1
|
Yan C, He B, Wang C, Li W, Tao S, Chen J, Wang Y, Yang L, Wu Y, Wu Z, Liu N, Qin Y. Methionine in embryonic development: metabolism, redox homeostasis, epigenetic modification and signaling pathway. Crit Rev Food Sci Nutr 2025:1-24. [PMID: 40237424 DOI: 10.1080/10408398.2025.2491638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Methionine, an essential sulfur-containing amino acid, plays a critical role in methyl metabolism, folate metabolism, polyamine synthesis, redox homeostasis maintenance, epigenetic modification and signaling pathway regulation, particularly during embryonic development. Animal and human studies have increasingly documented that methionine deficiency or excess can negatively impact metabolic processes, translation, epigenetics, and signaling pathways, with ultimate detrimental effects on pregnancy outcomes. However, the underlying mechanisms by which methionine precisely regulates epigenetic modifications and affects signaling pathways remain to be elucidated. In this review, we discuss methionine and the metabolism of its metabolites, the influence of folate-mediated carbon metabolism, redox reactions, DNA and RNA methylation, and histone modifications, as well as the mammalian rapamycin complex and silent information regulator 1-MYC signaling pathway. This review also summarizes our present understanding of the contribution of methionine to these processes, and current nutritional and pharmaceutical strategies for the prevention and treatment of developmental defects in embryos.
Collapse
Affiliation(s)
- Chang Yan
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Biyan He
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Chenjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Wanzhen Li
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Siming Tao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Jingqing Chen
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, China
| | - Yuquan Wang
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Ling Yang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing, China
| | - Yingjie Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yinghe Qin
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Zhang B, Han Y, Cheng M, Yan L, Gao K, Zhou D, Wang A, Lin P, Jin Y. Metabolomic effects of intrauterine meloxicam perfusion on histotroph in dairy heifers during diestrus. Front Vet Sci 2025; 12:1528530. [PMID: 40171410 PMCID: PMC11959509 DOI: 10.3389/fvets.2025.1528530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Abstract
In ruminants, conceptus elongation is a crucial developmental process that depends on uterine lumen fluid (ULF) and coincides with a period of high pregnancy loss. Prostaglandins (PGs) play indispensable roles in conceptus elongation and implantation. However, the effects of uterus-derived PGs on the uterine environment remain unclear. To explore the metabolic pathways and metabolites induced by endometrium-derived PGs that may affect conceptus elongation and implantation in dairy cows, we investigated the biochemical composition of ULF following intrauterine perfusion of meloxicam from days 12 to 14 of the estrous cycle. Intrauterine administration of meloxicam significantly downregulated the prostaglandin-related metabolites in the ULF. A total of 385 distinct metabolites, primarily clustered within lipids and lipid-like molecules, organic acids and derivatives, organoheterocyclic compounds, and benzenoids, were identified. The metabolite network analysis identified 10 core metabolites as follows: S-adenosylhomocysteine, guanosine, inosine, thymidine, cholic acid, xanthine, niacinamide, prostaglandin I2, 5-hydroxyindoleacetic acid, and indoleacetaldehyde. The pathway enrichment analysis revealed three significantly altered metabolic pathways: arachidonic acid metabolism, tryptophan (Trp) metabolism, and linoleic acid metabolism. A total of five metabolites-guanosine, inosine, thymidine, butyryl-l-carnitine, and l-carnitine-were associated with attachment and pregnancy loss and could serve as predictors of fertility. This global metabolic study of ULF enhances our understanding of histotroph alternations induced by uterus-derived PGs during diestrus in dairy cows, with implications for improving dairy cow fertility.
Collapse
Affiliation(s)
- Beibei Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Han
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ming Cheng
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Longgang Yan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Kangkang Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dong Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Han A, Qamar AY, Bang S, Kim H, Kang H, Kim JH, Choi K, Yun SH, Kim SI, Saadeldin IM, Lee S, Cho J. Effect of extracellular vesicles derived from oviductal and uterine fluid on the development of porcine preimplantation embryos. Theriogenology 2025; 234:216-224. [PMID: 39742720 DOI: 10.1016/j.theriogenology.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
To improve the efficiency of in-vitro-produced (IVP) porcine embryos, we focused on the events that usually occur during in-vivo embryonic transit from the oviduct to the uterus. Extracellular vesicles (EVs) are released by different mammalian cells and are imperative for intercellular communication and reflect the cell's physiological state. Based on these characteristics, EVs were isolated from oviductal and uterine fluid to imitate the in vivo environment and improve the efficiency of IVP embryos. Parthenogenesis (PA) and somatic cell nuclear transfer (SCNT) embryos were divided into four groups based on treatment methods designed to mimic the in vivo migration pathways of porcine embryos. (Group 1) control group; (Group 2) a group treated with EVs from oviduct-derived fluid for 0-3 days (Ov-EVs), (Group 3) a group treated with EVs from uterus-derived fluid for 3-7 days (Ut-EVs); (Group 4) and a group treated with both (Ov, Ut-EVs). The EVs were characterized using various techniques, and their uptake into oocytes was confirmed using PKH67. The results demonstrated an increase in mitochondrial activity of PA embryos in Groups 2 and 4 at the 4-cell stage. Furthermore, compared with Group 1, the total number of cells in PA blastocysts was higher in the Group 2, 3 and 4, and the number of apoptotic cells was significantly lower. In SCNT experiments, the blastocyst development rate was increased in the EV-treated groups compared to the Group 1. Therefore, Ov-EVs and Ut-EVs can improve the embryonic development rate of IVP embryos, increase cell numbers and mitochondrial activity, and reduce apoptosis, thereby improving embryonic quality. Thus, integrating EV-based support into IVP embryos may advance swine reproductive technology and improve its practical applications.
Collapse
Affiliation(s)
- Ayeong Han
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea; College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ahmad Yar Qamar
- College of Veterinary and Animal Sciences, Jhang Sub-campus of University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Seonggyu Bang
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea; College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Heyyoung Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea; Department. of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Heejae Kang
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea; College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jun-Hyeong Kim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Kimyung Choi
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Sung Ho Yun
- Korea Basic Science Institute (KBSI), Ochang, 28119, Republic of Korea
| | - Seung Il Kim
- Korea Basic Science Institute (KBSI), Ochang, 28119, Republic of Korea
| | - Islam M Saadeldin
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea; Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia
| | - Sanghoon Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Li R, Zhou C, Ye K, Chen H, Peng M. Identification of genes involved in energy metabolism in preeclampsia and discovery of early biomarkers. Front Immunol 2025; 16:1496046. [PMID: 39967661 PMCID: PMC11832505 DOI: 10.3389/fimmu.2025.1496046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Background Preeclampsia is a complex pregnancy condition marked by hypertension and organ dysfunction, posing significant risks to maternal and fetal health. This study investigates the role of energy metabolism-associated genes in preeclampsia development and identifies potential early diagnostic biomarkers. Methods Preeclampsia datasets from Gene Expression Omnibus were analyzed for batch correction, normalization, and differential expression. Enrichment analyses using gene ontology, Kyoto Encyclopedia of Genes and Genomes, and gene set enrichment were performed. Protein-protein interaction networks were constructed to identify key genes, and regulatory networks involving transcription factors, miRNAs, and RNA-binding proteins were established. Differential expression was validated with receiver operating characteristic curve analyses, and immune infiltration was assessed. Results Six energy metabolism-related genes were identified. Enrichment analyses revealed their involvement in glycolysis, gluconeogenesis, lipid transport, bone remodeling, and glucagon secretion. Key differentially expressed genes included CRH(Corticotropin-Releasing Hormone), LEP(Leptin), PDK4(Pyruvate Dehydrogenase Kinase Isozyme 4), SPP1(Secreted Phosphoprotein 1), and SST(Somatostatin). PDK4 exhibited moderate accuracy in receiver operating characteristic analysis. Immune infiltration analysis indicated significant differences between preeclampsia and control samples. qRT-PCR confirmed LEP and CRH increased, while SPP1 expression in preeclampsia samples. Conclusion Dysregulated energy metabolism-related genes may contribute to preeclampsia through metabolic and immune changes. Identifying these genes aids in understanding preeclampsia's molecular basis and early diagnosis. Future studies should validate these markers in larger cohorts and explore targeted treatments.
Collapse
Affiliation(s)
| | | | | | | | - Mengjia Peng
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Wenzhou
Medical University, Rui’an, China
| |
Collapse
|
5
|
X M. A synthetic review: natural history of amniote reproductive modes in light of comparative evolutionary genomics. Biol Rev Camb Philos Soc 2025; 100:362-406. [PMID: 39300750 DOI: 10.1111/brv.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
There is a current lack of consensus on whether the ancestral parity mode was oviparity (egg-laying) or viviparity (live-birth) in amniotes and particularly in squamates (snakes, lizards, and amphisbaenids). How transitions between parity modes occur at the genomic level has primary importance for how science conceptualises the origin of amniotes, and highly variable parity modes in Squamata. Synthesising literature from medicine, poultry science, reproductive biology, and evolutionary biology, I review the genomics and physiology of five broad processes (here termed the 'Main Five') expected to change during transitions between parity modes: eggshell formation, embryonic retention, placentation, calcium transport, and maternal-fetal immune dynamics. Throughout, I offer alternative perspectives and testable hypotheses regarding proximate causes of parity mode evolution in amniotes and squamates. If viviparity did evolve early in the history of lepidosaurs, I offer the nucleation site hypothesis as a proximate explanation. The framework of this hypothesis can be extended to amniotes to infer their ancestral state. I also provide a mechanism and hypothesis on how squamates may transition from viviparity to oviparity and make predictions about the directionality of transitions in three species. After considering evidence for differing perspectives on amniote origins, I offer a framework that unifies (i) the extended embryonic retention model and (ii) the traditional model which describes the amniote egg as an adaptation to the terrestrial environment. Additionally, this review contextualises the origin of amniotes and parity mode evolution within Medawar's paradigm. Medawar posited that pregnancy could be supported by immunosuppression, inertness, evasion, or immunological barriers. I demonstrate that this does not support gestation or gravidity across most amniotes but may be an adequate paradigm to explain how the first amniote tolerated internal fertilization and delayed egg deposition. In this context, the eggshell can be thought of as an immunological barrier. If serving as a barrier underpins the origin of the amniote eggshell, there should be evidence that oviparous gravidity can be met with a lack of immunological responses in utero. Rare examples of two species that differentially express very few genes during gravidity, suggestive of an absent immunological reaction to oviparous gravidity, are two skinks Lampropholis guichenoti and Lerista bougainvillii. These species may serve as good models for the original amniote egg. Overall, this review grounds itself in the historical literature while offering a modern perspective on the origin of amniotes. I encourage the scientific community to utilise this review as a resource in evolutionary and comparative genomics studies, embrace the complexity of the system, and thoughtfully consider the frameworks proposed.
