1
|
Doghish AS, El-Sayyad GS, Abdel Mageed SS, Abd-Elmawla MA, Sallam AAM, El Tabaa MM, Rizk NI, Ashraf A, Mohammed OA, Mangoura SA, Al-Noshokaty TM, Zaki MB, El-Dakroury WA, Elrebehy MA, Abdel-Reheim MA, Elballal MS, Abulsoud AI. The emerging role of miRNAs in pituitary adenomas: From molecular signatures to diagnostic potential. Exp Cell Res 2024; 442:114279. [PMID: 39389336 DOI: 10.1016/j.yexcr.2024.114279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Pituitary adenomas (PAs) are an array of tumors originating from the pituitary gland. PAs are sorted as functional or nonfunctional according to their hormonal activity and classified according to size into microadenomas and macroadenomas. Still, the cellular events that trigger the transformations in pituitary neoplasms are not fully understood, and the current classification methods do not precisely predict clinical behavior. A rising number of researches have emphasized the role of miRNAs, that drawn more attention as oncogenic molecules or tumor suppressors. The etiopathological mechanisms of PAs include multiple molecular cascades that are influenced by different miRNAs. miRNAs control the cell cycle control, pro- or antiapoptotic processes, and tumor invasion and metastasis. miRNAs offer a novel perspective on tumor features and behaviors and might be valuable in prognostication and therapeutic plans. In pituitary adenomas, miRNAs showed a specific expression pattern depending on their size, cell origin, remission, and treatments. Screening miRNA expression patterns is promising to monitor and evaluate recurrence, as well as to investigate the efficacy of radiation and chemotherapy for PAs exhibiting aggressive behavior. Thus, the current review investigated the interplay of the miRNAs' pivotal role in offering new opportunities to translate these innovative epigenetic tools into healthcare applications.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Cairo, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, Galala City, Suez, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Safwat Abdelhady Mangoura
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Galala University, New Galala City, 43713, Suez, Egypt
| | | | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| |
Collapse
|
2
|
Li X, Jin H, Lv Y, Liu C, Luo X, Liu J, Zhang Q, Yu Y, Zhao Z. Analysis of microRNA expression profiles during the differentiation of chicken embryonic stem cells into male germ cells. Anim Biotechnol 2023; 34:1120-1131. [PMID: 35020556 DOI: 10.1080/10495398.2021.2013858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The differentiation of embryonic stem cells (ESCs) into germ cells in vitro could have very promising applications for infertility treatment and could provide an excellent model for uncovering the molecular mechanisms of germline generation. This study aimed to investigate the differentially expressed miRNAs (DEMs) during the differentiation of chicken ESCs (cESCs) into male germ cells and to establish a profile of the DEMs. Cells before and after induction were subjected to miRNA sequencing (miRNA-seq). A total of 113 DEMs were obtained, including 61 upregulated and 52 downregulated DEMs. GO and KEGG enrichment analyses showed that the target genes were enriched mainly in the MAPK signaling pathway, HTLV infection signaling pathway, cell adhesion molecule (CAM)-related pathways, viral myocarditis, Wnt signaling pathway, ABC transporters, TGF-β signaling pathways, Notch signaling pathways and insulin signaling pathway. The target genes of the miRNAs were related to cell binding, cell parts and biological regulatory processes. Six DEMs, let-7k-5p, miR-132c-5p, miR-193a-5p, miR-202-5p, miR-383-5p and miR-6553-3p, were assessed by qRT-PCR, and the results were consistent with the results of miRNA-seq. Based on qRT-PCR and western blot verification, miR-383-5p and its putative target gene STRN3 were selected to construct an STRN3 3'-UTR dual-luciferase gene reporter vector and its mutant vector. The double luciferase reporter activity of the cotransfected STRN3-WT + miR-383-5p mimics group was significantly lower (by approximately 46%) than that of the other five groups (p < 0.01). There was no significant difference in luciferase activity among the other 5 groups. This study establishes a DEM profile during the process of cESC differentiation into male germ cells; illustrates the mechanisms by which miRNAs regulate target genes; provides a theoretical basis for further research on the mechanisms of the formation and regulation of male germ cells; and provides an important strategy for gene editing, animal genetic resource protection and transgenic animal production.
Collapse
Affiliation(s)
- Xin Li
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, China
| | - Haiguo Jin
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, China
| | - Yang Lv
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chen Liu
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, China
| | - Xiaotong Luo
- Agricultural College, Yanbian University, Yanji, China
| | - Jianqiang Liu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, China
| | - Qi Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, China
| | - Yongsheng Yu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, China
| | - Zhongli Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, China
| |
Collapse
|
3
|
Nicol B, Estermann MA, Yao HHC, Mellouk N. Becoming female: Ovarian differentiation from an evolutionary perspective. Front Cell Dev Biol 2022; 10:944776. [PMID: 36158204 PMCID: PMC9490121 DOI: 10.3389/fcell.2022.944776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/16/2022] [Indexed: 01/09/2023] Open
Abstract
Differentiation of the bipotential gonadal primordium into ovaries and testes is a common process among vertebrate species. While vertebrate ovaries eventually share the same functions of producing oocytes and estrogens, ovarian differentiation relies on different morphogenetic, cellular, and molecular cues depending on species. The aim of this review is to highlight the conserved and divergent features of ovarian differentiation through an evolutionary perspective. From teleosts to mammals, each clade or species has a different story to tell. For this purpose, this review focuses on three specific aspects of ovarian differentiation: ovarian morphogenesis, the evolution of the role of estrogens on ovarian differentiation and the molecular pathways involved in granulosa cell determination and maintenance.
Collapse
Affiliation(s)
- Barbara Nicol
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States,*Correspondence: Barbara Nicol,
| | - Martin A. Estermann
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Humphrey H-C Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Namya Mellouk
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy en Josas, France
| |
Collapse
|
4
|
Zhao X, Wu Y, Li H, Li J, Yao Y, Cao Y, Mei Z. Comprehensive analysis of differentially expressed profiles of mRNA, lncRNA, and miRNA of Yili geese ovary at different egg-laying stages. BMC Genomics 2022; 23:607. [PMID: 35986230 PMCID: PMC9392330 DOI: 10.1186/s12864-022-08774-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Background The development of the ovaries is an important factor that affects egg production performance in geese. Ovarian development is regulated by genes that are expressed dynamically and stage-specifically. The transcriptome profile analysis on ovarian tissues of goose at different egg laying stages could provide an important basis for screening and identifying key genes regulating ovarian development. Results In this study, 4 ovary tissues at each breeding period of pre-laying (PP), laying (LP), and ceased-laying period (CP), respectively, with significant morphology difference, were used for RNA extraction and mRNAs, lncRNAs, and miRNAs comparison in Yili geese. CeRNA regulatory network was constructed for key genes screening. A total of 337, 1136, and 525 differentially expressed DE mRNAs, 466, 925, and 742 DE lncRNAs and 258, 1131 and 909 DE miRNAs were identified between PP and LP, between CP and LP, and between CP and PP groups, respectively. Functional enrichment analysis showed that the differentially expressed mRNAs and non-coding RNA target genes were mainly involved in the cell process, cytokine-cytokine receptor interaction, phagosome, calcium signaling pathway, steroid biosynthesis and ECM-receptor interaction. Differential genes and non-coding RNAs, PDGFRB, ERBB4, LHCGR, MSTRG.129094.34, MSTRG.3524.1 and gga-miR-145–5p, related to reproduction and ovarian development were highly enriched. Furthermore, lncRNA-miRNA-mRNA regulatory networks related to ovary development were constructed. Conclusions Our study found dramatic transcriptomic differences in ovaries of Yili geese at different egg-laying stages, and a differential lncRNA-miRNA-mRNA regulatory network related to cell proliferation, differentiation and apoptosis and involved in stromal follicle development were established and preliminarily validated, which could be regarded as a key regulatory pathway of ovarian development in Yili geese. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08774-4.
Collapse
|
5
|
Mohammed BT, Donadeu FX. Localisation and in silico based functional analysis of miR-202 in bull testis. Reprod Domest Anim 2022; 57:1082-1087. [PMID: 35569037 PMCID: PMC9545423 DOI: 10.1111/rda.14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/12/2022] [Indexed: 11/28/2022]
Abstract
Bull fertility is pivotal to the prosperity of the cattle industry worldwide. miR‐202 has been shown to be gonad specific and to have key roles in gonad function in different species. To further understand the involvement of miR‐202 in bull reproduction, this study aimed to establish its localization in bovine testicular tissue and to identify putative biological functions using bioinformatics approaches. We assessed the miR‐202 expression in paraffin‐embedded tissue samples collected form an abattoir using in situ hybridization. miR‐202 was present in Sertoli cells and in germ cells at different stages of development. Using available databases, a total of 466 predicted gene targets of miR‐202 were identified. Functional annotation revealed that miR‐202 target genes were mainly associated with protein modification and phosphorylation processes as well as longevity regulating pathway. Moreover, genes in the longevity regulating pathway mapped to PI3K/Akt/mTOR pathway which is involved in promoting proliferation of testicular cells and spermatogenesis. These findings suggest that miR‐202 plays important roles in regulating proliferation and viability of testicular cells including somatic and germ cells.
Collapse
Affiliation(s)
- Bushra T Mohammed
- Department of Pathology and Microbiology, College of Veterinary Medicine, University of Duhok, Iraq.,The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - F Xavier Donadeu
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| |
Collapse
|
6
|
Non-Epithelial Ovarian Cancers: How Much Do We Really Know? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031106. [PMID: 35162125 PMCID: PMC8834485 DOI: 10.3390/ijerph19031106] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Non-epithelial ovarian cancers (NEOC) are a group of uncommon malignancies that mainly includes germ cell tumours (GCT), sex cord-stromal tumours (SCST), and some extremely rare tumours, such as small cell carcinomas and sarcomas. Each of these classifications encompasses multiple histologic subtypes. The aetiology and molecular origins of each sub-group of NEOC require further investigation, and our understanding on the genetic changes should be optimised. In this article, we provide an update on the clinical presentation, pathology, genetics, treatment and survival of the main histological subtypes of the GCT and the SCST, as well as of ovarian small cell carcinomas. We also discuss miRNA expression profiles of NEOC and report the currently active clinical trials that include NEOC.
Collapse
|
7
|
Cardona E, Guyomar C, Desvignes T, Montfort J, Guendouz S, Postlethwait JH, Skiba-Cassy S, Bobe J. Circulating miRNA repertoire as a biomarker of metabolic and reproductive states in rainbow trout. BMC Biol 2021; 19:235. [PMID: 34781956 PMCID: PMC8594080 DOI: 10.1186/s12915-021-01163-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
Background Circulating miRNAs (c-miRNAs) are found in most, if not all, biological fluids and are becoming well-established non-invasive biomarkers of many human pathologies. However, their features in non-pathological contexts and whether their expression profiles reflect normal life history events have received little attention, especially in non-mammalian species. The aim of the present study was to investigate the potential of c-miRNAs to serve as biomarkers of reproductive and metabolic states in fish. Results The blood plasma was sampled throughout the reproductive cycle of female rainbow trout subjected to two different feeding regimes that triggered contrasting metabolic states. In addition, ovarian fluid was sampled at ovulation, and all samples were subjected to small RNA-seq analysis, leading to the establishment of a comprehensive miRNA repertoire (i.e., miRNAome) and enabling subsequent comparative analyses to a panel of RNA-seq libraries from a wide variety of tissues and organs. We showed that biological fluid miRNAomes are complex and encompass a high proportion of the overall rainbow trout miRNAome. While sharing a high proportion of common miRNAs, the blood plasma and ovarian fluid miRNAomes exhibited strong fluid-specific signatures. We further revealed that the blood plasma miRNAome significantly changed depending on metabolic and reproductive states. We subsequently identified three evolutionarily conserved muscle-specific miRNAs or myomiRs (miR-1-1/2-3p, miR-133a-1/2-3p, and miR-206-3p) that accumulated in the blood plasma in response to high feeding rates, making these myomiRs strong candidate biomarkers of active myogenesis. We also identified miR-202-5p as a candidate biomarker for reproductive success that could be used to predict ovulation and/or egg quality. Conclusions Together, these promising results reveal the high potential of c-miRNAs, including evolutionarily conserved myomiRs, as physiologically relevant biomarker candidates and pave the way for the use of c-miRNAs for non-invasive phenotyping in various fish species. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01163-5.
