the production of all tested neurosteroids, TCS acting for a longer time lowered their levels in the cells. This suggests that TCS activating AhR as well as Sirt1 and Sirt3 in short time intervals stimulates the levels of P4, T, and E2 in neurons, and then the amount of neurosteroids decreases despite the activation of AhR and the increase in the expression of the Sirt1 and Sirt3 proteins. The use of both the AhR agonist and antagonist prevented changes in the expression of Sirt1, Sirt3, and AhR and the production of P4, T, and E2, which confirmed that this receptor is a key in the mechanism of the TCS action.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Anna K Wójtowicz
- Department of Nutrition, Animal Biotechnology and Fisheries, Faculty of Animal Sciences, University of Agriculture, Adama Mickiewicza 24/28, 30-059 Kraków, Poland
| |
Collapse
|
7
|
Perono GA, Petrik JJ, Thomas PJ, Holloway AC. The effects of polycyclic aromatic compounds (PACs) on mammalian ovarian function. Curr Res Toxicol 2022; 3:100070. [PMID: 35492299 PMCID: PMC9043394 DOI: 10.1016/j.crtox.2022.100070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 12/09/2022] Open
Abstract
Toxicity of polycyclic aromatic compounds (PACs) is limited to a subset of PACs. Exposure to these compounds impact major processes necessary for ovarian function. PAC exposure causes follicle loss and aberrant steroid production and angiogenesis. PAC exposure may increase the risk for impaired fertility and ovarian pathologies. The study of PACs as ovarian toxicants should include additional compounds.
Polycyclic aromatic compounds (PACs) are a broad class of contaminants ubiquitously present in the environment due to natural and anthropogenic activities. With increasing industrialization and reliance on petroleum worldwide, PACs are increasingly being detected in different environmental compartments. Previous studies have shown that PACs possess endocrine disruptive properties as these compounds often interfere with hormone signaling and function. In females, the ovary is largely responsible for regulating reproductive and endocrine function and thus, serves as a primary target for PAC-mediated toxicity. Perturbations in the signaling pathways that mediate ovarian folliculogenesis, steroidogenesis and angiogenesis can lead to adverse reproductive outcomes including polycystic ovary syndrome, premature ovarian insufficiency, and infertility. To date, the impact of PACs on ovarian function has focused predominantly on polycyclic aromatic hydrocarbons like benzo(a)pyrene, 3-methylcholanthrene and 7,12-dimethylbenz[a]anthracene. However, investigation into the impact of substituted PACs including halogenated, heterocyclic, and alkylated PACs on mammalian reproduction has been largely overlooked despite the fact that these compounds are found in higher abundance in free-ranging wildlife. This review aims to discuss current literature on the effects of PACs on the ovary in mammals, with a particular focus on folliculogenesis, steroidogenesis and angiogenesis, which are key processes necessary for proper ovarian functions.
Collapse
|
8
|
Wang C, Zhang Y. Endoplasmic Reticulum Stress: A New Research Direction for Polycystic Ovary Syndrome? DNA Cell Biol 2022; 41:356-367. [PMID: 35353637 DOI: 10.1089/dna.2021.1050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common gynecological endocrine disorders, with sporadic ovulation, excessive androgens, and polycystic ovarian changes as the main clinical manifestations. Due to the high heterogeneity of its clinical manifestations, the discussion on its pathogenesis has not been unified. Current research has found that genetic factors, hyperandrogenism, chronic inflammation and oxidative stress, insulin resistance, and obesity are strongly associated with PCOS. Recently, when studying the specific mechanisms of the abovementioned factors in PCOS, the biological response process of endoplasmic reticulum stress (ERS) has gradually come to researchers' attention, and several studies have confirmed the involvement of ERS in the pathogenesis of PCOS and the improvement of a series of pathological manifestations of PCOS after the application of ERS inhibitors, which may be a new entry point for the treatment of PCOS. In this article, we review the relationship between ERS and various pathogenic factors of PCOS.
Collapse
Affiliation(s)
- Chengzhe Wang
- Department of Gynecology of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan City, China
| | - Yingjie Zhang
- Department of Gynecology of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan City, China
| |
Collapse
|
9
|
Chung YK, Kim JJ, Hong MA, Hwang KR, Chae SJ, Yoon SH, Choi YM. Association Between Polycystic Ovary Syndrome and the Polymorphisms of Aryl Hydrocarbon Receptor Repressor, Glutathione-S-transferase T1, and Glutathione-S-transferase M1 Genes. Gynecol Endocrinol 2021; 37:558-561. [PMID: 33124502 DOI: 10.1080/09513590.2020.1832066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE To investigate the association between the aryl hydrocarbon receptor repressor (AhRR) C/G polymorphisms and glutathione-S-transferase M1 (GSTM1) and GSTT1 null mutation and the risk of polycystic ovary syndrome (PCOS) in Korean women. METHODS This was a case-control study of 478 women with PCOS and 376 aged-matched healthy controls. Genotyping of the AhRR C/G polymorphism and GSTM1 and GSTT1 were performed using real-time PCR analysis and multiplex PCR, respectively. RESULTS The genotype distribution of the AhRR C/G polymorphisms and GSTM1/GSTT1 null mutations did not differ between women with PCOS and controls. Using the wild-type combined AhRR CC and GSTT1 present genotype as a reference, the odds that a woman had PCOS were 1.54 (95% CIs 1.04-2.29) times higher if she had a combined AhRR CG or GG and GSTT1 null genotype. The odds that a woman had PCOS was 1.48 (95% CIs 1.08-2.04) times higher if she had a combined GSTM1/GSTT1 null genotype compared with the wild-type combined GSTM1/GSTT1 present genotype. However, there were no significant associations between the risk of PCOS and any combined AhRR and GSTM1. CONCLUSIONS Our data suggest that a combined AhRR CG or GG and GSTT1 null genotype or a combined GSTT1/GSTM1 null genotype might be associated with an increased risk of PCOS.
Collapse
Affiliation(s)
- Youn Kyung Chung
- Department of Obstetrics and Gynecology, National Cancer Center, Goyang, Korea
| | - Jin Ju Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
- The Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Min A Hong
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Kyu Ri Hwang
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Soo Jin Chae
- Department of Obstetrics and Gynecology, IORA Fertility Clinic, Suwon, Korea
| | - Sang Ho Yoon
- Department of Obstetrics and Gynecology, IORA Fertility Clinic, Suwon, Korea
| | - Young Min Choi
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- The Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Luo Y, Qiao X, Ma Y, Deng H, Xu CC, Xu L. Irisin deletion induces a decrease in growth and fertility in mice. Reprod Biol Endocrinol 2021; 19:22. [PMID: 33581723 PMCID: PMC7881587 DOI: 10.1186/s12958-021-00702-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/28/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Irisin, which is cleaved from fibronectin type III domain-containing protein 5 (Fndc5), plays an important role in energy homeostasis. The link between energy metabolism and reproduction is well known. However, the biological actions of irisin in reproduction remain largely unexplored. METHODS In this study, we generated Fndc5 gene mutation to create irisin deficient mice. Female wild-type (WT) and Fndc5 mutant mice were fed with standard chow for 48 weeks. Firstly, the survival rate, body weight and fertility were described in mice. Secondly, the levels of steroid hormones in serum were measured by ELISA, and the estrus cycle and the appearance of follicles were determined by vaginal smears and ovarian continuous sections. Thirdly, mRNA-sequencing analysis was used to compare gene expression between the ovaries of Fndc5 mutant mice and those of WT mice. Finally, the effects of exogenous irisin on steroid hormone production was investigated in KGN cells. RESULTS The mice lacking irisin presented increased mortality, reduced body weight and poor fertility. Analysis of sex hormones showed decreased levels of estradiol, follicle-stimulating hormone and luteinizing hormone, and elevated progesterone levels in Fndc5 mutant mice. Irisin deficiency in mice was associated with irregular estrus, reduced ratio of antral follicles. The expressions of Akr1c18, Mamld1, and Cyp19a1, which are involved in the synthesis of steroid hormones, were reduced in the ovaries of mutant mice. Exogenous irisin could promote the expression of Akr1c18, Mamld1, and Cyp19a1 in KGN cells, stimulating estradiol production and inhibiting progesterone secretion. CONCLUSIONS Irisin deficiency was related to disordered endocrinology metabolism in mice. The irisin deficient mice showed poor growth and development, and decreased fertility. Irisin likely have effects on the expressions of Akr1c18, Mamld1 and Cyp19a1 in ovary, regulating the steroid hormone production. This study provides novel insights into the potential role of irisin in mammalian growth and reproduction.
Collapse
Affiliation(s)
- Yunyao Luo
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, #20 Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, China
- The Joint Laboratory for Reproductive Medicine of Sichuan University-The Chinese University of Hong Kong, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) Ministry of Education, Chengdu, People's Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaoyong Qiao
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, #20 Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, China
- The Joint Laboratory for Reproductive Medicine of Sichuan University-The Chinese University of Hong Kong, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) Ministry of Education, Chengdu, People's Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yaxian Ma
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, #20 Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, China
- The Joint Laboratory for Reproductive Medicine of Sichuan University-The Chinese University of Hong Kong, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) Ministry of Education, Chengdu, People's Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hongxia Deng
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, #20 Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, China
- The Joint Laboratory for Reproductive Medicine of Sichuan University-The Chinese University of Hong Kong, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) Ministry of Education, Chengdu, People's Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Charles C Xu
- College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Liangzhi Xu
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, #20 Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, China.