Collapse
Affiliation(s)
- Maggs X
- Richard Gilder Graduate School at The American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
- Christopher S. Bond Life Science Center at the University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- School of Life and Environmental Sciences at the University of Sydney, Heydon-Laurence Building A08, Sydney, NSW, 2006, Australia
| |
Collapse
|
6
|
Caton JS, Crouse MS, Dahlen CR, Ward AK, Diniz WJS, Hammer CJ, Swanson RM, Hauxwell KM, Syring JG, Safain KS, Reynolds LP. International Symposium on Ruminant Physiology: Maternal nutrient supply: Impacts on physiological and whole animal outcomes in offspring. J Dairy Sci 2024:S0022-0302(24)01424-3. [PMID: 39710263 DOI: 10.3168/jds.2024-25788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024]
Abstract
Demands for animal products are projected to increase in the future, and animal production is key to agricultural sustainability and food security; consequently, enhancing ruminant livestock production efficiencies in sustainable ways is a major goal for the livestock industry. Developmental programming is the concept that various stressors, including compromised maternal nutrition during critical developmental windows will result in both short- and long-term changes in the offspring. Ruminant models of developmental programming indicate that compromised maternal nutrition, including global under and over-nutrition, macronutrients, and specific micronutrients, including amino acids (Met and Arg), vitamins (folate, B12, and choline), and minerals (sulfur, cobalt, and selenium) can alter offspring outcomes. Data also suggest that maternal histotrophic composition, placental function, and likely fetal nutrient supply are altered by compromised maternal nutrition. Likewise, in offspring, visceral organ mass and function, metabolism, growth, and reproduction are affected. Findings from multi-omics approaches demonstrate that compromised maternal nutrition alters transcript abundance, metabolomic profiles, and multiple metabolic pathways. The underlying mechanisms of developmental programming are driven by epigenetic events, which depend on one-carbon metabolism and micronutrient supply. Current findings indicate that developmental programming in ruminants is real, that maternal nutrition can be a major driver of developmental programming, and that genomic and metabolomic changes in offspring are modulated by altered maternal nutrition during critical windows of development. Research needs in the area of developmental programming in ruminants include: enhanced understanding of the underlying mechanisms, practical relevance to production systems, impacts on short- and long-term animal health including longevity, interrelationships between maternal and paternal influences, intergenerational impacts, and interrelationships with the host microbiome. Additionally, strategic supplementation and precision nutrition approaches should be developed to foster the positive and mitigate the negative aspects of developmental programming to improve the efficiency and sustainability of ruminant livestock production systems.
Collapse
Affiliation(s)
- J S Caton
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA.
| | - M S Crouse
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - C R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - A K Ward
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, SK S7N 5B4, CANADA
| | - W J S Diniz
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - C J Hammer
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - R M Swanson
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - K M Hauxwell
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - J G Syring
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - K S Safain
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - L P Reynolds
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
7
|
Berg MD, Braz CU, Dean M. Progesterone increases metabolism via the pentose phosphate pathway in bovine uterine epithelial cells. Mol Biol Rep 2024; 51:1076. [PMID: 39425753 PMCID: PMC11490429 DOI: 10.1007/s11033-024-10001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND During early pregnancy, glucose is essential for the uterine epithelium and the developing embryo. In cows, progesterone increases the secretion of glucose into the uterine lumen. The uterine epithelium can convert glucose to fructose, but other fates of glucose in the uterine epithelium have been sparsely investigated. Therefore, our objective was to investigate how progesterone influences glucose metabolism in immortalized bovine uterine epithelial (BUTE) cells. METHODS BUTE cells were grown to 80% confluence and treated with vehicle (DMSO) or 10 µM progesterone for 24 h. Cells were collected and analyzed. Immunohistochemistry was performed on endometrial samples collected from the bovine endometrium on days 1 and 11 of the reproductive cycle. RESULTS Progesterone treatment increased glucose consumption of BUTE cells. RNAseq identified 3,072 genes regulated by progesterone. KEGG analysis indicated that progesterone altered genes associated with metabolic pathways and glutathione metabolism. Manually examining genes unique to specific glucose metabolic pathways identified an increase in the rate-limiting enzyme in the pentose phosphate pathway-glucose-6-phosphate dehydrogenase. Functionally, a major product of the pentose phosphate pathway is NADPH, and progesterone treatment increased NADPH levels in BUTE cells. In cows, immunohistochemistry confirmed that glucose-6-phosphate dehydrogenase levels were higher in the uterine epithelium in the luteal phase when progesterone concentrations are high. CONCLUSIONS Progesterone increased glucose-6-phosphate dehydrogenase expression and metabolism via the pentose phosphate pathway in the bovine uterine epithelium. This metabolism could provide substrates for cell proliferation, molecules to be secreted into the uterine lumen, or maintain reduction/oxidation balance in the uterine epithelium.
Collapse
Affiliation(s)
- Malia D Berg
- Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Camila U Braz
- Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Matthew Dean
- Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Division of Nutritional Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
8
|
Mazzarella R, Cajas YN, Gonzalez Martínez ME, Rizos D. Extracellular vesicles: emerging paradigms in bovine embryo-maternal communication. Anim Reprod 2024; 21:e20240065. [PMID: 39286362 PMCID: PMC11404873 DOI: 10.1590/1984-3143-ar2024-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/25/2024] [Indexed: 09/19/2024] Open
Abstract
The oviduct and uterus provide an optimal environment for early embryo development, where effective communication between the embryo and the maternal reproductive tract is crucial for establishing and maintaining pregnancy. Oviductal and uterine-derived EVs play pivotal roles in this maternal-embryonic communication and in facilitating early embryo development. However, despite the ability of in vitro culture methods to produce viable embryos, the lack of exchange between the embryo and the mother often results in lower-quality embryos than those derived in vivo. Therefore, there is a pressing need to increase our understanding of the physiological mechanisms underlying embryo interaction with the oviduct and endometrium through EVs and to develop models capable of mimicking the in vivo environment. This review aims to provide up-to-date insights into the communication between the mother and pre-implantation bovine embryo, exploring their applications and perspectives in the field.
Collapse
Affiliation(s)
- Rosane Mazzarella
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology, Spanish National Research Council - INIA-CSIC, Madrid, Spain
| | - Yulia Nathaly Cajas
- Department Agrarian Production, Technical University of Madrid -UPM, Madrid, Spain
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja - UTPL, Loja, Ecuador
| | - Maria Encina Gonzalez Martínez
- Department of Anatomy and Embryology, Veterinary Faculty of the Complutense University of Madrid - FV-UCM, Madrid, Spain
| | - Dimitrios Rizos
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology, Spanish National Research Council - INIA-CSIC, Madrid, Spain
| |
Collapse
|
9
|
Stenhouse C, Halloran KM, Hoskins EC, Moses RM, Wu G, Seo H, Johnson GA, Suva LJ, Gaddy D, Bazer FW. Progesterone regulates tissue non-specific alkaline phosphatase (TNSALP) expression and activity in ovine utero-placental tissues. J Anim Sci Biotechnol 2024; 15:90. [PMID: 38956701 PMCID: PMC11220967 DOI: 10.1186/s40104-024-01048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/09/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Tissue non-specific alkaline phosphatase (TNSALP; encoded by the ALPL gene) has a critical role in the postnatal regulation of phosphate homeostasis, yet how TNSALP activity and expression are regulated during pregnancy remain largely unknown. This study tested the hypothesis that progesterone (P4) and/or interferon tau (IFNT) regulate TNSALP activity during pregnancy in sheep. METHODS In Exp. 1, ewes were bred and received daily intramuscular injections of either corn oil vehicle (CO) or 25 mg progesterone in CO (P4) for the first 8 days of pregnancy and were hysterectomized on either Day 9, 12, or 125 of gestation. In Exp. 2, ewes were fitted with intrauterine catheters on Day 7 of the estrous cycle and received daily intramuscular injections of 50 mg P4 in CO and/or 75 mg progesterone receptor antagonist (RU486) in CO from Days 8 to 15, and twice daily intrauterine injections of either control proteins (CX) or IFNT (25 µg/uterine horn/d) from Days 11 to 15 (treatment groups: P4 + CX; P4 + IFNT; RU486 + P4 + CX; and RU486 + P4 + IFNT) and were hysterectomized on Day 16. RESULTS In Exp. 1, endometria from ewes administered P4 had greater expression of ALPL mRNA than ewes administered CO on Day 12. TNSALP activity appeared greater in the epithelia, stratum compactum stroma, and endothelium of the blood vessels in the endometrium and myometrium from ewes administered P4 than ewes administered CO on Day 12. On Day 125, TNSALP activity localized to uterine epithelial and endothelial cells, independent of P4 treatment. TNSALP activity in placentomes appeared greater in P4 treated ewes and was detected in endothelial cells and caruncular tissue in P4 treated but not CO treated ewes. In Exp. 2, endometrial homogenates from ewes administered RU486 + P4 + CX had lower TNSALP activity those for P4 + CX and P4 + IFNT ewes. Immunoreactive TNSALP protein appeared greater in the mid- and deep-glandular epithelia in RU486 + P4 + CX treated ewes as compared to the other treatment groups. Enzymatic activity appeared greater on the apical surface of the deep glandular epithelia in endometria from ewes treated with RU486 + P4 + CX compared to the other treatment groups. CONCLUSIONS These results suggest that P4, but not IFNT, regulates the expression and activity of TNSALP in utero-placental tissues and has the potential to contribute to the regulation of phosphate availability that is critical for conceptus development during pregnancy.
Collapse
Affiliation(s)
- Claire Stenhouse
- Department of Animal Science, Pennsylvania State University, University Park, PA, 16802, U.S.A..
