1
|
Knight A, Sugin S, Jurisicova A. Searching for the 'X' factor: investigating the genetics of primary ovarian insufficiency. J Ovarian Res 2024; 17:238. [PMID: 39609914 PMCID: PMC11603650 DOI: 10.1186/s13048-024-01555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024] Open
Abstract
Primary ovarian insufficiency (POI) is the cessation of ovarian function before the age of 40. The causes of POI are heterogeneous, but substantial evidence exists to support a genetic basis of POI, particularly in the critical involvement of genes on the X chromosome. Recent studies have revealed novel candidate genes through the identification of copy number variations associated with POI. This review summarizes the genes located on the X chromosome with variants shown to be associated with POI in humans and/or in mice. Additionally, we present evidence to support the potential involvement of these candidate genes in the etiology of POI. We conducted a literature search in PubMed to identify case studies and screenings for the genetic causes of POI. We then performed systematic searches for the proposed candidate genes to investigate their potential reproductive roles. Of the X-linked candidate genes investigated, 10 were found to have variants associated with cases of POI in humans. An additional 10 genes were found to play a supportive role in POI. Other genes were not implicated in any cases of POI but were associated with various roles in reproduction. In the majority of cases where variants were identified through whole-exome sequencing, rather than targeted screening of candidate genes, more than one genetic variant was identified. Overall, this review supports past findings that the X chromosome plays a critical role in ovarian function, as demonstrated by a link between POI and various disruptions to genes on the X chromosome. Current genetic screening for POI, which includes only FMR1, is inadequate to capture the majority of cases with a genetic origin. An expanded genetic testing may improve health outcomes for individuals with POI as it could lead to better early interventions and education about these health risks.
Collapse
Affiliation(s)
- Anya Knight
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Sara Sugin
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 25 Orde Street, Room 6-1016-1, Toronto, ON, M5T 3H7, Canada
| | - Andrea Jurisicova
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
- Department of Obstetrics and Gynecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 25 Orde Street, Room 6-1016-1, Toronto, ON, M5T 3H7, Canada.
| |
Collapse
|
2
|
Shields AF, Chen DL. Positron Emission Tomography Imaging of Tumor Proliferation and DNA Repair. Cancer J 2024; 30:170-175. [PMID: 38753751 DOI: 10.1097/ppo.0000000000000724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Positron emission tomography (PET) is an established tool for molecular imaging of cancers, and its role in diagnosis, staging, and phenotyping continues to evolve and expand rapidly. PET imaging of increased glucose utilization with 18F-fluorodeoxyglucose is now entrenched in clinical oncology practice for improving prognostication and treatment response assessment. Additional critical processes for cancer cell survival can also be imaged by PET, helping to inform individualized treatment selections for patients by improving our understanding of cell survival mechanisms and identifying relevant active mechanisms in each patient. The critical importance of quantifying cell proliferation and DNA repair pathways for prognosis and treatment selection is highlighted by the nearly ubiquitous use of the Ki-67 index, an established histological quantitative measure of cell proliferation, and BRCA mutation testing for treatment selection. This review focuses on PET advances in imaging and quantifying cell proliferation and poly(ADP-ribose)polymerase expression that can be used to complement cancer phenotyping approaches that will identify the most effective treatments for each individual patient.
Collapse
Affiliation(s)
- Anthony F Shields
- From the Karmanos Cancer Institute, Wayne State University, Detroit, MI
| | - Delphine L Chen
- University of Washington, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
3
|
Tsuru A, Yoshie M, Negishi R, Mukoyama T, Yonekawa R, Kojima J, Azumi M, Kusama K, Nishi H, Tamura K. Regulatory action of PGRMC1 on cyclic AMP-mediated COX2 expression in human endometrial cells. J Pharmacol Sci 2023; 153:188-196. [PMID: 37973216 DOI: 10.1016/j.jphs.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023] Open
Abstract
Human endometrial stromal cells (ESCs) undergo differentiation, known as decidualization, and endometrial epithelial cells mature around the embryo implantation stage. In the uterus, cyclooxygenase 2 (COX2), the rate-limiting enzyme that produces prostaglandin E2, is expressed in endometrial stromal and epithelial cells, and promotes decidualization of the former cells. Our recent study demonstrated that progesterone receptor membrane component 1 (PGRMC1) is downregulated during decidualization and may be involved in cellular senescence associated with decidualization via the transcription factor forkhead box protein O1 (FOXO1). Therefore, we investigated the role of PGRMC1 in COX2 expression during differentiation and maturation of endometrial stromal and epithelial cells. Inhibition or knockdown of PGRMC1 significantly enhanced differentiation stimuli-induced COX2 expression in both cell types. However, this COX2 expression was suppressed by FOXO1 knockdown or nuclear factor-kappa B (NF-κB) inhibition. Silencing of COX2 expression inhibited PGRMC1 knockdown-induced expression of decidual markers in ESCs. Thus, PGRMC1 may be linked to FOXO1- and NF-κB-mediated COX2 expression in endometrial cells. Taken together, our data suggest that downregulation of PGRMC1 expression facilitates differentiation of endometrial cells, i.e., decidualization and glandular maturation, via upregulation of COX2 expression.
Collapse
Affiliation(s)
- Atsuya Tsuru
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
| | - Mikihiro Yoshie
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
| | - Ryota Negishi
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
| | - Toko Mukoyama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
| | - Ryo Yonekawa
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
| | - Junya Kojima
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo 160-0023, Japan.
| | - Mana Azumi
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
| | - Hirotaka Nishi
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo 160-0023, Japan.
| | - Kazuhiro Tamura
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
| |
Collapse
|
4
|
Lodde V, Luciano AM, Garcia Barros R, Giovanardi G, Sivelli G, Franciosi F. Review: The putative role of Progesterone Receptor membrane Component 1 in bovine oocyte development and competence. Animal 2023; 17 Suppl 1:100783. [PMID: 37567656 DOI: 10.1016/j.animal.2023.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 08/13/2023] Open
Abstract
Acquisition of developmental competence is a complex process in which many cell types cooperate to support oocyte maturation, fertilisation, and preimplantation embryonic development. In recent years, compelling evidence has shown that Progesterone Receptor Membra Component 1 (PGRMC1) is expressed in many cell types of the mammalian reproductive system where it exerts diverse functions. In the ovary, PGRMC1 affects follicular growth by controlling cell viability and proliferation of granulosa cells. PGRMC1 has also a direct role in promoting a proper completion of bovine oocyte maturation, as altering its function leads to defective chromosome segregation and polar body extrusion. Strikingly, the mechanism by which PGRMC1 controls mitotic and meiotic cell division seems to be conserved, involving an association with the spindle apparatus and the chromosomal passenger complex through Aurora kinase B. Conclusive data on a possible role of PGRMC1 in the preimplantation embryo are lacking and further research is needed to test whether the mechanisms that are set in place in mitotic cells also govern blastomere cleavage and subsequent differentiation. Finally, PGRMC1 is also expressed in oviductal cells and, as such, it might also impact fertilisation and early embryonic development, although this issue is completely unexplored. However, the study of PGRMC1 function in the mammalian reproductive system remains a complex matter, due to its pleiotropic function.
Collapse
Affiliation(s)
- V Lodde
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy.
| | - A M Luciano
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - R Garcia Barros
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - G Giovanardi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - G Sivelli
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - F Franciosi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
5
|
Wendler A, Wehling M. Many or too many progesterone membrane receptors? Clinical implications. Trends Endocrinol Metab 2022; 33:850-868. [PMID: 36384863 DOI: 10.1016/j.tem.2022.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022]
Abstract
Several receptors for nongenomically initiated actions of progesterone (P4) exist, namely membrane-associated P4 receptors (MAPRs), membrane progestin receptors (mPRs), receptors for neurosteroids [GABAA receptor (GABAAR), NMDA receptor, sigma-1 and -2 receptors (S1R/S2R)], the classical genomic P4 receptor (PGR), and α/β hydrolase domain-containing protein 2 (ABHD2). Two drugs related to this field have been approved: brexanolone (Zulresso™) for the treatment of postpartum depression, and ganaxolone (Ztalmy™) for the treatment of CDKL5 deficiency disorder. Both are derivatives of P4 and target the GABAAR. Several other indications are in clinical testing. CT1812 (Elayta™) is also being tested for the treatment of Alzheimer's disease (AD) in Phase 2 clinical trials, targeting the P4 receptor membrane component 1 (PGRMC1)/S2R complex. In this Review, we highlight emerging knowledge on the mechanisms of nongenomically initiated actions of P4 and its derivatives.
Collapse
Affiliation(s)
- Alexandra Wendler
- Clinical Pharmacology Mannheim, Faculty of Medicine Mannheim, Ruprecht-Karls-University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Martin Wehling
- Clinical Pharmacology Mannheim, Faculty of Medicine Mannheim, Ruprecht-Karls-University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany.
| |
Collapse
|
6
|
Lodde V, Garcia Barros R, Terzaghi L, Franciosi F, Luciano AM. Insights on the Role of PGRMC1 in Mitotic and Meiotic Cell Division. Cancers (Basel) 2022; 14:cancers14235755. [PMID: 36497237 PMCID: PMC9736406 DOI: 10.3390/cancers14235755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
During mitosis, chromosome missegregation and cytokinesis defects have been recognized as hallmarks of cancer cells. Cytoskeletal elements composing the spindle and the contractile ring and their associated proteins play crucial roles in the faithful progression of mitotic cell division. The hypothesis that PGRMC1, most likely as a part of a yet-to-be-defined complex, is involved in the regulation of spindle function and, more broadly, the cytoskeletal machinery driving cell division is particularly appealing. Nevertheless, more than ten years after the preliminary observation that PGRMC1 changes its localization dynamically during meiotic and mitotic cell division, this field of research has remained a niche and needs to be fully explored. To encourage research in this fascinating field, in this review, we will recap the current knowledge on PGRMC1 function during mitotic and meiotic cell division, critically highlighting the strengths and limitations of the experimental approaches used so far. We will focus on known interacting partners as well as new putative associated proteins that have recently arisen in the literature and that might support current as well as new hypotheses of a role for PGRMC1 in specific spindle subcompartments, such as the centrosome, kinetochores, and the midzone/midbody.