Collapse
Affiliation(s)
- Emilie Cardona
- INRAE, LPGP, Fish Physiology and Genomics, F-35000, Rennes, France.,INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint-Pée-sur-Nivelle, France
| | - Cervin Guyomar
- INRAE, LPGP, Fish Physiology and Genomics, F-35000, Rennes, France.,GenPhySE, University of Toulouse, INRAE, ENVT, F-31326, Castanet-Tolosan, France
| | - Thomas Desvignes
- Institute of Neurosciences, University of Oregon, Eugene, OR, 97403, USA
| | - Jérôme Montfort
- INRAE, LPGP, Fish Physiology and Genomics, F-35000, Rennes, France
| | - Samia Guendouz
- Institute of Functional Genomics, MGX, UMR 5203 CNRS - U1191 INSERM, F-34094, Montpellier, France
| | | | - Sandrine Skiba-Cassy
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint-Pée-sur-Nivelle, France
| | - Julien Bobe
- INRAE, LPGP, Fish Physiology and Genomics, F-35000, Rennes, France.
| |
Collapse
|
8
|
Estermann MA, Hirst CE, Major AT, Smith CA. The homeobox gene TGIF1 is required for chicken ovarian cortical development and generation of the juxtacortical medulla. Development 2021; 148:dev199646. [PMID: 34387307 PMCID: PMC8406534 DOI: 10.1242/dev.199646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
During early embryogenesis in amniotic vertebrates, the gonads differentiate into either ovaries or testes. The first cell lineage to differentiate gives rise to the supporting cells: Sertoli cells in males and pre-granulosa cells in females. These key cell types direct the differentiation of the other cell types in the gonad, including steroidogenic cells. The gonadal surface epithelium and the interstitial cell populations are less well studied, and little is known about their sexual differentiation programs. Here, we show the requirement of the homeobox transcription factor gene TGIF1 for ovarian development in the chicken embryo. TGIF1 is expressed in the two principal ovarian somatic cell populations: the cortex and the pre-granulosa cells of the medulla. TGIF1 expression is associated with an ovarian phenotype in estrogen-mediated sex reversal experiments. Targeted misexpression and gene knockdown indicate that TGIF1 is required, but not sufficient, for proper ovarian cortex formation. In addition, TGIF1 is identified as the first known regulator of juxtacortical medulla development. These findings provide new insights into chicken ovarian differentiation and development, specifically cortical and juxtacortical medulla formation.
Collapse
Affiliation(s)
| | | | | | - Craig Allen Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton VIC 3800, Australia
| |
Collapse
|
9
|
Wang M, Du Y, Gao S, Wang Z, Qu P, Gao Y, Wang J, Liu Z, Zhang J, Zhang Y, Qing S, Wang Y. Sperm-borne miR-202 targets SEPT7 and regulates first cleavage of bovine embryos via cytoskeletal remodeling. Development 2021; 148:dev.189670. [PMID: 33472846 DOI: 10.1242/dev.189670] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 01/08/2021] [Indexed: 01/28/2023]
Abstract
In mammals, sperm-borne regulators can be transferred to oocytes during fertilization and have different effects on the formation of pronuclei, the first cleavage of zygotes, the development of preimplantation embryos and even the metabolism of individuals after birth. The regulatory role of sperm microRNAs (miRNAs) in the development of bovine preimplantation embryos has not been reported in detail. By constructing and screening miRNA expression libraries, we found that miR-202 was highly enriched in bovine sperm. As a target gene of miR-202, co-injection of SEPT7 siRNA can partially reverse the accelerated first cleavage of bovine embryos caused by miR-202 inhibitor. In addition, both a miR-202 mimic and SEPT7 siRNA delayed the first cleavage of somatic cell nuclear transfer (SCNT) embryos, suggesting that miR-202-SEPT7 mediates the delay of first cleavage of bovine embryos. By further exploring the relationship between miR-202/SEPT7, HDAC6 and acetylated α-tubulin during embryonic development, we investigated how sperm-borne miR-202 regulates the first cleavage process of bovine embryos by SEPT7 and demonstrate the potential of sperm-borne miRNAs to improve the efficiency of SCNT.
Collapse
Affiliation(s)
- Mengyun Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China.,School of Life Science and Technology, Harbin Institute of Technology, Science Park of Harbin Institute of Technology, Harbin 150000, China
| | - Yue Du
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Song Gao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Zheng Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Pengxiang Qu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Yang Gao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Jingyi Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Zhengqi Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Jingcheng Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Suzhu Qing
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
10
|
Chen M, Zhang S, Xu Z, Gao J, Mishra SK, Zhu Q, Zhao X, Wang Y, Yin H, Fan X, Zeng B, Yang M, Yang D, Ni Q, Li Y, Zhang M, Li D. MiRNA Profiling in Pectoral Muscle Throughout Pre- to Post-Natal Stages of Chicken Development. Front Genet 2020; 11:570. [PMID: 32655617 PMCID: PMC7324647 DOI: 10.3389/fgene.2020.00570] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/11/2020] [Indexed: 02/05/2023] Open
Abstract
MicroRNA (miRNA) is known to be an important regulator of muscle growth and development. The regulation of microRNA on the skeletal muscle phenotype of animals is mainly achieved by regulating the proliferation and differentiation of myoblasts. In this study, we sequenced a total of 60 samples from 15 developing stages of the pectoral muscle and five other tissues at 300 days of Tibetan chicken. We characterized the expression patterns of miRNAs across muscle developmental stages, and found that the chicken growth and development stage was divided into early-embryonic and late-embryonic as well as postnatal stages. We identified 81 and 21 DE-miRNAs by comparing the miRNA profiles of pectoral muscle of three broad periods and different tissues, respectively; and 271 miRNAs showed time-course patterns. Their potential targets were predicted and used for functional enrichment to understand their regulatory functions. Significantly, GgmiRNA-454 is a time-dependent and tissue-differential expression miRNA. In order to elucidate the role of gga-miRNA-454 in the differentiation of myoblasts, we cultured chicken myoblasts in vitro. The results show that although gga-miRNA-454-3p initiates increase and thereafter decrease during the chicken myoblasts differentiation, it had no effect on primary myoblasts proliferation. Furthermore, we confirm that gga-miRNA-454 inhibits myoblast differentiation by targeting the myotube-associated protein SBF2.
Collapse
Affiliation(s)
- Min Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricltural University, Wenjiang, China.,Department of Science and Technology, Chengdu Medical College, Chengdu, China.,Institute of Biopharming, West China Hospital, Sichuan University, Chengdu, China
| | - Shaolan Zhang
- Department of Science and Technology, Chengdu Medical College, Chengdu, China
| | - Zhongxian Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricltural University, Wenjiang, China
| | - Jian Gao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricltural University, Wenjiang, China
| | - Shailendra Kumar Mishra
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricltural University, Wenjiang, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricltural University, Wenjiang, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricltural University, Wenjiang, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricltural University, Wenjiang, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricltural University, Wenjiang, China
| | - Xiaolan Fan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricltural University, Wenjiang, China
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricltural University, Wenjiang, China
| | - Mingyao Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricltural University, Wenjiang, China
| | - Deying Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricltural University, Wenjiang, China
| | - Qingyong Ni
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricltural University, Wenjiang, China
| | - Yan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricltural University, Wenjiang, China
| | - Mingwang Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricltural University, Wenjiang, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricltural University, Wenjiang, China
| |
Collapse
|
11
|
Zou X, Wang J, Qu H, Lv XH, Shu DM, Wang Y, Ji J, He YH, Luo CL, Liu DW. Comprehensive analysis of miRNAs, lncRNAs, and mRNAs reveals potential players of sexually dimorphic and left-right asymmetry in chicken gonad during gonadal differentiation. Poult Sci 2020; 99:2696-2707. [PMID: 32359607 PMCID: PMC7597365 DOI: 10.1016/j.psj.2019.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 12/21/2022] Open
Abstract
Despite thousands of sex-biased genes being found in chickens, the genetic control of sexually dimorphic and left-right asymmetry during gonadal differentiation is not yet completely understood. This study aimed to identify microRNAs (miRNAs), long noncoding RNAs (lncRNAs), messenger RNAs (mRNAs), and signaling pathways during gonadal differentiation in chick embryos (day 6/stage 29). The left and right gonads were collected for RNA sequencing. Sex-biased, side-biased miRNAs, lncRNAs, mRNAs, and shared differentially expressed miRNAs (DEmiRNA)–differentially expressed mRNAs (DEmRNA)–differentially expressed lncRNAs (DElncRNA) interaction networks were performed. A total of 8 DEmiRNAs, 183 DElncRNAs, and 123 DEmRNAs were identified for the sex-biased genes, and 7 DEmiRNAs, 189 DElncRNAs, and 183 DEmRNAs for the side-biased genes. The results of quantitative real-time PCR were generally consistent with the RNA-sequencing results. The study suggested that miRNAs and lncRNAs regulation were novel gene-specific dosage compensation mechanism and they could contribute to left-right asymmetry of chicken, but sex-biased and side-biased miRNAs, lncRNAs, and mRNAs were independent of each other. The competing endogenous RNA (ceRNA) networks showed that 17 target pairs including miR-7b (CYP19A1, FSHR, GREB1, STK31, CORIN, and TDRD9), miR-211 (FSHR, GREB1, STK31, CORIN, and TDRD9), miR-204 (FSHR, GREB1, CORIN, and TDRD9), and miR-302b-5p (CYP19A1 and TDRD9) may play crucial roles in ovarian development. These analyses provide new clues to uncover molecular mechanisms and signaling networks of ovarian development.
Collapse
Affiliation(s)
- X Zou
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - J Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - H Qu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - X H Lv
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - D M Shu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Y Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - J Ji
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Y H He
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - C L Luo
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - D W Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
12
|
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that inhibit protein translation from target mRNAs. Accumulating evidence suggests that miRNAs can regulate a broad range of biological pathways, including cell differentiation, apoptosis, and carcinogenesis. With the development of miRNAs, the investigation of miRNA functions has emerged as a hot research field. Due to the intensive farming in recent decades, chickens are easily influenced by various pathogen transmissions, and this has resulted in large economic losses. Recent reports have shown that miRNAs can play critical roles in the regulation of chicken diseases. Therefore, the aim of this review is to briefly discuss the current knowledge regarding the effects of miRNAs on chickens suffering from common viral diseases, mycoplasmosis, necrotic enteritis, and ovarian tumors. Additionally, the detailed targets of miRNAs and their possible functions are also summarized. This review intends to highlight the key role of miRNAs in regard to chickens and presents the possibility of improving chicken disease resistance through the regulation of miRNAs.