- Department of Animal Science, Texas A&M University, College Station, Texas, 77843, U.S.A..
| | - Katherine M Halloran
- Department of Animal Science, Texas A&M University, College Station, Texas, 77843, U.S.A
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48109, U.S.A
| | - Emily C Hoskins
- Department of Animal Science, Texas A&M University, College Station, Texas, 77843, U.S.A
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996, U.S.A
| | - Robyn M Moses
- Department of Animal Science, Texas A&M University, College Station, Texas, 77843, U.S.A
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, U.S.A
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas, 77843, U.S.A
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843, U.S.A
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, 20742, U.S.A
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843, U.S.A
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, 77843, U.S.A
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843, U.S.A
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas, 77843, U.S.A
| |
Collapse
|
10
|
Bazer FW, Johnson GA. Early Embryonic Development in Agriculturally Important Species. Animals (Basel) 2024; 14:1882. [PMID: 38997994 PMCID: PMC11240814 DOI: 10.3390/ani14131882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The fertilization of oocytes ovulated by pigs, sheep, cows, and horses is not considered a limiting factor in successful establishment of pregnancy. Pig, sheep, and cow embryos undergo cleavage to the blastocyst stage, hatch from the zona pellucida, and undergo central-type implantation. Hatched blastocysts of pigs, sheep, and cows transition from tubular to long filamentous forms to establish surface area for exchange of nutrients and gases with the uterus. The equine blastocyst, surrounded by external membranes, does not elongate but migrates throughout the uterine lumen before attaching to the uterine luminal epithelium (LE) to begin implantation. Pregnancy recognition signaling in pigs requires the trophectoderm to express interleukin 1 beta, estrogens, prostaglandin E2, and interferon gamma. Sheep and cow conceptus trophectoderm expresses interferon tau that induces interferon regulatory factor 2 that inhibits transcription of estrogen and oxytocin receptors by uterine epithelia. This prevents oxytocin-induced luteolytic pulses of prostaglandin F2-alpha from regressing the corpora lutea, as well as ensuring the secretion of progesterone required for maintenance of pregnancy. The pregnancy recognition signal produced by equine blastocysts is not known. Implantation in these species requires interactions between extracellular matrix (ECM) proteins and integrins as the conceptus undergoes apposition and firm attachment to the uterine LE. This review provides details with respect to early embryonic development and the transition from spherical to filamentous conceptuses in pigs, sheep, and cows, as well as pre-implantation development of equine blastocysts and implantation of the conceptuses.
Collapse
Affiliation(s)
- Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Gregory A. Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-2471, USA;
| |
Collapse
|
11
|
Domingues RR, Andrade JPN, Cunha TO, Madureira G, Hoppman AS, Teixeira NN, Monteiro PLJ, Gomez-Leon VH, Martins JPN, Wiltbank MC. Profiles of interferon-stimulated genes in multiple tissues and circulating pregnancy-associated glycoproteins and their association with pregnancy loss in dairy cows†. Biol Reprod 2024; 110:558-568. [PMID: 38079518 DOI: 10.1093/biolre/ioad164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/22/2023] [Accepted: 11/27/2023] [Indexed: 03/16/2024] Open
Abstract
Pregnancy loss (PL) in lactating dairy cows disrupts reproductive and productive efficiency. We evaluated the expression of interferon-stimulated genes (ISG) in blood leukocytes, vaginal and cervical epithelial cells, luteolysis-related genes, progesterone, and pregnancy-associated glycoprotein (PAG) profiles in lactating dairy cows (n = 86) to gain insight about PL. Expression of ISG on d17, d19, and d21 was greater in cows that maintained the pregnancy (P33) compared to nonpregnant with no PL (NP). Greater ISG differences between groups were observed in the cervix (96.7-fold) than vagina (31.0-fold), and least in blood leukocytes (5.6-fold). Based on individual profiles of ISG and PAG, PL was determined to occur either before (~13%) or after (~25%) d22. For cows with PL before d22, ISG expression was similar on d17 but by d21 was lower and OXTR was greater than P33 cows and similar to NP; timing of luteolysis was similar compared to NP cows suggesting embryonic failure to promote luteal maintenance and to attach to the endometrium (no increase in PAG). For cows with PL after d22, ISG expression was similar to P33 cows on d17, d19, and d21 and luteolysis, when it occurred, was later than NP cows; delayed increase in PAG suggested later or inadequate embryonic attachment. In conclusion, PL before d22 occurred due to embryonic demise/failure to signal for luteal maintenance, as reflected in reduced ISG expression by d21. Alternatively, embryos with PL between d22 and 33 adequately signaled for luteal maintenance (ISG) but had delayed/inadequate embryonic attachment and/or inappropriate luteolysis causing PL.
Collapse
Affiliation(s)
- Rafael R Domingues
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joao Paulo N Andrade
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Thiago O Cunha
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Guilherme Madureira
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - August S Hoppman
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Natalia N Teixeira
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Pedro L J Monteiro
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Victor H Gomez-Leon
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Joao Paulo N Martins
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Milo C Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Jamwal S, Jena MK, Tyagi N, Kancharla S, Kolli P, Mandadapu G, Kumar S, Mohanty AK. Proteomic Approaches to Unravel the Molecular Dynamics of Early Pregnancy in Farm Animals: An In-Depth Review. J Dev Biol 2023; 12:2. [PMID: 38248867 PMCID: PMC10801625 DOI: 10.3390/jdb12010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Infertility is a major problem in farm animals, which has a negative economic effect on farm industries. Infertility can be defined as the inability of animals to achieve a successful pregnancy. Early pregnancy is crucial to establish a successful pregnancy, and it is reported that 70-80% and 20-30% of total embryonic loss occur in cattle and pigs, respectively, during the first month of pregnancy. The advanced high-throughput proteomics techniques provide valuable tools for in-depth understanding of the implantation process in farm animals. In the present review, our goal was to compile, assess, and integrate the latest proteomic research on farm animals, specifically focused on female reproduction, which involves endometrial tissues, uterine fluids, oviductal fluids, and microRNAs. The series of studies has provided in-depth insights into the events of the implantation process by unfolding the molecular landscape of the uterine tract. The discussed data are related to pregnant vs. non-pregnant animals, pregnancy vs. oestrous cycle, different days of the early pregnancy phase, and animals with uterine infections affecting reproduction health. Some of the studies have utilized non-invasive methods and in vitro models to decipher the molecular events of embryo-maternal interaction. The proteomics data are valuable sources for discovering biomarkers for infertility in ruminants and new regulatory pathways governing embryo-uterine interaction, endometrium receptivity, and embryonic development. Here, we envisage that the identified protein signatures can serve as potential therapeutic targets and biomarkers to develop new therapeutics against pregnancy diseases.
Collapse
Affiliation(s)
- Shradha Jamwal
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India; (S.J.); (N.T.); (S.K.)
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Nikunj Tyagi
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India; (S.J.); (N.T.); (S.K.)
| | - Sudhakar Kancharla
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Prachetha Kolli
- Microgen Health Inc., 14225 Sullyfield Cir Suite E, Chantilly, VA 20151, USA;
| | - Gowtham Mandadapu
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Sudarshan Kumar
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India; (S.J.); (N.T.); (S.K.)
| | - Ashok Kumar Mohanty
- ICAR–Central Institute for Research on Cattle, Meerut Cantt 250001, Uttar Pradesh, India
| |
Collapse
|
13
|
Chen M, Zhao Y, Ji H, Li L, Liu H, Wang S, Zhang D, Yin J, Wang J, Zhang X. Chenodeoxycholic Acid Improves Embryo Implantation and Metabolic Health through Modulating Gut Microbiota-Host Metabolites Interaction during Early Pregnancy. Antioxidants (Basel) 2023; 13:8. [PMID: 38275628 PMCID: PMC10812749 DOI: 10.3390/antiox13010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Fetus loss in early pregnancy is of major concern to both humans and animals, and this issue is largely influenced by embryo implantation. Chenodeoxycholic acid (CDCA), a primary bile acid, contributes to metabolic improvements and protects against intrahepatic cholestasis of pregnancy. However, the effect of CDCA on embryo implantation during early pregnancy has not been investigated. The present study demonstrated that CDCA administration during early pregnancy improved embryo implantation in sows and rats, thereby improving the pregnancy outcomes of sows. CDCA significantly reduced inflammation, oxidative stress, and insulin resistance. The metabolomics analysis indicated significant differences in the fecal metabolome, especially regarding the level of secondary bile acids, between the control and CDCA-treated sows. CDCA also influenced the serum metabolite profiles in sows, and the serum L-Histidine level was significantly correlated with the abundance of 19 differential fecal metabolites. Importantly, L-Histidine administration improved embryo implantation and metabolic health in rats during early pregnancy. Moreover, CDCA administration during early pregnancy also led to long-term metabolic improvements in sows. Our data indicated that CDCA improved embryo implantation by alleviating inflammation and oxidative stress, improving insulin sensitivity, and modulating the interaction between the gut microbiota and host metabolites. Therefore, CDCA intervention is a potential therapeutic strategy regarding embryo loss during pregnancy.
Collapse
Affiliation(s)
- Meixia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Ying Zhao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Lu Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Hui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Sixin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Dongyan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
14
|
Stenhouse C, Halloran KM, Newton MG, Moses RM, Sah N, Suva LJ, Gaddy D, Bazer FW. Characterization of TNSALP expression, localization, and activity in ovine utero-placental tissues†. Biol Reprod 2023; 109:954-964. [PMID: 37676255 DOI: 10.1093/biolre/ioad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNSALP; encoded by ALPL gene) has a critical role in the regulation of phosphate homeostasis postnatally. However, the utero-placental expression of TNSALP and the role in phosphate transport in pregnancy is poorly understood. Estrous cycles of ewes were synchronized, and ewes were euthanized and hysterectomized on Days 1, 9, or 14 of the estrous cycle or bred to fertile rams and euthanized and hysterectomized on Days 9, 12, 17, 30, 50, 70, 90, 110, or 125 of pregnancy. The expression of ALPL mRNA, immunolocalization of TNSALP protein, and quantification and localization of TNSALP enzymatic activity was performed on ovine endometria and placentomes. Day of the estrous cycle did not alter ALPL mRNA expression or enzymatic activity of TNSALP. TNSALP protein localized to uterine epithelial and stromal cells, blood vessels, myometrium, caruncular, and cotyledonary stroma. TNSALP activity was localized to uterine epithelia, blood vessels, caruncular stroma (from Day 70 of gestation), and the apical surface of chorionic epithelia (from Day 50 of gestation). TNSALP protein and activity localized to the apical surface of uterine epithelia during the estrous cycle and in early pregnancy. Endometrial TNSALP enzymatic activity was downregulated on Days 17 and 30 of gestation (P < 0.05). Expression of ALPL mRNA decreased in late gestation in endometria and placentomes (P < 0.05). TNSALP activity peaked in placentomes on Days 70 and 90 of gestation. Collectively, these results suggest a potential role of TNSALP in the regulation of phosphate transport and homeostasis at the maternal-conceptus interface in ruminants.