- The Joint Laboratory for Reproductive Medicine of Sichuan University-The Chinese University of Hong Kong, Chengdu, People's Republic of China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) Ministry of Education, Chengdu, People's Republic of China.
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
11
|
Serna E, Cespedes C, Vina J. Anti-Aging Physiological Roles of Aryl Hydrocarbon Receptor and Its Dietary Regulators. Int J Mol Sci 2020; 22:ijms22010374. [PMID: 33396477 PMCID: PMC7795126 DOI: 10.3390/ijms22010374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 01/13/2023] Open
Abstract
The vast majority of the literature on the aryl hydrocarbon receptor is concerned with its functions in xenobiotic detoxification. However, in the course of evolution, this receptor had to have physiological (rather than toxicological) functions. Our aim was to review the aryl hydrocarbon receptor’s role in the physiological functions involved in aging. This study was performed by searching the MEDLINE and Google Academic databases. A total of 34 articles were selected that focused specifically on the aryl hydrocarbon receptor and aging, the aryl hydrocarbon receptor and physiological functions, and the combination of both. This receptor’s main physiological functions (mediated by the modulation of gene expression) were cell regeneration, the immune reaction, intestinal homeostasis, and cell proliferation. Furthermore, it was shown that the loss of this receptor led to premature aging. This process may be caused by the dysregulation of hematopoietic stem cells, loss of glucose and lipid homeostasis, increase in inflammation, and deterioration of the brain. We conclude that the aryl hydrocarbon receptor, apart from its well-established role in xenobiotic detoxication, plays an important role in physiological functions and in the aging process. Modulation of the signaling pathway of this receptor could be a therapeutic target of interest in aging.
Collapse
Affiliation(s)
- Eva Serna
- Correspondence: ; Tel.: +34-96-386-41-00 (ext. 83171)
| | | | | |
Collapse
|
12
|
Devillers MM, Petit F, Giton F, François CM, Juricek L, Coumoul X, Magre S, Cohen-Tannoudji J, Guigon CJ. Age-dependent vulnerability of the ovary to AhR-mediated TCDD action before puberty: Evidence from mouse models. CHEMOSPHERE 2020; 258:127361. [PMID: 32947662 DOI: 10.1016/j.chemosphere.2020.127361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
In female mammals, puberty and fertility are regulated by the synthesis of estradiol (E2) by the ovaries at the infantile stage and at the approach of puberty, a process which may be affected by endocrine disrupting chemicals (EDC)s acting through the Aryl hydrocarbon receptor (AhR). However, there is no information on AhR-mediated regulation of ovarian estrogenic activity during these developmental periods. Here, we assessed in mouse models, the intrinsic and exogenous ligand-induced AhR action on E2 synthesis at the infantile stage (14 days postnatal (dpn)) and at the approach of puberty (28 dpn). Intrinsic AhR pathway became activated in the ovary at the approach of puberty, as suggested by the decreased intra-ovarian expression in prototypical and steroidogenesis-related AhR targets and E2 contents in Ahr knockout (Ahr-/-) mice versus Ahr+/+ mice exclusively at 28 dpn. Accordingly, AhR nuclear localization in granulosa cells, reflecting its activity in cells responsible for E2 synthesis, was much lower at 14 dpn than at 28 dpn in C57BL/6 mice. However, AhR signaling could be activated by exogenous ligands at both ages, as revealed by FICZ- and TCDD-induced Ahrr and Cyp1a1 expression in C57BL/6 mice. Nevertheless, TCDD impacted ovarian estrogenic activity only at 28 dpn. This age-related AhR action may be ligand-dependent, since FICZ had no effect on E2 synthesis at 28 dpn. In conclusion, AhR would not regulate ovarian estrogenic activity before the approach of puberty. Its activation by EDCs may be more detrimental to reproductive health at this stage than during infancy.
Collapse
Affiliation(s)
- Marie M Devillers
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, F-75013, Paris, France
| | - Florence Petit
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, F-75013, Paris, France
| | - Frank Giton
- AP-HP, Pôle biologie-Pathologie Henri Mondor, INSERM IMRB U955, Créteil, France
| | - Charlotte M François
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, F-75013, Paris, France
| | | | | | - Solange Magre
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, F-75013, Paris, France
| | | | - Céline J Guigon
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, F-75013, Paris, France.
| |
Collapse
|
13
|
Park J, Park Y, Koh I, Kim NK, Baek KH, Yun BS, Lee KJ, Song JY, Lee E, Kwack K. Association of an APBA3 Missense Variant with Risk of Premature Ovarian Failure in the Korean Female Population. J Pers Med 2020; 10:jpm10040193. [PMID: 33114509 PMCID: PMC7720130 DOI: 10.3390/jpm10040193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
Premature ovarian failure (POF) is a complex disease of which the etiology is influenced by numerous genetic variations. Several POF candidate genes have been reported. However, no causal genes with high odds ratio (OR) have yet been discovered. This study included 564 females of Korean ethnicity, comprising 60 patients with POF and 182 controls in the discovery set and 105 patients with POF and 217 controls in the replication set. We conducted genome-wide association analysis to search for novel candidate genes predicted to influence POF development using Axiom Precision Medicine Research Arrays and additive model logistic regression analysis. One statistically significant single nucleotide polymorphism (SNP), rs55941146, which encodes a missense alteration (Val > Gly) in the APBA3 gene, was identified with OR values for association with POF of 13.33 and 4.628 in the discovery and replication sets, respectively. No rs55941146 minor allele homozygotes were present in either cases or controls. The APBA3 protein binds FIH-1 that inhibits hypoxia inducible factor-1α (HIF-1α). HIF-1α contributes to granulosa cell proliferation, which is crucial for ovarian follicle growth, by regulating cell proliferation factors and follicle stimulating hormone-mediated autophagy. Our data demonstrate that APBA3 is a candidate novel causal gene for POF.
Collapse
Affiliation(s)
- JeongMan Park
- Institute Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi-do 13488, Korea; (J.P.); (Y.P.); (N.K.K.); (K.-H.B.)
| | - YoungJoon Park
- Institute Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi-do 13488, Korea; (J.P.); (Y.P.); (N.K.K.); (K.-H.B.)
| | - Insong Koh
- Department of Biomedical Informatics, Hanyang University, Seoul 04763, Korea;
| | - Nam Keun Kim
- Institute Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi-do 13488, Korea; (J.P.); (Y.P.); (N.K.K.); (K.-H.B.)
| | - Kwang-Hyun Baek
- Institute Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi-do 13488, Korea; (J.P.); (Y.P.); (N.K.K.); (K.-H.B.)
| | - Bo-Seong Yun
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seongnam, Gyeonggi-do 13497, Korea;
| | - Kyung Ju Lee
- Department of Obstetrics and Gynecology, Korea University Medical Center, Seoul 02841, Korea;
| | - Jae Yun Song
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul 02841, Korea; (J.Y.S.); (E.L.)
| | - Eunil Lee
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul 02841, Korea; (J.Y.S.); (E.L.)
| | - KyuBum Kwack
- Institute Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi-do 13488, Korea; (J.P.); (Y.P.); (N.K.K.); (K.-H.B.)
- Correspondence: ; Tel.: +82-31-881-7141
| |
Collapse
|
14
|
Paoli D, Pallotti F, Dima AP, Albani E, Alviggi C, Causio F, Dioguardi CC, Conforti A, Ciriminna R, Fabozzi G, Giuffrida G, Gualtieri R, Minasi MG, Ochetti S, Pisaturo V, Racca C, Rienzi L, Sarcina E, Scarica C, Tomasi G, Verlengia C, Villeggia R, Zullo F, Lenzi A, Botrè F, De Santis L. Phthalates and Bisphenol A: Presence in Blood Serum and Follicular Fluid of Italian Women Undergoing Assisted Reproduction Techniques. TOXICS 2020; 8:toxics8040091. [PMID: 33096627 PMCID: PMC7712248 DOI: 10.3390/toxics8040091] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Background: folliculogenesis is a strictly regulated process that may be affected by endocrine disrupting chemicals (EDCs) through sometimes not so clear molecular mechanisms. Methods: we conducted a multicentric observational study involving six fertility centers across Italy, prospectively recruiting 122 women attending a fertility treatment. Recruited women had age ≤42 years, and normal ovarian reserve. Blood and follicular fluid samples were taken for EDCs measurement using liquid chromatography tandem mass spectrometry and each woman completed an epidemiological questionnaire. Results: The main EDCs found were monobutyl phthalate (MBP) (median blood: 8.96 ng/mL, follicular fluid 6.43 ng/mL), monoethylhexyl phthalate (MEHP) (median blood: 9.16 ng/mL, follicular fluid 7.68 ng/mL) and bisphenol A (BPA) (median blood: 1.89 ng/mL, follicular fluid 1.86 ng/mL). We found that serum MBP concentration was significantly associated with the considered area (p < 0.001, adj. mean: 7.61 ng/mL, 14.40 ng/mL, 13.56 ng/mL; Area 1: Milan–Turin, Area 2: Rome–Naples; Area 3: Catania–Bari, respectively) but negatively with home plastic food packaging (p = 0.004). Follicular MBP was associated with irregular cycles (p = 0.019). No association was detected between EDCs and eating habits and other clinical and epidemiological features. Conclusions: This study represents the first Italian biomonitoring of plastic EDCs in follicular fluid, laying the basis for future prospective evaluation on oocyte quality before assisted reproduction techniques (ART).