Collapse
|
7
|
Abstract
Progesterone receptor membrane component (PGRMC) proteins play important roles in tumor growth, progression, and chemoresistance, of which PGRMC1 is the best characterized. The ancestral member predates the evolution of metazoans, so it is perhaps not surprising that many of the purported actions of PGRMC proteins are rooted in fundamental metabolic processes such as proliferation, apoptosis, and DNA damage responses. Despite mediating some of the actions of progesterone (P4) and being fundamentally required for female fertility, PGRMC1 and PGRMC2 are broadly expressed in most tissues. As such, these proteins likely have both progesterone-dependent and progesterone-independent functions. It has been proposed that PGRMC1 acquired the ability to mediate P4 actions over evolutionary time through acquisition of its cytochrome b5-like heme/sterol-binding domain. Diverse reproductive and nonreproductive diseases associate with altered PGRMC1 expression, epigenetic regulation, or gene silencing mechanisms, some of which include polycystic ovarian disease, premature ovarian insufficiency, endometriosis, Alzheimer disease, and cancer. Although many studies have been completed using transformed cell lines in culture or in xenograft tumor approaches, recently developed transgenic model organisms are offering new insights in the physiological actions of PGRMC proteins, as well as pathophysiological and oncogenic consequences when PGRMC expression is altered. The purpose of this mini-review is to provide an overview of PGRMC proteins in cancer and to offer discussion of where this field must go to solidify PGRMC proteins as central contributors to the oncogenic process.
Collapse
Affiliation(s)
- James K Pru
- Correspondence: James K. Pru, PhD, Program in Reproductive Biology, Department of Animal Science, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
8
|
Peluso JJ. Progesterone Signaling and Mammalian Ovarian Follicle Growth Mediated by Progesterone Receptor Membrane Component Family Members. Cells 2022; 11:1632. [PMID: 35626669 PMCID: PMC9139379 DOI: 10.3390/cells11101632] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
How progesterone influences ovarian follicle growth is a difficult question to answer because ovarian cells synthesize progesterone and express not only the classic nuclear progesterone receptor but also members of the progestin and adipoQ receptor family and the progesterone receptor membrane component (PGRMC) family. Which type of progestin receptor is expressed depends on the ovarian cell type as well as the stage of the estrous/menstrual cycle. Given the complex nature of the mammalian ovary, this review will focus on progesterone signaling that is transduced by PGRMC1 and PGRMC2 specifically as it relates to ovarian follicle growth. PGRMC1 was identified as a progesterone binding protein cloned from porcine liver in 1996 and detected in the mammalian ovary in 2005. Subsequent studies focused on PGRMC family members as regulators of granulosa cell proliferation and survival, two physiological processes required for follicle development. This review will present evidence that demonstrates a causal relationship between PGRMC family members and the promotion of ovarian follicle growth. The mechanisms through which PGRMC-dependent signaling regulates granulosa cell proliferation and viability will also be discussed in order to provide a more complete understanding of our current concept of how progesterone regulates ovarian follicle growth.
Collapse
Affiliation(s)
- John J. Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
9
|
Peluso JJ, Pru JK. Progesterone Receptor Membrane Component (PGRMC)1 and PGRMC2 and Their Roles in Ovarian and Endometrial Cancer. Cancers (Basel) 2021; 13:cancers13235953. [PMID: 34885064 PMCID: PMC8656518 DOI: 10.3390/cancers13235953] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023] Open
Abstract
Cancers of the female reproductive tract are both lethal and highly prevalent. For example, the five-year survival rate of women diagnosed with ovarian cancer is still less than 50%, and endometrial cancer is the fourth most common cancer in women with > 65,000 new cases in the United States in 2020. Among the many genes already established as key participants in ovarian and endometrial oncogenesis, progesterone receptor membrane component (PGRMC)1 and PGRMC2 have gained recent attention given that there is now solid correlative information supporting a role for at least PGRMC1 in enhancing tumor growth and chemoresistance. The expression of PGRMC1 is significantly increased in both ovarian and endometrial cancers, similar to that reported in other cancer types. Xenograft studies using human ovarian and endometrial cancer cell lines in immunocompromised mice demonstrate that reduced expression of PGRMC1 results in tumors that grow substantially slower. While the molecular underpinnings of PGRMCs' mechanisms of action are not clearly established, it is known that PGRMCs regulate survival pathways that attenuate stress-induced cell death. The objective of this review is to provide an overview of what is known about the roles that PGRMC1 and PGRMC2 play in ovarian and endometrial cancers, particularly as related to the mechanisms through which they regulate mitosis, apoptosis, chemoresistance, and cell migration.
Collapse
Affiliation(s)
- John J. Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT 06030, USA
- Correspondence: ; +1-860-679-2860
| | - James K. Pru
- Department of Animal Science, Program in Reproductive Biology, University of Wyoming, Laramie, WY 82071, USA;
| |
Collapse
|
10
|
You JH, Lee J, Roh JL. PGRMC1-dependent lipophagy promotes ferroptosis in paclitaxel-tolerant persister cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:350. [PMID: 34749765 PMCID: PMC8573965 DOI: 10.1186/s13046-021-02168-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/01/2021] [Indexed: 01/02/2023]
Abstract
Background Progesterone receptor membrane component 1 (PGRMC1) is a heme-binding protein inducing dimerization with cytochrome P450, which mediates chemoresistance. Increased PGRMC1 expression is found in multiple types of resistant cancers, but the role of PGRMC1 in the ferroptosis of cancer cells remains unrevealed. Therefore, we examined the role of PGRMC1 in promoting ferroptosis in paclitaxel-tolerant persister cancer cells (PCC). Methods The effects of ferroptosis inducers and PGRMC1 gene silencing/overexpression were tested on head and neck cancer (HNC) cell lines and mouse tumor xenograft models. The results were analyzed about cell viability, death, lipid ROS and iron production, mRNA/protein expression and interaction, and lipid assays. Results PCC had more free fatty acids, lipid droplets, and fatty acid oxidation (FAO) than their parental cells. PCC was highly sensitive to inhibitors of system xc− cystine/glutamate antiporter (xCT), such as erastin, sulfasalazine, and cyst(e)ine deprivation, but less sensitive to (1S,3R)-RSL3. PGRMC1 silencing in PCC reduced ferroptosis sensitivity by xCT inhibitors, and PGRMC1 overexpression in parental cells increased ferroptosis by xCT inhibitors. Lipid droplets were degraded along with autophagy induction and autophagosome formation by erastin treatment in PCC. Lipophagy was accompanied by increased tubulin detyrosination, which was increased by SIRT1 activation but decreased by SIRT1 inhibition. FAO and lipophagy were also promoted by the interaction between lipid droplets and mitochondria. Conclusion PGRMC1 expression increased FAO and ferroptosis sensitivity from in vivo mice experiments. Our data suggest that PGRMC1 promotes ferroptosis by xCT inhibition in PCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02168-2. Paclitaxel-tolerant persister cancer cells (PCC) had PGRMC1 upregulation related to increased free fatty acids, lipid droplets, and fatty acid oxidation. PGRMC1 expression substantially increased ferroptosis by xCT inhibition via lipophagy and tubulin detyrosination, whereas PGRMC1 silencing decreased ferroptosis: this suggests that PGRMC1 expression promotes ferroptosis in PCC.
Collapse
Affiliation(s)
- Ji Hyeon You
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, 13496, Republic of Korea
| | - Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, 13496, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, 13496, Republic of Korea.
| |
Collapse
|
11
|
Medina-Laver Y, Rodríguez-Varela C, Salsano S, Labarta E, Domínguez F. What Do We Know about Classical and Non-Classical Progesterone Receptors in the Human Female Reproductive Tract? A Review. Int J Mol Sci 2021; 22:11278. [PMID: 34681937 PMCID: PMC8538361 DOI: 10.3390/ijms222011278] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/22/2023] Open
Abstract
The progesterone hormone regulates the human menstrual cycle, pregnancy, and parturition by its action via the different progesterone receptors and signaling pathways in the female reproductive tract. Progesterone actions can be exerted through classical and non-classical receptors, or even a combination of both. The former are nuclear receptors whose activation leads to transcriptional activity regulation and thus in turn leads to slower but long-lasting responses. The latter are composed of progesterone receptors membrane components (PGRMC) and membrane progestin receptors (mPRs). These receptors rapidly activate the appropriate intracellular signal transduction pathways, and they can subsequently initiate specific cell responses or even modulate genomic cell responses. This review covers our current knowledge on the mechanisms of action and the relevance of classical and non-classical progesterone receptors in female reproductive tissues ranging from the ovary and uterus to the cervix, and it exposes their crucial role in female infertility.
Collapse
Affiliation(s)
- Yassmin Medina-Laver
- IVI Foundation—IIS La Fe, 46026 Valencia, Spain; (Y.M.-L.); (C.R.-V.); (S.S.); (E.L.)
| | | | - Stefania Salsano
- IVI Foundation—IIS La Fe, 46026 Valencia, Spain; (Y.M.-L.); (C.R.-V.); (S.S.); (E.L.)
| | - Elena Labarta
- IVI Foundation—IIS La Fe, 46026 Valencia, Spain; (Y.M.-L.); (C.R.-V.); (S.S.); (E.L.)
- IVI RMA Valencia, 46015 Valencia, Spain
| | - Francisco Domínguez
- IVI Foundation—IIS La Fe, 46026 Valencia, Spain; (Y.M.-L.); (C.R.-V.); (S.S.); (E.L.)
| |
Collapse
|
12
|
Furuhata R, Kabe Y, Kanai A, Sugiura Y, Tsugawa H, Sugiyama E, Hirai M, Yamamoto T, Koike I, Yoshikawa N, Tanaka H, Koseki M, Nakae J, Matsumoto M, Nakamura M, Suematsu M. Progesterone receptor membrane associated component 1 enhances obesity progression in mice by facilitating lipid accumulation in adipocytes. Commun Biol 2020; 3:479. [PMID: 32887925 PMCID: PMC7473863 DOI: 10.1038/s42003-020-01202-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/03/2020] [Indexed: 12/26/2022] Open
Abstract
Progesterone receptor membrane associated component 1 (PGRMC1) exhibits haem-dependent dimerization on cell membrane and binds to EGF receptor and cytochromes P450 to regulate cancer proliferation and chemoresistance. However, its physiological functions remain unknown. Herein, we demonstrate that PGRMC1 is required for adipogenesis, and its expression is significantly enhanced by insulin or thiazolidine, an agonist for PPARγ. The haem-dimerized PGRMC1 interacts with low-density lipoprotein receptors (VLDL-R and LDL-R) or GLUT4 to regulate their translocation to the plasma membrane, facilitating lipid uptake and accumulation, and de-novo fatty acid synthesis in adipocytes. These events are cancelled by CO through interfering with PGRMC1 dimerization. PGRMC1 expression in mouse adipose tissues is enhanced during obesity induced by a high fat diet. Furthermore, adipose tissue-specific PGRMC1 knockout in mice dramatically suppressed high-fat-diet induced adipocyte hypertrophy. Our results indicate a pivotal role of PGRMC1 in developing obesity through its metabolic regulation of lipids and carbohydrates in adipocytes.