Collapse
Affiliation(s)
- Claire Stenhouse
- Department of Animal Science, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | | | - Makenzie G Newton
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Robyn M Moses
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Nirvay Sah
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
15
|
Brandt KJ, Ault-Seay TB, Payton RR, Schneider LG, Edwards JL, Myer PR, Rhinehart JD, McLean KJ. The Impacts of Supplemental Protein during Development on Amino Acid Concentrations in the Uterus and Pregnancy Outcomes of Angus Heifers. Animals (Basel) 2023; 13:1995. [PMID: 37370505 DOI: 10.3390/ani13121995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Replacement heifer development is one of the most critical components in beef production. The composition of the ideal uterine environment could maximize fertility and reproductive efficiency. Our hypothesis was that protein supplementation would affect the uterine environment of beef heifers without inhibiting development or reproduction. To test the effects of dietary supplementation on these outcomes, a randomized complete block design with repeated measures was implemented. Angus heifers (n = 60) were blocked by body weight (BW) and randomly assigned to one of three supplemental protein treatment groups (10% (CON), 20% (P20), and 40% (P40)). Mixed model ANOVAs were used to determine whether protein supplementation treatments, time, and the interaction or protein supplementation, semen exposure, and the interaction influenced uterine luminal fluid (ULF) and pregnancy outcomes. Amino acids (AAs) were impacted (p < 0.001), specifically, the essential AAs: Arg, Iso, Leu, Val, His, Lys, Met, Phe, Trp. Protein supplementation influenced multiple AAs post-insemination: Arg (p = 0.03), CC (p = 0.05), 1-MH (p = 0.001), and Orn (p = 0.03). In conclusion, protein supplementation did not affect the reproductive development via puberty attainment or the timing of conception even with alterations in growth. However, uterine AA concentrations did change throughout development and protein supplementation influenced ULF d 14 post-insemination, which may affect the conception rates.
Collapse
Affiliation(s)
- Kiernan J Brandt
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Taylor B Ault-Seay
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Rebecca R Payton
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Liesel G Schneider
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - J Lannett Edwards
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Phillip R Myer
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Justin D Rhinehart
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Kyle J McLean
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
16
|
Oliver MA, Peterson KD, Bhandari S, Payton RR, Edwards JL, Mathew DJ. Progesterone-stimulated endometrial cell conditioned media increases in vitro produced bovine embryo blastocyst formation. Anim Reprod Sci 2023; 254:107264. [PMID: 37285656 DOI: 10.1016/j.anireprosci.2023.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/28/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023]
Abstract
The early bovine embryo is supported by histotroph molecules secreted by endometrial epithelial (EPI) and stroma fibroblast (SF) cells in response to luteal progesterone (P4). We hypothesized that specific histotroph molecule transcript abundance depends on cell type and P4 concentration and that endometrial cell conditioned media (CM) could improve in vitro produced (IVP) embryo development in culture. Primary bovine EPI and SF cells from seven uteri were incubated for 12 h with RPMI medium containing 0 (Control), 1, 15, or 50 ng of P4. RPMI was also incubated without cells (N-CM) and CM from EPI or SF cultures (EPI- or SF-CM) or a combination of the two (1:1; EPI/SF-CM) was used to culture IVP embryos from days 4-8 of development (n = 117). There was an effect of cell type (SLC1A1, SLC5A6, SLC7A1, FGF-2, FGF-7, CTGF, PRSS23 and NID2) and/or P4 concentration (FGF-7 and NID2) on endometrial cell histotroph molecule mRNA (P < 0.05). Compared to N-CM, blastocyst development on day 7 was greater in the EPI or SF-CM (P ≤ 0.05) and tended to be greater in the EPI/SF-CM (P = 0.07). On day 8, blastocyst development was greater only in the EPI-CM (P < 0.05). Further, culturing embryos with endometrial cell CM reduced day 8 blastocyst transcript abundance of cell adhesion molecule LGALS1 (P < 0.01). In conclusion, endometrial cell CM or histotroph molecules may be used to improve IVP embryo development in cattle.
Collapse
Affiliation(s)
- Mary A Oliver
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, USA; School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Katie D Peterson
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, USA
| | - Sadikshya Bhandari
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, USA
| | - Rebecca R Payton
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, USA
| | - J Lannett Edwards
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, USA
| | - Daniel J Mathew
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
17
|
Temporospatial expression of osteopontin in both left and right uterine horns during the peri-implantation period of dromedary camel. Theriogenology 2023; 200:18-24. [PMID: 36738575 DOI: 10.1016/j.theriogenology.2023.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Pregnancy in camels is established and maintained predominantly in the left uterine horn (98% frequency), whereas pregnancies occurring in the right horn result in early embryonic death. Aside from other reasons such as asynchrony of conceptus signaling and uterine receptivity, this phenomenon contributes to low reproductive efficiency in camels. The current research focuses on the expression of osteopontin (OPN), an extracellular matrix protein and adhesion molecule involved in implantation in mammals. Based on the differences in the pregnancy rate between the left and right horns, the temporal and spatial OPN expression was analyzed during the peri-implantation period on Days 8, 10, and 12. Results showed that OPN expression on Day 10 significantly increased by 14.5 fold in the left and 8.4-fold in the right uterine horn. By Day 12, OPN expression increased to 39.4 fold in the left and increased 7-fold in the right horn compared with non-mated females. Only the full length, 70-kDa OPN, was detected and upregulated with advancing pregnancy, with higher intensity in the left uterine horns than in the right. Spatially, OPN was predominantly localized on the apical uterine luminal and glandular epithelium in all camels. Moreover, OPN was detected in the stratum compactum stroma of pregnant camels. In conclusion, OPN mRNA and protein were detected and upregulated during the peri-implantation period, with higher OPN expression detected in the left uterine horn than in the right. OPN may be regulated by the presence of the embryo in the left uterine horn due to its role in embryo adhesion, implantation and placentation.
Collapse
|
18
|
Stenhouse C, Newton MG, Halloran KM, Moses RM, Sah N, Suva LJ, Bazer FW. Phosphate, calcium, and vitamin D signaling, transport, and metabolism in the endometria of cyclic ewes. J Anim Sci Biotechnol 2023; 14:13. [PMID: 36631878 PMCID: PMC9835233 DOI: 10.1186/s40104-022-00803-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/20/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Recent evidence suggests important roles for progesterone (P4) and interferon tau in the regulation of calcium, phosphate, and vitamin D signaling in the uteri of pregnant sheep. However, the effects of P4 and estradiol (E2), with respect to the expression of their receptors PGR and ESR1, respectively, in uterine epithelia on mineral signaling during the estrous cycle has not been investigated. Estrous cycles of mature Suffolk ewes were synchronized, prostaglandin F2α was administered, and ewes were observed for estrus (designated as Day 0) in the presence of vasectomized rams. On Days 1, 9, or 14 of the estrous cycle, hysterectomies were performed. RESULTS 25-hydroxyvitamin D was more abundant in plasma from ewes on Day 14 than Day 1 (P < 0.05). Expression of fibroblast growth factor receptor 2 (FGFR2), a disintegrin and metalloprotease 17 (ADAM17), and parathyroid hormone-related protein (PTHrP) mRNAs was greater in endometria on Day 9 compared to Days 1 and 14 (P < 0.01). Similarly, expression of transient receptor potential cation channel subfamily V member 6 (TRPV6) mRNA was greater in endometria on Day 9 than Day 1 (P < 0.05). ATPase plasma membrane Ca2+ transporting 4 (ATP2B4) and S100 calcium binding protein G (S100G) mRNA expression was greater in endometria on Day 14 than on Days 1 and 9 (P < 0.01). In contrast, endometrial expression of vitamin D receptor (VDR) mRNA was lower on Days 9 and 14 than Day 1 (P < 0.01). Expression of klotho (KL) (P < 0.05) and cytochrome P450 family 24 subfamily A member 1 (CYP24) (P < 0.01) mRNAs was lower on Day 14 than Days 1 and 9. ADAM17, FGF23, CYP2R1, CYP27B1, KL, and VDR proteins immunolocalized to the uterine myometrium, blood vessels, and uterine luminal (LE), superficial glandular (sGE), and glandular (GE) epithelia. S100A9 protein was weakly expressed in the uterine myometrium, LE, sGE, and GE. Immunoreactivity of CYP2R1 and KL proteins in uterine LE and sGE was less on Day 1 than on Days 9 and 14. In contrast, S100G protein was expressed exclusively by GE, and immunoreactive S100G protein was less on Day 9. S100A12 protein localized to stromal cells of the uterine stratum spongiosum and blood vessels, but not by uterine epithelial cells. CONCLUSION Collectively, these results implicate E2, P4, and PGR in the regulation of phosphate, calcium, and vitamin D signaling in cyclic ewes.
Collapse
Affiliation(s)
- Claire Stenhouse
- grid.264756.40000 0004 4687 2082Departments of Animal Science, Texas A&M University, Kleberg Center, TX 77843-2471 College Station, USA
| | - Makenzie G. Newton
- grid.264756.40000 0004 4687 2082Departments of Animal Science, Texas A&M University, Kleberg Center, TX 77843-2471 College Station, USA
| | - Katherine M. Halloran
- grid.264756.40000 0004 4687 2082Departments of Animal Science, Texas A&M University, Kleberg Center, TX 77843-2471 College Station, USA
| | - Robyn M. Moses
- grid.264756.40000 0004 4687 2082Departments of Animal Science, Texas A&M University, Kleberg Center, TX 77843-2471 College Station, USA
| | - Nirvay Sah
- grid.264756.40000 0004 4687 2082Departments of Animal Science, Texas A&M University, Kleberg Center, TX 77843-2471 College Station, USA
| | - Larry J. Suva
- grid.264756.40000 0004 4687 2082Veterinary Physiology and Pharmacology, Texas A&M University, TX 77843 College Station, USA
| | - Fuller W. Bazer
- grid.264756.40000 0004 4687 2082Departments of Animal Science, Texas A&M University, Kleberg Center, TX 77843-2471 College Station, USA
| |
Collapse
|
19
|
Moses RM, Halloran KM, Stenhouse C, Sah N, Kramer AC, McLendon BA, Seo H, Johnson GA, Wu G, Bazer FW. Ovine conceptus homogenates metabolize fructose for metabolic support during the peri-implantation period of pregnancy. Biol Reprod 2022; 107:1084-1096. [PMID: 35835585 DOI: 10.1093/biolre/ioac144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Roles of fructose in elongating ovine conceptuses are poorly understood, despite it being the major hexose sugar in fetal fluids and plasma throughout gestation. Therefore, we determined if elongating ovine conceptuses utilize fructose via metabolic pathways for survival and development. Immunohistochemical analyses revealed that trophectoderm and extra-embryonic endoderm express ketohexokinase and aldolase B during the peri-implantation period of pregnancy for conversion of fructose into fructose-1-phosphate for entry into glycolysis and related metabolic pathways. Conceptus homogenates were cultured with 14C-labeled glucose and/or fructose under oxygenated and hypoxic conditions to assess contributions of glucose and fructose to the pentose cycle (PC), tricarboxylic acid cycle, glycoproteins, and lipid synthesis. Results indicated that both glucose and fructose contributed carbons to each of these pathways, except for lipid synthesis, and metabolized to pyruvate and lactate, with lactate being the primary product of glycolysis under oxygenated and hypoxic conditions. We also found that: 1) conceptuses preferentially oxidized glucose over fructose (P < 0.05); 2) incorporation of fructose and glucose at 4 mM each into the PC by Day 17 conceptus homogenates was similar in the presence or absence of glucose, but incorporation of glucose into the PC was enhanced by the presence of fructose (P < 0.05); 3) incorporation of fructose into the PC in the absence of glucose was greater under oxygenated conditions (P < 0.01); and 4) incorporation of glucose into the PC under oxygenated conditions was greater in the presence of fructose (P = 0.05). These results indicate that fructose is an important metabolic substrate for ovine conceptuses.