Collapse
Affiliation(s)
- Donatella Paoli
- Laboratory of Seminology—Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza”, University of Rome, 00185 Rome, Italy; (F.P.); (A.P.D.); (A.L.)
- Correspondence: ; Tel.: +39-064-997-0715
| | - Francesco Pallotti
- Laboratory of Seminology—Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza”, University of Rome, 00185 Rome, Italy; (F.P.); (A.P.D.); (A.L.)
| | - Anna Pia Dima
- Laboratory of Seminology—Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza”, University of Rome, 00185 Rome, Italy; (F.P.); (A.P.D.); (A.L.)
| | - Elena Albani
- Humanitas Fertility Center, Department of Gynecology, Division of Gynecology and Reproductive Medicine, Humanitas Clinical and Research Hospital—IRCCS, 20089 Milan, Italy; (E.A.); (C.C.D.)
| | - Carlo Alviggi
- Istituto per l’Endocrinologia e l’Oncologia sperimentale Consiglio Nazionale delle Ricerche, 80131 Naples, Italy;
| | - Franco Causio
- Medical Centre San Luca, 70124 Bari, Italy; (F.C.); (E.S.)
| | - Carola Conca Dioguardi
- Humanitas Fertility Center, Department of Gynecology, Division of Gynecology and Reproductive Medicine, Humanitas Clinical and Research Hospital—IRCCS, 20089 Milan, Italy; (E.A.); (C.C.D.)
| | - Alessandro Conforti
- Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, 80138 Naples, Italy;
| | | | - Gemma Fabozzi
- Clinica Valle Giulia, G.en.e.r.a. Centers for Reproductive Medicine, 00197 Rome, Italy; (G.F.); (L.R.)
| | | | - Roberto Gualtieri
- Department Biology, University of Naples Federico II, University of Naples Federico II, 80138 Naples, Italy;
| | - Maria Giulia Minasi
- Center for Reproductive Medicine, European Hospital-Rome, 00149 Rome, Italy;
| | - Simona Ochetti
- Department of Surgical Sciences, Gynecology and Obstetrics 1 Physiopathology of Reproduction and IVF Unit, S. Anna Hospital, University of Torino, 10124 Torino, Italy; (S.O.); (C.R.); (F.Z.)
| | - Valerio Pisaturo
- Reproductive Medicine Department, International Evangelical Hospital, 16122 Genoa, Italy;
| | - Cinzia Racca
- Department of Surgical Sciences, Gynecology and Obstetrics 1 Physiopathology of Reproduction and IVF Unit, S. Anna Hospital, University of Torino, 10124 Torino, Italy; (S.O.); (C.R.); (F.Z.)
| | - Laura Rienzi
- Clinica Valle Giulia, G.en.e.r.a. Centers for Reproductive Medicine, 00197 Rome, Italy; (G.F.); (L.R.)
| | - Elena Sarcina
- Medical Centre San Luca, 70124 Bari, Italy; (F.C.); (E.S.)
| | - Catello Scarica
- Casa di cura Villa Salaria in partnership with Institut Marques, 00139 Rome, Italy;
| | - Giovanna Tomasi
- CRA, Assisted Reproductive Center, 95128 Catania, Italy; (G.G.); (G.T.)
| | - Cristina Verlengia
- UOSD Centro PMA Sant’ Anna—ASL Roma 1, 00198 Rome, Italy; (C.V.); (R.V.)
| | - Rita Villeggia
- UOSD Centro PMA Sant’ Anna—ASL Roma 1, 00198 Rome, Italy; (C.V.); (R.V.)
| | - Federica Zullo
- Department of Surgical Sciences, Gynecology and Obstetrics 1 Physiopathology of Reproduction and IVF Unit, S. Anna Hospital, University of Torino, 10124 Torino, Italy; (S.O.); (C.R.); (F.Z.)
| | - Andrea Lenzi
- Laboratory of Seminology—Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza”, University of Rome, 00185 Rome, Italy; (F.P.); (A.P.D.); (A.L.)
| | - Francesco Botrè
- Department of Experimental Medicine, “Sapienza”, University of Rome, 00153 Rome, Italy;
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, 00185 Rome, Italy
| | - Lucia De Santis
- IVF Unit, San Raffaele Scientific Institute Deparment Ob/Gyn, Vita-Salute University, 20132 Milan, Italy;
| | | |
Collapse
|
15
|
Elastin-derived peptide VGVAPG affects the proliferation of mouse cortical astrocytes with the involvement of aryl hydrocarbon receptor (Ahr), peroxisome proliferator-activated receptor gamma (Pparγ), and elastin-binding protein (EBP). Cytokine 2019; 126:154930. [PMID: 31760184 DOI: 10.1016/j.cyto.2019.154930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022]
Abstract
During aging and ischemic and hemorrhagic stroke, elastin molecules are degraded and elastin-derived peptides are released into the brain microenvironment. Val-Gly-Val-Ala-Pro-Gly (VGVAPG) is a repeating hexapeptide in the elastin molecule. It is well documented that the peptide sequence binds with high affinity to elastin-binding protein (EBP) located on the cell surface, thereby transducing a molecular signal into the cell. The aim of our study was to investigate whether EBP, aryl hydrocarbon receptor (Ahr), and peroxisome proliferator-activated receptor gamma (Pparγ) are involved in VGVAPG-stimulated proliferation. Primary astrocytes were maintained in DMEM/F12 medium without phenol red, supplemented with 10 or 1% charcoal/dextran-treated fetal bovine serum (FBS). The cells were exposed to increasing concentrations of VGVAPG peptide, and resazurin reduction was measured. In addition, Glb1, Pparγ, and Ahr genes were silenced. After 48 h of exposure to 10 nM and 1 µM of VGVAPG peptide, the level of estradiol (E2) and the expression of Ki67 and S100B proteins were measured. The results showed that at a wide range of concentrations, VGVAPG peptide increased the metabolism of astrocytes depending on the concentration of FBS. After silencing of Glb1, Pparγ, and Ahr genes, VGVAPG peptide did not affect the cell metabolism which suggests the involvement of all the mentioned receptors in its mechanism of action. Interestingly, in the low-FBS medium, the silencing of Glb1 gene did not result in complete inhibition of VGVAPG-stimulated proliferation. On the other hand, in the medium with 10% FBS VGVAPG increased Ki67 expression after Pparγ silencing, whereas in the medium with 1% FBS VGVAPG decreased Ki67 expression. Following the application of Ahr siRNA, VGVAPG peptide decreased the production of E2 and increased the expression of Ki67 and S100B proteins.
Collapse
|
16
|
Zajda K, Gregoraszczuk EL. Environmental polycyclic aromatic hydrocarbons mixture, in human blood levels, decreased oestradiol secretion by granulosa cells via ESR1 and GPER1 but not ESR2 receptor. Hum Exp Toxicol 2019; 39:276-289. [DOI: 10.1177/0960327119886027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tissue-dependent oestrogenic and anti-oestrogenic activity of polycyclic aromatic hydrocarbons (PAHs) has been suggested. In this study, the effect of two PAH mixtures, M1 composed of all 16 priority pollutants and M2 composed of five (noted in the highest levels) compounds, on follicle-stimulating hormone receptor (FSHR) expression, basal or FSH-induced oestradiol (E2) secretion and aromatase cytochrome P450 (P450arom) protein expression, by non-luteinised human granulosa cell line (HGrC1) was determined. In addition, the consequences of gene silencing of oestrogen receptor alfa (siESR1), oestrogen receptor beta (siESR2) and a G protein-coupled receptor (siGPER1) on the above parameters were described. Neither PAH mixture had an effect on basal FSHR protein expression; however, both mixtures increased FSH-induced FSHR expression. Decreased E2 secretion and P450arom expression was also demonstrated. In both basal and FSH treated cells, siESR1 and siGPER1 reversed the inhibitory effect of the mixtures on E2 secretion; however, in siESR2 cells, the inhibitory effect was still observed. This study showed that both classic ESR1 and GPER1 were involved in the inhibitory effect of both PAH mixtures on E2 secretion and confirmed that expression of P450arom could be downregulated through the aryl hydrocarbon receptor and additionally through the ESR2.