Collapse
|
13
|
Functional genomics in chicken (Gallus gallus) - status and implications in poultry. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s004393391400004x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Jiang L, Bi D, Ding H, Ren Q, Wang P, Kan X. Identification and comparative profiling of gonadal microRNAs in the adult pigeon ( Columba livia). Br Poult Sci 2019; 60:638-648. [PMID: 31343256 DOI: 10.1080/00071668.2019.1639140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1. MicroRNAs are small noncoding RNA molecules that play crucial roles in gene expression. However, the comparative profiling of testicular and ovarian microRNAs in birds are rarely reported, particularly in pigeon.2. In this study, Illumina next-generation sequencing technology was used to sequence miRNA libraries of the gonads from six healthy adult utility pigeons. A total of 344 conserved known miRNAs and 32 novel putative miRNAs candidates were detected. Compared with those of ovaries, 130 differentially expressed (DE) miRNAs were identified in the testes. Among them, 70 miRNAs showed down-regulation in the ovaries, while another 60 miRNAs were up-regulated.3. Combining the results of the expression of target gene measurements and pathway enrichment analyses, it was revealed that some DEmiRNAs from the gonad samples involved in sexual differentiation and development (such as cli-miR-210-3p and cli-miR-214-3p) could down-regulate AR (androgen receptor). Cli-miR-181b-5p, cli-miR-9622-3p and cli-miR-145-5p were highly expressed in both the ovaries and testes, which could co-target HOXC9, and were related to regulation of primary metabolic processes. KEGG enrichment analysis showed that DEmiRNAs may play biological and sex-related roles in pigeon gonads.4. The expression profiles of testicular and ovarian miRNA in adult pigeon gonads are presented for the first time, and the findings may contribute to a better understanding of gonadal expression in poultry.
Collapse
Affiliation(s)
- L Jiang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China.,The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - D Bi
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - H Ding
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Q Ren
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - P Wang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - X Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China.,The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
15
|
Robles V, Valcarce DG, Riesco MF. Non-coding RNA regulation in reproduction: Their potential use as biomarkers. Noncoding RNA Res 2019; 4:54-62. [PMID: 31193491 PMCID: PMC6531869 DOI: 10.1016/j.ncrna.2019.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are crucial regulatory elements in most biological processes and reproduction is also controlled by them. The different types of ncRNAs, as well as the high complexity of these regulatory pathways, present a complex scenario; however, recent studies have shed some light on these questions, discovering the regulatory function of specific ncRNAs on concrete reproductive biology processes. This mini review will focus on the role of ncRNAs in spermatogenesis and oogenesis, and their potential use as biomarkers for reproductive diseases or for reproduction success.
Collapse
Affiliation(s)
- Vanesa Robles
- Spanish Institute of Oceanography (IEO) Santander, Spain
- MODCELL GROUP, Department of Molecular Biology, Universidad de León, 24071, León, Spain
- Corresponding author. Planta de Cultivos el Bocal, IEO, Barrio Corbanera, Monte, Santander, 39012, Spain.
| | | | | |
Collapse
|
16
|
Xu XY, Wu D, Xu SY, Che LQ, Fang ZF, Feng B, Li J, Wu CM, Lin Y. Comparison of microRNA transcriptomes reveals differential regulation of microRNAs in different-aged boars. Theriogenology 2018; 119:105-113. [DOI: 10.1016/j.theriogenology.2018.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
|
17
|
Gay S, Bugeon J, Bouchareb A, Henry L, Delahaye C, Legeai F, Montfort J, Le Cam A, Siegel A, Bobe J, Thermes V. MiR-202 controls female fecundity by regulating medaka oogenesis. PLoS Genet 2018; 14:e1007593. [PMID: 30199527 PMCID: PMC6147661 DOI: 10.1371/journal.pgen.1007593] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/20/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Female gamete production relies on coordinated molecular and cellular processes that occur in the ovary throughout oogenesis. In fish, as in other vertebrates, these processes have been extensively studied both in terms of endocrine/paracrine regulation and protein expression and activity. The role of small non-coding RNAs in the regulation of animal reproduction remains however largely unknown and poorly investigated, despite a growing interest for the importance of miRNAs in a wide variety of biological processes. Here, we analyzed the role of miR-202, a miRNA predominantly expressed in male and female gonads in several vertebrate species. We studied its expression in the medaka ovary and generated a mutant line (using CRISPR/Cas9 genome editing) to determine its importance for reproductive success with special interest for egg production. Our results show that miR-202-5p is the most abundant mature form of the miRNA and that it is expressed in granulosa cells and in the unfertilized egg. The knock out (KO) of mir-202 gene resulted in a strong phenotype both in terms of number and quality of eggs produced. Mutant females exhibited either no egg production or produced a dramatically reduced number of eggs that could not be fertilized, ultimately leading to no reproductive success. We quantified the size distribution of the oocytes in the ovary of KO females and performed a large-scale transcriptomic analysis approach to identified dysregulated molecular pathways. Together, cellular and molecular analyses indicate that the lack of miR-202 impairs the early steps of oogenesis/folliculogenesis and decreases the number of large (i.e. vitellogenic) follicles, ultimately leading to dramatically reduced female fecundity. This study sheds new light on the regulatory mechanisms that control the early steps of follicular development, including possible targets of miR-202-5p, and provides the first in vivo functional evidence that a gonad-predominant microRNA may have a major role in female reproduction. The role of small non-coding RNAs in the regulation of animal reproduction remains poorly investigated, despite a growing interest for the importance of miRNAs in a wide variety of biological processes. Here, we analyzed the role of miR-202, a miRNA predominantly expressed in gonads in vertebrate. We studied its expression in the medaka ovary and knocked out the mir-202 gene to study its importance for reproductive success. We showed that the lack of miR-202 results in the sterility of both females and males. In particular, it led to a drastic reduction of both the number and the quality of eggs produced by females. Mutant females exhibited either no egg production or produced a drastically reduced number of eggs that could not be fertilized, ultimately leading to no reproductive success. Quantitative histological and molecular analyses indicated that mir-202 KO impairs oocyte development and is also associated with the dysregulation of many genes that are critical for reproduction. This study sheds new light on the regulatory mechanisms that control oogenesis, including possible targets of miR-202-5p, and provides the first in vivo functional evidence that a gonad-predominant microRNA may have a major role in female reproduction.
Collapse
Affiliation(s)
| | | | | | | | - Clara Delahaye
- LPGP, INRA, Rennes, France
- Univ Rennes, INRIA, CNRS, IRISA, Rennes, France
| | - Fabrice Legeai
- Univ Rennes, INRIA, CNRS, IRISA, Rennes, France
- IGEPP, INRA BP35327, Le Rheu, France
| | | | | | - Anne Siegel
- Univ Rennes, INRIA, CNRS, IRISA, Rennes, France
| | | | | |
Collapse
|
18
|
Wang Y, Yang HM, Cao W, Li YB, Wang ZY. Deep sequencing identification of miRNAs in pigeon ovaries illuminated with monochromatic light. BMC Genomics 2018; 19:446. [PMID: 29884125 PMCID: PMC5994017 DOI: 10.1186/s12864-018-4831-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/29/2018] [Indexed: 11/26/2022] Open
Abstract
Background The use of light of different wavelengths has grown popular in the poultry industry. An optimum wavelength is believed to improve pigeon egg production, but little is known about the role of microRNAs (miRNAs) in the effects of monochromatic light on ovarian pigeon function. Herein, we harvested ovaries from pigeons reared under monochromatic light of different wavelength and performed deep sequencing on various tissues using an Illumina Solexa high-throughput instrument. Results We obtained 66,148,548, 67,873,805, and 71,661,771 clean reads from ovaries of pigeons reared under red light (RL), blue light (BL), and white light (WL), respectively. We identified 1917 known miRNAs in nine libraries, of which 524 were novel. Three and five differentially expressed miRNAs were identified in BL vs. WL and RL vs. WL groups, respectively. Quantitative reverse transcription PCR was used to validate differentially expressed miRNAs (miR-200, miR-122, and miR-205b). In addition, 5824 target genes were annotated as differentially expressed miRNAs, most of which are involved in reproductive pathways including oestrogen signalling, cell cycle, and oocyte maturation. Notably, ovarian miR-205b expression was significantly negatively correlated with its target 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1). Conclusions miRNA–mRNA network analysis suggests that miR-205b targeting of HSD11B1 plays a key role in the effects of monochromatic light on pigeon egg production. These findings indicate that monochromatic light shortens the oviposition interval of pigeons, which may be useful for egg production and pigeon breeding. Electronic supplementary material The online version of this article (10.1186/s12864-018-4831-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Hai-Ming Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
| | - Wei Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Yang-Bai Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Zhi-Yue Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| |
Collapse
|
19
|
Qiu W, Zhu Y, Wu Y, Yuan C, Chen K, Li M. Identification and expression analysis of microRNAs in medaka gonads. Gene 2018; 646:210-216. [PMID: 29305975 DOI: 10.1016/j.gene.2017.12.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/08/2017] [Accepted: 12/29/2017] [Indexed: 12/17/2022]
Abstract
Gonad development is a highly regulated, coordinated biological process and increasing evidences have indicated that microRNA (miRNA) may be involved in this dynamic program. Medaka (Oryzias latipes) is a good model for reproductive research as it has distinct sex determining genes, however, research in gonadal miRNAs is lacked. In this study, two small RNA libraries from the ovaries and testes were constructed and sequenced. A total of 285 conserved and 388 novel miRNAs were obtained, among which 142 mature miRNAs were significantly (> two-fold change) up or down regulated in the testis compared to the ovary. Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) analysis showed that miR-430c, miR-26a and miR-202-5p were expressed in a gonad-specific or sex-biased pattern. Fluorescence in situ hybridization (FISH) indicated that miR-202-5p was present throughout spermatogenesis and was only detected at the early stages of oogenesis, this sex biased expression pattern suggested that miR-202-5p might be a crucial candidate in male differentiation and development. Our study provides the repertoire, a comprehensive annotation of miRNAs from gonads and a reference for functional studies of miRNAs in medaka.
Collapse
Affiliation(s)
- Weiwei Qiu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yefei Zhu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yun Wu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Cancan Yuan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Kerang Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Mingyou Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
20
|
Chang RK, Li X, Mu N, Hrydziuszko O, Garcia-Majano B, Larsson C, Lui WO. MicroRNA expression profiles in non‑epithelial ovarian tumors. Int J Oncol 2018; 52:55-66. [PMID: 29138809 PMCID: PMC5743337 DOI: 10.3892/ijo.2017.4200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023] Open
Abstract
Ovarian germ cell tumors (OGCTs) and sex cord stromal tumors (SCSTs) are rare gynecologic tumors that are derived from germ and stromal cells, respectively. Unlike their epithelial counterparts, molecular pathogenesis of these tumor types is still poorly understood. Here, we characterized microRNA (miRNA) expression profiles of 9 OGCTs (2 malignant and 7 benign) and 3 SCSTs using small RNA sequencing. We observed significant miRNA expression variations among the three tumor groups. To further demonstrate the biological relevance of our findings, we selected 12 miRNAs for validation in an extended cohort of 16 OGCTs (9 benign and 7 malignant) and 7 SCSTs by reverse transcription-quantitative polymerase chain reaction. Higher expression of miR‑373‑3p, miR‑372‑3p and miR‑302c‑3p and lower expression of miR‑199a‑5p, miR‑214‑5p and miR‑202‑3p were reproducibly observed in malignant OGCTs as compared to benign OGCTs or SCSTs. Comparing with benign OGCTs, miR‑202c‑3p and miR‑513c‑5p were more abundant in SCSTs. Additionally, we examined Beclin 1 (BECN1), a target of miR‑199a‑5p, in the clinical samples using western blot analysis. Our results show that BECN1 expression was higher in malignant OGCTs than benign OGCTs, which is concordant with their lower miR‑199a‑5p expression. This study suggests that these miRNAs may have potential value as tumor markers and implications for further understanding the molecular basis of these tumor types.
