1
|
Khine AA, Chen PC, Chen YH, Chu SC, Huang HS, Chu TY. Epidermal growth factor receptor ligands enriched in follicular fluid exosomes promote oncogenesis of fallopian tube epithelial cells. Cancer Cell Int 2024; 24:424. [PMID: 39709453 PMCID: PMC11662553 DOI: 10.1186/s12935-024-03614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Incessant ovulation is the main etiologic factor of ovarian high-grade serous carcinomas (HGSC), which mostly originate from the fallopian tube epithelium (FTE). Receptor tyrosine kinase (RTK) ligands essential for follicle development and ovulation wound repair were abundant in the follicular fluid (FF) and promoted the transformation of FTE cells. This study determined whether RTK ligands are present in FF exosomes and whether epidermal growth factor receptor (EGFR) signaling is essential for oncogenic activity. METHODS The FF of women undergoing in vitro fertilization was fractionated based on the richness of exosomes and tested for transformation toward FTE cells under different RTK inhibitors. EGFR ligands in FF exosomes were identified, and downstream signaling proteins in FTE cells were characterized. RESULTS The transforming activity of FF was almost exclusively enriched in exosomes, which possess a high capacity to induce anchorage-independent growth, clonogenicity, migration, invasion, and proliferation of FTE cells. EGFR inhibition abolished most of these activities. FF and FF exosome exposure markedly increased EGFR phosphorylation and the downstream signal proteins, including AKT, MAPK, and FAK. Multiple EGF family growth factors, such as amphiregulin, epiregulin, betacellulin, and transforming growth factor-alpha, were identified in FF exosomes. CONCLUSIONS Our results demonstrate that FF exosomes serve as carriers of EGFR ligands as well as ligands of other RTKs that mediate the transformation of FTE cells and underscore the need to further explore the content and roles of FF exosomes in HGSC development.
Collapse
Affiliation(s)
- Aye Aye Khine
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Hualien, 970, Taiwan, ROC
| | - Pao-Chu Chen
- Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan, ROC
| | - Ying-Hsi Chen
- Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan, ROC
| | - Sung-Chao Chu
- Department of Hematology and Oncology, Hualien, 970, Taiwan, ROC
- School of Medicine, College of Medicine, Hualien, 970, Taiwan, ROC
| | - Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Hualien, 970, Taiwan, ROC.
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Hualien, 970, Taiwan, ROC.
- Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan, ROC.
- School of Medicine, College of Medicine, Hualien, 970, Taiwan, ROC.
- Institute of Medical Science, Tzu Chi University, Hualien, 970, Taiwan, ROC.
| |
Collapse
|
2
|
Zaniker EJ, Zhang J, Russo D, Huang R, Suritis K, Drake RS, Barlow-Smith E, Shalek AK, Woodruff TK, Xiao S, Goods BA, Duncan FE. Follicle-intrinsic and spatially distinct molecular programs drive follicle rupture and luteinization during ex vivo mammalian ovulation. Commun Biol 2024; 7:1374. [PMID: 39443665 PMCID: PMC11500180 DOI: 10.1038/s42003-024-07074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
During ovulation, the apical wall of the preovulatory follicle breaks down to facilitate gamete release. In parallel, the residual follicle wall differentiates into a progesterone-producing corpus luteum. Disruption of ovulation, whether through contraceptive intervention or infertility, has implications for women's health. In this study, we harness the power of an ex vivo ovulation model and machine-learning guided microdissection to identify differences between the ruptured and unruptured sides of the follicle wall. We demonstrate that the unruptured side exhibits clear markers of luteinization after ovulation while the ruptured side exhibits cell death signals. RNA-sequencing of individual follicle sides reveals 2099 differentially expressed genes (DEGs) between follicle sides without ovulation induction, and 1673 DEGs 12 h after induction of ovulation. Our model validates molecular patterns consistent with known ovulation biology even though this process occurs in the absence of the ovarian stroma, vasculature, and immune cells. We further identify previously unappreciated pathways including amino acid transport and Jag-Notch signaling on the ruptured side and glycolysis, metal ion processing, and IL-11 signaling on the unruptured side of the follicle. This study yields key insights into follicle-inherent, spatially-defined pathways that underlie follicle rupture, which may further understanding of ovulation physiology and advance women's health.