Collapse
Affiliation(s)
- K Zajda
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Poland
| | - EL Gregoraszczuk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Poland
| |
Collapse
|
17
|
Delkhosh A, Delashoub M, Tehrani AA, Bahrami AM, Niazi V, Shoorei H, Banimohammad M, Kalarestaghi H, Shokoohi M, Agabalazadeh A, Mohaqiq M. Upregulation of FSHR and PCNA by administration of coenzyme Q10 on cyclophosphamide-induced premature ovarian failure in a mouse model. J Biochem Mol Toxicol 2019; 33:e22398. [PMID: 31557371 DOI: 10.1002/jbt.22398] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/30/2019] [Accepted: 09/12/2019] [Indexed: 12/29/2022]
Abstract
Cyclophosphamide (CTX) has been broadly used in the clinic for the treatment of autoimmune disorders and ovarian cancer. The process of chemotherapy has significant toxicity in the reproductive system as it has detrimental effects on folliculogenesis, which leads to an irreversible premature ovarian failure (POF). Coenzyme Q10 (CoQ10) has positive impacts on the reproductive system due to its antioxidant properties, protecting the cells from free-radical oxidative damage and apoptosis. However, little is known about the possible synergistic effect of CTX and CoQ10 on the expression of genes involved in folliculogenesis, such as proliferation cell nuclear antigen (PCNA) and follicle-stimulating hormone receptor (FSHR). A total of 32 NMRI mice were applied and divided into four groups, including healthy control, CTX, CTX + CoQ10, and CoQ10 groups. The effects of CoQ10 on CTX-induced ovarian injury and folliculogenesis were examined by histopathological and real-time quantitative reverse transcription-polymerase chain reaction analyses. The rates of fertilization (in vitro fertilization), embryo development, as well as the level of reactive oxygen species (ROS) in metaphase II (MII) mouse oocytes after PMSG/HCC treatment were also assessed. Results showed that the treatment with CTX decreased the mRNA expression of PCNA and FSHR, IVF rate, and embryo development whereas the application of CoQ10 successfully reversed those factors. CoQ10 administration significantly enhanced histological morphology and decreased ROS levels and the number of atretic follicles in the ovary of CTX-treated mice. In conclusion, it seems that the protective effect of CoQ10 is exerted via the antioxidant and proliferative properties of this substance on CTX-induced ovarian damage.
Collapse
Affiliation(s)
- Aref Delkhosh
- Graduate of Veterinary Medicine, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Masoud Delashoub
- Department of Basic Sciences, Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ali Asghar Tehrani
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Banimohammad
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Kalarestaghi
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Majid Shokoohi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Agabalazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mohaqiq
- Anatomy Department, Medicine Faculty, Kateb University, Kabul, Afghanistan
| |
Collapse
|
18
|
Bravo-Ferrer I, Cuartero MI, Medina V, Ahedo-Quero D, Peña-Martínez C, Pérez-Ruíz A, Fernández-Valle ME, Hernández-Sánchez C, Fernández-Salguero PM, Lizasoain I, Moro MA. Lack of the aryl hydrocarbon receptor accelerates aging in mice. FASEB J 2019; 33:12644-12654. [PMID: 31483997 DOI: 10.1096/fj.201901333r] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor, largely known for its role in xenobiotic metabolism and detoxification as well as its crucial role as a regulator of inflammation. Here, we have compared a cohort wild-type and AhR-null mice along aging to study the relationship between this receptor and age-associated inflammation, termed as "inflammaging," both at a systemic and the CNS level. Our results show that AhR deficiency is associated with a premature aged phenotype, characterized by early inflammaging, as shown by an increase in plasma cytokines levels. The absence of AhR also promotes the appearance of brain aging anatomic features, such as the loss of the white matter integrity. In addition, AhR-/- mice present an earlier spatial memory impairment and an enhanced astrogliosis in the hippocampus when compared with their age-matched AhR+/+ controls. Importantly, we have found that AhR protein levels decrease with age in this brain structure, strongly suggesting a link between AhR and aging.-Bravo-Ferrer, I., Cuartero, M. I., Medina, V., Ahedo-Quero, D., Peña-Martínez, C., Pérez-Ruíz, A., Fernández-Valle, M. E., Hernández-Sánchez, C., Fernández-Salguero, P. M., Lizasoain, I., Moro, M. A. Lack of the aryl hydrocarbon receptor accelerates aging in mice.
Collapse
Affiliation(s)
- Isabel Bravo-Ferrer
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María I Cuartero
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Violeta Medina
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Dalia Ahedo-Quero
- Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México, México
| | - Carolina Peña-Martínez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Alberto Pérez-Ruíz
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - M Encarnación Fernández-Valle
- Unidad de Resonancia Magnética Nuclear (RMN), Centro de Apoyo a la Investigación (CAI) de Bioimagen, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Catalina Hernández-Sánchez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pedro M Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Badajoz, Spain
| | - Ignacio Lizasoain
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María A Moro
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
19
|
Deuster E, Mayr D, Hester A, Kolben T, Zeder-Göß C, Burges A, Mahner S, Jeschke U, Trillsch F, Czogalla B. Correlation of the Aryl Hydrocarbon Receptor with FSHR in Ovarian Cancer Patients. Int J Mol Sci 2019; 20:ijms20122862. [PMID: 31212758 PMCID: PMC6628023 DOI: 10.3390/ijms20122862] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022] Open
Abstract
Expression of the aryl hydrocarbon receptor (AhR) has been described in various tumor entities from different organs. However, its role in ovarian cancer has not been thoroughly investigated. We aimed to elucidate the prognostic impact of AhR, its correlation with the follicle-stimulating hormone receptor (FSHR), and their functional role in ovarian cancer. By immunohistochemistry, AhR staining was analyzed in a subset of 156 samples of ovarian cancer patients. AhR staining was assessed in the nucleus and the cytoplasm using the semi-quantitative immunoreactive score (IRS), and the scores were grouped into high- and low-level expression. AhR expression was detected in all histological subtypes, with clear cell ovarian cancer displaying the highest staining intensity. Low cytoplasmic expression of AhR was associated with longer overall survival (median 183.46 vs. 85.07 months; p = 0.021). We found a positive correlation between AhR and FSHR (p = 0.005). Ovarian cancer patients with high cytoplasmic AhR and concurrent FSHR expression had the worst outcome (median 69.72 vs. 43.32 months; p = 0.043). Consequently, low cytoplasmic AhR expression seems to be associated with improved survival in ovarian cancer patients. Our data suggest that AhR and FSHR levels correlate with each other, and their concurrent expression was observed in ovarian cancer patients with the worst outcome. Further investigation of the interaction of both receptors and their functional role might better predict the impact of endocrine therapy in ovarian cancer.
Collapse
Affiliation(s)
- Eileen Deuster
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Doris Mayr
- Institute of Pathology, Faculty of Medicine, LMU Munich, 81377 Munich, Germany.
| | - Anna Hester
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Christine Zeder-Göß
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| |
Collapse
|
20
|
Nevoral J, Kolinko Y, Moravec J, Žalmanová T, Hošková K, Prokešová Š, Klein P, Ghaibour K, Hošek P, Štiavnická M, Řimnáčová H, Tonar Z, Petr J, Králíčková M. Long-term exposure to very low doses of bisphenol S affects female reproduction. Reproduction 2018; 156:47-57. [PMID: 29748175 DOI: 10.1530/rep-18-0092] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/10/2018] [Indexed: 12/15/2022]
Abstract
Bisphenols belong to the endocrine disruptors, affecting reproduction even in extremely low doses. Bisphenol S (BPS) has become widely used as a substitute for the earlier-used bisphenol A; however, its harmlessness is questionable. The aim of this study was to evaluate the effect of BPS on folliculogenesis and oocyte quality after in vivo exposure to low doses of BPS. Four-week-old ICR females (n = 16 in each experimental group) were exposed to vehicle control (VC), BPS1 (0.001 ng BPS.g/bw/day), BPS2 (0.1 ng.g/bw/day), BPS3 (10 ng.g/bw/day) and BPS4 (100 ng.g/bw/day) for 4 weeks. Ovaries were subjected to stereology and nano liquid chromatography-mass spectrometry (LC/MS). Simultaneously, metaphase II oocytes were obtained after pregnant mare serum gonadotrophin and human chorionic gonadotrophin administration, followed by immunostaining. In particular, mating and two-cell embryo flushing were performed. We observed that BPS decreases the amount of ovarian follicles and BPS2 (0.1 ng.g/bw/day) affects the volume of antral follicles. Accordingly, ovarian proteome is affected after BPS2 treatment. While BPS2 dosing results mainly in cytoskeletal damage in matured oocytes, the effects of BPS3 and BPS4 seem to be due instead to epigenetic alterations in oocytes. Arguably, these changes lead to observed affection of in vivo fertilization rate after BPS3 and BPS4 treatment. BPS significantly affects female reproduction astoundingly in extremely low doses. These findings underline the necessity to assess the risk of ongoing BPS exposure for public health.