Collapse
Affiliation(s)
- Roger K. Chang
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, SE-171 76 Stockholm
| | - Xidan Li
- Department of Medicine, Karolinska Institutet, SE-141 86 Huddinge
| | - Ninni Mu
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, SE-171 76 Stockholm
| | - Olga Hrydziuszko
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, SE-751 24 Uppsala, Sweden
| | - Beatriz Garcia-Majano
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, SE-171 76 Stockholm
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, SE-171 76 Stockholm
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, SE-171 76 Stockholm
| |
Collapse
|
21
|
Scheider J, Afonso-Grunz F, Jessl L, Hoffmeier K, Winter P, Oehlmann J. Morphological and transcriptomic effects of endocrine modulators on the gonadal differentiation of chicken embryos: The case of tributyltin (TBT). Toxicol Lett 2017; 284:143-151. [PMID: 29191790 DOI: 10.1016/j.toxlet.2017.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 11/29/2022]
Abstract
Morphological malformations induced by tributyltin (TBT) exposure during embryonic development have already been characterized in various taxonomic groups, but, nonetheless, the molecular processes underlying these changes remain obscure. The present study provides the first genome-wide screening for differentially expressed genes that are linked to morphological alterations of gonadal tissue from chicken embryos after exposure to TBT. We applied a single injection of TBT (between 0.5 and 30 pg as Sn/g egg) into incubated fertile eggs to simulate maternal transfer of the endocrine disruptive compound. Methyltestosterone (MT) served as a positive control (30 pg/g egg). After 19 days of incubation, structural features of the gonads as well as genome-wide gene expression profiles were assessed simultaneously. TBT induced significant morphological and histological malformations of gonadal tissue from female embryos that show a virilization of the ovaries. This phenotypical virilization was mirrored by altered expression profiles of sex-dependent genes. Among these are several transcription and growth factors (e.g. FGF12, CTCF, NFIB), whose altered expression might serve as a set of markers for early identification of endocrine active chemicals that affect embryonic development by transcriptome profiling without the need of elaborate histological analyses.
Collapse
Affiliation(s)
- Jessica Scheider
- Goethe University Frankfurt am Main, Institute for Ecology, Evolution and Diversity, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt/M., Germany.
| | - Fabian Afonso-Grunz
- GenXPro GmbH, Altenhöferallee 3, 60438, Frankfurt/M., Germany; Goethe University Frankfurt am Main, Institute for Molecular BioSciences, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
| | - Luzie Jessl
- Goethe University Frankfurt am Main, Institute for Ecology, Evolution and Diversity, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt/M., Germany; GenXPro GmbH, Altenhöferallee 3, 60438, Frankfurt/M., Germany
| | - Klaus Hoffmeier
- GenXPro GmbH, Altenhöferallee 3, 60438, Frankfurt/M., Germany
| | - Peter Winter
- GenXPro GmbH, Altenhöferallee 3, 60438, Frankfurt/M., Germany
| | - Jörg Oehlmann
- Goethe University Frankfurt am Main, Institute for Ecology, Evolution and Diversity, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt/M., Germany
| |
Collapse
|
22
|
Dynamic expression and regulatory mechanism of TGF-β signaling in chicken embryonic stem cells differentiating into spermatogonial stem cells. Biosci Rep 2017; 37:BSR20170179. [PMID: 28495881 PMCID: PMC6434085 DOI: 10.1042/bsr20170179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/13/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022] Open
Abstract
The present study investigated the dynamic expression and regulatory mechanism of transforming growth factor β (TGF-β) signaling involved in embryonic stem cells (ESCs) differentiation into male germ cells. Candidate genes involved in TGF-β signaling pathway were screened from RNA-sequencing (RNA-seq), which were further validated by quantitative real-time PCR (qRT-PCR). Bone morphogenetic protein 4 (BMP4) was used to induce differentiation of ESCs in vitro. Inhibition of TGF-β signaling pathway was reflected by Western blot of SMAD2 and SMAD5 expression. Differentiating efficiency of germ cells was evaluated by immunofluorescence and fluorescence-activated cell sorting (FACS). Germ cell marker genes were assessed by qRT-PCR in the differentiation process, with activation or inhibition of TGF-β signaling pathway. In the process of in vitro induction, SMAD2 and SMAD5 were found to significantly up-regulated in BMP4 group versus the control and inhibition groups after 4 and 14 days. Expression of CKIT, CVH, DAZL, STRA8, and INTEGRIN α6 were significantly increased in the BMP4 group compared with the control group, while down-regulated in the inhibition groups. The proportion of germ cell-like cells was decreased from 17.9% to 2.2% after 4 days induction, and further decreased from 14.1% to 2.1% after 14 days induction. Correspondingly, expression of marker genes in germ cells was significantly lower. In vivo inhibition of TGF-β signaling pathway reduced germ cells formation from 5.5% to 1.6%, and down-regulated the expression of CKIT, CVH, DAZL, STRA8, and INTEGRIN α6. In conclusion, our study reveals the mechanism regulating spermatogonial stem cells (SSCs) and lays the basis for further understanding of the regulatory network.
Collapse
|
23
|
Luo ZY, Dai XL, Ran XQ, Cen YX, Niu X, Li S, Huang SH, Wang JF. Identification and profile of microRNAs in Xiang pig testes in four different ages detected by Solexa sequencing. Theriogenology 2017; 117:61-71. [PMID: 28683952 DOI: 10.1016/j.theriogenology.2017.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 01/07/2023]
Abstract
To further understand the role of microRNA (miRNA) during testicular development, we constructed four small RNA libraries from the testes of the Chinese indigenous Xiang pig at four different ages, which were sequenced using high-throughput Solexa deep sequencing methods. It yielded over 23 million high-quality reads and 1,342,579 unique sequences. At two and three months of age, the proportion which represented miRNAs was the most abundant class of small RNAs, but it was gradually replaced by the category that represented piRNAs in adult testes. We identified 543 known and homologous conserved porcine miRNAs and 49 potential novel miRNAs. There were 306 known miRNAs which were co-expressed in four libraries. Six miRNAs and three potential novel miRNAs were validated in testes and sperms of Xiang pig by RT-qPCR method. Many clusters of mature miRNA variants were observed, in which let-7 family was the most abundant one. After comparison among libraries, 204 miRNAs were identified as being differentially expressed and likely involved in the development and spermatogenesis of pig testes. This work presented a general genome-wide expression profile of the testes-expressed small RNAs in different ages of pig testes. Our results suggested that miRNAs performed a role in the regulation of mRNAs in puberty pig testes while piRNAs likely functioned mainly in sexually mature pig testes.
Collapse
Affiliation(s)
- Zhi-Yu Luo
- College of Animal Science, Guizhou University, Guiyang, China
| | - Xin-Lan Dai
- Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Xue-Qin Ran
- College of Animal Science, Guizhou University, Guiyang, China.
| | - Yong-Xiu Cen
- College of Animal Science, Guizhou University, Guiyang, China
| | - Xi Niu
- Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Sheng Li
- Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Shi-Hui Huang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Jia-Fu Wang
- Institute of Agro-Bioengineering, Guizhou University, Guiyang, China; Tongren University, Tongren, China.
| |
Collapse
|
24
|
Chen R, Du J, Ma L, Wang LQ, Xie SS, Yang CM, Lan XY, Pan CY, Dong WZ. Comparative microRNAome analysis of the testis and ovary of the Chinese giant salamander. Reproduction 2017. [PMID: 28630098 DOI: 10.1530/rep-17-0109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are 18-24 nucleotides non-coding RNAs that regulate gene expression by post-transcriptional suppression of mRNA. The Chinese giant salamander (CGS, Andrias davidianus), which is an endangered species, has become one of the important models of animal evolution; however, no miRNA studies on this species have been conducted. In this study, two small RNA libraries of CGS ovary and testis were constructed using deep sequencing technology. A bioinformatics pipeline was developed to distinguish miRNA sequences from other classes of small RNAs represented in the sequencing data. We found that many miRNAs and other small RNAs such as piRNA and tsRNA were abundant in CGS tissue. A total of 757 and 756 unique miRNAs were annotated as miRNA candidates in the ovary and testis respectively. We identified 145 miRNAs in CGS ovary and 155 miRNAs in CGS testis that were homologous to those in Xenopus laevis ovary and testis respectively. Forty-five miRNAs were more highly expressed in ovary than in testis and 21 miRNAs were more highly expressed in testis than in ovary. The expression profiles of the selected miRNAs (miR-451, miR-10c, miR-101, miR-202, miR-7a and miR-499) had their own different roles in other eight tissues and different development stages of testis and ovary, suggesting that these miRNAs play vital regulatory roles in sexual differentiation, gametogenesis and development in CGS. To our knowledge, this is the first study to reveal miRNA profiles that are related to male and female CGS gonads and provide insights into sex differences in miRNA expression in CGS.
Collapse
Affiliation(s)
- Rui Chen
- College of Animal Science and TechnologyNorthwest A& F University, Yangling, China
| | - Jian Du
- College of Animal Science and TechnologyNorthwest A& F University, Yangling, China
| | - Lin Ma
- College of Animal Science and TechnologyNorthwest A& F University, Yangling, China
| | - Li-Qing Wang
- College of Animal Science and TechnologyNorthwest A& F University, Yangling, China
| | - Sheng-Song Xie
- Key Lab of Agricultural Animal GeneticsBreeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Chang-Ming Yang
- Animal Husbandry and Veterinary Station of Chenggu CountyHanzhong, China
| | - Xian-Yong Lan
- College of Animal Science and TechnologyNorthwest A& F University, Yangling, China
| | - Chuan-Ying Pan
- College of Animal Science and TechnologyNorthwest A& F University, Yangling, China
| | - Wu-Zi Dong
- College of Animal Science and TechnologyNorthwest A& F University, Yangling, China
| |
Collapse
|
25
|
JAK-STAT signaling regulation of chicken embryonic stem cell differentiation into male germ cells. In Vitro Cell Dev Biol Anim 2017; 53:728-743. [PMID: 28597334 DOI: 10.1007/s11626-017-0167-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022]
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling is crucial in chicken germ stem cell differentiation, but its role in the regulation of germ cell differentiation is unknown. To address this, cucurbitacin I or interleukin 6 was used to inhibit or activate JAK-STAT signaling during embryonic stem cells (ESCs) differentiation. The expression of downstream JAK-STAT signaling molecules was assessed by Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR). PAS, and immunohistochemical staining of frozen sections was used to determine the appearance of primordial germ cells (PGCs) and, later, spermatogonial stem cells (SSCs) during gonadal development. Inhibition of the JAK-STAT signaling resulted in decreased expression of JAK2 and STAT3 as well as of PGCs markers; moreover, the proportion of CVH and C-KIT positive cells as well as the yield of PGCs were remarkably decreased, and the gonad was smaller than that of control samples. Conversely, activation of JAK-STAT resulted in increased expression of JAK2 and STAT3 as well as that of PGC marker CVH. In addition, the proportion of CVH and C-KIT-positive cells as well as the PGC yield was increased, and the gonad was significantly larger than that from control samples. Collectively, our results suggested that JAK-STAT effectively promoted the formation of PGCs in the genital ridge during early embryogenesis in vivo and played a positive role in the regulation of ESC to SSC differentiation in vitro, with JAK2 and STAT3 functioning as pivotal factors for intracellular signal transduction.