Collapse
Affiliation(s)
- Robyn M Moses
- Department of Animal Science, Texas A&M University, College Station, TX
| | | | - Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Nirvay Sah
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Avery C Kramer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Bryan A McLendon
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
20
|
Epperson KM, Beck EE, Rich JJ, Northrop-Albrecht EJ, Perkins SD, Zezeski AL, Ketchum JN, Zoca SM, Walker JA, Geary TW, Perry GA. Modulation of expression of estrus, steroidogenesis and embryo development following peri-Artificial Insemination nutrient restriction in beef heifers. Anim Reprod Sci 2022; 244:107045. [DOI: 10.1016/j.anireprosci.2022.107045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/17/2022] [Accepted: 07/24/2022] [Indexed: 11/01/2022]
|
21
|
Elsaadawy SA, Wu Z, Bu D. Feasibility of Supplying Ruminally Protected Lysine and Methionine to Periparturient Dairy Cows on the Efficiency of Subsequent Lactation. Front Vet Sci 2022; 9:892709. [PMID: 35774986 PMCID: PMC9237544 DOI: 10.3389/fvets.2022.892709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to evaluate the effects of supplying ruminally protected Lys (RPL) and ruminally protected Met (RPM) to transition cows' diets on the efficiency of subsequent lactation. A total of 120 prepartum Holstein cows were assigned into four treatments blocked by the anticipated calving date, previous lactation milk yield, number of lactations, and body condition score and fed either RPL, RPM, or the combination (RPML) or control diet (CON) throughout the transition period (3 weeks before till 3 weeks after calving). From 22 to 150 days in milk (DIM), all animals (100 cows) were fed a combination of RPM and RPL (0.17% RPM and 0.41% RPL of DM; n = 25 cows/treatment) as follows; CON-RPML, RPM-RPML, RPL-RPML, and RPML-RPML. Milk production and dry matter intake (DMI) were measured daily; milk and blood samples were taken at 21, 30, 60, 90, 120, and 150 DIM. Supplemented amino acids (AA) were mixed with the premix and added to the total mixed ration during the experiment. DMI (p < 0.001) and energy-corrected milk (ECM, p = 0.04) were higher for cows that were fed RPML-RPML than other cows. Compared with CON-RPML, yields of milk total protein, lactose, and nitrogen efficiency were increased (p < 0.01), whereas milk urea nitrogen (MUN; p = 0.002) was decreased for other treatments. However, supplemental AA did not affect milk lactose percentage, fat yield, feed efficiency, or serum total protein concentration (p > 0.10). Transition cows that consumed AA had a greater peak of milk yield (p < 0.01), as well as quickly reached the peak of milk (p < 0.004). There were differences in β-hydroxybutyrate concentration during the early lactation, with a lower level for AA groups (p < 0.05), and the difference faded with the progression of lactation (p > 0.10). Fertility efficiency as measured by pregnancy rate was improved by supplemental AA during the perinatal period (p < 0.05). In conclusion, transition cows consumed RPM and RPL, increased post-calving DMI, milk production, milk protein yield, nitrogen efficiency, and improved fertility performance.
Collapse
Affiliation(s)
- Samy A. Elsaadawy
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaohai Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR) and World Agroforestry Centre (ICRAF), Beijing, China
- Hunan Co-Innovation Center of Safety Animal Production, Changsha, China
| |
Collapse
|
22
|
Halloran KM, Stenhouse C, Moses RM, Seo H, Johnson GA, Wu G, Bazer FW. Progesterone and interferon tau regulate expression of polyamine enzymes during the ovine peri-implantation period. Biol Reprod 2022; 106:865-878. [DOI: 10.1093/biolre/ioac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Progesterone (P4) and interferon tau (IFNT) are important for establishment and maintenance of pregnancy in ruminants. Agmatine and polyamines (putrescine, spermidine, and spermine) have important roles in the survival, growth, and development of mammalian conceptuses. This study tested the hypothesis that P4 and/or IFNT stimulate expression of genes and proteins involved in the metabolism and transport of polyamines in the ovine endometrium. Rambouillet ewes (n = 24) were surgically fitted with intrauterine catheters on Day 7 of the estrous cycle. They received daily intramuscular injections of 50 mg P4 in corn oil vehicle and/or 75 mg progesterone receptor antagonist (RU486) in corn oil vehicle from Days 8–15, and twice daily intrauterine injections (25 μg/uterine horn/day) of either control serum proteins (CX) or IFNT from Days 11–15, resulting in four treatment groups: 1) P4 + CX; 2) P4 + IFNT; 3) RU486 + P4 + CX; or 4) RU486 + P4 + IFNT. On Day 16, ewes were hysterectomized. The total amounts of arginine, citrulline, ornithine, agmatine, and putrescine in uterine flushings were affected (P < 0.05) by P4 and/or IFNT. P4 increased endometrial expression of SLC22A2 (P < 0.01) and SLC22A3 (P < 0.05) mRNAs. IFNT affected endometrial expression of MAT2B (P < 0.001), SAT1 (P < 0.01), and SMOX (P < 0.05) mRNAs, independent of P4. IFNT increased the abundance of SRM protein in uterine luminal (LE), superficial glandular (sGE), and glandular epithelia (GE), as well as MAT2B protein in uterine LE and sGE. These results indicate that P4 and IFNT act synergistically to regulate expression of key genes required for cell-specific metabolism and transport of polyamines in the ovine endometrium during the peri-implantation period of pregnancy.
Collapse
Affiliation(s)
- Katherine M Halloran
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - Robyn M Moses
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
23
|
Nutrition and Metabolism: Foundations for Animal Growth, Development, Reproduction, and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:1-24. [PMID: 34807434 DOI: 10.1007/978-3-030-85686-1_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Consumption of high-quality animal protein plays an important role in improving human nutrition, growth, development, and health. With an exponential growth of the global population, demands for animal-sourced protein are expected to increase by 60% between 2021 and 2050. In addition to the production of food protein and fiber (wool), animals are useful models for biomedical research to prevent and treat human diseases and serve as bioreactors to produce therapeutic proteins. For a high efficiency to transform low-quality feedstuffs and forages into high-quality protein and highly bioavailable essential minerals in diets of humans, farm animals have dietary requirements for energy, amino acids, lipids, carbohydrates, minerals, vitamins, and water in their life cycles. All nutrients interact with each other to influence the growth, development, and health of mammals, birds, fish, and crustaceans, and adequate nutrition is crucial for preventing and treating their metabolic disorders (including metabolic diseases) and infectious diseases. At the organ level, the small intestine is not only the terminal site for nutrient digestion and absorption, but also intimately interacts with a diverse community of intestinal antigens and bacteria to influence gut and whole-body health. Understanding the species and metabolism of intestinal microbes, as well as their interactions with the intestinal immune systems and the host intestinal epithelium can help to mitigate antimicrobial resistance and develop prebiotic and probiotic alternatives to in-feed antibiotics in animal production. As abundant sources of amino acids, bioactive peptides, energy, and highly bioavailable minerals and vitamins, animal by-product feedstuffs are effective for improving the growth, development, health, feed efficiency, and survival of livestock and poultry, as well as companion and aquatic animals. The new knowledge covered in this and related volumes of Adv Exp Med Biol is essential to ensure sufficient provision of animal protein for humans, while helping reduce greenhouse gas emissions, minimize the urinary and fecal excretion of nitrogenous and other wastes to the environment, and sustain animal agriculture (including aquaculture).
Collapse
|
24
|
Stenhouse C, Seo H, Wu G, Johnson GA, Bazer FW. Insights into the Regulation of Implantation and Placentation in Humans, Rodents, Sheep, and Pigs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:25-48. [PMID: 34807435 DOI: 10.1007/978-3-030-85686-1_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Precise cell-specific spatio-temporal molecular signaling cascades regulate the establishment and maintenance of pregnancy. Importantly, the mechanisms regulating uterine receptivity, conceptus apposition and adhesion to the uterine luminal epithelia/superficial glandular epithelia and, in some species, invasion into the endometrial stroma and decidualization of stromal cells, are critical prerequisite events for placentation which is essential for the appropriate regulation of feto-placental growth for the remainder of pregnancy. Dysregulation of these signaling cascades during this critical stage of pregnancy can lead to pregnancy loss, impaired growth and development of the conceptus, and alterations in the transplacental exchange of gasses and nutrients. While many of these processes are conserved across species, significant variations in the molecular mechanisms governing maternal recognition of pregnancy, conceptus implantation, and placentation exist. This review addresses the complexity of key mechanisms that are critical for the establishment and maintenance of a successful pregnancy in humans, rodents, sheep, and pigs. Improving understanding of the molecular mechanisms governing these processes is critical to enhancing the fertility and reproductive health of humans and livestock species.