Collapse
Affiliation(s)
- Jan Nevoral
- Biomedical CenterFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic .,Department of Histology and EmbryologyFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Yaroslav Kolinko
- Biomedical CenterFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Histology and EmbryologyFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jiří Moravec
- Biomedical CenterFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | | | | | - Šárka Prokešová
- Biomedical CenterFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Faculty of AgrobiologyFood and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Pavel Klein
- Biomedical CenterFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Kamar Ghaibour
- Biomedical CenterFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Université Lille1Sciences et Technologies, FR3688 CNRS, Villeneuve d'Ascq Cedex, France
| | - Petr Hošek
- Biomedical CenterFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Miriama Štiavnická
- Biomedical CenterFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Hedvika Řimnáčová
- Biomedical CenterFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Zbyněk Tonar
- Biomedical CenterFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Histology and EmbryologyFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | | | - Milena Králíčková
- Biomedical CenterFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Histology and EmbryologyFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
21
|
Chaubey GK, Kumar S, Kumar M, Sarwalia P, Kumaresan A, De S, Kumar R, Datta TK. Induced cumulus expansion of poor quality buffalo cumulus oocyte complexes by Interleukin-1beta improves their developmental ability. J Cell Biochem 2018; 119:5750-5760. [PMID: 29352731 DOI: 10.1002/jcb.26688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/19/2018] [Indexed: 12/22/2022]
Abstract
The present study was conceived with the aim of modulating the cumulus expansion characteristics of poor quality (BCB-) buffalo oocyte complexes (COCs) in order to improve their fertilization outcomes. BCB- COCs were subjected to in vitro maturation (IVM) in presence of Interleukin-1 beta (IL-1β) along with BCB- (control) and good quality (BCB+) COCs. Results were assessed morphologically, by scanning electron microscopy (SEM) and by expression analysis of cumulus expansion related genes. Also, numbers of zona pellucida bound spermatozoa were counted and development rates of oocytes were monitored under different groups. Expression of versican isoforms and ADAMTS-1 was observed to be significantly different between cumulus cells of BCB+ and BCB- COCs. Upon IL-1β supplementation, ADAMTS-1 expression increased in BCB- COCs along with corresponding cumulus expansion rates. SEM analysis also revealed improved cumulus expansion in IL-1β supplemented BCB- COCs. HAS2 and TNFAIP-6 were significantly up-regulated after IL-1β supplementation while PTGS2 expression remained unaffected. Significantly more numbers of sperms crossed the cumulus barrier, especially in 100 ng/mL IL-1β supplemented COCs. Besides, cleavage and blastocyst development rates were also improved upon IL-1β addition. We concluded that IL-1β supplementation in IVM medium can improve cumulus expansion and development ability of poor quality buffalo oocytes.
Collapse
Affiliation(s)
- Gaurav Kumar Chaubey
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Sandeep Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Manish Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Parul Sarwalia
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Arumugam Kumaresan
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Sachinandan De
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Rakesh Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Tirtha Kumar Datta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
22
|
Garcia GR, Bugel SM, Truong L, Spagnoli S, Tanguay RL. AHR2 required for normal behavioral responses and proper development of the skeletal and reproductive systems in zebrafish. PLoS One 2018; 13:e0193484. [PMID: 29494622 PMCID: PMC5832240 DOI: 10.1371/journal.pone.0193484] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/12/2018] [Indexed: 01/24/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a conserved ligand-activated transcription factor required for proper vertebrate development and homeostasis. The inappropriate activation of AHR by ubiquitous pollutants can lead to adverse effects on wildlife and human health. The zebrafish is a powerful model system that provides a vertebrate data stream that anchors hypothesis at the genetic and cellular levels to observations at the morphological and behavioral level, in a high-throughput format. In order to investigate the endogenous functions of AHR, we generated an AHR2 (homolog of human AHR)-null zebrafish line (ahr2osu1) using the clustered, regulatory interspaced, short palindromic repeats (CRISPR)-Cas9 precision genome editing method. In zebrafish, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) mediated toxicity requires AHR2. The AHR2-null line was resistant to TCDD-induced toxicity, indicating the line can be used to investigate the biological and toxicological functions of AHR2. The AHR2-null zebrafish exhibited decreased survival and fecundity compared to the wild type line. At 36 weeks, histological evaluations of the AHR2-null ovaries revealed a reduction of mature follicles when compared to wild type ovaries, suggesting AHR2 regulates follicle growth in zebrafish. AHR2-null adults had malformed cranial skeletal bones and severely damaged fins. Our data suggests AHR2 regulates some aspect(s) of neuromuscular and/or sensory system development, with impaired behavioral responses observed in larval and adult AHR2-null zebrafish. This study increases our understanding of the endogenous functions of AHR, which may help foster a better understanding of the target organs and molecular mechanisms involved in AHR-mediated toxicities.
Collapse
Affiliation(s)
- Gloria R. Garcia
- Department of Environmental & Molecular Toxicology, Environmental Health Sciences Center, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States of America
| | - Sean M. Bugel
- Department of Environmental & Molecular Toxicology, Environmental Health Sciences Center, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States of America
| | - Lisa Truong
- Department of Environmental & Molecular Toxicology, Environmental Health Sciences Center, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States of America
| | - Sean Spagnoli
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States of America
| | - Robert L. Tanguay
- Department of Environmental & Molecular Toxicology, Environmental Health Sciences Center, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|
23
|
Rhon-Calderón EA, Toro CA, Lomniczi A, Galarza RA, Faletti AG. Changes in the expression of genes involved in the ovarian function of rats caused by daily exposure to 3-methylcholanthrene and their prevention by α-naphthoflavone. Arch Toxicol 2017; 92:907-919. [PMID: 29094188 DOI: 10.1007/s00204-017-2096-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022]
Abstract
Daily exposure to low doses of 3-methylcholanthrene (3MC) during the pubertal period in rats disrupts both follicular growth and ovulation. Thus, to provide new insights into the toxicity mechanism of 3MC in the ovary, here we investigated the effect of daily exposure to 3MC on selected ovarian genes, the role of the aryl hydrocarbon receptor (AhR) and the level of epigenetic remodeling of histone post-transcriptional modifications. Immature rats were daily injected with 3MC (0.1 or 1 mg/kg) and mRNA expression of genes involved in different ovarian processes were evaluated. Of the 29 genes studied, 18 were up-regulated, five were down-regulated and six were not altered. To assess whether AhR was involved in these changes, we used the chromatin immunoprecipitation assay. 3MC increased AhR binding to promoter regions of genes involved in Notch signaling (Hes1, Jag1), activation of primordial follicles (Cdk2), cell adhesion (Icam1), stress and tumor progression (Dnajb6), apoptosis (Bax, Caspase-9) and expression of growth and transcription factors (Igf2, Sp1). Studying the trimethylation and acetylation of histone 3 (H3K4me3 and H3K9Ac, respectively) of these genes, we found that 3MC increased H3K4me3 in Cyp1a1, Jag1, Dnajb6, Igf2, Notch2, Adamts1, Bax and Caspase-9, and H3K9Ac in Cyp1a1, Jag1, Cdk2, Dnajb6, Igf2, Icam1, and Sp1. Co-treatment with α-naphthoflavone (αNF), a specific antagonist of AhR, prevented almost every 3MC-induced changes. Despite the low dose used in these experiments, daily exposure to 3MC induced changes in both gene expression and epigenomic remodeling, which may lead to premature ovarian failure.
Collapse
Affiliation(s)
- Eric Alejandro Rhon-Calderón
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina, Paraguay 2155, 16º P, (C1121ABG) Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Alejandro Toro
- Primate Genetics Section, Division of Neuroscience, Oregon National Primate Research Center, OHSU, Beaverton, OR, 97006, USA
| | - Alejandro Lomniczi
- Primate Genetics Section, Division of Neuroscience, Oregon National Primate Research Center, OHSU, Beaverton, OR, 97006, USA
| | - Rocío Alejandra Galarza
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina, Paraguay 2155, 16º P, (C1121ABG) Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Dto. de Toxicología y Farmacología, Buenos Aires, Argentina
| | - Alicia Graciela Faletti
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina, Paraguay 2155, 16º P, (C1121ABG) Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
- Universidad de Buenos Aires, Facultad de Medicina, Dto. de Toxicología y Farmacología, Buenos Aires, Argentina.