Collapse
|
26
|
Miao N, Wang X, Feng Y, Gong Y. Male-biased miR-92 from early chicken embryonic gonads directly targets ATRX and DDX3X. Gene 2017; 626:326-336. [PMID: 28554548 DOI: 10.1016/j.gene.2017.05.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/11/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
Abstract
MiR-17-92 cluster consists of multifunctional miRNAs related to gonadal development in mammals. Our preliminary data showed that gga-miR-92 was male-biased in chicken embryonic gonads at E5.5 and E6.5. MiR-92(a-2) and two putative targets (ATRX and DDX3X) were highly conserved and located on mammalian Chromosome X but on autosomes in chicken. Here, we studied the expression and interaction of miR-92 and the targets (ATRX and DDX3X) in chicken embryonic gonads. What's more, male-biased miR-92 shows an opposite expression tendency with ATRX and DDX3X in eight embryonic stages and different tissues at E10.5 by qRT-PCR. To verify the regulation relationship between miR-92 and two targets, we performed dual-luciferase reporter assay in DF1, overexpression and inhibition of miR-92 in chicken embryonic fibroblasts (CEFs). The results show that miR-92 directly targets ATRX and DDX3X by binding the 3' un-translated region (3'-UTR), and the over-expression and inhibition of miR-92 negatively regulates ATRX and DDX3X. After the identification of the expression of their downstream genes (AMH and WNT4) in mRNA level, we found that there is no regulatory relationship between ATRX and DDX3X. The overall results indicate that miR-92 may perform roles in early chicken gonadogenesis by regulating the expressions of ATRX and DDX3X, respectively.
Collapse
Affiliation(s)
- Nan Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Institute of Genomics, College of Biomedical, Huaqiao University, 668 Jimei Road, Xiamen 361021, People's Republic of China
| | - Xin Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yanping Feng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
27
|
Dynamics of miRNA transcriptome during gonadal development of zebrafish. Sci Rep 2017; 7:43850. [PMID: 28262836 PMCID: PMC5338332 DOI: 10.1038/srep43850] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/31/2017] [Indexed: 12/28/2022] Open
Abstract
Studies in non-teleost vertebrates have found microRNAs (miRNAs) to be essential for proper gonadal development. However, comparatively little is known about their role during gonadal development in teleost fishes. So far in zebrafish, a model teleost, transcript profiling throughout gonadal development has not been established because of a tiny size of an organ in juvenile stages and its poor distinguishability from surrounding tissues. We performed small RNA sequencing on isolated gonads of See-Thru-Gonad line, from the undifferentiated state at 3 weeks post fertilization (wpf) to fully mature adults at 24 wpf. We identified 520 gonadal mature miRNAs; 111 of them had significant changes in abundance over time, while 50 miRNAs were either testis- or ovary-enriched significantly in at least one developmental stage. We characterized patterns of miRNA abundance over time including isomiR variants. We identified putative germline versus gonadal somatic miRNAs through differential small RNA sequencing of isolated gametes versus the whole gonads. This report is the most comprehensive analysis of the miRNA repertoire in zebrafish gonads during the sexual development to date and provides an important database from which functional studies can be performed.
Collapse
|
28
|
Genome-wide identification of novel ovarian-predominant miRNAs: new insights from the medaka (Oryzias latipes). Sci Rep 2017; 7:40241. [PMID: 28071684 PMCID: PMC5223123 DOI: 10.1038/srep40241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/05/2016] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs) are small, highly conserved non-coding RNAs that play important roles in the regulation of many physiological processes. However, the role of miRNAs in vertebrate oocyte formation (i.e., oogenesis) remains poorly investigated. To gain new insights into the roles of miRNAs in oogenesis, we searched for ovarian-predominant miRNAs. Using a microarray displaying 3,800 distinct miRNAs originating from different vertebrate species, we identified 66 miRNAs that are expressed predominantly in the ovary. Of the miRNAs exhibiting the highest overabundance in the ovary, 20 were selected for further analysis. Using a combination of QPCR and in silico analyses, we identified 8 novel miRNAs that are predominantly expressed in the ovary, including 2 miRNAs (miR-4785 and miR-6352) that exhibit strict ovarian expression. Of these 8 miRNAs, 7 were previously uncharacterized in fish. The strict ovarian expression of miR-4785 and miR-6352 suggests an important role in oogenesis and/or early development, possibly involving a maternal effect. Together, these results indicate that, similar to protein-coding genes, a significant number of ovarian-predominant miRNA genes are found in fish.
Collapse
|
29
|
Lim W, Song G. Characteristics, tissue-specific expression, and hormonal regulation of expression of tyrosine aminotransferase in the avian female reproductive tract. Domest Anim Endocrinol 2016; 57:10-20. [PMID: 27295280 DOI: 10.1016/j.domaniend.2016.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 11/25/2022]
Abstract
Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine to p-hydroxyphenylpyruvate. Accumulation of tyrosine in the body due to a genetic mutation in the TAT gene causes tyrosomia type II in humans. The TAT gene is regarded as a model for studying steroid-inducible factors regulating a variety of biological functions of TAT. However, little is known of the effects of estrogen on the expression of the TAT gene in chickens. Therefore, in the present study, we identified expression of the avian TAT gene in various organs. The results showed the TAT was detected predominantly in the liver and reproductive organs including testis, oviduct, and ovary. Specifically, TAT mRNA was expressed abundantly in the glandular and luminal epithelia of the oviducts in response to endogenous and exogenous estrogens which also induce dramatic morphological changes in the oviduct of chickens. In addition, target microRNAs of TAT (miR-1460, miR-1626-3p, miR-1690-5p, and miR-7442-3p) were found to modulate expression of the TAT gene. Especially, miR-1690-5p influenced TAT gene transcription by binding directly to its 3'-UTR region. Moreover, the expression of TAT was abundant in glandular epithelia of cancerous but not normal ovaries from laying hens. Taken together, our findings suggest that TAT plays an important role in the cytodifferentiation of oviducts in response to estrogen and in the progression of ovarian cancer in chickens.
Collapse
Affiliation(s)
- W Lim
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - G Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
30
|
Geffroy B, Guilbaud F, Amilhat E, Beaulaton L, Vignon M, Huchet E, Rives J, Bobe J, Fostier A, Guiguen Y, Bardonnet A. Sexually dimorphic gene expressions in eels: useful markers for early sex assessment in a conservation context. Sci Rep 2016; 6:34041. [PMID: 27658729 PMCID: PMC5034313 DOI: 10.1038/srep34041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022] Open
Abstract
Environmental sex determination (ESD) has been detected in a range of vertebrate reptile and fish species. Eels are characterized by an ESD that occurs relatively late, since sex cannot be histologically determined before individuals reach 28 cm. Because several eel species are at risk of extinction, assessing sex at the earliest stage is a crucial management issue. Based on preliminary results of RNA sequencing, we targeted genes susceptible to be differentially expressed between ovaries and testis at different stages of development. Using qPCR, we detected testis-specific expressions of dmrt1, amh, gsdf and pre-miR202 and ovary-specific expressions were obtained for zar1, zp3 and foxn5. We showed that gene expressions in the gonad of intersexual eels were quite similar to those of males, supporting the idea that intersexual eels represent a transitional stage towards testicular differentiation. To assess whether these genes would be effective early molecular markers, we sampled juvenile eels in two locations with highly skewed sex ratios. The combined expression of six of these genes allowed the discrimination of groups according to their potential future sex and thus this appears to be a useful tool to estimate sex ratios of undifferentiated juvenile eels.
Collapse
Affiliation(s)
- Benjamin Geffroy
- INRA, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, 35000 Rennes, France
- INRA, UMR 1224 Ecobiop, Aquapôle, Pôle Gest’Aqua, Quartier Ibarron, 64310, Saint Pée sur Nivelle, France
- UPPA, UMR 1224 Ecobiop, UFR des Sciences de la Côte Basque, allée du parc Montaury, 64600, Anglet, France
| | - Florian Guilbaud
- INRA, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, 35000 Rennes, France
| | - Elsa Amilhat
- UMR 5110 CNRS - UPVD (CEFREM), Université de Perpignan, Bâtiment R, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Laurent Beaulaton
- Onema, pôle Gest’Aqua, 65 rue de Saint Brieuc, 35042 Rennes Cedex, France
- INRA, 1224 (U3E), Pôle Gest’Aqua, 65 rue de Saint Brieuc, 35042 Rennes Cedex, France
| | - Matthias Vignon
- INRA, UMR 1224 Ecobiop, Aquapôle, Pôle Gest’Aqua, Quartier Ibarron, 64310, Saint Pée sur Nivelle, France
- UPPA, UMR 1224 Ecobiop, UFR des Sciences de la Côte Basque, allée du parc Montaury, 64600, Anglet, France
| | - Emmanuel Huchet
- INRA, UMR 1224 Ecobiop, Aquapôle, Pôle Gest’Aqua, Quartier Ibarron, 64310, Saint Pée sur Nivelle, France
- UPPA, UMR 1224 Ecobiop, UFR des Sciences de la Côte Basque, allée du parc Montaury, 64600, Anglet, France
| | - Jacques Rives
- INRA, UMR 1224 Ecobiop, Aquapôle, Pôle Gest’Aqua, Quartier Ibarron, 64310, Saint Pée sur Nivelle, France
- UPPA, UMR 1224 Ecobiop, UFR des Sciences de la Côte Basque, allée du parc Montaury, 64600, Anglet, France
| | - Julien Bobe
- INRA, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, 35000 Rennes, France
| | - Alexis Fostier
- INRA, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, 35000 Rennes, France
| | - Yann Guiguen
- INRA, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, 35000 Rennes, France
| | - Agnès Bardonnet
- INRA, UMR 1224 Ecobiop, Aquapôle, Pôle Gest’Aqua, Quartier Ibarron, 64310, Saint Pée sur Nivelle, France
- UPPA, UMR 1224 Ecobiop, UFR des Sciences de la Côte Basque, allée du parc Montaury, 64600, Anglet, France
| |
Collapse
|
31
|
Miao N, Wang X, Hou Y, Feng Y, Gong Y. Identification of male-biased microRNA-107 as a direct regulator for nuclear receptor subfamily 5 group A member 1 based on sexually dimorphic microRNA expression profiling from chicken embryonic gonads. Mol Cell Endocrinol 2016; 429:29-40. [PMID: 27036932 DOI: 10.1016/j.mce.2016.03.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/08/2016] [Accepted: 03/27/2016] [Indexed: 12/15/2022]
Abstract
Several studies indicate that sexual dimorphic microRNAs (miRNAs) in chicken gonads are likely to have important roles in sexual development, but a more global understanding of the roles of miRNAs in sexual differentiation is still needed. To this end, we performed miRNA expression profiling in chicken gonads at embryonic day 5.5 (E5.5). Among the sex-biased miRNAs validated by qRT-PCR, twelve male-biased and six female-biased miRNAs were consistent with the sequencing results. Bioinformatics analysis revealed that some sex-biased miRNAs were potentially involved in gonadal development. Further functional analysis found that over-expression of miR-107 directly inhibited nuclear receptor subfamily 5 group A member 1 (NR5a1), and its downstream cytochrome P450 family 19 subfamily A, polypeptide 1 (CYP19A1). However, anti-Mullerian hormone (AMH) was not directly or indirectly regulated by miR-107. Overall results indicate that miR-107 may specifically mediate avian ovary-development by post-transcriptional regulation of NR5a1 and CYP19A1 in estrogen signaling pathways.