Collapse
Affiliation(s)
- Ryogo Furuhata
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Orthopaedic[s] Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan.
| | - Ayaka Kanai
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hitoshi Tsugawa
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Eiji Sugiyama
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Miwa Hirai
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takehiro Yamamoto
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ikko Koike
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Noritada Yoshikawa
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hirotoshi Tanaka
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Jun Nakae
- Department of Physiology, International University of Health and Welfare School of Medicine, Narita, 286-8686, Japan
| | - Morio Matsumoto
- Department of Orthopaedic[s] Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic[s] Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
13
|
Hehenberger E, Eitel M, Fortunato SAV, Miller DJ, Keeling PJ, Cahill MA. Early eukaryotic origins and metazoan elaboration of MAPR family proteins. Mol Phylogenet Evol 2020; 148:106814. [PMID: 32278076 DOI: 10.1016/j.ympev.2020.106814] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 01/01/2023]
Abstract
The membrane-associated progesterone receptor (MAPR) family consists of heme-binding proteins containing a cytochrome b5 (cytb5) domain characterized by the presence of a MAPR-specific interhelical insert region (MIHIR) between helices 3 and 4 of the canonical cytb5-domain fold. Animals possess three MAPR genes (PGRMC-like, Neuferricin and Neudesin). Here we show that all three animal MAPR genes were already present in the common ancestor of the opisthokonts (comprising animals and fungi as well as related single-celled taxa). All three MAPR genes acquired extensions C-terminal to the cytb5 domain, either before or with the evolution of animals. The archetypical MAPR protein, progesterone receptor membrane component 1 (PGRMC1), contains phosphorylated tyrosines Y139 and Y180. The combination of Y139/Y180 appeared in the common ancestor of cnidarians and bilaterians, along with an early embryological organizer and synapsed neurons, and is strongly conserved in all bilaterian animals. A predicted protein interaction motif in the PGRMC1 MIHIR is potentially regulated by Y139 phosphorylation. A multilayered model of animal MAPR function acquisition includes some pre-metazoan functions (e.g., heme binding and cytochrome P450 interactions) and some acquired animal-specific functions that involve regulation of strongly conserved protein interaction motifs acquired by animals (Metazoa). This study provides a conceptual framework for future studies, against which especially PGRMC1's multiple functions can perhaps be stratified and functionally dissected.
Collapse
Affiliation(s)
- Elisabeth Hehenberger
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Michael Eitel
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sofia A V Fortunato
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Canberra, ACT 2601, Australia.
| |
Collapse
|
14
|
Protein complexes including PGRMC1 and actin-associated proteins are disrupted by AG-205. Biochem Biophys Res Commun 2020; 524:64-69. [DOI: 10.1016/j.bbrc.2019.12.108] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
|
15
|
Li X, Ruan X, Gu M, Mueck AO. PGRMC1 can trigger estrogen-dependent proliferation of breast cancer cells: estradiol vs. equilin vs. ethinylestradiol. Climacteric 2019; 22:483-488. [PMID: 30862292 DOI: 10.1080/13697137.2019.1582624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective: Previous studies have shown that progesterone receptor membrane component 1 (PGRMC1) expressed in breast cancer tissue can predict a worse prognosis for breast cancer patients. Moreover, we demonstrated that PGRMC1 can increase the proliferation of progestogens. However, the role of PGRMC1 in terms of estrogen-induced proliferation and comparing different estrogens is still unclear. Methods: Non-transfected and PGRMC1-transfected T-47D cells were stimulated with estradiol (E2), with equilin (EQ), or with ethinylestradiol (EE) at 1, 10, and 100 nmol/l. Increase of proliferation was compared with a control (without estrogens) and with the estrogen-induced stimulation in empty vector cells vs. PGRMC1-transfected cells. Results: The empty vector cells showed significant proliferation (12-15%) with all three estrogens only at the highest concentration, with no relevant differences between the estrogens. PGRMC1-transfected cells showed about three-fold higher proliferation (29-66%), whereby E2 elicited the strongest and EE the lowest proliferating effects, significantly lower compared to E2 and also compared to EQ. No significant differences were seen between E2 and EQ. Conclusions: PGRMC1 increases strongly the estrogen-dependent breast cell proliferation. The proliferating effects of EE may be lower compared to E2 and EQ. This could have importance in comparing hormone therapy and contraception. Thus, PGRMC1 not only could predict the risk using progestogens but also of different estrogens.
Collapse
Affiliation(s)
- X Li
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University , Beijing , China
| | - X Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University , Beijing , China.,Department of Women's Health, University Women's Hospital and Research Center for Women's Health, University of Tuebingen , Tuebingen , Germany
| | - M Gu
- Department of Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University , Beijing , China
| | - A O Mueck
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University , Beijing , China.,Department of Women's Health, University Women's Hospital and Research Center for Women's Health, University of Tuebingen , Tuebingen , Germany
| |
Collapse
|
16
|
Fragni M, Fiorentini C, Rossini E, Fisogni S, Vezzoli S, Bonini SA, Dalmiglio C, Grisanti S, Tiberio GAM, Claps M, Cosentini D, Salvi V, Bosisio D, Terzolo M, Missale C, Facchetti F, Memo M, Berruti A, Sigala S. In vitro antitumor activity of progesterone in human adrenocortical carcinoma. Endocrine 2019; 63:592-601. [PMID: 30367443 DOI: 10.1007/s12020-018-1795-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE The management of patients with adrenocortical carcinoma (ACC) is challenging. As mitotane and chemotherapy show limited efficacy, there is an urgent need to develop therapeutic approaches. The aim of this study was to investigate the antitumor activity of progesterone and explore the molecular mechanisms underlying its cytotoxic effects in the NCI-H295R cell line and primary cell cultures derived from ACC patients. METHODS Cell viability, cell cycle, and apoptosis were analyzed in untreated and progesterone-treated ACC cells. The ability of progesterone to affect the Wnt/β-catenin pathway in NCI-H295R cells was investigated by immunofluorescence. Progesterone and mitotane combination experiments were also performed to evaluate their interaction on NCI-H295R cell viability. RESULTS We demonstrated that progesterone exerted a concentration-dependent inhibition of ACC cell viability. Apoptosis was the main mechanism, as demonstrated by a significant increase of apoptosis and cleaved-Caspase-3 levels. Reduction of β-catenin nuclear translocation may contribute to the progesterone cytotoxic effect. The progesterone antineoplastic activity was synergically increased when mitotane was added to the cell culture medium. CONCLUSIONS Our results show that progesterone has antineoplastic activity in ACC cells. The synergistic cytotoxic activity of progesterone with mitotane provides the rationale for testing this combination in a clinical study.
Collapse
Affiliation(s)
- Martina Fragni
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Fiorentini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elisa Rossini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Simona Fisogni
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Sara Vezzoli
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara A Bonini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Dalmiglio
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Salvatore Grisanti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Guido A M Tiberio
- Surgical Clinic, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Melanie Claps
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Deborah Cosentini
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Valentina Salvi
- Section of Oncology and Experimental Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Bosisio
- Section of Oncology and Experimental Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Massimo Terzolo
- Department of Clinical and Biological Sciences University of Turin, Internal Medicine 1, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Cristina Missale
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fabio Facchetti
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Maurizio Memo
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alfredo Berruti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy.
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
17
|
Jühlen R, Landgraf D, Huebner A, Koehler K. Triple A patient cells suffering from mitotic defects fail to localize PGRMC1 to mitotic kinetochore fibers. Cell Div 2018; 13:8. [PMID: 30455725 PMCID: PMC6230297 DOI: 10.1186/s13008-018-0041-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/25/2018] [Indexed: 01/10/2023] Open
Abstract
Background Membrane-associated progesterone receptors are restricted to the endoplasmic reticulum and are shown to regulate the activity of cytochrome P450 enzymes which are involved in steroidogenesis or drug detoxification. PGRMC1 and PGRMC2 belong to the membrane-associated progesterone receptor family and are of interest due to their suspected role during cell cycle. PGRMC1 and PGRMC2 are thought to bind to each other; thereby suppressing entry into mitosis. We could previously report that PGRMC2 interacts with the nucleoporin ALADIN which when mutated results in the autosomal recessive disorder triple A syndrome. ALADIN is a novel regulator of mitotic controller Aurora kinase A and depletion of this nucleoporin leads to microtubule instability. Results In the current study, we present that proliferation is decreased when ALADIN, PGRMC1 or PGRMC2 are over-expressed. Furthermore, we find that depletion of ALADIN results in mislocalization of Aurora kinase A and PGRMC1 in metaphase cells. Additionally, PGRMC2 is over-expressed in triple A patient fibroblasts. Conclusion Our results emphasize the possibility that loss of the regulatory association between ALADIN and PGRMC2 gives rise to a depletion of PGRMC1 at kinetochore fibers. This observation may explain part of the symptoms seen in triple A syndrome patients.