| |
Collapse
|
24
|
Hu Y, Yuan DZ, Wu Y, Yu LL, Xu LZ, Yue LM, Liu L, Xu WM, Qiao XY, Zeng RJ, Yang ZL, Yin WY, Ma YX, Nie Y. Bisphenol A Initiates Excessive Premature Activation of Primordial Follicles in Mouse Ovaries via the PTEN Signaling Pathway. Reprod Sci 2017; 25:609-620. [DOI: 10.1177/1933719117734700] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ying Hu
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China
| | - Dong-zhi Yuan
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Yi Wu
- Sichuan Environmental Protection Key Laboratory of Heavy Metals Pollution Control, Sichuan Academy of Environmental Sciences, Sichuan, Chengdu, China
| | - Lin-lin Yu
- Department of Infertility and Sterility ,Chengdu Women and Children's Central Hospital, Sichuan, Chengdu
| | - Liang-zhi Xu
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China
| | - Li-min Yue
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Lin Liu
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China
- Department of Infertility and Sterility ,Chengdu Women and Children's Central Hospital, Sichuan, Chengdu
| | - Wen-ming Xu
- The Joint Laboratory for Reproductive Medicine of Sichuan University -The Chinese University of Hong Kong, China
| | - Xiao-yong Qiao
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan, Chengdu, China
| | - Ru-jun Zeng
- West China School of Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Zhi-lan Yang
- West China School of Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Wei-yao Yin
- West China School of Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Ya-xian Ma
- West China School of Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Ying Nie
- West China School of Medicine, Sichuan University, Sichuan, Chengdu, China
| |
Collapse
|
25
|
Rhon-Calderón EA, Galarza RA, Lomniczi A, Faletti AG. The systemic and gonadal toxicity of 3-methylcholanthrene is prevented by daily administration of α-naphthoflavone. Toxicology 2016; 353-354:58-69. [PMID: 27163632 DOI: 10.1016/j.tox.2016.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/25/2016] [Accepted: 05/05/2016] [Indexed: 11/24/2022]
Abstract
In the present study, we investigated the effect of 3-methylcholanthrene (3MC) on sexual maturity and the ability of α-naphthoflavone (αNF) to prevent this action. To this end, immature rats were daily injected intraperitoneally with 3MC (0.1 or 1mg/kg) and/or αNF (80mg/kg). Body weight, vaginal opening and estrous cycle were recorded and ovaries were obtained on the day of estrus. Ovarian weight, ovulation rate (measured by the number of oocytes within oviducts), and follicular development (determined by histology) were studied. No differences were found in body weight, ovarian weight, day of vaginal opening, or the establishment of the estrous cycle among the different groups of rats. However, animals treated with 3MC, at both doses, exhibited a lower number of primordial, primary, preantral and antral follicles than controls. Also, 3MC inhibited the ovulation rate and induced an overexpression of both the Cyp1a1 and Cyp1b1 genes, measured by chromatin immunoprecipitation assay. The daily treatment with αNF alone increased the number of follicles in most of the stages analyzed when compared with controls. Moreover, the αNF treatment prevented completely not only the 3MC-induced decrease in all types of follicles but also the 3MC-induced overexpression of Cyp enzymes and the genetic damage in bone marrow cells and oocytes. These results suggest that (i) daily exposure to 3MC during the pubertal period destroys the follicle reserve and alters the ovulation rate; (ii) the 3MC action seems to be mediated by an aryl hydrocarbon receptor-dependent mechanism; (iii) daily administration of αNF has a clear stimulatory action on the ovarian function; and (iv) αNF may prevent both the systemic and gonadal 3MC-induced toxicity.
Collapse
Affiliation(s)
- Eric Alejandro Rhon-Calderón
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rocío Alejandra Galarza
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Alicia Graciela Faletti
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
26
|
Moore-Ambriz TR, Acuña-Hernández DG, Ramos-Robles B, Sánchez-Gutiérrez M, Santacruz-Márquez R, Sierra-Santoyo A, Piña-Guzmán B, Shibayama M, Hernández-Ochoa I. Exposure to bisphenol A in young adult mice does not alter ovulation but does alter the fertilization ability of oocytes. Toxicol Appl Pharmacol 2015; 289:507-14. [PMID: 26493930 DOI: 10.1016/j.taap.2015.10.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
Follicle growth culminates in ovulation, which allows for the expulsion of fertilizable oocytes and the formation of corpora lutea. Bisphenol A (BPA) is present in many consumer products, and it has been suggested that BPA impairs ovulation; however, the underlying mechanisms are unknown. Therefore, this study first evaluated whether BPA alters ovulation by affecting folliculogenesis, the number of corpora lutea or eggs shed to the oviduct, ovarian gonadotropin responsiveness, hormone levels, and estrous cyclicity. Because it has been suggested (but not directly confirmed) that BPA exerts toxic effects on the fertilization ability of oocytes, a second aim was to evaluate whether BPA impacts the oocyte fertilization rate using an in vitro fertilization assay and mating. The possible effects on early zygote development were also examined. Young adult female C57BL/6J mice (39 days old) were orally dosed with corn oil (vehicle) or 50 μg/kgbw/day BPA for a period encompassing the first three reproductive cycles (12-15 days). BPA exposure did not alter any parameters related to ovulation. Moreover, BPA exposure reduced the percentage of fertilized oocytes after either in vitro fertilization or mating, but it did not alter the zygotic stages. The data indicate that exposure to the reference dose of BPA does not impact ovulation but that it does influence the oocyte quality in terms of its fertilization ability.
Collapse
Affiliation(s)
- Teresita Rocio Moore-Ambriz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México D.F. 07360, México
| | - Deyanira Guadalupe Acuña-Hernández
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México D.F. 07360, México
| | - Brenda Ramos-Robles
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México D.F. 07360, México
| | - Manuel Sánchez-Gutiérrez
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo 42000, México
| | - Ramsés Santacruz-Márquez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México D.F. 07360, México
| | - Adolfo Sierra-Santoyo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México D.F. 07360, México
| | | | - Mineko Shibayama
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México D.F. 07360, México
| | - Isabel Hernández-Ochoa
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México D.F. 07360, México.
| |
Collapse
|
27
|
Yang Q, Zhao Y, Qiu X, Zhang C, Li R, Qiao J. Association of serum levels of typical organic pollutants with polycystic ovary syndrome (PCOS): a case-control study. Hum Reprod 2015; 30:1964-73. [PMID: 26040477 DOI: 10.1093/humrep/dev123] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/05/2015] [Indexed: 01/01/2023] Open
Abstract
STUDY QUESTION Is polycystic ovary syndrome (PCOS) associated with increased serum levels of typical organic pollutants? SUMMARY ANSWER PCOS in Han females from Northern China was significantly associated with elevated serum levels of pollutants, including polychlorinated biphenyls (PCBs), organochlorine pesticides and polycyclic aromatic hydrocarbons (PAHs). WHAT IS KNOWN ALREADY PCOS is arguably the most common endocrinopathy in females of reproductive age. The etiology of PCOS is thought to be multifactorial. STUDY DESIGN, SIZE, DURATION This was a preliminary case-control study undertaken at the Division of Reproductive Center, Peking University Third Hospital. Fifty participants affected by PCOS and 30 normal controls were recruited between August and October 2012 from Northern China. All participants were Han women. PARTICIPANTS/MATERIALS, SETTING, METHODS PCOS participants were diagnosed according to the 2003 Rotterdam criteria. The control participants were non-pregnant females unable to conceive solely due to male azoospermia. Serum levels of a wide range of organic pollutants, including PCBs, organochlorine pesticides, PAHs and more than 20 phenolic pollutants, were analyzed using gas chromatographic mass spectrometry. MAIN RESULTS AND THE ROLE OF CHANCE Serum levels of PCBs, pesticides and PAHs were significantly higher in the PCOS group than the control group. Concentrations of PCBs, p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and PAHs in serum above median levels were associated with PCOS with odds ratios of 3.81 [95% confidence interval (CI), 1.45-10.0], 4.89 (95% CI, 1.81-13.2) and 2.39 (95% CI, 0.94-6.05), respectively. Partial least-squares-discriminant analysis (PLS-DA) confirmed that serum levels of organic pollutants were associated with PCOS, especially for p,p'-DDE and PCBs. LIMITATIONS, REASONS FOR CAUTION Some other possible covariates (e.g. dietary and income) were missed in this study, although education and occupation have been considered as an indicator of personal income. The PLS-DA model allowed a quasi-exposome analysis with over 60 kinds of typical organic pollutants; however, the possibility of other pollutants involved in the PCOS still could not be excluded. WIDER IMPLICATIONS OF THE FINDINGS Our study identified that bodily retention of environmental organic pollutants-including PCBs, pesticides (especially p,p'-DDE) and PAHs-was associated with PCOS. STUDY FUNDING/COMPETING INTERESTS This research was supported by the Ministry of Science and Technology of China Grants (973 program; 2014CB943203 and 2015CB553401), National Natural Science Foundation of China (21322705, 21190051, 41121004 and 81170538), National Key Technology R&D Program in the Twelve Five-Year Plan (2012BAI32B01) and the Collaborative Innovation Center for Regional Environmental Quality. There are no conflicts of interest to declare. TRIAL REGISTRATION NUMBER None. This is not a clinical trial.