Collapse
Affiliation(s)
- Claire Stenhouse
- Department of Animal Science and Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Heewon Seo
- Department of Animal Science and Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science and Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Gregory A Johnson
- Department of Animal Science and Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science and Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
25
|
Wu G, Bazer FW, Satterfield MC, Gilbreath KR, Posey EA, Sun Y. L-Arginine Nutrition and Metabolism in Ruminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:177-206. [PMID: 34807443 DOI: 10.1007/978-3-030-85686-1_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
L-Arginine (Arg) plays a central role in the nitrogen metabolism (e.g., syntheses of protein, nitric oxide, polyamines, and creatine), blood flow, nutrient utilization, and health of ruminants. This amino acid is produced by ruminal bacteria and is also synthesized from L-glutamine, L-glutamate, and L-proline via the formation of L-citrulline (Cit) in the enterocytes of young and adult ruminants. In pre-weaning ruminants, most of the Cit formed de novo by the enterocytes is used locally for Arg production. In post-weaning ruminants, the small intestine-derived Cit is converted into Arg primarily in the kidneys and, to a lesser extent, in endothelial cells, macrophages, and other cell types. Under normal feeding conditions, Arg synthesis contributes 65% and 68% of total Arg requirements for nonpregnant and late pregnany ewes fed a diet with ~12% crude protein, respectively, whereas creatine production requires 40% and 36% of Arg utilized by nonpregnant and late pregnant ewes, respectively. Arg has not traditionally been considered a limiting nutrient in diets for post-weaning, gestating, or lactating ruminants because it has been assumed that these animals can synthesize sufficient Arg to meet their nutritional and physiological needs. This lack of a full understanding of Arg nutrition and metabolism has contributed to suboptimal efficiencies for milk production, reproductive performance, and growth in ruminants. There is now considerable evidence that dietary supplementation with rumen-protected Arg (e.g., 0.25-0.5% of dietary dry matter) can improve all these production indices without adverse effects on metabolism or health. Because extracellular Cit is not degraded by microbes in the rumen due to the lack of uptake, Cit can be used without any encapsulation as an effective dietary source for the synthesis of Arg in ruminants, including dairy and beef cows, as well as sheep and goats. Thus, an adequate amount of supplemental rumen-protected Arg or unencapsulated Cit is necessary to support maximum survival, growth, lactation, reproductive performance, and feed efficiency, as well as optimum health and well-being in all ruminants.
Collapse
Affiliation(s)
- Guoyao Wu
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| | - Fuller W Bazer
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - M Carey Satterfield
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Kyler R Gilbreath
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Erin A Posey
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Yuxiang Sun
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
26
|
De Bem THC, Tinning H, Vasconcelos EJR, Wang D, Forde N. Endometrium On-a-Chip Reveals Insulin- and Glucose-induced Alterations in the Transcriptome and Proteomic Secretome. Endocrinology 2021; 162:6167824. [PMID: 33693651 PMCID: PMC8143652 DOI: 10.1210/endocr/bqab054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 12/28/2022]
Abstract
The molecular interactions between the maternal environment and the developing embryo are key for early pregnancy success and are influenced by factors such as maternal metabolic status. Our understanding of the mechanism(s) through which these individual nutritional stressors alter endometrial function and the in utero environment for early pregnancy success is, however, limited. Here we report, for the first time, the use of an endometrium-on-a-chip microfluidics approach to produce a multicellular endometrium in vitro. Isolated endometrial cells (epithelial and stromal) from the uteri of nonpregnant cows in the early luteal phase (Days 4-7) were seeded in the upper chamber of the device (epithelial cells; 4-6 × 104 cells/mL) and stromal cells seeded in the lower chamber (1.5-2 × 104 cells/mL). Exposure of cells to different concentrations of glucose (0.5, 5.0, or 50 mM) or insulin (Vehicle, 1 or 10 ng/mL) was performed at a flow rate of 1 µL/minute for 72 hours. Quantitative differences in the cellular transcriptome and the secreted proteome of in vitro-derived uterine luminal fluid were determined by RNA-sequencing and tandem mass tagging mass spectrometry, respectively. High glucose concentrations altered 21 and 191 protein-coding genes in epithelial and stromal cells, respectively (P < .05), with a dose-dependent quantitative change in the protein secretome (1 and 23 proteins). Altering insulin concentrations resulted in limited transcriptional changes including transcripts for insulin-like binding proteins that were cell specific but altered the quantitative secretion of 196 proteins. These findings highlight 1 potential mechanism by which changes to maternal glucose and insulin alter uterine function.
Collapse
Affiliation(s)
- Tiago H C De Bem
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Haidee Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | | | | | - Niamh Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- LeedsOmics, University of Leeds, Leeds, UK
- Correspondence: Niamh Forde, PhD, University of Leeds, LIGHT Laboratories, Clarendon Way, LS2 9JT, Leeds, UK.
| |
Collapse
|
27
|
Essential Role of CRIM1 on Endometrial Receptivity in Goat. Int J Mol Sci 2021; 22:ijms22105323. [PMID: 34070207 PMCID: PMC8158520 DOI: 10.3390/ijms22105323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 01/02/2023] Open
Abstract
In domestic ruminants, endometrial receptivity is related to successful pregnancy and economic efficiency. Despite several molecules having been reported in the past regarding endometrial receptivity regulation, much regarding the mechanism of endometrial receptivity regulation remains unknown due to the complex nature of the trait. In this work, we demonstrated that the cysteine-rich transmembrane bone morphogenetic protein (BMP) regulator 1 (CRIM1) served as a novel regulator in the regulation of goat endometrial receptivity in vitro. Our results showed that hormones and IFN-τ increased the expression of CRIM1 in goat endometrial epithelial cells (EECs). Knockdown of CRIM1 via specific shRNA hindered cell proliferation, cell adhesion and prostaglandins (PGs) secretion and thus derailed normal endometrial receptivity. We further confirmed that receptivity defect phenotypes due to CRIM1 interference were restored by ATG7 overexpression in EECs while a loss of ATG7 further impaired receptivity phenotypes. Moreover, our results showed that changing the expression of ATG7 affected the reactive oxygen species (ROS) production. Moreover, mR-143-5p was shown to be a potential upstream factor of CRIM1-regulated endometrial receptivity in EECs. Overall, these results suggest that CRIM1, as the downstream target of miR-143-5p, has effects on ATG7-dependent autophagy, regulating cell proliferation, cell adhesion and PG secretion, and provides a new target for the diagnosis and treatment of early pregnancy failure and for improving the success rates of artificial reproduction.
Collapse
|
28
|
Halloran KM, Hoskins EC, Stenhouse C, Moses RM, Dunlap KA, Satterfield MC, Seo H, Johnson GA, Wu G, Bazer FW. Pre-implantation exogenous progesterone and pregnancy in sheep. II. Effects on fetal-placental development and nutrient transporters in late pregnancy. J Anim Sci Biotechnol 2021; 12:46. [PMID: 33827696 PMCID: PMC8028684 DOI: 10.1186/s40104-021-00567-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Administration of progesterone (P4) to ewes during the first 9 to 12 days of pregnancy accelerates blastocyst development by day 12 of pregnancy, likely due to P4-induced up-regulation of key genes in uterine epithelia responsible for secretion and transport of components of histotroph into the uterine lumen. This study determined if acceleration of blastocyst development induced by exogenous P4 during the pre-implantation period affects fetal-placental development on day 125 of pregnancy. Suffolk ewes (n = 35) were mated to fertile rams and assigned randomly to receive daily intramuscular injections of either corn oil vehicle (CO, n = 18) or 25 mg progesterone in CO (P4, n = 17) for the first 8 days of pregnancy. All ewes were hysterectomized on day 125 of pregnancy and: 1) fetal and placental weights and measurements were recorded; 2) endometrial and placental tissues were analyzed for the expression of candidate mRNAs involved in nutrient transport and arginine metabolism; and 3) maternal plasma, fetal plasma, allantoic fluid, and amniotic fluid were analyzed for amino acids, agmatine, polyamines, glucose, and fructose. RESULTS Treatment of ewes with exogenous P4 did not alter fetal or placental growth, but increased amounts of aspartate and arginine in allantoic fluid and amniotic fluid, respectively. Ewes that received exogenous P4 had greater expression of mRNAs for SLC7A1, SLC7A2, SLC2A1, AGMAT, and ODC1 in endometria, as well as SLC1A4, SLC2A5, SLC2A8 and ODC1 in placentomes. In addition, AZIN2 protein was immunolocalized to uterine luminal and glandular epithelia in P4-treated ewes, whereas AZIN2 localized only to uterine luminal epithelia in CO-treated ewes. CONCLUSIONS This study revealed that exogenous P4 administered in early pregnancy influenced expression of selected genes for nutrient transporters and the expression of a protein involved in polyamine synthesis on day 125 of pregnancy, suggesting a 'programming' effect of P4 on gene expression that affected the composition of nutrients in fetal-placental fluids.
Collapse
Affiliation(s)
- Katherine M Halloran
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Emily C Hoskins
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Robyn M Moses
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Kathrin A Dunlap
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - M Carey Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
29
|
Crouse MS, McLean KJ, Dwamena J, Neville TL, Menezes ACB, Ward AK, Reynolds LP, Dahlen CR, Neville BW, Borowicz PP, Caton JS. The effects of maternal nutrition during the first 50 d of gestation on the location and abundance of hexose and cationic amino acid transporters in beef heifer uteroplacental tissues. J Anim Sci 2021; 99:skaa386. [PMID: 33247721 PMCID: PMC7799587 DOI: 10.1093/jas/skaa386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
We hypothesized that maternal nutrition during the first 50 d of gestation would influence the abundance of hexose transporters, SLC2A1, SLC2A3, and SLC2A5, and cationic amino acid transporters, SLC7A1 and SLC7A2, in heifer uteroplacental tissues. Angus-cross heifers (n = 43) were estrus synchronized, bred via artificial insemination, and assigned at breeding to 1 of 2 dietary intake groups (CON = 100% of requirements to achieve 0.45 kg/d of BW gain or RES = 60% of CON intake) and ovariohysterectomized on day 16, 34, or 50 of gestation (n = 6 to 9/d) in a completely randomized design with a 2 × 3 factorial arrangement of treatments. Uterine cross-sections were collected from the horn ipsilateral to the corpus luteum, fixed in 10% neutral buffered formalin, sectioned at 5 µm, and stained via immunofluorescence for transporters. For each image, areas of fetal membrane (FM; chorioallantois), luminal epithelium (ENDO), superficial glands (SG), deep glands (DG), and myometrium (MYO) were analyzed separately for relative intensity of fluorescence as an indicator of transporter abundance. Analysis of FM was only conducted for days 34 and 50. No transporters in target areas were influenced by a day × treatment interaction (P ≥ 0.06). In ENDO, all transporters were differentially abundant from days 16 to 50 of gestation (P ≤ 0.04), and SLC7A2 was greater (P = 0.05) for RES vs. CON. In SG, SLC7A1 and SLC7A2 were greater (P ≤ 0.04) at day 34 vs. day 16. In DG, SLC2A3 and SLC7A1 were greater (P ≤ 0.05) for CON vs. RES heifers; furthermore, SLC7A1 was greater (P < 0.01) at day 50 vs. days 16 and 34 of gestation. In MYO, SLC7A1 was greater (P < 0.01) for CON vs. RES and was greater (P = 0.02) at days 34 and 50 vs. day 16. There were no differences in FM (P ≥ 0.06). Analysis of all uterine tissues at day 16 determined that SLC2A1, SLC2A3, and SLC7A2 were all differentially abundant across uterine tissue type (P < 0.01), and SLC7A1 was greater (P = 0.02) for CON vs. RES. Analysis of all uteroplacental tissues at days 34 and 50 demonstrated that all transporters differed (P < 0.01) across uteroplacental tissues, and SLC7A1 was greater (P < 0.01) for CON vs. RES. These data are interpreted to imply that transporters are differentially affected by day of gestation, and that hexose and cationic amino acid transporters are differentially abundant across utero-placental tissue types, and that SLC7A1 is responsive to maternal nutritional treatment.