Collapse
Affiliation(s)
- Ramona Jühlen
- 1Klinik und Poliklinik für Kinder- und Jugendmedizin, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,2Present Address: Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium
| | - Dana Landgraf
- 1Klinik und Poliklinik für Kinder- und Jugendmedizin, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Angela Huebner
- 1Klinik und Poliklinik für Kinder- und Jugendmedizin, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Katrin Koehler
- 1Klinik und Poliklinik für Kinder- und Jugendmedizin, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
18
|
Yuan X, Yang C, Wang X, Zhang L, Gao X, Shi Z. Progesterone maintains the status of granulosa cells and slows follicle development partly through PGRMC1. J Cell Physiol 2018; 234:709-720. [PMID: 30069867 DOI: 10.1002/jcp.26869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 05/22/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Xiao‐Hua Yuan
- Maternity Department Shaanxi Provincial People’s Hospital Xi’an China
| | - Chun‐Rong Yang
- Maternity Department Shaanxi Provincial People’s Hospital Xi’an China
| | - Xi‐Ning Wang
- Obstetrics and Gynecology Department Yangling Demonstration Area Hospital Xi’an China
| | - Li‐Li Zhang
- Maternity Department Shaanxi Provincial People’s Hospital Xi’an China
| | - Xiao‐Rui Gao
- Maternity Department Shaanxi Provincial People’s Hospital Xi’an China
| | - Zi‐Yun Shi
- Maternity Department Shaanxi Provincial People’s Hospital Xi’an China
| |
Collapse
|
19
|
Hampton KK, Anderson K, Frazier H, Thibault O, Craven RJ. Insulin Receptor Plasma Membrane Levels Increased by the Progesterone Receptor Membrane Component 1. Mol Pharmacol 2018; 94:665-673. [PMID: 29674524 PMCID: PMC5987996 DOI: 10.1124/mol.117.110510] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
The insulin receptor (IR) is a ligand-activated receptor tyrosine kinase that has a key role in metabolism, cellular survival, and proliferation. Progesterone receptor membrane component 1 (PGRMC1) promotes cellular signaling via receptor trafficking and is essential for some elements of tumor growth and metastasis. In the present study, we demonstrate that PGRMC1 coprecipitates with IR. Furthermore, we show that PGRMC1 increases plasma membrane IR levels in multiple cell lines and decreases insulin binding at the cell surface. The findings have therapeutic applications because a small-molecule PGRMC1 ligand, AG205, also decreases plasma membrane IR levels. However, PGRMC1 knockdown via short hairpin RNA expression and AG205 treatment potentiated insulin-mediated phosphorylation of the IR signaling mediator AKT. Finally, PGRMC1 also increased plasma membrane levels of two key glucose transporters, GLUT-4 and GLUT-1. Our data support a role for PGRMC1 maintaining plasma membrane pools of the receptor, modulating IR signaling and function.
Collapse
Affiliation(s)
- Kaia K Hampton
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Katie Anderson
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Hilaree Frazier
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Rolf J Craven
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
20
|
Kabe Y, Handa H, Suematsu M. Function and structural regulation of the carbon monoxide (CO)-responsive membrane protein PGRMC1. J Clin Biochem Nutr 2018; 63:12-17. [PMID: 30087538 PMCID: PMC6064819 DOI: 10.3164/jcbn.17-132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/04/2018] [Indexed: 01/29/2023] Open
Abstract
Progesterone receptor membrane associated component 1 is a multifunctional heme-binding protein that plays a role in several biological processes such as tumor progression, metabolic regulation, and viability control of nerve cells. Notably, progesterone receptor membrane associated component 1 is highly expressed in various types of cancer cells, and facilitates cancer proliferation and chemoresistance. Recently, progesterone receptor membrane associated component 1 structure has been explored by X-ray crystallographic analysis. Interestingly, whereas apo- progesterone receptor membrane associated component 1 exists as a monomer, the heme-bound progesterone receptor membrane associated component 1 converts into a stable dimer by forming a unique heme-heme stacking structure, leading to activation of epidermal growth factor receptor signaling and chemoresistance in cancer cells. Furthermore, the gas mediator carbon monoxide inhibits progesterone receptor membrane associated component 1-mediated activation in cancer cells by dissociating the heme-stacking dimer of progesterone receptor membrane associated component 1. The dynamic structural regulation of progesterone receptor membrane associated component 1 will provide new insights for understanding the mechanisms underlying its various functions.
Collapse
Affiliation(s)
- Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), 20F Yomiuri Shimbun Bldg, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Hiroshi Handa
- Department of Nanoparticle Translational Research, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
21
|
Tsai HW, Ho CL, Cheng SW, Lin YJ, Chen CC, Cheng PN, Yen CJ, Chang TT, Chiang PM, Chan SH, Ho CH, Chen SH, Wang YW, Chow NH, Lin JC. Progesterone receptor membrane component 1 as a potential prognostic biomarker for hepatocellular carcinoma. World J Gastroenterol 2018; 24:1152-1166. [PMID: 29563759 PMCID: PMC5850134 DOI: 10.3748/wjg.v24.i10.1152] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the clinicopathological significance of progesterone receptor membrane component 1 (PGRMC1) and PGRMC2 in hepatocellular carcinoma (HCC).
METHODS We performed immunohistochemical staining to evaluate the estrogen receptor (ER), progesterone receptor (PR), PGRMC1, and PGRMC2 in a clinical cohort consisting of 89 paired HCC and non-tumor liver samples. We also analyzed HCC data (n = 373) from The Cancer Genome Atlas (TCGA). We correlated the expression status of PGRMC1 and PGRMC2 with clinicopathological indicators and the clinical outcomes of the HCC patients. We knocked down or overexpressed PGRMC1 in HCC cell lines to evaluate its biological significance in HCC cell proliferation, differentiation, migration, and invasion.
RESULTS We found that few HCC cases expressed ER (5.6%) and PR (4.5%). In contrast, most HCC cases expressed PGRMC1 (89.9%) and PGRMC2 (100%). PGRMC1 and PGRMC2 exhibited significantly lower expression in tumor tissue than in non-tumor tissue (P < 0.001). Lower PGRMC1 expression in HCC was significantly associated with higher serum alpha-fetoprotein expression (P = 0.004), poorer tumor differentiation (P = 0.045) and liver capsule penetration (P = 0.038). Low PGRMC1 expression was an independent predictor for worse disease-free survival (P = 0.002, HR = 2.384, CI: 1.377-4.128) in our cases, as well as in the TCGA cohort (P < 0.001, HR = 2.857, CI: 1.781-4.584). The expression of PGRMC2 did not relate to patient outcome. PGRMC1 knockdown promoted a poorly differentiated phenotype and proliferation of HCC cells in vitro, while PGRMC1 overexpression caused the opposite effects.
CONCLUSION PGRMC1 is a non-classical hormonal receptor that negatively regulates hepatocarcinogenesis. PGRMC1 down-regulation is associated with progression of HCC and is a poor prognostic indicator.
Collapse
Affiliation(s)
- Hung-Wen Tsai
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Chung-Liang Ho
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Shu-Wen Cheng
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Yih-Jyh Lin
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Chou-Cheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Pin-Nan Cheng
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Chia-Jui Yen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Ting-Tsung Chang
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Po-Min Chiang
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Shih-Huang Chan
- Department of Statistics, College of Management, National Cheng Kung University, Tainan 70403, Taiwan
| | - Cheng-Hsun Ho
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Shu-Hui Chen
- Department of Chemistry, College of Sciences, National Cheng Kung University, Tainan 70403, Taiwan
| | - Yi-Wen Wang
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Nan-Haw Chow
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Jou-Chun Lin
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| |
Collapse
|
22
|
Terzaghi L, Luciano AM, Dall'Acqua PC, Modina SC, Peluso JJ, Lodde V. PGRMC1 localization and putative function in the nucleolus of bovine granulosa cells and oocytes. Reproduction 2018; 155:273-282. [PMID: 29339453 DOI: 10.1530/rep-17-0534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2023]
Abstract
Progesterone receptor membrane component-1 (PGRMC1) is a highly conserved multifunctional protein that is found in numerous systems, including reproductive system. Interestingly, PGRMC1 is expressed at several intracellular locations, including the nucleolus. The aim of this study is to investigate the functional relationship between PGRMC1 and nucleolus. Immunofluorescence experiments confirmed PGRMC1's nucleolar localization in cultured bovine granulosa cells (bGC) and oocytes. Additional experiments conducted on bGC revealed that PGRMC1 co-localizes with nucleolin (NCL), a major nucleolar protein. Furthermore, small interfering RNA (RNAi)-mediated gene silencing experiments showed that when PGRMC1 expression was depleted, NCL translocated from the nucleolus to the nucleoplasm. Similarly, oxidative stress induced by hydrogen peroxide (H2O2) treatment, reduced PGRMC1 immunofluorescent signal in the nucleolus and increased NCL nucleoplasmic signal, when compared to non-treated cells. Although PGRMC1 influenced NCL localization, a direct interaction between these two proteins was not detected using in situ proximity ligation assay. This suggests the involvement of additional molecules in mediating the co-localization of PGRMC1 and nucleolin. Since nucleolin translocates into the nucleoplasm in response to various cellular stressors, PGRMC1's ability to regulate its localization within the nucleolus is likely an important component of mechanism by which cells response to stress. This concept is consistent with PGRMC1's well-described ability to promote ovarian cell survival and provides a rationale for future studies on PGRMC1, NCL and the molecular mechanism by which these two proteins protect against the adverse effect of cellular stressors, including oxidative stress.
Collapse
Affiliation(s)
- Laura Terzaghi
- Department of HealthAnimal Science and Food Safety, Reproductive and Developmental Biology Laboratory, University of Milan, Milan, Italy
| | - Alberto Maria Luciano
- Department of HealthAnimal Science and Food Safety, Reproductive and Developmental Biology Laboratory, University of Milan, Milan, Italy
| | - Priscila C Dall'Acqua
- School of Agricultural and Veterinarian SciencesSão Paulo State University (UNESP), Jaboticabal, Brazil
| | - Silvia C Modina
- Department of HealthAnimal Science and Food Safety, Reproductive and Developmental Biology Laboratory, University of Milan, Milan, Italy
| | - John J Peluso
- Department of Obstetrics and GynecologyUniversity of Connecticut Health Center, Farmington, Connecticut, USA
| | - Valentina Lodde
- Department of HealthAnimal Science and Food Safety, Reproductive and Developmental Biology Laboratory, University of Milan, Milan, Italy
| |
Collapse
|
23
|
Eckerle S, Ringler M, Lecaudey V, Nitschke R, Driever W. Progesterone modulates microtubule dynamics and epiboly progression during zebrafish gastrulation. Dev Biol 2018; 434:249-266. [DOI: 10.1016/j.ydbio.2017.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/19/2017] [Accepted: 12/23/2017] [Indexed: 10/18/2022]
|
24
|
Salsano S, Quiñonero A, Pérez S, Garrido Gómez T, Simón C, Dominguez F. Dynamic expression of PGRMC1 and SERBP1 in human endometrium: an implication in the human decidualization process. Fertil Steril 2017; 108:832-842.e1. [PMID: 28911927 DOI: 10.1016/j.fertnstert.2017.07.1163] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To characterize PGRMC1 and SERBP1 in human endometrium and to investigate the putative role of PGRMC1 in endometrial decidualization. DESIGN The PGRMC1 and SERBP1 expression in human endometrium was determined throughout the menstrual cycle. We analyzed the colocalization of PGRMC1 and SERBP1. Then, endometrial stromal cells (ESCs) were isolated to investigate the functional effect of PGRMC1 overexpression on decidualization. SETTING IVI clinic. PATIENT(S) Endometrial biopsies were collected from fertile volunteers (n = 61) attending the clinic as ovum donors. INTERVENTION(S) Endometrial samples of 61 healthy fertile women. MAIN OUTCOME MEASURE(S) In vivo localization of PGRMC1 and SERBP1 was assessed by immunohistochemistry. The PGRMC1/SERBP1 colocalization was investigated in vitro and in vivo. Decidualization effect of PGRMC1 overexpression was evaluated in primary ESC cultures. RESULT(S) The PGRMC1 was detected in the endometrial stroma throughout the menstrual cycle, but decreased in the late secretory phase. The SERBP1 immunostaining was present in stroma and increased in the entire the menstrual cycle. The PGRMC1 and SERBP1 colocalized in the cytoplasmic fractions of nondecidualized and decidualized ESC. The PGRMC1 overexpression significantly inhibited in vitro decidualization. CONCLUSION(S) Our results suggest that classic P receptors (PRs) are not the only kind playing a role in the normal physiology of the endometrium. The human decidualization process could be altered by the overexpression or mislocalization of PGRMC1 in ESC.