Collapse
Affiliation(s)
- Qiaoyun Yang
- College of Environmental Sciences and Engineering, Third Hospital, Peking University, Beijing 100871, P.R. China State Key Joint Laboratory for Environmental Simulation and Pollution Control, Beijing 100871, P.R. China
| | - Yue Zhao
- College of Environmental Sciences and Engineering, Third Hospital, Peking University, Beijing 100871, P.R. China Key Laboratory of Assisted Reproduction, Ministry of Education and Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, P.R. China
| | - Xinghua Qiu
- College of Environmental Sciences and Engineering, Third Hospital, Peking University, Beijing 100871, P.R. China State Key Joint Laboratory for Environmental Simulation and Pollution Control, Beijing 100871, P.R. China
| | - Chunmei Zhang
- College of Environmental Sciences and Engineering, Third Hospital, Peking University, Beijing 100871, P.R. China Key Laboratory of Assisted Reproduction, Ministry of Education and Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, P.R. China
| | - Rong Li
- College of Environmental Sciences and Engineering, Third Hospital, Peking University, Beijing 100871, P.R. China Key Laboratory of Assisted Reproduction, Ministry of Education and Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, P.R. China
| | - Jie Qiao
- College of Environmental Sciences and Engineering, Third Hospital, Peking University, Beijing 100871, P.R. China Key Laboratory of Assisted Reproduction, Ministry of Education and Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, P.R. China
| |
Collapse
|
28
|
Sofo V, Götte M, Laganà AS, Salmeri FM, Triolo O, Sturlese E, Retto G, Alfa M, Granese R, Abrão MS. Correlation between dioxin and endometriosis: an epigenetic route to unravel the pathogenesis of the disease. Arch Gynecol Obstet 2015; 292:973-86. [DOI: 10.1007/s00404-015-3739-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
|
29
|
In vitro re-expression of the aryl hydrocarbon receptor (Ahr) in cultured Ahr-deficient mouse antral follicles partially restores the phenotype to that of cultured wild-type mouse follicles. Toxicol In Vitro 2014; 29:329-36. [PMID: 25500125 DOI: 10.1016/j.tiv.2014.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 01/19/2023]
Abstract
BACKGROUND The aryl hydrocarbon receptor (AHR) mediates the toxic effects of various endocrine disrupting chemicals. In female mice, global deletion of the Ahr (AhrKO) results in slow growth of ovarian antral follicles. No studies, however, have examined whether injection of the Ahr restores the phenotypes of cultured AhrKO ovarian antral follicles to wild-type levels. METHODS We developed a system to construct a recombinant adenovirus containing the Ahr to re-express the Ahr in AhrKO granulosa cells and whole antral follicles. We then compared follicle growth and levels of factors in the AHR signaling pathway (Ahr, Ahrr, Cyp1a1, and Cyp1b1) in wild-type, AhrKO, and Ahr re-expressed follicles. Further, we compared the response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in wild-type, AhrKO, and Ahr re-expressed follicles. RESULTS Ahr injection into AhrKO follicles partially restored their growth pattern to wild-type levels. Further, Ahr re-expressed follicles had significantly higher levels of Ahr, Ahrr, Cyp1a1, and Cyp1b1 compared to wild-type follicles. Upon TCDD treatment, only Cyp1a1 levels were significantly higher in Ahr re-expressed follicles compared to the levels in wild-type follicles. CONCLUSION Our system of re-expression of the Ahr partially restores follicle growth and transcript levels of factors in the AHR signaling pathway to wild-type levels.
Collapse
|
30
|
Ziv-Gal A, Craig ZR, Wang W, Flaws JA. Bisphenol A inhibits cultured mouse ovarian follicle growth partially via the aryl hydrocarbon receptor signaling pathway. Reprod Toxicol 2013; 42:58-67. [PMID: 23928317 DOI: 10.1016/j.reprotox.2013.07.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/03/2013] [Accepted: 07/27/2013] [Indexed: 02/03/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor that inhibits growth of mouse ovarian follicles and disrupts steroidogenesis at a dose of 438μM. However, the effects of lower doses of BPA and its mechanism of action in ovarian follicles are unknown. We hypothesized that low doses of BPA inhibit follicular growth and decrease estradiol levels through the aryl hydrocarbon receptor (AHR) pathway. Antral follicles from wild-type and Ahr knock-out (AhrKO) mice were cultured for 96h. Follicle diameters and estradiol levels then were compared in wild-type and AhrKO follicles ± BPA (0.004-438μM). BPA inhibited follicle growth (110-438μM) and decreased estradiol levels (43.8-438μM) in wild-type and AhrKO follicles. However, at BPA 110μM, inhibition of growth in AhrKO follicles was attenuated compared to wild-type follicles. These data suggest that BPA may inhibit follicle growth partially via the AHR pathway, whereas its effects on estradiol synthesis likely involve other mechanisms.
Collapse
Affiliation(s)
- Ayelet Ziv-Gal
- Department of Comparative Biosciences, University of Illinois, Urbana, IL, USA.
| | | | | | | |
Collapse
|
31
|
Testosterone-dependent interaction between androgen receptor and aryl hydrocarbon receptor induces liver receptor homolog 1 expression in rat granulosa cells. Mol Cell Biol 2013; 33:2817-28. [PMID: 23689136 DOI: 10.1128/mcb.00011-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Androgens play a major role in the regulation of normal ovarian function; however, they are also involved in the development of ovarian pathologies. These contrasting effects may involve a differential response of granulosa cells to the androgens testosterone (T) and dihydrotestosterone (DHT). To determine the molecular pathways that mediate the distinct effects of T and DHT, we studied the expression of the liver receptor homolog 1 (LRH-1) gene, which is differentially regulated by these steroids. We found that although both T and DHT stimulate androgen receptor (AR) binding to the LRH-1 promoter, DHT prevents T-mediated stimulation of LRH-1 expression. T stimulated the expression of aryl hydrocarbon receptor (AHR) and its interaction with the AR. T also promoted the recruitment of the AR/AHR complex to the LRH-1 promoter. These effects were not mimicked by DHT. We also observed that the activation of extracellular regulated kinases by T is required for AR and AHR interaction. In summary, T, but not DHT, stimulates AHR expression and the interaction between AHR and AR, leading to the stimulation of LRH-1 expression. These findings could explain the distinct response of granulosa cells to T and DHT and provide a molecular mechanism by which DHT negatively affects ovarian function.
Collapse
|
32
|
Hernández-Ochoa I, Gao L, Peretz J, Basavarajappa MS, Bunting SL, Karman BN, Paulose T, Flaws JA. Follicle-stimulating hormone responsiveness in antral follicles from aryl hydrocarbon receptor knockout mice. Reprod Biol Endocrinol 2013; 11:26. [PMID: 23548098 PMCID: PMC3621516 DOI: 10.1186/1477-7827-11-26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/22/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Previous studies have demonstrated that pre-pubertal aryl hydrocarbon receptor knockout (AHRKO) mice have slow antral follicle growth and reduced capacity to produce estradiol compared to wild-type (WT) mice. Although previous studies have suggested that this is likely due to a reduced ability of the AHRKO follicles to respond to follicle-stimulating hormone (FSH), this possibility was not directly tested. Thus, the goal of these studies was to test the hypothesis that low FSH responsiveness is responsible for the slow growth and reduced estradiol production observed in pre-pubertal AHRKO versus WT antral follicles. METHODS Antral follicles from WT and AHRKO mice were cultured with varying amounts of FSH (0-15 IU/mL) for up to 7 days, and subjected to measurements of growth, FSH receptor and steroidogenic regulator expression, sex steroid hormone levels, and inhibin beta-A expression. General linear models (GLM) for repeated measures were used to compare follicle diameters over time among treatments. If the global tests from GLM were significant, Tukey's tests were used for pairwise comparisons. Remaining comparisons among groups were performed using one-way analysis of variance followed by Tukey's post hoc test. RESULTS The results indicate that FSH stimulated growth in both WT and AHRKO follicles, but that high levels of FSH (10-15 IU/mL) were required for AHRKO follicles to reach maximal growth, whereas lower levels of FSH (5 IU/mL) were required for WT follicles to reach maximal growth. Further, FSH stimulated expression of FSH receptor, steroidogenic factors, and inhibin beta-A as well as production of steroid hormones in both WT and AHRKO follicles, but the degree of stimulation differed between WT and AHRKO follicles. Interestingly, FSH treatment increased expression of FSH receptor, some steroidogenic regulators, inhibin beta-A, and steroid hormone production more in AHRKO follicles compared to WT follicles. CONCLUSIONS Collectively, these data suggest that the slow growth, but not reduced steroidogenesis in AHRKO follicles, is due to their reduced ability to respond to FSH compared to WT follicles. These data also suggest that the AHR may contribute to the ability of FSH to stimulate proper follicle growth, but it may not contribute to FSH-induced steroidogenesis.
Collapse
Affiliation(s)
- Isabel Hernández-Ochoa
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Illinois 61802, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Caserta D, Ciardo F, Bordi G, Guerranti C, Fanello E, Perra G, Borghini F, La Rocca C, Tait S, Bergamasco B, Stecca L, Marci R, Lo Monte G, Soave I, Focardi S, Mantovani A, Moscarini M. Correlation of endocrine disrupting chemicals serum levels and white blood cells gene expression of nuclear receptors in a population of infertile women. Int J Endocrinol 2013; 2013:510703. [PMID: 23710174 PMCID: PMC3654366 DOI: 10.1155/2013/510703] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 12/22/2022] Open
Abstract
Significant evidence supports that many endocrine disrupting chemicals could affect female reproductive health. Aim of this study was to compare the internal exposure to bisphenol A (BPA), perfluorooctane sulphonate (PFOS), perfluorooctanoic acid (PFOA), monoethylhexyl phthalate (MEHP), and di(2-ethylhexyl) phthalate (DEHP) in serum samples of 111 infertile women and 44 fertile women. Levels of gene expression of nuclear receptors (ER α , ER β , AR, AhR, PXR, and PPAR γ ) were also analyzed as biomarkers of effective dose. The percentage of women with BPA concentrations above the limit of detection was significantly higher in infertile women than in controls. No statistically significant difference was found with regard to PFOS, PFOA, MEHP and DEHP. Infertile patients showed gene expression levels of ER α , ER β , AR, and PXR significantly higher than controls. In infertile women, a positive association was found between BPA and MEHP levels and ER α , ER β , AR, AhR, and PXR expression. PFOS concentration positively correlated with AR and PXR expression. PFOA levels negatively correlated with AhR expression. No correlation was found between DEHP levels and all evaluated nuclear receptors. This study underlines the need to provide special attention to substances that are still widely present in the environment and to integrate exposure measurements with relevant indicators of biological effects.