Collapse
Affiliation(s)
- Emily J Zaniker
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jiyang Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Daniela Russo
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Harvard University & Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Ruixu Huang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Kristine Suritis
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Riley S Drake
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Harvard University & Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | | | - Alex K Shalek
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Harvard University & Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Obstetrics and Gynecology, Michigan State University, East Lansing, MI, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Brittany A Goods
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
3
|
Liu X, Huang Y, Tan F, Wang HY, Chen JY, Zhang X, Zhao X, Liu K, Wang Q, Liu S, Piferrer F, Fan G, Shao C. Single-Cell Atlas of the Chinese Tongue Sole (Cynoglossus semilaevis) Ovary Reveals Transcriptional Programs of Oogenesis in Fish. Front Cell Dev Biol 2022; 10:828124. [PMID: 35300429 PMCID: PMC8921555 DOI: 10.3389/fcell.2022.828124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
Oogenesis is a highly orchestrated process that depends on regulation by autocrine/paracrine hormones and growth factors. However, many details of the molecular mechanisms that regulate fish oogenesis remain elusive. Here, we performed a single-cell RNA sequencing (scRNA-seq) analysis of the molecular signatures of distinct ovarian cell categories in adult Chinese tongue sole (Cynoglossus semilaevis). We characterized the successive stepwise development of three germ cell subtypes. Notably, we identified the cellular composition of fish follicle walls, including four granulosa cell types and one theca cell type, and we proposed important transcription factors (TFs) showing high activity in the regulation of cell identity. Moreover, we found that the extensive niche–germline bidirectional communications regulate fish oogenesis, whereas ovulation in fish is accompanied by the coordination of simultaneous and tightly sequential processes across different granulosa cells. Additionally, a systems biology analysis of the homologous genes shared by Chinese tongue sole and macaques revealed remarkably conserved biological processes in germ cells and granulosa cells across vertebrates. Our results provide key insights into the cell-type-specific mechanisms underlying fish oogenesis at a single-cell resolution, which offers important clues for exploring fish breeding mechanisms and the evolution of vertebrate reproductive systems.
Collapse
Affiliation(s)
- Xiang Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yingyi Huang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Fujian Tan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,BGI-Shenzhen, Shenzhen, China
| | - Hong-Yan Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jian-Yang Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,BGI-Shenzhen, Shenzhen, China.,Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China
| | - Xianghui Zhang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Xiaona Zhao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| | - Kaiqiang Liu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qian Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shanshan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,BGI-Shenzhen, Shenzhen, China.,Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China
| | - Francesc Piferrer
- Institut de Ciències Del Mar (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,BGI-Shenzhen, Shenzhen, China
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
4
|
Ma Y, Jin J, Tong X, Yang W, Ren P, Dai Y, Pan Y, Zhang Y, Zhang S. ADAMTS1 and HSPG2 mRNA levels in cumulus cells are related to human oocyte quality and controlled ovarian hyperstimulation outcomes. J Assist Reprod Genet 2020; 37:657-667. [PMID: 31974739 PMCID: PMC7125252 DOI: 10.1007/s10815-019-01659-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The study investigated potential correlations between the expression levels of ADAMTS1 and HSPG2 in cumulus cells (CCs) and controlled ovarian hyperstimulation (COH) outcomes. METHODS RT-PCR was used to determine ADAMTS1 and HSPG2 mRNA levels in mice CCs at different timepoints (0, 4, 8, 12, and 16 h) after human chorionic gonadotropin (hCG) injection, and in CCs after RNAi treatment. Women with polycystic ovary syndrome (PCOS) (n = 45) and normal ovulatory controls (n = 103) undergoing IVF/ICSI were recruited. Relative ADAMTS1 and HSPG2 mRNA levels were measured by RT-PCR. Moreover, correlations of ADAMTS1 and HSPG2 levels with COH outcomes were analyzed. RESULTS At different timepoints after hCG treatment, ADAMTS1 mRNA had the highest level at 12 h, whereas HSPG2 showed opposite profiles to ADAMTS1 with the lowest level at 12 h. HSPG2 expression was upregulated after ADAMTS1 RNAi treatment The PCOS group had higher HSPG2 and lower ADAMTS1 expression levels than controls. In normal ovulatory women (control group), a higher expression of ADAMTS1 and lower expression of HSPG2 were associated with more mature oocytes, transplantable embryos, and good quality embryos, whereas higher transplantable embryo rates and good quality embryo rates were obtained only with lower HSPG2 expression. ROC curves showed the co-measurement of ADAMTS1 and HSPG2 had a better predictive power than separate analyses. CONCLUSION The dynamic profiles of ADAMTS1 and HSPG2 were inversely correlated in CCs. In PCOS and normal ovulatory patients, higher ADAMTS1 and lower HSPG2 expression levels in CCs were related to better COH outcomes.