Collapse
Affiliation(s)
- Stefania Salsano
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Valencia, Spain
| | - Alicia Quiñonero
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Valencia, Spain
| | - Silvia Pérez
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Valencia, Spain
| | - Tamara Garrido Gómez
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Valencia, Spain; Igenomix Academy, Valencia, Spain; Department of Pediatrics, Obstetrics and Gynaecology, School of Medicine, Valencia University, Valencia, Spain
| | - Carlos Simón
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain; Igenomix Academy, Valencia, Spain; Department of Pediatrics, Obstetrics and Gynaecology, School of Medicine, Valencia University, Valencia, Spain; Department of Obstetrics and Gynaecology, Stanford University School of Medicine, Stanford, California
| | - Francisco Dominguez
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| |
Collapse
|
25
|
Cahill MA, Jazayeri JA, Catalano SM, Toyokuni S, Kovacevic Z, Richardson DR. The emerging role of progesterone receptor membrane component 1 (PGRMC1) in cancer biology. Biochim Biophys Acta Rev Cancer 2016; 1866:339-349. [PMID: 27452206 DOI: 10.1016/j.bbcan.2016.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 01/09/2023]
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is a multi-functional protein with a heme-binding moiety related to that of cytochrome b5, which is a putative progesterone receptor. The recently solved PGRMC1 structure revealed that heme-binding involves coordination by a tyrosinate ion at Y113, and induces dimerization which is stabilized by hydrophobic stacking of heme on adjacent monomers. Dimerization is required for association with cytochrome P450 (cyP450) enzymes, which mediates chemoresistance to doxorubicin and may be responsible for PGRMC1's anti-apoptotic activity. Here we review the multiple attested involvement of PGRMC1 in diverse functions, including regulation of cytochrome P450, steroidogenesis, vesicle trafficking, progesterone signaling and mitotic spindle and cell cycle regulation. Its wide range of biological functions is attested to particularly by its emerging association with cancer and progesterone-responsive female reproductive tissues. PGRMC1 exhibits all the hallmarks of a higher order nexus signal integration hub protein. It appears capable of acting as a detector that integrates information from kinase/phosphatase pathways with heme and CO levels and probably redox status.
Collapse
Affiliation(s)
- Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Jalal A Jazayeri
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Susan M Catalano
- Cognition Therapeutics Inc., Pittsburgh, PA 15203, United States
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
26
|
Terzaghi L, Tessaro I, Raucci F, Merico V, Mazzini G, Garagna S, Zuccotti M, Franciosi F, Lodde V. PGRMC1 participates in late events of bovine granulosa cells mitosis and oocyte meiosis. Cell Cycle 2016; 15:2019-32. [PMID: 27260975 DOI: 10.1080/15384101.2016.1192731] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Progesterone Receptor Membrane Component 1 (PGRMC1) is expressed in both oocyte and ovarian somatic cells, where it is found in multiple cellular sub-compartments including the mitotic spindle apparatus. PGRMC1 localization in the maturing bovine oocytes mirrors its localization in mitotic cells, suggesting a possible common action in mitosis and meiosis. To test the hypothesis that altering PGRMC1 activity leads to similar defects in mitosis and meiosis, PGRMC1 function was perturbed in cultured bovine granulosa cells (bGC) and maturing oocytes and the effect on mitotic and meiotic progression assessed. RNA interference-mediated PGRMC1 silencing in bGC significantly reduced cell proliferation, with a concomitant increase in the percentage of cells arrested at G2/M phase, which is consistent with an arrested or prolonged M-phase. This observation was confirmed by time-lapse imaging that revealed defects in late karyokinesis. In agreement with a role during late mitotic events, a direct interaction between PGRMC1 and Aurora Kinase B (AURKB) was observed in the central spindle at of dividing cells. Similarly, treatment with the PGRMC1 inhibitor AG205 or PGRMC1 silencing in the oocyte impaired completion of meiosis I. Specifically the ability of the oocyte to extrude the first polar body was significantly impaired while meiotic figures aberration and chromatin scattering within the ooplasm increased. Finally, analysis of PGRMC1 and AURKB localization in AG205-treated oocytes confirmed an altered localization of both proteins when meiotic errors occur. The present findings demonstrate that PGRMC1 participates in late events of both mammalian mitosis and oocyte meiosis, consistent with PGRMC1's localization at the mid-zone and mid-body of the mitotic and meiotic spindle.
Collapse
Affiliation(s)
- L Terzaghi
- a Reproductive and Developmental Biology Laboratory, Department of Health , Animal Science and Food Safety, University of Milan , Milan , Italy
| | - I Tessaro
- a Reproductive and Developmental Biology Laboratory, Department of Health , Animal Science and Food Safety, University of Milan , Milan , Italy
| | - F Raucci
- a Reproductive and Developmental Biology Laboratory, Department of Health , Animal Science and Food Safety, University of Milan , Milan , Italy
| | - V Merico
- b Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani," University of Pavia , Pavia , Italy
| | - G Mazzini
- c Istituto di Genetica Molecolare - Consiglio Nazionale delle Ricerche , Pavia , Italy
| | - S Garagna
- b Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani," University of Pavia , Pavia , Italy
| | - M Zuccotti
- d Sezione di Anatomia, Istologia ed Embriologia, Dipartimento di Scienze Biomediche , Biotecnologiche e Traslazionali (S.Bi.Bi.T.), University of Parma , Italy
| | - F Franciosi
- a Reproductive and Developmental Biology Laboratory, Department of Health , Animal Science and Food Safety, University of Milan , Milan , Italy
| | - V Lodde
- a Reproductive and Developmental Biology Laboratory, Department of Health , Animal Science and Food Safety, University of Milan , Milan , Italy
| |
Collapse
|
27
|
Hampton KK, Stewart R, Napier D, Claudio PP, Craven RJ. PGRMC1 Elevation in Multiple Cancers and Essential Role in Stem Cell Survival. ACTA ACUST UNITED AC 2016; 4:37-51. [PMID: 27867772 PMCID: PMC5113835 DOI: 10.4236/alc.2015.43006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer is one of the leading causes of death in America, and there is an urgent need for new therapeutic approaches. The progesterone receptor membrane component 1 (PGRMC1) is a cytoch-rome b5 related protein that binds heme and is associated with signaling, apoptotic suppression and autophagy. PGRMC1 is essential for tumor formation, invasion and metastasis, and is upregulated in breast, colon, lung and thyroid tumors. In the present study, we have analyzed PGRMC1 levels in over 600 tumor sections, including a larger cohort of lung tumors than in previous studies, and report the first clinical analysis of PGRMC1 levels in human oral cavity and ovarian tumors compared to corresponding nonmalignant tissues. PGRMC1 was highly expressed in lung and ovarian cancers and correlated with patient survival. PGRMC1 has been previously associated with drug resistance, a characteristic of cancer stem cells. The stem cell theory proposes that a subset of cancerous stem cells contribute to drug resistance and tumor maintenance, and PGRMC1 was detected in lung-tumor derived stem cells. Drug treatment with a PGRMC1 inhibitor, AG-205, triggered stem cell death whereas treatment with erlotinib and the ERK inhibitor, PD98059, did not, suggesting a specific role for PGRMC1 in cancer stem cell viability. Together, our data demonstrate PGRMC1 as a potential tumor biomarker across a variety of tumors, as well as a therapeutic target for cancer stem cells.
Collapse
Affiliation(s)
- Kaia K Hampton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Rachel Stewart
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Dana Napier
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Pier Paolo Claudio
- Department of Biomolecular Sciences and National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS, USA; Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Rolf J Craven
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
28
|
Clark NC, Friel AM, Pru CA, Zhang L, Shioda T, Rueda BR, Peluso JJ, Pru JK. Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors. Cancer Biol Ther 2016; 17:262-71. [PMID: 26785864 DOI: 10.1080/15384047.2016.1139240] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Triple negative breast cancers (TNBCs) are highly aggressive and grow in response to sex steroid hormones despite lacking expression of the classical estrogen (E2) and progesterone (P4) receptors. Since P4 receptor membrane component 1 (PGRMC1) is expressed in breast cancer tumors and is known to mediate P4-induced cell survival, this study was designed to determine the expression of PGRMC1 in TNBC tumors and the involvement of PGRMC1 in regulating proliferation and survival of TNBC cells in vitro and the growth of TNBC tumors in vivo. For the latter studies, the MDA-MB-231 (MDA) cell line derived from TNBC was used. These cells express PGRMC1 but lack expression of the classical P4 receptor. A lentiviral-based shRNA approach was used to generate a stably transfected PGRMC1-deplete MDA line for comparison to the PGRMC1-intact MDA line. The present studies demonstrate that PGRMC1: 1) is expressed in TNBC cells; 2) mediates the ability of P4 to suppress TNBC cell mitosis in vitro; 3) is required for P4 to reduce the apoptotic effects of doxorubicin in vitro; and 4) facilitates TNBC tumor formation and growth in vivo. Taken together, these findings indicate that PGRMC1 plays an important role in regulating the growth and survival of TNBC cells in vitro and ultimately in the formation and development of these tumors in vivo. Thus, PGRMC1 may be a therapeutic target for TNBCs.