Collapse
Affiliation(s)
- Matthew S Crouse
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Kyle J McLean
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | - Josephine Dwamena
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Tammi L Neville
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Ana Clara B Menezes
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Alison K Ward
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Lawrence P Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Carl R Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | | | - Pawel P Borowicz
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Joel S Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| |
Collapse
|
30
|
Caton JS, Crouse MS, McLean KJ, Dahlen CR, Ward AK, Cushman RA, Grazul-Bilska AT, Neville BW, Borowicz PP, Reynolds LP. Maternal periconceptual nutrition, early pregnancy, and developmental outcomes in beef cattle. J Anim Sci 2020; 98:skaa358. [PMID: 33165531 PMCID: PMC7718859 DOI: 10.1093/jas/skaa358] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022] Open
Abstract
The focus of this review is maternal nutrition during the periconceptual period and offspring developmental outcomes in beef cattle, with an emphasis on the first 50 d of gestation, which represents the embryonic period. Animal agriculture in general, and specifically the beef cattle industry, currently faces immense challenges. The world needs to significantly increase its output of animal food products by 2050 and beyond to meet the food security and agricultural sustainability needs of the rapidly growing human population. Consequently, efficient and sustainable approaches to livestock production are essential. Maternal nutritional status is a major factor that leads to developmental programming of offspring outcomes. Developmental programming refers to the influence of pre-and postnatal factors, such as inappropriate maternal nutrition, that affect growth and development and result in long-term consequences for health and productivity of the offspring. In this review, we discuss recent studies in which we and others have addressed the questions, "Is development programmed periconceptually?" and, if so, "Does it matter practically to the offspring in production settings?" The reviewed studies have demonstrated that the periconceptual period is important not only for pregnancy establishment but also may be a critical period during which fetal, placental, and potentially postnatal development and function are programmed. The evidence for fetal and placental programming during the periconceptual period is strong and implies that research efforts to mitigate the negative and foster the positive benefits of developmental programming need to include robust investigative efforts during the periconceptual period to better understand the implications for life-long health and productivity.
Collapse
Affiliation(s)
- Joel S Caton
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND
| | | | - Kyle J McLean
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | - Carl R Dahlen
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Alison K Ward
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND
| | | | - Anna T Grazul-Bilska
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND
| | | | - Pawel P Borowicz
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Lawrence P Reynolds
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND
| |
Collapse
|
31
|
Cai S, Ye Q, Zeng X, Yang G, Ye C, Chen M, Yu H, Wang Y, Wang G, Huang S, Quan S, Zeng X, Qiao S. CBS and MAT2A improve methionine-mediated DNA synthesis through SAMTOR/mTORC1/S6K1/CAD pathway during embryo implantation. Cell Prolif 2020; 54:e12950. [PMID: 33179842 PMCID: PMC7791180 DOI: 10.1111/cpr.12950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 01/06/2023] Open
Abstract
Objectives Early pregnancy loss is a major clinical concern in animal and human reproduction, which is largely influenced by embryo implantation. The importance of methionine for embryo implantation is widely neglected. Materials and methods We performed a series of experiments with primiparous rats fed diets containing different levels of methionine during early pregnancy to investigate the role of methionine in embryonic implantation and pregnancy outcomes, and used them to perform in vivo metabolic assessments and in vitro uterine explant culture. In addition, through transcriptome analysis and silencing the expression of cystathionine β‐synthase (CBS, the key enzyme in transsulfuration pathway) and cell adhesion assay, we measured signalling within Ishikawa, pTr and JAR cells. Results We determined the relevance and underlying mechanism of methionine on embryo implantation. We showed that methionine deprivation sharply decreased embryo implantation sites, expression of CBS and transsulfuration pathway end products, which were reversed by maternal methionine supplementation during early pregnancy. Moreover, we found CBS improved methionine‐mediated cell proliferation and DNA synthesis by CBS inhibition or interference. In addition, transcriptome analysis also revealed that CBS influenced the signalling pathway‐associated cell proliferation and DNA synthesis, as well as a correlation between CBS and methionine adenosyltransferase 2A (MAT2A), implying that MAT2A was possibly involved in cell proliferation and DNA synthesis. Further analysis revealed that MAT2A influenced S‐adenosylmethionine receptor SAMTOR expression, and SAMTOR activated mTORC1 and its downstream S6K1 and CAD, ultimately enhancing DNA synthesis in the embryo and uterus. Conclusions Taken together, these studies demonstrate that CBS and MAT2A improve methionine‐mediated DNA synthesis through SAMTOR/mTORC1/S6K1/CAD pathway during embryo implantation.
Collapse
Affiliation(s)
- Shuang Cai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Qianhong Ye
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Guangxin Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Changchuan Ye
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Meixia Chen
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Yuming Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Gang Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Shuo Huang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Shuang Quan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| |
Collapse
|
32
|
Qamar AY, Mahiddine FY, Bang S, Fang X, Shin ST, Kim MJ, Cho J. Extracellular Vesicle Mediated Crosstalk Between the Gametes, Conceptus, and Female Reproductive Tract. Front Vet Sci 2020; 7:589117. [PMID: 33195625 PMCID: PMC7661581 DOI: 10.3389/fvets.2020.589117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) mediated intracellular communication plays an imperative role in the proper completion of different physiological events. Most of the bio-fluids are enriched with several subpopulations of EVs including exosomes and microvesicles (MVs), with the capacity of transferring different functional molecules (lipids, proteins, and nucleic acids) to target cells. Recipient cells upon receiving the signal molecules undergo different changes that positively affect the structural and functional integrity of the cells. This article was aimed to highlight the role of EVs secreted by gametes, the female reproductive tract, and the growing conceptus in the successful completion of different reproductive events related to gestation. EVs associated with the reproductive system are actively involved in the regulation of different physiological events including gamete maturation, fertilization, and embryo and fetal development. In the reproductive system, EVs mediated intracellular communication is not unidirectional but is rather regulated through crosstalk between the reproductive tract and the growing conceptus. These vesicles are secreted from the ovary, oviductal epithelium, endometrium, developing embryo, and the placenta. The cargo inside these vesicles exerts pleiotropic effects on both maternal and embryonic environments. A better understanding of the EVs-mediated crosstalk will be helpful in the development of useful tools serving both the diagnostic as well as therapeutic needs related to female fertility.
Collapse
Affiliation(s)
- Ahmad Yar Qamar
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
- Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Feriel Yasmine Mahiddine
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Xun Fang
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Sang Tae Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
33
|
Crouse MS, McLean KJ, Greseth NP, Ward AK, Reynolds LP, Dahlen CR, Neville BW, Borowicz PP, Caton JS. The effects of maternal nutrient restriction and day of early pregnancy on the location and abundance of neutral amino acid transporters in beef heifer utero-placental tissues. J Anim Sci 2020; 98:skaa197. [PMID: 32564078 PMCID: PMC7350978 DOI: 10.1093/jas/skaa197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/12/2020] [Indexed: 01/10/2023] Open
Abstract
We hypothesized that maternal nutrition and day of gestation would influence the abundance of the neutral amino acid transporters SLC1A1, SLC1A5, SLC7A5, SLC38A2, and SLC38A7 in heifer utero-placental tissues. Angus-cross heifers (n = 43) were estrus synchronized and bred via AI. At breeding, heifers were assigned to one of two dietary intake groups (CON = 100% of requirements to achieve 0.45 kg/d gain or restricted heifers (RES) = 60% of CON intake) and ovariohysterectomized on day 16, 34, or 50 of gestation (n = 6 to 9/d). Thus, the experimental design was a completely randomized design with a 2 × 3 factorial arrangement of treatments. Uterine cross sections were taken from the horn ipsilateral to the CL, fixed in 10% NBF, sectioned at 5 µm, and stained for transporters. For each image, the areas of fetal membrane (FM; chorioallantois), endometrium (ENDO), superficial glands (SG), deep glands (DG), and myometrium (MYO) were analyzed separately for relative intensity of fluorescence as an indicator of transporter abundance. Analysis of FM was only conducted on days 34 and 50. In ENDO, SLC7A5 was greater (P < 0.01) in CON compared with RES heifers. In SG, SLC1A1 was greater (P = 0.02) in day 16 RES compared with day 16 CON and days 34 and 50 RES. In DG, SLC1A1 was greater (P = 0.02) on day 16 compared with 50 of gestation. In MYO, SLC1A1 was greater (P = 0.02) in day 50 CON compared with day 16 CON and day 50 RES. Additionally, in MYO SLC38A2 was greater (P = 0.02) in day 16 RES compared with day 16 CON and day 34 RES. In FM, SLC7A5 tended (P = 0.08) to be greater in CON vs RES. Analysis of all uterine tissues on day 16 determined that expression of SLC1A1, SLC1A5, SL38A2, and SL38A7 differed across uterine tissue type (P < 0.01); however, only SLC7A5 tended (P = 0.10) to differ and be greater in CON compared with RES heifers. Analysis of all utero-placental tissues on days 34 and 50 determined that SLC1A1, SLC7A5, SLC38A2, and SLC38A7 were greater (P ≤ 0.03) in CON compared with RES heifers. Furthermore, abundance of all transporters investigated on days 34 and 50 differed across utero-placental tissue types (P < 0.01). These data support our hypothesis that maternal nutrition and day of gestation influence the abundance of neutral amino acid transporters in utero-placental tissues from days 16 to 50 of gestation. Additionally, these data combined with previously published works help further elucidate nutrient supply and demands of the maternal and fetal system during early gestation in beef heifers.