Collapse
Affiliation(s)
- Donatella Caserta
- Department of Obstetrics and Gynaecological Sciences and Urological Sciences, University of Rome “Sapienza”, S. Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, Italy
- Department of Woman Health and Territory's Medicine, University of Rome “Sapienza”, S. Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, Italy
- *Donatella Caserta:
| | - Francesca Ciardo
- Department of Obstetrics and Gynaecological Sciences and Urological Sciences, University of Rome “Sapienza”, S. Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Giulia Bordi
- Department of Obstetrics and Gynaecological Sciences and Urological Sciences, University of Rome “Sapienza”, S. Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Cristiana Guerranti
- Department of Environmental Sciences “G. Sarfatti”, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
| | - Emiliano Fanello
- Department of Environmental Sciences “G. Sarfatti”, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
| | - Guido Perra
- Department of Environmental Sciences “G. Sarfatti”, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
| | - Francesca Borghini
- Department of Environmental Sciences “G. Sarfatti”, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
| | - Cinzia La Rocca
- Department of Food Safety and Veterinary Public Health, Food and Veterinary Toxicology Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Sabrina Tait
- Department of Food Safety and Veterinary Public Health, Food and Veterinary Toxicology Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Bruno Bergamasco
- Department of Food Safety and Veterinary Public Health, Food and Veterinary Toxicology Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Laura Stecca
- Department of Food Safety and Veterinary Public Health, Food and Veterinary Toxicology Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Roberto Marci
- Department of Biomedical Sciences and Advanced Therapies, Section of Obstetrics and Gynaecology, University of Ferrara, Corso Giovecca 203, 44121 Ferrara, Italy
| | - Giuseppe Lo Monte
- Department of Biomedical Sciences and Advanced Therapies, Section of Obstetrics and Gynaecology, University of Ferrara, Corso Giovecca 203, 44121 Ferrara, Italy
| | - Ilaria Soave
- Department of Biomedical Sciences and Advanced Therapies, Section of Obstetrics and Gynaecology, University of Ferrara, Corso Giovecca 203, 44121 Ferrara, Italy
| | - Silvano Focardi
- Department of Environmental Sciences “G. Sarfatti”, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
| | - Alberto Mantovani
- Department of Food Safety and Veterinary Public Health, Food and Veterinary Toxicology Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Massimo Moscarini
- Department of Obstetrics and Gynaecological Sciences and Urological Sciences, University of Rome “Sapienza”, S. Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, Italy
| |
Collapse
|
34
|
Teino I, Kuuse S, Ingerpuu S, Maimets T, Tiido T. The aryl hydrocarbon receptor regulates mouse Fshr promoter activity through an e-box binding site. Biol Reprod 2012; 86:77. [PMID: 22116805 DOI: 10.1095/biolreprod.111.095596] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) mediates the toxicity of a variety of environmental chemicals. Apart from this, an understanding is emerging that the AHR has a fundamental role in female reproduction. Evidence suggests that AHR participates in regulation of follicle-stimulating hormone receptor (Fshr) transcript level in mouse ovary by binding to the promoter of this gene in vivo. The purpose of this study was to demonstrate the molecular interplay of the Fshr promoter involved in the transactivation by AHR in mouse granulosa cells. We found that AHR activates the Fshr promoter through the region from -209 to -99 bp. In this region, the importance of the E-box motif was revealed by site-directed mutagenesis followed by promoter analysis. By focusing on the DNA/protein interactions, we defined the fact that the intact E-box but not upstream transcription factor 1 (USF1), which is known to bind this motif, is necessary for AHR binding to mouse Fshr promoter. Furthermore, by constructing AHR mutants defective in DNA interaction, we confirmed the importance of DNA binding for AHR's ability to bind to and activate Fshr promoter. Collectively, the present study demonstrates that AHR modulates Fshr transactivation by its direct association through an E-box and not by recruitment via interaction with USFs. These observations suggest that although AHR and USF may respond to different signals, they compete on binding to the same E-box. Our data, together with that from one prior study suggesting involvement of E-box motif in AHR-mediated transcription, provide novel understanding of the way in which AHR may regulate its target genes through E-box sites.
Collapse
Affiliation(s)
- Indrek Teino
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | | | | | | | |
Collapse
|
35
|
Craig ZR, Wang W, Flaws JA. Endocrine-disrupting chemicals in ovarian function: effects on steroidogenesis, metabolism and nuclear receptor signaling. Reproduction 2011; 142:633-46. [PMID: 21862696 DOI: 10.1530/rep-11-0136] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous agents with the ability to interfere with processes regulated by endogenous hormones. One such process is female reproductive function. The major reproductive organ in the female is the ovary. Disruptions in ovarian processes by EDCs can lead to adverse outcomes such as anovulation, infertility, estrogen deficiency, and premature ovarian failure among others. This review summarizes the effects of EDCs on ovarian function by describing how they interfere with hormone signaling via two mechanisms: altering the availability of ovarian hormones, and altering binding and activity of the hormone at the receptor level. Among the chemicals covered are pesticides (e.g. dichlorodiphenyltrichloroethane and methoxychlor), plasticizers (e.g. bisphenol A and phthalates), dioxins, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons (e.g. benzo[a]pyrene).
Collapse
Affiliation(s)
- Zelieann R Craig
- Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Avenue, Urbana, Illinois 61802, USA
| | | | | |
Collapse
|
36
|
Barreiro KA, Di Yorio MP, Artillo-Guida RD, Paz DA, Faletti AG. Daily treatment with α-naphthoflavone enhances follicular growth and ovulation rate in the rat. Toxicol Appl Pharmacol 2011; 252:11-7. [DOI: 10.1016/j.taap.2011.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 01/12/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
|
37
|
Sakurada Y, Sawai M, Inoue K, Shirota M, Shirota K. Comparison of aryl hydrocarbon receptor gene expression in laser dissected granulosa cell layers of immature rat ovaries. J Vet Med Sci 2011; 73:923-6. [PMID: 21317548 DOI: 10.1292/jvms.10-0558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In order to understand ovarian toxicity of aryl hydrocarbon receptor (AhR) agonists, in situ gene expression of the AhR was examined during follicle development in immature rats. In situ hybridization on frozen sections of ovaries from 24-day-old Sprague-Dawley rats showed that the AhR mRNA was localized in the granulosa cells and occasionally in the theca cells of the follicles irrespective of the developmental stage. In situ gene quantification on granulosa cell layers collected by laser microdissection further revealed that the granulosa cells expressed less AhR mRNA according to development of belonging follicles, but more β-subunit of inhibin A mRNA, a quality control gene. These results may help to elucidate vulnerable developmental stages of follicles to toxicities of the AhR agonists.
Collapse
Affiliation(s)
- Yosuke Sakurada
- Research Institute of Biosciences and High-Tech Research Center, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | | | | | | | | |
Collapse
|
38
|
Li W, Wu X. Reply of the Authors. Fertil Steril 2011. [DOI: 10.1016/j.fertnstert.2010.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Peretz J, Gupta RK, Singh J, Hernández-Ochoa I, Flaws JA. Bisphenol A impairs follicle growth, inhibits steroidogenesis, and downregulates rate-limiting enzymes in the estradiol biosynthesis pathway. Toxicol Sci 2010; 119:209-17. [PMID: 20956811 DOI: 10.1093/toxsci/kfq319] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Bisphenol A (BPA) is used as the backbone for plastics and epoxy resins, including various food and beverage containers. BPA has also been detected in 95% of random urine samples and ovarian follicular fluid of adult women. Few studies have investigated the effects of BPA on antral follicles, the main producers of sex steroid hormones and the only follicles capable of ovulation. Thus, this study tested the hypothesis that postnatal BPA exposure inhibits antral follicle growth and steroidogenesis. To test this hypothesis, antral follicles isolated from 32-day-old FVB mice were cultured with vehicle control (dimethyl sulfoxide [DMSO]), BPA (4.4-440 μM), pregnenolone (10 μg/ml), pregnenolone + BPA 44 μM, and pregnenolone + BPA 440 μM. During the culture, follicles were measured for growth daily. After the culture, media was subjected to ELISA for hormones in the estradiol biosynthesis pathway, and follicles were processed for quantitative real-time PCR of steroidogenic enzymes. The results indicate that BPA (440 μM) inhibits follicle growth and that pregnenolone cotreatment was unable to restore/maintain growth. Furthermore, BPA 44 and 440 μM inhibit progesterone, dehydroepiandrosterone, androstenedione, estrone, testosterone, and estradiol production. Pregnenolone cotreatment was able to increase production of pregnenolone, progesterone, and dehydroepiandrosterone and maintain androstenedione and estrone levels in BPA-treated follicles compared with DMSO controls but was unable to protect testosterone or estradiol levels. Furthermore, pregnenolone was unable to protect follicles from BPA-(44-440 μM) induced inhibition of steroidogenic enzymes compared with the DMSO control. Collectively, these data show that BPA targets the estradiol biosynthesis pathway in the ovary.
Collapse
Affiliation(s)
- Jackye Peretz
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61802, USA
| | | | | | | | | |
Collapse
|