Collapse
Affiliation(s)
- Yerong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Jiamin Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Peipei Ren
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - YinLi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
| |
Collapse
|
5
|
GohariTaban S, Amiri I, Soleimani Asl S, Saidijam M, Yavangi M, Khanlarzadeh E, Mohammadpour N, Shabab N, Artimani T. Abnormal expressions of ADAMTS-1, ADAMTS-9 and progesterone receptors are associated with lower oocyte maturation in women with polycystic ovary syndrome. Arch Gynecol Obstet 2018; 299:277-286. [PMID: 30446843 DOI: 10.1007/s00404-018-4967-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE ADAMTS-1 and 9 play a crucial role in the ovulation and their altered levels may play a role in the pathogenesis of polycystic ovary syndrome (PCOS). The aim of this study was to assess ADAMTS-1 and 9 expression and their correlation with the oocyte quality and maturity in the cumulus cells (CCs) of PCOS patients and normovulatory women during an IVF procedure. METHODS Expression of ADAMTS-1 and 9 and progesterone receptors (PRs) in the CCs containing MII and germinal vesicle (GV) oocytes of 37 PCOS patients and 37 women with normal ovulatory function who underwent IVF treatment was evaluated using qRT-PCR. Moreover, correlation between ADAMTS-1 and 9 expression and oocyte quality were also investigated. RESULTS mRNA expression levels of ADAMTS-1 and ADAMTS-9 were significantly reduced in the women with PCOS compared to the normovulatory women. ADAMTS-1 and ADAMTS-9 mRNA expression levels in the CCs showed a considerable correlation. Lower expression levels of ADAMTS-1 and ADAMTS-9 in PCOS patients were strongly correlated with diminished oocyte maturation. There was a remarkable association between ADAMTS-1 and ADAMTS-9 mRNA expression levels and oocyte quality. PRs (PRA and PRB) were dramatically decreased in PCOS patients when compared with the control group. CONCLUSIONS The results of the present study indicated that ADAMTS-1 and ADAMTS-9 as well as PRs are downregulated in the human CCs in PCOS patients, which could be associated with impaired oocyte maturation and may result in a lower oocyte recovery and oocyte maturity rates, as well as lower fertilization rate.