Collapse
Affiliation(s)
- Nicole C Clark
- a Department of Animal Sciences , School of Molecular Biosciences, Center for Reproductive Biology, Washington State University , Pullman , WA , USA
| | - Anne M Friel
- b Vincent Center for Reproductive Biology and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Cindy A Pru
- a Department of Animal Sciences , School of Molecular Biosciences, Center for Reproductive Biology, Washington State University , Pullman , WA , USA
| | - Ling Zhang
- b Vincent Center for Reproductive Biology and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Toshi Shioda
- c Massachusetts General Hospital Cancer Center and Harvard Medical School , Charlestown , MA , USA
| | - Bo R Rueda
- b Vincent Center for Reproductive Biology and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - John J Peluso
- d Departments of Obstetrics and Gynecology and Cell Biology , University of Connecticut Health Center , Farmington , CT , USA
| | - James K Pru
- a Department of Animal Sciences , School of Molecular Biosciences, Center for Reproductive Biology, Washington State University , Pullman , WA , USA
| |
Collapse
|
29
|
Lui C, Ashton C, Sharma M, Brocardo MG, Henderson BR. APC functions at the centrosome to stimulate microtubule growth. Int J Biochem Cell Biol 2015; 70:39-47. [PMID: 26556314 DOI: 10.1016/j.biocel.2015.10.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/26/2022]
Abstract
The adenomatous polyposis coli (APC) tumor suppressor is multi-functional. APC is known to localize at the centrosome, and in mitotic cells contributes to formation of the mitotic spindle. To test whether APC contributes to nascent microtubule (MT) growth at interphase centrosomes, we employed MT regrowth assays in U2OS cells to measure MT assembly before and after nocodazole treatment and release. We showed that siRNA knockdown of full-length APC delayed both initial MT aster formation and MT elongation/regrowth. In contrast, APC-mutant SW480 cancer cells displayed a defect in MT regrowth that was unaffected by APC knockdown, but which was rescued by reconstitution of full-length APC. Our findings identify APC as a positive regulator of centrosome MT initial assembly and suggest that this process is disrupted by cancer mutations. We confirmed that full-length APC associates with the MT-nucleation factor γ-tubulin, and found that the APC cancer-truncated form (1-1309) also bound to γ-tubulin through APC amino acids 1-453. While binding to γ-tubulin may help target APC to the site of MT nucleation complexes, additional C-terminal sequences of APC are required to stimulate and stabilize MT growth.
Collapse
Affiliation(s)
- Christina Lui
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Cahora Ashton
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Manisha Sharma
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Mariana G Brocardo
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Beric R Henderson
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
30
|
Friel AM, Zhang L, Pru CA, Clark NC, McCallum ML, Blok LJ, Shioda T, Peluso JJ, Rueda BR, Pru JK. Progesterone receptor membrane component 1 deficiency attenuates growth while promoting chemosensitivity of human endometrial xenograft tumors. Cancer Lett 2014; 356:434-42. [PMID: 25304370 DOI: 10.1016/j.canlet.2014.09.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/18/2014] [Accepted: 09/21/2014] [Indexed: 12/19/2022]
Abstract
Endometrial cancer is the leading gynecologic cancer in women in the United States with 52,630 women predicted to be diagnosed with the disease in 2014. The objective of this study was to determine if progesterone (P4) receptor membrane component 1 (PGRMC1) influenced endometrial cancer cell viability in response to chemotherapy in vitro and in vivo. A lentiviral-based shRNA knockdown approach was used to generate stable PGRMC1-intact and PGRMC1-deplete Ishikawa endometrial cancer cell lines that also lacked expression of the classical progesterone receptor (PGR). Progesterone treatment inhibited mitosis of PGRMC1-intact, but not PGRMC1-deplete cells, suggesting that PGRMC1 mediates the anti-mitotic actions of P4. To test the hypothesis that PGRMC1 attenuates chemotherapy-induced apoptosis, PGRMC1-intact and PGRMC1-deplete cells were treated in vitro with vehicle, P4 (1 µM), doxorubicin (Dox, 2 µg/ml), or P4 + Dox for 48 h. Doxorubicin treatment of PGRMC1-intact cells resulted in a significant increase in cell death; however, co-treatment with P4 significantly attenuated Dox-induced cell death. This response to P4 was lost in PGRMC1-deplete cells. To extend these observations in vivo, a xenograft model was employed where PGRMC1-intact and PGRMC1-deplete endometrial tumors were generated following subcutaneous and intraperitoneal inoculation of immunocompromised NOD/SCID and nude mice, respectively. Tumors derived from PGRMC1-deplete cells grew slower than tumors from PGRMC1-intact cells. Mice harboring endometrial tumors were then given three treatments of vehicle (1:1 cremophor EL: ethanol + 0.9% saline) or chemotherapy [Paclitaxel (15 mg/kg, i.p.) followed after an interval of 30 minutes by CARBOplatin (50 mg/kg)] at five day intervals. In response to chemotherapy, tumor volume decreased approximately four-fold more in PGRMC1-deplete tumors when compared with PGRMC1-intact control tumors, suggesting that PGRMC1 promotes tumor cell viability during chemotherapeutic stress. In sum, these in vitro and in vivo findings demonstrate that PGRMC1 plays a prominent role in the growth and chemoresistance of human endometrial tumors.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blotting, Western
- Cell Proliferation
- Drug Resistance, Neoplasm
- Endometrial Neoplasms/metabolism
- Endometrial Neoplasms/pathology
- Endometrial Neoplasms/prevention & control
- Female
- Humans
- Immunoenzyme Techniques
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mitosis
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Progesterone/antagonists & inhibitors
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Anne M Friel
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ling Zhang
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Cindy A Pru
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Nicole C Clark
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Melissa L McCallum
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Leen J Blok
- Department of Obstetrics and Gynecology, Josephine Nefkens Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Toshi Shioda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - John J Peluso
- Departments of Obstetrics and Gynecology and Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - James K Pru
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
31
|
Peluso JJ, Griffin D, Liu X, Horne M. Progesterone receptor membrane component-1 (PGRMC1) and PGRMC-2 interact to suppress entry into the cell cycle in spontaneously immortalized rat granulosa cells. Biol Reprod 2014; 91:104. [PMID: 25253729 DOI: 10.1095/biolreprod.114.122986] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) and PGRMC2 are expressed in rat granulosa cells and spontaneously immortalized granulosa cells (SIGCs) but their biological roles are not well defined. The present studies demonstrate that depleting either Pgrmc1 or Pgrmc2 in SIGCs increases entry into the cell cycle but does not increase cell proliferation. Rather, PGRMC1 and/or PGRMC2-deplete cells accumulate in metaphase and undergo apoptosis. Because both PGRMC1 and PGRMC2 localize to the mitotic spindle, their absence likely accounts for cells arresting in metaphase. Moreover, pull-down assays, colocalization studies and in situ proximity ligation assays (PLA) indicate that PGRMC1 binds PGRMC2. Disrupting the PGRMC1:PGRMC2 complex through the use of siRNA or the cytoplasmic delivery of a PGRMC2 antibody increases entry into the cell cycle. Conversely, overexpressing either PGRMC1-GFP or GFP-PGRMC2 fusion protein inhibits entry into the cell cycle. Subsequent studies reveal that depleting PGRMC1 and/or PGRMC2 reduces the percentage of cells in G0 and increases the percentage of cells in G1. These observations indicate that in addition to their role at metaphase, PGRMC1 and PGRMC2 are involved in regulating entry into the G1 stage of the cell cycle. Interestingly, both PGRMC1 and PGRMC2 bind GTPase-activating protein-binding protein 2 (G3BP2) as demonstrated by pull-down assays, colocalization assays, and PLAs. G3bp2 siRNA treatment also promotes entry into the G1 stage. This implies that dynamic changes in the interaction among PGRMC1, PGRMC2, and G3BP2 play an important protein regulating the rate at which SIGCs enter into the cell cycle.
Collapse
Affiliation(s)
- John J Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, Connecticut
| | - Daniel Griffin
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, Connecticut
| | - Xiufang Liu
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Meghan Horne
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
32
|
Wang JL, Li SL, Qin YY, Chen ZJ. Analysis of progesterone receptor membrane component 1 mutation in Han Chinese women with premature ovarian failure. Reprod Biomed Online 2014; 29:640-3. [PMID: 25246111 DOI: 10.1016/j.rbmo.2014.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 06/28/2014] [Accepted: 08/05/2014] [Indexed: 02/01/2023]
Abstract
The gene PGRMC1 is highly expressed in the granulose and luteal cells of rodent and primate ovaries. Its role in anti-apoptosis and regulating cell-cycle progression suggests a role in regulating follicle growth. The hypothesis is supported by the study in mice and studies in Sweden. In this study, the coding exons of PGRMC1 were sequenced among 196 Chinese women with premature ovarian failure (POF) and 200 controls, and one novel missense mutation was identified (C.556C>T, p. Pro186Ser) in the POF group and one novel SNP (C.533C>T, p. Trh177Ile) was identified in both groups. The mutation is not considered causative because protein prediction did not indicate a deleterious effect. It is concluded that coding mutations of PGRMC1 do not seem to be a common cause of the disease in Han Chinese women. Future studies in larger cohorts from other ethnic groups are necessary to establish the role of PGRMC1 in POF.
Collapse
Affiliation(s)
- Jiu-Ling Wang
- Qilu Hospital of Shandong University, Jinan 250012, China
| | - Shu-Ling Li
- Qilu Hospital of Shandong University, Jinan 250012, China
| | - Ying-Ying Qin
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China.
| |
Collapse
|
33
|
Griffin D, Liu X, Pru C, Pru JK, Peluso JJ. Expression of progesterone receptor membrane component-2 within the immature rat ovary and its role in regulating mitosis and apoptosis of spontaneously immortalized granulosa cells. Biol Reprod 2014; 91:36. [PMID: 24990806 DOI: 10.1095/biolreprod.114.117481] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Progesterone receptor membrane component 2 (Pgrmc2) mRNA was detected in the immature rat ovary. By 48 h after eCG, Pgrmc2 mRNA levels decreased by 40% and were maintained at 48 h post-hCG. Immunohistochemical studies detected PGRMC2 in oocytes and ovarian surface epithelial, interstitial, thecal, granulosa, and luteal cells. PGRMC2 was also present in spontaneously immortalized granulosa cells, localizing to the cytoplasm of interphase cells and apparently to the mitotic spindle of cells in metaphase. Interestingly, PGRMC2 levels appeared to decrease during the G1 stage of the cell cycle. Moreover, overexpression of PGRMC2 suppressed entry into the cell cycle, possibly by binding the p58 form of cyclin dependent kinase 11b. Conversely, Pgrmc2 small interfering RNA (siRNA) treatment increased the percentage of cells in G1 and M stage but did not increase the number of cells, which was likely due to an increase in apoptosis. Depleting PGRMC2 did not inhibit cellular (3)H-progesterone binding, but attenuated the ability of progesterone to suppress mitosis and apoptosis. Taken together these studies suggest that PGRMC2 affects granulosa cell mitosis by acting at two specific stages of the cell cycle. First, PGRMC2 regulates the progression from the G0 into the G1 stage of the cell cycle. Second, PGRMC2 appears to localize to the mitotic spindle, where it likely promotes the final stages of mitosis. Finally, siRNA knockdown studies indicate that PGRMC2 is required for progesterone to slow the rate of granulosa cell mitosis and apoptosis. These findings support a role for PGRMC2 in ovarian follicle development.