Collapse
Affiliation(s)
- Nan Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xin Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yue Hou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yanping Feng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
32
|
Juanchich A, Bardou P, Rué O, Gabillard JC, Gaspin C, Bobe J, Guiguen Y. Characterization of an extensive rainbow trout miRNA transcriptome by next generation sequencing. BMC Genomics 2016; 17:164. [PMID: 26931235 PMCID: PMC4774146 DOI: 10.1186/s12864-016-2505-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/19/2016] [Indexed: 01/08/2023] Open
Abstract
Background MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of gene expression in a wide variety of physiological processes. They can control both temporal and spatial gene expression and are believed to regulate 30 to 70 % of the genes. Data are however limited for fish species, with only 9 out of the 30,000 fish species present in miRBase. The aim of the current study was to discover and characterize rainbow trout (Oncorhynchus mykiss) miRNAs in a large number of tissues using next-generation sequencing in order to provide an extensive repertoire of rainbow trout miRNAs. Results A total of 38 different samples corresponding to 16 different tissues or organs were individually sequenced and analyzed independently in order to identify a large number of miRNAs with high confidence. This led to the identification of 2946 miRNA loci in the rainbow trout genome, including 445 already known miRNAs. Differential expression analysis was performed in order to identify miRNAs exhibiting specific or preferential expression among the 16 analyzed tissues. In most cases, miRNAs exhibit a specific pattern of expression in only a few tissues. The expression data from sRNA sequencing were confirmed by RT-qPCR. In addition, novel miRNAs are described in rainbow trout that had not been previously reported in other species. Conclusion This study represents the first characterization of rainbow trout miRNA transcriptome from a wide variety of tissue and sets an extensive repertoire of rainbow trout miRNAs. It provides a starting point for future studies aimed at understanding the roles of miRNAs in major physiological process such as growth, reproduction or adaptation to stress. These rainbow trout miRNAs repertoire provide a novel resource to advance genomic research in salmonid species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2505-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Philippe Bardou
- INRA, UMR1388, Plate-forme SIGENAE/GenPhySE, Chemin de Borde Rouge, Auzeville CS 52627, F-31326, Castanet-Tolosan, France.
| | - Olivier Rué
- INRA, UR875 Plate-forme GenoToul Bioinfo, Chemin de Borde Rouge, Auzeville CS 52627, F-31326, Castanet-Tolosan, France.
| | | | - Christine Gaspin
- INRA, UR875 Plate-forme GenoToul Bioinfo, Chemin de Borde Rouge, Auzeville CS 52627, F-31326, Castanet-Tolosan, France.
| | - Julien Bobe
- INRA, UR1037 LPGP, Campus de Beaulieu, F-35000, Rennes, France.
| | - Yann Guiguen
- INRA, UR1037 LPGP, Campus de Beaulieu, F-35000, Rennes, France.
| |
Collapse
|
33
|
Donadeu FX, Sontakke SD, Ioannidis J. MicroRNA indicators of follicular steroidogenesis. Reprod Fertil Dev 2016; 29:RD15282. [PMID: 26863388 DOI: 10.1071/rd15282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/18/2015] [Indexed: 02/28/2024] Open
Abstract
MicroRNAs (miRNAs) can provide useful biomarkers of tissue function. The aim of the present study was to determine, in bovine follicles (n = 66; diameter 4-22 mm), the relationship among several indices of steroidogenesis and levels of 15 miRNAs previously identified to be associated with follicle development. Oestradiol levels, the oestradiol : progesterone (E : P) ratio and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) expression were strongly correlated with each other (ρ > 0.8) and with LH/choriogonadotropin receptor (LHCGR) expression (ρ ≥ 0.6; P < 0.01). Levels of nine different miRNAs in the follicular wall were correlated (P < 0.01) with oestradiol, the E : P ratio and CYP19A1, with miR-873 showing the strongest correlation in each case (ρ > 0.7). Analyses of follicular fluid miRNAs identified miR-202 as correlated with oestradiol, the E : P ratio and CYP19A1 (ρ > 0.5; P < 0.01). When considering all follicle end-points together, we found that using a cut-off value of E : P = 1 overestimated the number of oestrogen-inactive follicles, whereas using CYP19A1 as a classifier provided a clearer separation of follicle samples based on oestrogen activity, in agreement with the E : P ratio, LHCGR expression and levels of miR-873 and miR-202. In conclusion, we identified miR-873 and miR-202 as miRNAs whose levels in follicular tissues can be used as indicators of steroidogenic capacity in bovine. We showed that these or other gene expression parameters, in addition or alternatively to the E : P ratio, should be used to accurately classify follicles based on steroidogenic capacity.
Collapse
|
34
|
Jia KT, Zhang J, Jia P, Zeng L, Jin Y, Yuan Y, Chen J, Hong Y, Yi M. Identification of MicroRNAs in Zebrafish Spermatozoa. Zebrafish 2015; 12:387-97. [PMID: 26418264 DOI: 10.1089/zeb.2015.1115] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) participate in almost all biological processes. Plenty of evidences show that some testis- or spermatozoa-specific miRNAs play crucial roles in the process of gonad and germ cell development. In this study, the spermatozoa miRNA profiles were investigated through a combination of illumina deep sequencing and bioinformatics analysis in zebrafish. Deep sequencing of small RNAs yielded 11,820,680 clean reads. By mapping to the zebrafish genome, we identified 400 novel and 204 known miRNAs that could be grouped into 104 families. Furthermore, we selected the six highest expressions of known miRNAs to detect their expression patterns in different tissues by stem-loop quantitative real-time polymerase chain reaction. We found that among the six miRNAs, dre-miR-202-5p displayed specific and high expression in zebrafish spermatozoa and testis. Fluorescence in situ hybridization analysis indicated that dre-miR-202-5p was predominantly expressed in all kind of germ cells at different spermatogenetic stages, including spermatogonia and spermatozoa, but barely expressed in the germ cells in the ovary. This sex-biased expression pattern suggests that dre-miR-202-5p might be related to spermatogenesis and the functioning of spermatozoa. The identification of miRNAs in zebrafish spermatozoa and germ cells offers new insights into the spermatogenesis and spermatozoa in the teleost and other vertebrates.
Collapse
Affiliation(s)
- Kun-Tong Jia
- 1 School of Marine Sciences, Sun Yat-sen University , Guangzhou, China .,2 Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University , Guangzhou, China .,3 South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou, China
| | - Jing Zhang
- 1 School of Marine Sciences, Sun Yat-sen University , Guangzhou, China .,2 Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University , Guangzhou, China .,3 South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou, China
| | - Peng Jia
- 1 School of Marine Sciences, Sun Yat-sen University , Guangzhou, China .,2 Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University , Guangzhou, China .,3 South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou, China
| | - Lin Zeng
- 1 School of Marine Sciences, Sun Yat-sen University , Guangzhou, China .,2 Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University , Guangzhou, China .,3 South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou, China
| | - Yilin Jin
- 1 School of Marine Sciences, Sun Yat-sen University , Guangzhou, China .,2 Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University , Guangzhou, China .,3 South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou, China
| | - Yongming Yuan
- 4 Department of Biological Sciences, National University of Singapore , Singapore, Singapore
| | - Jieying Chen
- 1 School of Marine Sciences, Sun Yat-sen University , Guangzhou, China .,2 Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University , Guangzhou, China
| | - Yunhan Hong
- 4 Department of Biological Sciences, National University of Singapore , Singapore, Singapore
| | - Meisheng Yi
- 1 School of Marine Sciences, Sun Yat-sen University , Guangzhou, China .,2 Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University , Guangzhou, China .,3 South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou, China
| |
Collapse
|
35
|
Wongwarangkana C, Fujimori KE, Akiba M, Kinoshita S, Teruya M, Nezuo M, Masatoshi T, Watabe S, Asakawa S. Deep sequencing, profiling and detailed annotation of microRNAs in Takifugu rubripes. BMC Genomics 2015; 16:457. [PMID: 26078057 PMCID: PMC4469249 DOI: 10.1186/s12864-015-1622-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 05/06/2015] [Indexed: 01/20/2023] Open
Abstract
Background microRNAs (miRNAs) in fish have not been as extensively studied as those in mammals. The fish species Takifugu rubripes is an intensively studied model organism whose genome has been sequenced. The T. rubripes genome is approximately eight times smaller than the human genome, but has a similar repertoire of protein-coding genes. Therefore, it is useful for identifying non-coding genes, including miRNA genes. To identify miRNA expression patterns in different organs of T. rubripes and give fundamental information to aid understanding of miRNA populations in this species, we extracted small RNAs from tissues and performed deep sequencing analysis to profile T. rubripes miRNAs. These data will be of assistance in functional studies of miRNAs in T. rubripes. Results After analyzing a total of 139 million reads, we found miRNA species in nine tissues (fast and slow muscles, heart, eye, brain, intestine, liver, ovaries, and testes). We identified 1420 known miRNAs, many of which were strongly expressed in certain tissues with expression patterns similar to those described for other animals in previous reports. Most miRNAs were expressed in tissues other than the ovaries or testes. However, some miRNA families were highly abundant in the gonads, but expressed only at low levels in somatic tissue, suggesting specific function in germ cells. The most abundant isomiRs (miRNA variants) of many miRNAs had identical sequences in the 5′ region. However, isomiRs of some miRNAs, including fru-miR-462-5p, varied in the 5′ region in some tissues, suggesting that they may target different mRNA transcripts. Longer small RNAs (26–31 nt), which were abundant in the gonads, may be putative piRNAs because of their length and their origin from repetitive elements. Additionally, our data include possible novel classes of small RNAs. Conclusions We elucidated miRNA expression patterns in various organs of T. rubripes. Most miRNA sequences are conserved in vertebrates, indicating that the basic functions of vertebrate miRNAs share a common evolution. Some miRNA species exhibit different distributions of isomiRs between tissues, suggesting that they have a broad range of functions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1622-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chaninya Wongwarangkana
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, 113-8657, Tokyo, Japan.
| | - Kazuhiro E Fujimori
- Bio-production Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, 305-8566, Japan.
| | - Masaki Akiba
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, 113-8657, Tokyo, Japan.
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, 113-8657, Tokyo, Japan.
| | - Morimi Teruya
- Okinawa Cutting-edge Genome Project, Okinawa, Japan. .,Okinawa Industrial Technology Center, Okinawa, 904-2234, Japan.
| | - Maiko Nezuo
- Okinawa Cutting-edge Genome Project, Okinawa, Japan. .,Biojet Co., Ltd, 315 Shioya, Uruma, 904-2231, Okinawa, Japan.
| | - Tsukahara Masatoshi
- Okinawa Cutting-edge Genome Project, Okinawa, Japan. .,Biojet Co., Ltd, 315 Shioya, Uruma, 904-2231, Okinawa, Japan.
| | - Shugo Watabe
- School of Marine Bioscience, Kitasato University, Minami, Sagamihara, 252-0373, Kanagawa, Japan.