Collapse
Affiliation(s)
- Sepide GohariTaban
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Amiri
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahnaz Yavangi
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Nooshin Mohammadpour
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nooshin Shabab
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Tayebe Artimani
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
6
|
Li S, Zhai J, Liu J, Di F, Sun Y, Li W, Chen ZJ, Du Y. Erythropoietin-producing hepatocellular A7 triggering ovulation indicates a potential beneficial role for polycystic ovary syndrome. EBioMedicine 2018; 36:539-552. [PMID: 30292674 PMCID: PMC6197718 DOI: 10.1016/j.ebiom.2018.09.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
Background The ovulatory dysfunction mechanisms underlying polycystic ovary syndrome (PCOS) are not completely understood. And the roles of EPHA7 and EPHA7-regulated pathway factors in the pathogenesis of anovulation remain to be elucidated. Methods We used human granulosa cells (hGCs) of PCOS and non-PCOS patients to measure EPHA7 and other target gene expressions. We performed in vitro experiments in KGN cells to verify the molecular mechanisms. Additionally, we conducted in vivo loss- and gain-of-function studies using EPHA7 shRNA lentivirus and recombinant EPHA7-Fc protein injection to identify the ovulation effects of EPHA7. Findings EPHA7 functions as a critically positive upstream factor for the expression of ERK1/2-mediated C/EBPβ. This protein, in turn, induced the expression of KLF4 and then ADAMTS1. Moreover, decreased abundance of EPHA7 was positively correlated with that of its downstream factors in hGCs of PCOS patients. Additionally, a 1-week functional EPHA7 shRNA lentivirus in rat ovaries contributed to decreased numbers of retrieved oocytes, and a 3-week functional lentivirus led to menstrual disorders and morphological polycystic changes in rat ovaries. More importantly, we found that EPHA7 triggered ovulation in rats, and it improved polycystic ovarian changes induced by DHEA in PCOS rats. Interpretation Our findings demonstrate a new role of EPHA7 in PCOS, suggesting that EPHA7 is an effective target for the development of innovative medicines to induce ovulation. Fund National Key Research and Development Program of China, National Natural Science Foundation, Shanghai Municipal Education Commission--Gaofeng Clinical Medicine, and Shanghai Commission of Science and Technology.
Collapse
Affiliation(s)
- Shang Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Junyu Zhai
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jiansheng Liu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Fangfang Di
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Weiping Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| |
Collapse
|
7
|
Hohos NM, Cho KJ, Swindle DC, Skaznik-Wikiel ME. High-fat diet exposure, regardless of induction of obesity, is associated with altered expression of genes critical to normal ovulatory function. Mol Cell Endocrinol 2018; 470:199-207. [PMID: 29097167 DOI: 10.1016/j.mce.2017.10.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/06/2017] [Accepted: 10/27/2017] [Indexed: 12/14/2022]
Abstract
We evaluated the impact of high-fat diet (HFD) on ovarian gene expression. Female 5-week-old C57BL/6J mice were fed a 60% HFD or standard chow for 10 weeks. HFD-fed mice were then separated into obese (HF-Ob) and lean (HF-Ln) based on body weight. HFD exposure led to impairment of the estrous cycle, changes in hormones affecting reproduction, and decreased primordial follicles regardless of the development of obesity. RNA-sequencing of whole ovaries identified multiple genes with altered expression after HFD, with 25 genes displaying decreased expression in both HF-Ln and HF-Ob mice compared to the chow-fed controls (q < 0.05). Several of these 25 genes are involved in normal ovarian functions, including ovulation (Edn2, Tnfaip6, Errfi1, Prkg2, and Nfil3), luteinization (Edn2), and luteolysis (Nr4a1). Taken together, elevated dietary fat intake, regardless of obesity, is associated with impaired estrous cycle, depletion of the ovarian reserve, and altered expression of genes critical to normal ovulatory function.
Collapse
Affiliation(s)
- Natalie M Hohos
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, 12700 East 19th Ave, Aurora, CO, 80045, USA
| | - Kirstin J Cho
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, 12700 East 19th Ave, Aurora, CO, 80045, USA
| | - Delaney C Swindle
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, 12700 East 19th Ave, Aurora, CO, 80045, USA
| | - Malgorzata E Skaznik-Wikiel
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, 12700 East 19th Ave, Aurora, CO, 80045, USA; Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, 12700 East 19th Ave, Aurora, CO, 80045, USA.
| |
Collapse
|
8
|
Abstract
The "ovarian cycle" is an exquisite and dynamic endocrine system that includes ovarian events, hypothalamic-pituitary interactions, uterine endometrial and myometrial changes during implantation and pregnancy, cervical alterations in structure, and breast development. The ovarian cycle and the steroid hormones produced by the ovary also impact epithelial cancer development in the ovary, uterus, cervix, and breast. This chapter provides a personal view of recent developments that occur in this complex endocrine environment.