Collapse
Affiliation(s)
- Daniel Griffin
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, Connecticut
| | - Xiufang Liu
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Cindy Pru
- Center for Reproductive Biology, Department of Animal Science, Washington State University, Pullman, Washington
| | - James K Pru
- Center for Reproductive Biology, Department of Animal Science, Washington State University, Pullman, Washington
| | - John J Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
34
|
Peluso JJ, Pru JK. Non-canonical progesterone signaling in granulosa cell function. Reproduction 2014; 147:R169-78. [PMID: 24516175 DOI: 10.1530/rep-13-0582] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It has been known for over 3 decades that progesterone (P4) suppresses follicle growth. It has been assumed that P4 acts directly on granulosa cells of developing follicles to slow their development, as P4 inhibits both mitosis and apoptosis of cultured granulosa cells. However, granulosa cells of developing follicles of mice, rats, monkeys, and humans do not express the A or B isoform of the classic nuclear receptor for P4 (PGR). By contrast, these granulosa cells express other P4 binding proteins, one of which is referred to as PGR membrane component 1 (PGRMC1). PGRMC1 specifically binds P4 with high affinity and mediates P4's anti-mitotic and anti-apoptotic action as evidenced by the lack of these P4-dependent effects in PGRMC1-depleted cells. In addition, mice in which PGRMC1 is conditionally depleted in granulosa cells show diminished follicle development. While the mechanism through which P4 activation of PGRMC1 affects granulosa cell function is not well defined, it appears that PGRMC1 controls granulosa cell function in part by regulating gene expression in T-cell-specific transcription factor/lymphoid enhancer factor-dependent manner. Clinically, altered PGRMC1 expression has been correlated with premature ovarian failure/insufficiency, polycystic ovarian syndrome, and infertility. These collective studies provide strong evidence that PGRMC1 functions as a receptor for P4 in granulosa cells and that altered expression results in compromised reproductive capacity. Ongoing studies seek to define the components of the signal transduction cascade through which P4 activation of PGRMC1 results in the regulation of granulosa cell function.
Collapse
|
35
|
Chen CP, Lin SP, Chern SR, Kuo YL, Wu PS, Chen YT, Lee MS, Wang W. Array CGH characterization of an unbalanced X-autosome translocation associated with Xq27.2–qter deletion, 11q24.3–qter duplication and Xq22.3–q27.1 duplication in a girl with primary amenorrhea and mental retardation. Gene 2014; 535:88-92. [DOI: 10.1016/j.gene.2013.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 10/31/2013] [Accepted: 11/13/2013] [Indexed: 10/26/2022]
|
36
|
Pru JK, Clark NC. PGRMC1 and PGRMC2 in uterine physiology and disease. Front Neurosci 2013; 7:168. [PMID: 24065879 PMCID: PMC3776937 DOI: 10.3389/fnins.2013.00168] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/28/2013] [Indexed: 12/14/2022] Open
Abstract
It is clear from studies using progesterone receptor (PGR) mutant mice that not all of the actions of progesterone (P4) are mediated by this receptor. Indeed, many rapid, non-classical P4 actions have been reported throughout the female reproductive tract. Progesterone treatment of Pgr null mice results in behavioral changes and in differential regulation of genes in the endometrium. Progesterone receptor membrane component (PGRMC) 1 and PGRMC2 belong to the heme-binding protein family and may serve as P4 receptors. Evidence to support this derives chiefly from in vitro culture work using primary or transformed cell lines that lack the classical PGR. Endometrial expression of PGRMC1 in menstrual cycling mammals is most abundant during the proliferative phase of the cycle. Because PGRMC2 expression shows the most consistent cross-species expression, with highest levels during the secretory phase, PGRMC2 may serve as a universal non-classical P4 receptor in the uterus. While the functional importance of PGRMC1/2 in the uterus remains to be fully explored, accumulating evidence suggests that disruption in PGRMC1/2 expression correlates with uterine disease. In this review we will summarize what is known about PGRMC1/2 in uterine physiology and we will provide examples of disrupted expression of these genes in uterine disease states.
Collapse
Affiliation(s)
- James K Pru
- Department of Animal Sciences, School of Molecular Biosciences, Center for Reproductive Biology, Washington State University Pullman, WA, USA
| | | |
Collapse
|
37
|
Peluso JJ. Progesterone receptor membrane component 1 and its role in ovarian follicle growth. Front Neurosci 2013; 7:99. [PMID: 23781168 PMCID: PMC3680780 DOI: 10.3389/fnins.2013.00099] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022] Open
Abstract
Progesterone (P4) is synthesized in the ovary and acts directly on granulosa cells of developing ovarian follicles to suppress their rate of mitosis and apoptosis. Granulosa cells do not express nuclear progesterone receptor (PGR) but rather progesterone receptor membrane component-1 (PGRMC1). PGRMC1 binds P4 and mediates P4's actions, as evidenced by PGRMC1 siRNA studies. PGRMC1 acts by binding plasminogen activator inhibitor 1 RNA-binding protein and regulating gene expression. Specifically, PGRMC1 suppresses some genes that promote cell death (i.e., Bad, Caspase-3, Caspase-4). P4 regulates gene expression in part by inhibiting PGRMC1 binding to Tcf/Lef transcription sites, thereby reducing Tcf/Lef transcriptional activity. Since Tcf/Lef transcription sites are located within the promoters of genes that initiate mitosis and/or apoptosis (i.e., c-jun and c-myc), P4-PGRMC1 mediated suppression of these Tcf/Lef regulated genes could account for P4's actions. PGRMC1 expression is also altered in women with polycystic ovarian syndrome, premature ovarian failure and infertility. Collectively, these observations support a role for PGRMC1 in regulating human ovarian follicle development.
Collapse
Affiliation(s)
- John J Peluso
- Department of Cell Biology, University of Connecticut Health Center Farmington CT, USA ; Department of Obstetrics and Gynecology, University of Connecticut Health Center Farmington CT, USA
| |
Collapse
|
38
|
Luciano AM, Franciosi F, Lodde V, Tessaro I, Corbani D, Modina SC, Peluso JJ. Oocytes isolated from dairy cows with reduced ovarian reserve have a high frequency of aneuploidy and alterations in the localization of progesterone receptor membrane component 1 and aurora kinase B. Biol Reprod 2013; 88:58. [PMID: 23325810 DOI: 10.1095/biolreprod.112.106856] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Oocytes isolated from cows of reproductive age with reduced antral follicle counts (AFC) have a diminished capacity of embryonic development, which may be related to alterations in the mechanism that directs the proper segregation of chromosomes. Because we demonstrated that progesterone receptor membrane component 1 (PGRMC1) is involved in chromosome congression and metaphase II (MII) plate formation, the present study was designed to determine 1) if the decrease in oocyte developmental competence observed in dairy cows with a reduced AFC is due to a higher incidence of aneuploidy and 2) whether alterations in PGRMC1 contributes to the incidence of aneuploidy. Oocytes from ovaries with reduced AFC and age-matched controls were matured in vitro and the occurrence of aneuploidy determined as well as the mRNA level and localization of PGRMC1. Although oocytes from ovaries with reduced AFC were capable of undergoing meiosis in vitro, these oocytes showed a 3-fold increase in aneuploidy compared to oocytes isolated from control ovaries (P < 0.05). Although Pgrmc1 mRNA levels were not altered, PGRMC1 and aurora kinase B (AURKB) failed to localize to precise focal points on MII chromosomes of oocytes from ovaries with reduced AFC. Furthermore, when oocytes of control ovaries were cultured with an inhibitor of AURKB activity, their MII plate was disrupted and PGRMC1 was not properly localized to the chromosomes. These results suggest that alterations in PGRMC1 and/or AURKB localization account in part for the increased aneuploidy and low development competence of oocytes from ovaries with reduced AFC.
Collapse
Affiliation(s)
- Alberto Maria Luciano
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
39
|
Peluso JJ, Lodde V, Liu X. Progesterone regulation of progesterone receptor membrane component 1 (PGRMC1) sumoylation and transcriptional activity in spontaneously immortalized granulosa cells. Endocrinology 2012; 153:3929-39. [PMID: 22719051 PMCID: PMC3404343 DOI: 10.1210/en.2011-2096] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Progesterone (P4) receptor membrane component (PGRMC)1 is detected as a 22-kDa band as well as higher molecular mass bands (>50 kDa) in spontaneously immortalized granulosa cells. That these higher molecular mass bands represent PGRMC1 is supported by the findings that they are not detected when either the primary antibody is omitted or the PGRMC1 antibody is preabsorbed with recombinant PGRMC1. Some but not most of the higher molecular mass bands are due to oligomerization. At least one of the higher molecular mass bands is sumoylated, because PGRMC1 coimmunoprecipitates with small ubiquitin-like modifier protein-1. Moreover, in situ proximity ligation assays reveal a direct interaction between PGRMC1 and small ubiquitin-like modifier protein-1. This interaction is increased by P4. Finally, the higher molecular mass forms of PGRMC1 localize to the nucleus. An analysis of transcription factor activity demonstrates that P4 suppresses T-cell factor/lymphoid enhancer factor (Tcf/Lef) activity through a PGRMC1-dependent mechanism, because treatment with PGRMC1 small interfering RNA depletes PGRMC1 levels and attenuates P4's effects on Tcf/Lef activity. In addition, transfection of a PGRMC1-Flag fusion protein enhances basal Tcf/Lef activity, which is suppressed by P4 treatment. Conversely, transfection of a PGRMC1-Flag protein in which all the sumoylation sites are mutated increases basal Tcf/Lef activity but attenuates P4's ability to suppress Tcf/Lef activity. Therefore, the ability to suppress Tcf/Lef activity is likely an essential part of the mechanism through which P4 activation of PGRMC1 regulates the gene cascades that control granulosa cell function with this action being dependent in part on the sumoylation status of PGRMC1.