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, 113-8657, Tokyo, Japan.
| |
Collapse
|
36
|
MicroRNA-22-3p is down-regulated in the plasma of Han Chinese patients with premature ovarian failure. Fertil Steril 2015; 103:802-7.e1. [DOI: 10.1016/j.fertnstert.2014.12.106] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/10/2014] [Accepted: 12/10/2014] [Indexed: 12/17/2022]
|
37
|
Wang N, Sun LY, Zhang SC, Wei R, Xie F, Liu J, Yan Y, Duan MJ, Sun LL, Sun YH, Niu HF, Zhang R, Ai J. MicroRNA-23a participates in estrogen deficiency induced gap junction remodeling of rats by targeting GJA1. Int J Biol Sci 2015; 11:390-403. [PMID: 25798059 PMCID: PMC4366638 DOI: 10.7150/ijbs.10930] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/21/2015] [Indexed: 01/07/2023] Open
Abstract
Increased incidence of arrhythmias in women after menopause has been widely documented, which is considered to be related to estrogen (E2) deficiency induced cardiac electrophysiological abnormalities. However, its molecular mechanism remains incompletely clear. In the present study, we found cardiac conduction blockage in post-menopausal rats. Thereafter, the results showed that cardiac gap junctions were impaired and Connexin43 (Cx43) expression was reduced in the myocardium of post-menopausal rats. The phenomenon was also observed in ovariectomized (OVX) rats, which was attenuated by E2 supplement. Further study displayed that microRNA-23a (miR-23a) level was significantly increased in both post-menopausal and OVX rats, which was reversed by daily E2 treatment after OVX. Importantly, forced overexpression of miR-23a led to gap junction impairment and Cx43 downregulation in cultured cardiomyocytes, which was rescued by suppressing miR-23a by transfection of miR-23a specific inhibitory oligonucleotide (AMO-23a). GJA1 was identified as the target gene of miR-23a by luciferase assay and miRNA-masking antisense ODN (miR-Mask) assay. We also found that E2 supplement could reverse cardiac conduction blockage, Cx43 downregulation, gap junction remodeling and miR-23a upregulation in post-menopausal rats. These findings provide the evidence that miR-23a mediated repression of Cx43 participates in estrogen deficiency induced damages of cardiac gap junction, and highlights a new insight into molecular mechanism of post-menopause related arrhythmia at the microRNA level.
Collapse
Affiliation(s)
- Ning Wang
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Lu-Yao Sun
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Shou-Chen Zhang
- 3. Electron Microscopy Center, Harbin Medical University, Harbin, People's Republic of China, 150081
| | - Ran Wei
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Fang Xie
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081 ; 2. Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, People's Republic of China, 150081
| | - Jing Liu
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Yan Yan
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Ming-Jing Duan
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Lin-Lin Sun
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Ying-Hui Sun
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Hui-Fang Niu
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Rong Zhang
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Jing Ai
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| |
Collapse
|
38
|
Lau K, Lai KP, Bao JYJ, Zhang N, Tse A, Tong A, Li JW, Lok S, Kong RYC, Lui WY, Wong A, Wu RSS. Identification and expression profiling of microRNAs in the brain, liver and gonads of marine medaka (Oryzias melastigma) and in response to hypoxia. PLoS One 2014; 9:e110698. [PMID: 25350659 PMCID: PMC4211694 DOI: 10.1371/journal.pone.0110698] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/25/2014] [Indexed: 12/22/2022] Open
Abstract
The marine medaka (Oryzias melastigma) has been increasingly used as a fish model for detecting environmental stresses and chemical contaminants in the marine environment. Recent mammalian studies have shown that environmental stresses can alter the expression profiles of microRNAs (miRNAs), leading to transgenerational effects. Here, we use high-throughput Illumina RNA sequencing (RNA-Seq) for miRNA transcriptome analysis of brain, liver, and gonads from sexually mature male and female marine medaka. A total of 128,883,806 filtered sequence reads were generated from six small RNA libraries, identifying a total of 2,125,663 non-redundant sequences. These sequences were aligned and annotated to known animal miRNAs (miRBase) using the BLAST method. A total of 223 distinct miRNA types were identified, with the greatest number expressed in brain tissue. Our data suggested that 55 miRNA types from 34 families are common to all tested tissues, while some of the miRNAs are tissue-enriched or sex-enriched. Quantitative real-time PCR analysis further demonstrated that let-7a, miR-122, and miR-9-3p were downregulated in hypoxic female medaka, while miR-2184 was specifically upregulated in the testis of hypoxic male fish. This is the first study to identify miRNAs in O. melastigma using small RNA deep sequencing technology. Because miRNA expression is highly conserved between marine medaka and other vertebrates, marine medaka may serve as a good model for studies on the functional roles of miRNAs in hypoxia stress response and signaling in marine fish.
Collapse
Affiliation(s)
- Karen Lau
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Hong Kong SAR, China
- The State Key Laboratory in Marine Pollution, Hong Kong, Hong Kong SAR, China
- * E-mail: (RSSW); (KL)
| | - Keng Po Lai
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Hong Kong SAR, China
- The State Key Laboratory in Marine Pollution, Hong Kong, Hong Kong SAR, China
| | - Jessie Yun Juan Bao
- Genome Research Centre, The Hong Kong Jockey Club Building for Interdisciplinary Research, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Na Zhang
- Genome Research Centre, The Hong Kong Jockey Club Building for Interdisciplinary Research, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Anna Tse
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Hong Kong SAR, China
- The State Key Laboratory in Marine Pollution, Hong Kong, Hong Kong SAR, China
| | - Amy Tong
- Genome Research Centre, The Hong Kong Jockey Club Building for Interdisciplinary Research, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jing Woei Li
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Si Lok
- Genome Research Centre, The Hong Kong Jockey Club Building for Interdisciplinary Research, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | - Wing Yee Lui
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Hong Kong SAR, China
| | - Alice Wong
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Hong Kong SAR, China
| | - Rudolf Shiu Sun Wu
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Hong Kong SAR, China
- The State Key Laboratory in Marine Pollution, Hong Kong, Hong Kong SAR, China
- * E-mail: (RSSW); (KL)
| |
Collapse
|
39
|
Ryazansky SS, Mikhaleva EA, Olenkina OV. Essential functions of microRNAs in animal reproductive organs. Mol Biol 2014. [DOI: 10.1134/s0026893314030182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Yerushalmi GM, Salmon-Divon M, Yung Y, Maman E, Kedem A, Ophir L, Elemento O, Coticchio G, Dal Canto M, Mignini Renzinu M, Fadini R, Hourvitz A. Characterization of the human cumulus cell transcriptome during final follicular maturation and ovulation. Mol Hum Reprod 2014; 20:719-35. [PMID: 24770949 DOI: 10.1093/molehr/gau031] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cumulus expansion and oocyte maturation are central processes in ovulation. Knowledge gained from rodent and other mammalian models has revealed some of the molecular pathways associated with these processes. However, the equivalent pathways in humans have not been thoroughly studied and remain unidentified. Compact cumulus cells (CCs) from germinal vesicle cumulus oocyte complexes (COCs) were obtained from patients undergoing in vitro maturation (IVM) procedures. Expanded CCs from metaphase 2 COC were obtained from patients undergoing IVF/ICSI. Global transcriptome profiles of the samples were obtained using state-of-the-art RNA sequencing techniques. We identified 1746 differentially expressed (DE) genes between compact and expanded CCs. Most of these genes were involved in cellular growth and proliferation, cellular movement, cell cycle, cell-to-cell signaling and interaction, extracellular matrix and steroidogenesis. Out of the DE genes, we found 89 long noncoding RNAs, of which 12 are encoded within introns of genes known to be involved in granulosa cell processes. This suggests that unique noncoding RNA transcripts may contribute to the regulation of cumulus expansion and oocyte maturation. Using global transcriptome sequencing, we were able to generate a library of genes regulated during cumulus expansion and oocyte maturation processes. Analysis of these genes allowed us to identify important new genes and noncoding RNAs potentially involved in COC maturation and cumulus expansion. These results may increase our understanding of the process of oocyte maturation and could ultimately improve the efficacy of IVM treatment.
Collapse
Affiliation(s)
- G M Yerushalmi
- IVF Unit and Reproduction Lab, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Salmon-Divon
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Y Yung
- IVF Unit and Reproduction Lab, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - E Maman
- IVF Unit and Reproduction Lab, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Kedem
- IVF Unit and Reproduction Lab, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - L Ophir
- IVF Unit and Reproduction Lab, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - O Elemento
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA
| | - G Coticchio
- Biogenesi, Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20052 Monza, Italy
| | - M Dal Canto
- Biogenesi, Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20052 Monza, Italy
| | - M Mignini Renzinu
- Biogenesi, Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20052 Monza, Italy
| | - R Fadini
- Biogenesi, Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20052 Monza, Italy
| | - A Hourvitz
- IVF Unit and Reproduction Lab, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
41
|
Identification and differential expression of microRNAs in ovaries of laying and Broody geese (Anser cygnoides) by Solexa sequencing. PLoS One 2014; 9:e87920. [PMID: 24505332 PMCID: PMC3913702 DOI: 10.1371/journal.pone.0087920] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022] Open
Abstract
Background Recent functional studies have demonstrated that the microRNAs (miRNAs) play critical roles in ovarian gonadal development, steroidogenesis, apoptosis, and ovulation in mammals. However, little is known about the involvement of miRNAs in the ovarian function of fowl. The goose (Anas cygnoides) is a commercially important food that is cultivated widely in China but the goose industry has been hampered by high broodiness and poor egg laying performance, which are influenced by ovarian function. Methodology/Principal Findings In this study, the miRNA transcriptomes of ovaries from laying and broody geese were profiled using Solexa deep sequencing and bioinformatics was used to determine differential expression of the miRNAs. As a result, 11,350,396 and 9,890,887 clean reads were obtained in laying and broodiness goose, respectively, and 1,328 conserved known miRNAs and 22 novel potential miRNA candidates were identified. A total of 353 conserved microRNAs were significantly differentially expressed between laying and broody ovaries. Compared with miRNA expression in the laying ovary, 127 miRNAs were up-regulated and 126 miRNAs were down-regulated in the ovary of broody birds. A subset of the differentially expressed miRNAs (G-miR-320, G-miR-202, G-miR-146, and G-miR-143*) were validated using real-time quantitative PCR. In addition, 130,458 annotated mRNA transcripts were identified as putative target genes. Gene ontology annotation and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis suggested that the differentially expressed miRNAs are involved in ovarian function, including hormone secretion, reproduction processes and so on. Conclusions The present study provides the first global miRNA transcriptome data in A. cygnoides and identifies novel and known miRNAs that are differentially expressed between the ovaries of laying and broody geese. These findings contribute to our understanding of the functional involvement of miRNAs in the broody period of goose.
Collapse
|
42
|
Abstract
microRNAs (miRNAs) are a class of small noncoding RNA that bind to complementary sequences in the untranslated regions of multiple target mRNAs resulting in posttranscriptional regulation of gene expression. The recent discovery and expression-profiling studies of miRNAs in domestic livestock have revealed both their tissue-specific and temporal expression pattern. In addition, breed-dependent expression patterns as well as single nucleotide polymorphisms in either the miRNA or in the target mRNA binding site have revealed associations with traits of economic importance and highlight the potential use of miRNAs in future genomic selection programs.