Collapse
Affiliation(s)
- JoAnne S Richards
- Baylor College of Medicine, Houston, TX, United States; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States; Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
9
|
Richards JS, Ren YA, Candelaria N, Adams JE, Rajkovic A. Ovarian Follicular Theca Cell Recruitment, Differentiation, and Impact on Fertility: 2017 Update. Endocr Rev 2018; 39:1-20. [PMID: 29028960 PMCID: PMC5807095 DOI: 10.1210/er.2017-00164] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/12/2017] [Indexed: 12/24/2022]
Abstract
The major goal of this review is to summarize recent exciting findings that have been published within the past 10 years that, to our knowledge, have not been presented in detail in previous reviews and that may impact altered follicular development in polycystic ovarian syndrome (PCOS) and premature ovarian failure in women. Specifically, we will cover the following: (1) mouse models that have led to discovery of the derivation of two precursor populations of theca cells in the embryonic gonad; (2) the key roles of the oocyte-derived factor growth differentiation factor 9 on the hedgehog (HH) signaling pathway and theca cell functions; and (3) the impact of the HH pathway on both the specification of theca endocrine cells and theca fibroblast and smooth muscle cells in developing follicles. We will also discuss the following: (1) other signaling pathways that impact the differentiation of theca cells, not only luteinizing hormone but also insulinlike 3, bone morphogenic proteins, the circadian clock genes, androgens, and estrogens; and (2) theca-associated vascular, immune, and fibroblast cells, as well as the cytokines and matrix factors that play key roles in follicle growth. Lastly, we will integrate what is known about theca cells from mouse models, human-derived theca cell lines from patients who have PCOS and patients who do not have PCOS, and microarray analyses of human and bovine theca to understand what pathways and factors contribute to follicle growth as well as to the abnormal function of theca.
Collapse
Affiliation(s)
- JoAnne S. Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Yi A. Ren
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Nicholes Candelaria
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Jaye E. Adams
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Aleksandar Rajkovic
- Department of Obstetrics, Gynecology and Reproductive Medicine, Magee-Women’s Research Institute, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
10
|
Ezzati M, Roshangar L, Soleimani Rad J, Karimian N. Evaluating The Effect of Melatonin on HAS2, and PGR expression, as well as Cumulus Expansion, and Fertility Potential in Mice. CELL JOURNAL 2017; 20:108-112. [PMID: 29308626 PMCID: PMC5759672 DOI: 10.22074/cellj.2018.4894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/18/2017] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Infertility is a worldwide health problem which affects approximately 15% of sexually active couples. One of the factors influencing the fertility is melatonin. Also, protection of oocytes and embryos from oxidative stress inducing chemicals in the culture medium is important. The aim of the present study was to investigate if melatonin could regulate hyaluronan synthase-2 (HAS2) and Progesterone receptor (PGR) expressions in the cumulus cells of mice oocytes and provide an in vitro fertilization (IVF) approach. MATERIALS AND METHODS In this experimental study, for this purpose, 30 adult female mice and 15 adult male mice were used. The female mice were superovulated using 10 U of pregnant mare serum gonadotropin (PMSG) and 24 hours later, 10 U of human chorionic gonadotropin (hCG) were injected. Next, cumulus oocyte complexes (COCs) were collected from the oviducts of the female mice by using a matrix-flushing method. The cumulus cells were cultured with melatonin 10 μM for 6 hours and for real-time reverse transcription-polymerase chain reaction (RT-PCR) was used for evaluation of HAS2 and PGR expression levels. The fertilization rate was evaluated through IVF. All the data were analyzed using a t test. RESULTS The results of this study showed that HAS2 and PGR expressions in the cumulus cells of the mice receiving melatonin increased in comparison to the control groups. Also, IVF results revealed an enhancement in fertilization rate in the experimental groups compared to the control groups. CONCLUSIONS To improve the oocyte quality and provide new approaches for infertility treatment, administration of melatonin as an antioxidant, showed promising results. Thus, it is concluded that fertility outcomes can be improved by melatonin it enhances PGR.