Collapse
Affiliation(s)
- John J Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| | | | | |
Collapse
|
40
|
Peluso JJ, DeCerbo J, Lodde V. Evidence for a genomic mechanism of action for progesterone receptor membrane component-1. Steroids 2012; 77:1007-12. [PMID: 22326699 PMCID: PMC3355192 DOI: 10.1016/j.steroids.2012.01.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 01/02/2012] [Accepted: 01/18/2012] [Indexed: 10/14/2022]
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is highly expressed in the granulosa and luteal cells of rodent and primate ovaries. Interestingly, its molecular weight as assessed by Western blot is dependent on its cellular localization with a ≈27kDa form being detected in the cytoplasm and higher molecular weight forms being detected in the nucleus. The higher molecular weight forms of PGRMC1 are sumoylated suggesting that they are involved in regulating gene transcription, since sumoylation of nuclear proteins often is associated with regulation of transcriptional activity of the sumoylated protein. In order to identify a set of candidate genes that are regulated by PGRMC1, a human granulosa/luteal cell line (hGL5 cells) was treated with PGRMC1 siRNA and changes in gene expression monitored by microarray analysis. The microarray analysis revealed that PGRMC1 generally functioned as a repressor of transcription, since depletion of PGRMC1 resulted in a disproportionate increase in the number of transcripts. Moreover, a pathway analysis implicated PGRMC1 in the regulation of apoptosis, which is consistent with PGRMC1's known biological action. More importantly these results support the concept that PGRMC1 influences gene transcription. Additional studies reveal that progesterone (P4) acting through a PGRMC1-dependent mechanism suppresses the activity of the transcription factor, Tcf/Lef, thereby identifying one molecular pathway through which P4-PGRMC1 can regulate gene transcription and ultimately apoptosis.
Collapse
Affiliation(s)
- John J Peluso
- Department of Cell Biology, University of CT Health Center, Farmington, CT 06030, United States.
| | | | | |
Collapse
|
41
|
Hornick JR, Spitzer D, Goedegebuure P, Mach RH, Hawkins WG. Therapeutic targeting of pancreatic cancer utilizing sigma-2 ligands. Surgery 2012; 152:S152-6. [PMID: 22763259 DOI: 10.1016/j.surg.2012.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 01/05/2023]
Abstract
One major barrier in the development of pancreas cancer therapeutics is the selective delivery of the drugs to their cellular targets. We have previously developed several sigma-2 ligands and reported the discovery of a component of the receptor for these ligands. Several sigma-2 ligands have been shown to trigger apoptosis in pancreas cancer cells. More importantly, sigma-2 ligands are internalized rapidly by the cancer cells and are capable of delivering other small-molecule therapeutics. Here we review sigma-2 ligands and conjugates as a potential novel therapy suitable for investigation in patients with pancreatic cancer.
Collapse
Affiliation(s)
- John R Hornick
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
42
|
Escobar Sánchez M, Echeverría Martínez O, Vázquez-Nin G. Immunohistochemical and ultrastructural visualization of different routes of oocyte elimination in adult rats. Eur J Histochem 2012; 56:e17. [PMID: 22688298 PMCID: PMC3428966 DOI: 10.4081/ejh.2012.e17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cell death is a process for maintaining homeostasis in tissues and organs. In the ovary, apoptotic cell death has been implicated in follicular atresia; in the elimination of the follicles that are not ovulated during adult life. Recent studies indicate that apoptosis and autophagy are two programmed processes of cell death. Apoptosis is performed by proteases called caspases and leads to such morphological traits as DNA fragmentation. Autophagy, in turn, is characterized by the exacerbated formation of autophagosomes; a process in which the amount of the LC3 and Lamp 1 proteins increases. In this study, oocytes from all stages of the estrous cycle of Wistar rats were analyzed. The apoptosis process was identified by immunodetecting active Caspase-3 and locating DNA fragmentation using the TUNEL technique. Autophagy was evaluated through immunodetection of the LC3 and Lamp 1 proteins, and by ultrastructural localization of autophagic vesicle formation. All techniques were conducted using the same oocytes. Results show that all phases of the estrous cycle contain dying oocytes that test positive simultaneously for apoptosis and autophagy markers. The highest level of apoptosis was found during estrus; while the proestrous stage had the highest level of autophagy. The diestrous and metestrous phases were characterized by a high frequency of the presence of markers of apoptosis and autophagy in the same oocyte. Our results demonstrate that during oocyte elimination in adult rats the proteins involved in both processes, apoptosis and autophagy, are present in the same cell at the same time.
Collapse
|
43
|
Escobar Sánchez ML, Echeverría Martínez OM, Vázquez-Nin GH. Immunohistochemical and ultrastructural visualization of different routes of oocyte elimination in adult rats. Eur J Histochem 2012; 56:e17. [PMID: 22688298 PMCID: PMC3428966 DOI: 10.4081/ejh.2012.17] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/04/2012] [Accepted: 02/08/2012] [Indexed: 01/07/2023] Open
Abstract
Cell death is a process for maintaining homeostasis in tissues and organs. In the ovary, apoptotic cell death has been implicated in follicular atresia; in the elimination of the follicles that are not ovulated during adult life. Recent studies indicate that apoptosis and autophagy are two programmed processes of cell death. Apoptosis is performed by proteases called caspases and leads to such morphological traits as DNA fragmentation. Autophagy, in turn, is characterized by the exacerbated formation of autophagosomes; a process in which the amount of the LC3 and Lamp 1 proteins increases. In this study, oocytes from all stages of the estrous cycle of Wistar rats were analyzed. The apoptosis process was identified by immunodetecting active Caspase-3 and locating DNA fragmentation using the TUNEL technique. Autophagy was evaluated through immunodetection of the LC3 and Lamp 1 proteins, and by ultrastructural localization of autophagic vesicle formation. All techniques were conducted using the same oocytes. Results show that all phases of the estrous cycle contain dying oocytes that test positive simultaneously for apoptosis and autophagy markers. The highest level of apoptosis was found during estrus; while the proestrous stage had the highest level of autophagy. The diestrous and metestrous phases were characterized by a high frequency of the presence of markers of apoptosis and autophagy in the same oocyte. Our results demonstrate that during oocyte elimination in adult rats the proteins involved in both processes, apoptosis and autophagy, are present in the same cell at the same time.
Collapse
Affiliation(s)
- M L Escobar Sánchez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Coyoacán, México
| | | | | |
Collapse
|
44
|
Ahmed ISA, Chamberlain C, Craven RJ. S2RPgrmc1: the cytochrome-related sigma-2 receptor that regulates lipid and drug metabolism and hormone signaling. Expert Opin Drug Metab Toxicol 2012; 8:361-70. [DOI: 10.1517/17425255.2012.658367] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
45
|
Elassar A, Liu X, Scranton V, Wu CA, Peluso JJ. The relationship between follicle development and progesterone receptor membrane component-1 expression in women undergoing in vitro fertilization. Fertil Steril 2012; 97:572-8. [PMID: 22245528 DOI: 10.1016/j.fertnstert.2011.12.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 12/08/2011] [Accepted: 12/16/2011] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To determine the relationship between progesterone receptor membrane component-1 (PGRMC1) expression and the outcome of IVF treatment. DESIGN A prospective study in which PGRMC1 messenger RNA (mRNA) levels, methylation status of the Pgrmc1 promoter, and the presence of point mutations within Pgrmc1 were obtained from granulosa (GC)/luteal cells of women undergoing controlled ovarian hyperstimulation (COH). SETTING Fertility center/basic science laboratory. PATIENT(S) Eighty-five patients undergoing IVF treatment and 10 women who were undergoing COH for the purpose of oocyte donation were included in this study. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) The PGRMC1 measurements were correlated with clinical outcomes, such as number of follicles, number of retrieved oocytes, and ongoing pregnancy rates (PR). RESULT(S) The PGRMC1 mRNA levels within GC/luteal cells of 18% of IVF patients were >2.25-fold higher than those of oocyte donors. Individuals with elevated PGRMC1 mRNA levels had 30% fewer large follicles and fewer oocytes retrieved. The elevated PGRMC1 mRNA levels were associated with an increase in the methylation of Pgrmc1 promoter. CONCLUSION(S) In patients with elevated PGRMC1 mRNA levels, gonadotropin-induced follicle development is attenuated, although sufficient numbers of follicles develop to allow for ET and subsequent pregnancy.
Collapse
Affiliation(s)
- Alyaa Elassar
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | |
Collapse
|
46
|
Luciano AM, Corbani D, Lodde V, Tessaro I, Franciosi F, Peluso JJ, Modina S. Expression of progesterone receptor membrane component-1 in bovine reproductive system during estrous cycle. Eur J Histochem 2011; 55:e27. [PMID: 22073374 PMCID: PMC3203473 DOI: 10.4081/ejh.2011.e27] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/24/2011] [Indexed: 12/11/2022] Open
Abstract
Several reports suggest the participation of progesterone receptor membrane component 1 (PGRMC1) in progesterone signaling in the reproductive system. This study aimed at investigating the presence and localization of PGRMC1 in bovine ovary, oviduct and uterus, during the follicular and luteal phases of the estrous cycle. In the ovary, PGRMC1 has been detected in surface germinal epithelium, granulosa cells, theca cells and in the germinal vesicle of the oocytes at all stages of folliculogenesis. In the corpus luteum the expression of PGRMC1 was influenced by the stage of the estrous cycle. In the oviducts and in the uterus horns, PGRMC1 was immunolocalized in the luminal epithelium, in the muscle layer cells and in the endothelial cells. In the uterus, PGRMC1 was intensely localized also in the glandular endometrium. However, in the oviducts and in the uterus horns, the localization of PGRMC1 was independent on the stage of the estrous cycle and on whether evaluating the ipsilateral or the contralateral organ. In conclusion, the present immunohistochemical study showed that PGRMC1 is located in various compartments of the bovine female reproductive organs. With the exception of the corpora lutea, PGRMC1 localization showed similar pattern during different stages of the estrous cycle.
Collapse
Affiliation(s)
- A M Luciano
- Department of Animal Sciences, Faculty of Veterinary Medicine, University of Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|