Collapse
Affiliation(s)
- Attia Fatima
- Department of Bioinformatics, National University of Ireland Galway, Galway, Ireland; and
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland
| | - Dermot G. Morris
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland
| |
Collapse
|
43
|
Kang L, Cui X, Zhang Y, Yang C, Jiang Y. Identification of miRNAs associated with sexual maturity in chicken ovary by Illumina small RNA deep sequencing. BMC Genomics 2013; 14:352. [PMID: 23705682 PMCID: PMC3700833 DOI: 10.1186/1471-2164-14-352] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 05/20/2013] [Indexed: 12/18/2022] Open
Abstract
Background MicroRNAs have been suggested to play important roles in the regulation of gene expression in various biological processes. To investigate the function of miRNAs in chicken ovarian development and folliculogenesis, two small RNA libraries constructed from sexually mature (162-day old) and immature (42-day old) ovary tissues of Single Comb White Leghorn chicken were sequenced using Illumina small RNA deep sequencing. Results In the present study, 14,545,100 and 14,774,864 clean reads were obtained from sexually mature (162-d) and sexually immature (42-d) ovaries, respectively. In total, 202 known miRNAs were identified, and 93 of them were found to be significantly differentially expressed: 42 miRNAs were up-regulated and 51 miRNAs were down-regulated in the mature ovary compared to the immature ovary. Among the up-regulated miRNAs, gga-miR-1a has the largest fold-change (6.405-fold), while gga-miR-375 has the largest fold-change (11.345-fold) among the down-regulated miRNAs. The three most abundant miRNAs in the chicken ovary are gga-miR-10a, gga-let-7 and gga-miR-21. Five differentially expressed miRNAs (gga-miR-1a, 21, 26a, 137 and 375) were validated by real-time quantitative RT-PCR (qRT-PCR). Furthermore, the expression patterns of the five miRNAs were analyzed in different developmental stages of chicken ovary and follicles of various sizes. Conclusion The present study provides the first miRNA profile in sexually immature and mature chicken ovaries. Some miRNAs such as gga-miR-1a and gga-miR-21are expressed differentially in immature and mature chicken ovaries as well as among different sized follicles, suggesting an important role in the follicular growth or ovulation mechanism in the chicken.
Collapse
Affiliation(s)
- Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018 Shandong Province, PR China
| | | | | | | | | |
Collapse
|
44
|
He B, Mi Y, Zhang C. Gonadotropins regulate ovarian germ cell mitosis/meiosis decision in the embryonic chicken. Mol Cell Endocrinol 2013; 370:32-41. [PMID: 23422072 DOI: 10.1016/j.mce.2013.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/02/2013] [Accepted: 02/11/2013] [Indexed: 11/24/2022]
Abstract
Gonadotropins are required for gametogenesis but in embryonic gonads this mechanism is not well understood. Here we use chicken embryos to investigate the mechanism that gonadotropins regulate the ovarian germ cell mitosis/meiosis decision. Treatment with follicle-stimulating hormone (FSH) delayed germ cell meiosis entry and promoted their proliferation. This action was blocked by an aromatase inhibitor. Treatment with luteinizing hormone (LH) accelerated germ cell meiosis entry and promoted transcription of 3βHSDII to increase progesterone (P4) production. In the cultured ovaries, P4 triggered meiotic initiation in germ cells. MiR181a, which acts to downregulate the NR6A1 transcript to inhibit the meiotic initiation, was upregulated by FSH and downregulated by LH. Collectively, gonadotropins regulate germ cells mitosis and meiotic initiation through steroid hormones and a miR181a-mediated pathway. In particularly, FSH delays germ cell meiosis entry and promotes cell proliferation via estrogen while LH accelerates the meiotic initiation via elevated P4 production.
Collapse
Affiliation(s)
- Bin He
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education and Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | | | | |
Collapse
|
45
|
Juanchich A, Le Cam A, Montfort J, Guiguen Y, Bobe J. Identification of Differentially Expressed miRNAs and Their Potential Targets During Fish Ovarian Development1. Biol Reprod 2013; 88:128. [DOI: 10.1095/biolreprod.112.105361] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
46
|
Veiga-Lopez A, Luense LJ, Christenson LK, Padmanabhan V. Developmental programming: gestational bisphenol-A treatment alters trajectory of fetal ovarian gene expression. Endocrinology 2013; 154:1873-84. [PMID: 23525218 PMCID: PMC3628019 DOI: 10.1210/en.2012-2129] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/18/2013] [Indexed: 01/02/2023]
Abstract
Bisphenol-A (BPA), a ubiquitous environmental endocrine disrupting chemical, is a component of polycarbonate plastic and epoxy resins. Because of its estrogenic properties, there is increasing concern relative to risks from exposures during critical periods of early organ differentiation. Prenatal BPA treatment in sheep results in low birth weight, hypergonadotropism, and ovarian cycle disruptions. This study tested the hypothesis that gestational exposure to bisphenol A, at an environmentally relevant dose, induces early perturbations in the ovarian transcriptome (mRNA and microRNA). Pregnant Suffolk ewes were treated with bisphenol A (0.5 mg/kg, sc, daily, produced ∼2.6 ng/mL of unconjugated BPA in umbilical arterial samples of BPA treated fetuses approaching median levels of BPA measured in maternal circulation) from days 30 to 90 of gestation. Expression of steroidogenic enzymes, steroid/gonadotropin receptors, key ovarian regulators, and microRNA biogenesis components were measured by RT-PCR using RNA derived from fetal ovaries collected on gestational days 65 and 90. An age-dependent effect was evident in most steroidogenic enzymes, steroid receptors, and key ovarian regulators. Prenatal BPA increased Cyp19 and 5α-reductase expression in day 65, but not day 90, ovaries. Fetal ovarian microRNA expression was altered by prenatal BPA with 45 down-regulated (>1.5-fold) at day 65 and 11 down-regulated at day 90 of gestation. These included microRNAs targeting Sry-related high-mobility-group box (SOX) family genes, kit ligand, and insulin-related genes. The results of this study demonstrate that exposure to BPA at an environmentally relevant dose alters fetal ovarian steroidogenic gene and microRNA expression of relevance to gonadal differentiation, folliculogenesis, and insulin homeostasis.
Collapse
Affiliation(s)
- Almudena Veiga-Lopez
- Department of Pediatrics (A.V.-L., V.P.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Molecular and Integrative Physiology (L.J.L., L.K.C.), University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Lacey J. Luense
- Department of Pediatrics (A.V.-L., V.P.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Molecular and Integrative Physiology (L.J.L., L.K.C.), University of Kansas Medical Center, Kansas City, Kansas 66160
| | | | | |
Collapse
|
47
|
Piferrer F. Epigenetics of sex determination and gonadogenesis. Dev Dyn 2013; 242:360-70. [PMID: 23335256 DOI: 10.1002/dvdy.23924] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/27/2012] [Accepted: 12/27/2012] [Indexed: 01/22/2023] Open
Abstract
Epigenetics is commonly defined as the study of heritable changes in gene function that cannot be explained by changes in DNA sequence. The three major epigenetic mechanisms for gene expression regulation include DNA methylation, histone modifications, and non-coding RNAs. Epigenetic mechanisms provide organisms with the ability to integrate genomic and environmental information to modify the activity of their genes for generating a particular phenotype. During development, cells differentiate, acquire, and maintain identity through changes in gene expression. This is crucial for sex determination and differentiation, which are among the most important developmental processes for the proper functioning and perpetuation of species. This review summarizes studies showing how epigenetic regulatory mechanisms contribute to sex determination and reproductive organ formation in plants, invertebrates, and vertebrates. Further progress will be made by integrating several approaches, including genomics and Next Generation Sequencing to create epigenetic maps related to different aspects of sex determination and gonadogenesis. Epigenetics will also contribute to understand the etiology of several disorders of sexual development. It also might play a significant role in the control of reproduction in animal farm production and will aid in recognizing the environmental versus genetic influences on sex determination of sensitive species in a global change scenario.
Collapse
Affiliation(s)
- Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| |
Collapse
|
48
|
Ellis HL, Shioda K, Rosenthal NF, Coser KR, Shioda T. Masculine epigenetic sex marks of the CYP19A1/aromatase promoter in genetically male chicken embryonic gonads are resistant to estrogen-induced phenotypic sex conversion. Biol Reprod 2012; 87:23, 1-12. [PMID: 22539680 DOI: 10.1095/biolreprod.112.099747] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sex of birds is genetically determined through inheritance of the ZW sex chromosomes (ZZ males and ZW females). Although the mechanisms of avian sex determination remains unknown, the genetic sex is experimentally reversible by in ovo exposure to exogenous estrogens (ZZ-male feminization) or aromatase inhibitors (ZW-female masculinization). Expression of various testis- and ovary-specific marker genes during the normal and reversed gonadal sex differentiation in chicken embryos has been extensively studied, but the roles of sex-specific epigenetic marks in sex differentiation are unknown. In this study, we show that a 170-nt region in the promoter of CYP19A1/aromatase, a key gene required for ovarian estrogen biosynthesis and feminization of chicken embryonic gonads, contains highly quantitative, nucleotide base-level epigenetic marks that reflect phenotypic gonadal sex differentiation. We developed a protocol to feminize ZZ-male chicken embryonic gonads in a highly quantitative manner by direct injection of emulsified ethynylestradiol into yolk at various developmental stages. Taking advantage of this experimental sex reversal model, we show that the epigenetic sex marks in the CYP19A1/aromatase promoter involving DNA methylation and histone lysine methylation are feminized significantly but only partially in sex-converted gonads even when morphological and transcriptional marks of sex differentiation show complete feminization, being indistinguishable from gonads of normal ZW females. Our study suggests that the epigenetic sex of chicken embryonic gonads is more stable than the morphologically or transcriptionally characterized sex differentiation, suggesting the importance of the nucleotide base-level epigenetic sex in gonadal sex differentiation.
Collapse
Affiliation(s)
- Haley L Ellis
- Molecular Profiling Laboratory, Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts, USA
| | | | | | | | | |
Collapse
|
49
|
Bizuayehu T, Babiak J, Norberg B, Fernandes J, Johansen S, Babiak I. Sex-Biased miRNA Expression in Atlantic Halibut (Hippoglossus hippoglossus) Brain and Gonads. Sex Dev 2012; 6:257-66. [DOI: 10.1159/000341378] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2012] [Indexed: 11/19/2022] Open
|
50
|
The potential role of microRNAs in regulating gonadal sex differentiation in the chicken embryo. Chromosome Res 2012; 20:201-13. [PMID: 22161018 DOI: 10.1007/s10577-011-9263-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Differential gene expression regulates tissue morphogenesis. The embryonic gonad is a good example, where the developmental decision to become an ovary or testis is governed by female- or male-specific gene expression. A number of genes have now been identified that control gonadal sex differentiation. However, the potential role of microRNAs (miRNAs) in ovarian and testicular pathways is unknown. In this review, we summarise our current understanding of gonadal differentiation and the possible involvement of miRNAs, using the chicken embryo as a model system. Chickens and other birds have a ZZ/ZW sex chromosome system, in which the female, ZW, is the heterogametic sex, and the male, ZZ, is homogametic (opposite to mammals). The Z-linked DMRT1 gene is thought to direct testis differentiation during embryonic life via a dosage-based mechanism. The conserved SOX9 gene is also likely to play a key role in testis formation. No master ovary determinant has yet been defined, but the autosomal FOXL2 and Aromatase genes are considered central. No miRNAs have been definitively shown to play a role in embryonic gonadal development in chickens or any other vertebrate species. Using next generation sequencing, we carried out an expression-based screen for miRNAs expressed in embryonic chicken gonads at the time of sexual differentiation. A number of miRNAs were identified, including several that showed sexually dimorphic expression. We validated a subset of miRNAs by qRT-PCR, and prediction algorithms were used to identify potential targets. We discuss the possible roles for these miRNAs in gonadal development and how these roles might be tested in the avian model.
Collapse
|