Collapse
Affiliation(s)
- Maryam Ezzati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Jafar Soleimani Rad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Karimian
- Department of Advanced Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Influence of Estradiol-17beta on Progesterone and Estrogen Receptor mRNA Expression in Porcine Follicular Granulosa Cells during Short-Term, In Vitro Real-Time Cell Proliferation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8431018. [PMID: 28116305 PMCID: PMC5223003 DOI: 10.1155/2016/8431018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/12/2016] [Accepted: 10/11/2016] [Indexed: 01/01/2023]
Abstract
Progesterone (P4) and estradiol (E2) play a significant role in mammalian reproduction. Our study demonstrated that separated porcine cumulus cells (CCs) and/or granulosa cells (GCs) might proliferate in vitro during short-term, real-time primary culture. The GCs were analyzed according to gene expression of the progesterone receptor (nuclear form) (pgr), progesterone receptor membrane component 1 (pgrmc1), and estrogen-related receptor beta 3 (esrrb3) in relation to two housekeeping genes: actb and pbgd. GCs were cultivated in medium with the E2. Both pgr/actb and pgr/pbgd revealed higher expression between 24 and 168 h of IVC of prolonged E2 treatment and at 48 h of IVC after acute E2 administration. The pgrmc1/actb and pgrmc1/pbgd displayed increased expression after prolonged E2 treatment between 24 and 120 h of IVC. The highest level of esrrb3/actb at 120 and 144 h, as well as esrrb3/pbgd at 120 h, in untreated controls as compared to the hormone-stimulated group, was observed. We suggest that E2 significantly influences the upregulation of pgr, pgrmc1, and esrrb3 expression in porcine GCs during real-time cell proliferation. Since esrrb3 expression is stimulated by E2 in both an acute and prolonged manner, estradiol may be recognized as a potential estrogen receptor agonist in GCs.
Collapse
|
12
|
Namvar Vansofla F, Roshangar L, Montaseri A, Soleimani Rad J. Impact of Prunus Cerasus on PGR and HAS2 in Cumulus Cells and Fertility Outcome. Adv Pharm Bull 2016; 6:65-9. [PMID: 27123419 PMCID: PMC4845541 DOI: 10.15171/apb.2016.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/06/2016] [Accepted: 01/18/2016] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Cumulus cells have a critical role in normal oocyte development and fertilization. Prunus cerasus is an anthocyanin rich berry and performs strong antioxidant activity. The present study set to determine if Prunus cerasus can affect expression of HAS2 (hyaluronan synthase 2) and progesterone receptor in Cumulus cells and its consequences outcome of the in vitro fertilization. METHODS 60 female and 15 male adult mice were used for mating and IVF (in vitro fertilization). Prunus cerasus extraction was added to the diet of female mice for 30 days. Ovulation induction and oocytes collection were done as routine. The cumulus cells were dissected apart, and the expression of progesterone receptor and HAS2 was detected using RT-PCR (real-time polymerase chain reaction). Fertilization rate was evaluated by IVF. All data were analyzed using t-test. RESULTS Data was showed that expression of progesterone receptor and HAS2 in cumulus cells of mice that received prunus cerasus increased. Moreover, oocyte fertilization rate also increased significantly. CONCLUSION Prunus cerasus as an antioxidant natural can become an important medication for improving oocyte quality and opening new opportunities for infertility treatment. It is concluded that Prunus cerasus consumption could improve fertility rate by increasing progesterone receptor and HAS2 activity in cumulus cells.
Collapse
Affiliation(s)
- Fatemeh Namvar Vansofla
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Cord Blood Stem Cell Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.; Department of Tissue Engineering, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Montaseri
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.; Department of Tissue Engineering, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.; Department of Tissue Engineering, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Hummitzsch K, Anderson RA, Wilhelm D, Wu J, Telfer EE, Russell DL, Robertson SA, Rodgers RJ. Stem cells, progenitor cells, and lineage decisions in the ovary. Endocr Rev 2015; 36:65-91. [PMID: 25541635 PMCID: PMC4496428 DOI: 10.1210/er.2014-1079] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/15/2014] [Indexed: 01/05/2023]
Abstract
Exploring stem cells in the mammalian ovary has unleashed a Pandora's box of new insights and questions. Recent evidence supports the existence of stem cells of a number of the different cell types within the ovary. The evidence for a stem cell model producing mural granulosa cells and cumulus cells is strong, despite a limited number of reports. The recent identification of a precursor granulosa cell, the gonadal ridge epithelial-like cell, is exciting and novel. The identification of female germline (oogonial) stem cells is still very new and is currently limited to just a few species. Their origins and physiological roles, if any, are unknown, and their potential to produce oocytes and contribute to follicle formation in vivo lacks robust evidence. The precursor of thecal cells remains elusive, and more compelling data are needed. Similarly, claims of very small embryonic-like cells are also preliminary. Surface epithelial cells originating from gonadal ridge epithelial-like cells and from the mesonephric epithelium at the hilum of the ovary have also been proposed. Another important issue is the role of the stroma in guiding the formation of the ovary, ovigerous cords, follicles, and surface epithelium. Immune cells may also play key roles in developmental patterning, given their critical roles in corpora lutea formation and regression. Thus, while the cellular biology of the ovary is extremely important for its major endocrine and fertility roles, there is much still to be discovered. This review draws together the current evidence and perspectives on this topic.
Collapse
Affiliation(s)
- Katja Hummitzsch
- Discipline of Obstetrics and Gynaecology (K.H., D.L.R., S.A.R., R.J.R.), School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia 5005; Medical Research Council Centre for Reproductive Health (R.A.A.), The University of Edinburgh, The Queens Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom; Department of Anatomy and Developmental Biology (D.W.), Monash University, Clayton, Victoria, Australia 3800; Bio-X Institutes (J.W.), Shanghai Jiao Tong University, Shanghai 200240, China; and Institute of Cell Biology and Centre for Integrative Physiology (E.E.T), The University of Edinburgh, Edinburgh EH8 9XE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Puttabyatappa M, Jacot TA, Al-Alem LF, Rosewell KL, Duffy DM, Brännström M, Curry TE. Ovarian membrane-type matrix metalloproteinases: induction of MMP14 and MMP16 during the periovulatory period in the rat, macaque, and human. Biol Reprod 2014; 91:34. [PMID: 24920038 DOI: 10.1095/biolreprod.113.115717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
An intrafollicular increase in proteolytic activity drives ovulatory events. Surprisingly, the periovulatory expression profile of the membrane-type matrix metalloproteinases (MT-MMPs), unique proteases anchored to the cell surface, has not been extensively examined. Expression profiles of the MT-MMPs were investigated in ovarian tissue from well-characterized rat and macaque periovulatory models and naturally cycling women across the periovulatory period. Among the six known MT-MMPs, mRNA expression of Mmp14, Mmp16, and Mmp25 was increased after human chorionic gonadotropin (hCG) administration in rats. In human granulosa cells, mRNA expression of MMP14 and MMP16 increased following hCG treatment. In contrast, mRNA levels of MMP16 and MMP25 in human theca cells were unchanged before ovulation but declined by the postovulatory stage. In macaque granulosa cells, hCG increased mRNA for MMP16 but not MMP14. Immunoblotting showed that protein levels of MMP14 and MMP16 in rats increased, similar to their mRNA expression. In macaque granulosa cells, only the active form of the MMP14 protein increased after hCG, unlike its mRNA or the proprotein. By immunohistochemistry, both MMP14 and MMP16 localized to the different ovarian cell types in rats and humans. Treatment with hCG resulted in intense immunoreactivity of MMP14 and MMP16 proteins in the granulosa and theca cells. The present study shows that MMP14 and MMP16 are increased by hCG administration in the ovulating follicle, demonstrating that these MMPs are conserved among rats, macaques, and humans. These findings suggest that MT-MMPs could have an important role in promoting ovulation and remodeling of the ovulated follicle into the corpus luteum.
Collapse
Affiliation(s)
- Muraly Puttabyatappa
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky
| | - Terry A Jacot
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Linah F Al-Alem
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky
| | - Katherine L Rosewell
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|