Collapse
Affiliation(s)
- Matthew S Crouse
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Kyle J McLean
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | - Nathaniel P Greseth
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Alison K Ward
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Lawrence P Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Carl R Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | | | - Pawel P Borowicz
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Joel S Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| |
Collapse
|
34
|
Transcriptomic analysis of interferon-γ-regulated genes in endometrial explants and their possible role in regulating maternal endometrial immunity during the implantation period in pigs, a true epitheliochorial placentation species. Theriogenology 2020; 155:114-124. [PMID: 32659448 DOI: 10.1016/j.theriogenology.2020.05.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/02/2023]
Abstract
The implantation process requires precisely controlled interactions between the maternal uterine endometrium and the implanting conceptus. Conceptus-derived secretions affect endometrial cells to facilitate the adhesion and attachment of trophoblasts, and endometrial secretions support the growth and development of the conceptus. In pigs, the conceptus secretes a large amount of type II interferon, interferon-γ (IFNG), during the implantation period. However, the role of IFNG in the implantation process has not been fully understood in pigs. Thus, to determine the role of IFNG in the endometrium during early pregnancy in pigs, we treated endometrial explant tissues with increasing doses of IFNG and analyzed the transcriptome regulated by IFNG using an RNA-sequencing analysis. Data analyses identified 276 differentially regulated genes, their Gene Ontology terms, and 94 signature genes in a Gene Set Enrichment Analysis. Furthermore, we analyzed the expression of IFNG-regulated genes, including CIITA, KYNU, IDO1, WARS, and MHC class II molecules, in the endometrium throughout pregnancy and found that levels of those genes in the endometrium were highest on Day 15 of pregnancy, corresponding to the time of peak IFNG secretion by porcine conceptuses. In addition, immunohistochemical analyses revealed that CIITA, KYNU, and IDO proteins were expressed in a cell type- and pregnancy status-specific manner in the endometrium. These results show that genes overrepresented in endometrial tissues in response to IFNG were mainly related to immune responses, suggesting that conceptus-derived IFNG could play critical roles in regulating the maternal immune response for the establishment of pregnancy in pigs.
Collapse
|
35
|
de Ávila ACFCM, Andrade GM, Bridi A, Gimenes LU, Meirelles FV, Perecin F, da Silveira JC. Extracellular vesicles and its advances in female reproduction. Anim Reprod 2020; 16:31-38. [PMID: 33299476 PMCID: PMC7721021 DOI: 10.21451/1984-3143-ar2018-00101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Intercellular communication is an essential mechanism for development and maintenance of multicellular organisms. Extracellular vesicles (EVs) were recently described as new players in the intercellular communication. EVs are double-membrane vesicles secreted by cells and are classified according to their biosynthesis, protein markers and morphology. These extracellular vesicles contain bioactive materials such as miRNA, mRNA, protein and lipids. These characteristics permit their involvement in different biological processes. Reproductive physiology is complex and involves constant communication between cells. Different laboratories have described the presence of EVs secreted by ovarian follicular cells, oviductal cells, in vitro produced embryos and by the endometrium, suggesting that EVs are involved in the development of gametes and embryos, in animals and humans. Therefore, is important to understand physiological mechanisms and contributions of EVs in female reproduction in order to develop new tools to improve in vivo reproductive events and assisted reproductive techniques (ARTs). This review will provide the current knowledge related to EVs in female reproductive tissues and their role in ARTs.
Collapse
Affiliation(s)
| | - Gabriella Mamede Andrade
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Alessandra Bridi
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Lindsay Unno Gimenes
- Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Felipe Perecin
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
36
|
Fernandes JRD, Moitra A, Tsutsui K, Banerjee A. Regulation of the hypothalamic GnRH-GnIH system by putrescine in adult female rats and GT1-7 neuronal cell line. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:214-229. [PMID: 32039555 DOI: 10.1002/jez.2351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
The gonadotropin-releasing hormone-gonadotropin inhibitor (GnRH-GnIH) system in the hypothalamus of mammals is the key factor that controls the entire reproductive system. The aim of this study was to immunolocalize GnIH (RFRP-3) in the hypothalamus during the estrous cycle and to study the effect of putrescine on the expression of GnRH-I and GnIH through both in vivo and in vitro (GT1-7 cells) approach and the circulatory levels of GnRH-I, GnIH, and gonadotropins were also investigated. The study also aims in analyzing all the immunofluorescence images by measuring the relative pixel count of an image. This study showed the effect of putrescine on the morphology of ovary, uterus, and the expression of the steroidogenic acute regulatory protein in the ovary. This study showed GnIH expression was intense during the diestrus and moderate during proestrus and estrus, whereas mild staining during the metestrus. The study further showed that putrescine supplementation to adult female rats increased both GnRH-I expression in the hypothalamus as well as the GnRH-I levels in circulation. The study, for the first time, also showed that putrescine supplementation decreased the expression and release of GnIH. These effects of upregulating GnRH-I expression and downregulating GnIH expression were confirmed by in vitro experiments using GT1-7 cells. Putrescine supplementation also increased the gonadotropin levels in the serum. To summarize, putrescine can regulate the hypothalamic-pituitary-gonadal axis by increasing the GnRH-I, luteinizing hormone, and follicle-stimulating hormone levels and suppressing GnIH levels. This is the first report showing the simultaneous effects of putrescine on the regulation of both GnRH-I and GnIH in the hypothalamus.
Collapse
Affiliation(s)
- Joseph R D Fernandes
- Department of Biological Sciences, KK Birla Goa Campus, BITS Pilani, Zuarinagar, Goa, India
| | - Abhishek Moitra
- Department of Electrical and Electronics Engineering, KK Birla Goa Campus, BITS Pilani, Zuarinagar, Goa, India
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Center for Medical Life Science of Waseda University, Waseda University, Tokyo, Japan
| | - Arnab Banerjee
- Department of Biological Sciences, KK Birla Goa Campus, BITS Pilani, Zuarinagar, Goa, India
| |
Collapse
|
37
|
Bridi A, Perecin F, da Silveira JC. Extracellular Vesicles Mediated Early Embryo-Maternal Interactions. Int J Mol Sci 2020; 21:E1163. [PMID: 32050564 PMCID: PMC7037557 DOI: 10.3390/ijms21031163] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 12/23/2022] Open
Abstract
Embryo-maternal crosstalk is an important event that involves many biological processes, which must occur perfectly for pregnancy success. This complex communication starts from the zygote stage within the oviduct and continues in the uterus up to the end of pregnancy. Small extracellular vesicles (EVs) are part of this communication and carry bioactive molecules such as proteins, lipids, mRNA, and miRNA. Small EVs are present in the oviductal and uterine fluid and have important functions during fertilization and early embryonic development. Embryonic cells are able to uptake oviductal and endometrium-derived small EVs. Conversely, embryo-derived EVs might modulate oviductal and uterine function. In this review, our aim is to demonstrate the role of extracellular vesicles modulating embryo-maternal interactions during early pregnancy.
Collapse
|
38
|
Billhaq DH, Lee SH, Lee S. The potential function of endometrial-secreted factors for endometrium remodeling during the estrous cycle. Anim Sci J 2020; 91:e13333. [PMID: 31909524 DOI: 10.1111/asj.13333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 11/24/2019] [Accepted: 12/09/2019] [Indexed: 01/05/2023]
Abstract
Uterine has a pivotal role in implantation and conceptus development. To prepare a conducive uterine condition for possibly new gestation during the estrous cycle, uterine endometrium undergoes dramatic remodeling. In addition, angiogenesis is an indispensable biological process of endometrium remodeling. Furthermore, essential protein expressions related to important biological processes of endometrium remodeling, which are vascular endothelial growth factor (VEGF), myoglobin (MYG), collagen type IV (COL4), fucosyltransferase IV (FUT4), and cysteine-rich protein 2 (CRP2), were detected in the endometrial tissue reported in many previous studies and recently discovered in histotroph substrates during the estrous cycle. Those proteins, which are liable for provoking new vessel development, cell proliferation, cell adhesion, and cell migration, were expressed higher in the histotroph during the luteal phase than follicular phase. Histotroph proteins considerably contribute to endometrium remodeling during the estrous cycle. To that end, the following review will discuss and highlight the relevant information and evidence of the uterine fluid proteins as endometrial-secreted factors that adequately indicate the potential role of the uterine secretions to be involved in the endometrial remodeling process.
Collapse
Affiliation(s)
- Dody Houston Billhaq
- College of Animal Life Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Sang-Hee Lee
- Institute of Animal Resources, Kangwon National University, Chuncheon, Republic of Korea
| | - Seunghyung Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
39
|
Crouse MS, Greseth NP, McLean KJ, Crosswhite MR, Pereira NN, Ward AK, Reynolds LP, Dahlen CR, Neville BW, Borowicz PP, Caton JS. Maternal nutrition and stage of early pregnancy in beef heifers: impacts on hexose and AA concentrations in maternal and fetal fluids1. J Anim Sci 2019; 97:1296-1316. [PMID: 30649334 DOI: 10.1093/jas/skz013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/08/2019] [Indexed: 01/12/2023] Open
Abstract
We examined the hypothesis that maternal nutrition and day of gestation would affect the concentrations of AAs and hexoses in bovine utero-placental fluids and maternal serum from days 16 to 50 of gestation. Forty-nine cross-bred Angus heifers were bred via artificial insemination and fed a control diet (CON = 100% of requirements for growth) or a restricted diet (RES = 60% of CON) and ovariohysterectomized on days 16, 34, or 50 of gestation; nonpregnant controls were not bred and ovariohysterectomized on day 16 of the synchronized estrous cycle. The resulting design was a completely randomized design with a 2 × 3 factorial + 1 arrangement of treatments. Maternal serum, histotroph, allantoic fluid, and amniotic fluid were collected at time of ovariohysterectomy. Samples were then analyzed for concentrations of AAs and intermediary metabolites: alanine (Ala), arginine, asparagine (Asn), aspartate (Asp), citrulline, cysteine, glutamine, glutamate (Glu), glycine (Gly), histidine, isoleucine, leucine (Leu), lysine, methionine (Met), ornithine, phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr), tryptophan, tyrosine (Tyr), and valine (Val). The concentrations of Gly, Ser, and Thr in maternal serum were greater (P ≤ 0.05) in CON compared with RES. Furthermore, day of gestation affected (P ≤ 0.05) concentrations of Asn, Glu, Phe, Thr, and Tyr in maternal serum. Status of maternal nutrition affected the Asp concentration of histotroph where RES was greater (P = 0.02) than CON. In histotroph, Ala, Leu, Met, and Val concentrations were greater (P ≤ 0.05) on day 50 compared with day 16. Additionally, Glu and Pro concentrations in histotroph were greater (P < 0.01) on days 34 and 50 compared with day 16. A day × treatment interaction was observed for the concentration of Val in allantoic fluid where day 34 CON was greater (P = 0.05) than all other days and nutritional treatments. In addition, the concentration of Gln in amniotic fluid experienced a day × treatment interaction where day 34 RES was greater (P ≤ 0.05) than day 34 CON, which was greater (P ≤ 0.05) than day 50 CON and RES. These data support our hypothesis that day of gestation and maternal nutrition affect the concentrations of various neutral and acidic AA in beef heifer utero-placental fluids and maternal serum from days 16 to 50 of gestation.
Collapse
Affiliation(s)
- Matthew S Crouse
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND
| | | | - Kyle J McLean
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | | | - Nicolas Negrin Pereira
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Alison K Ward
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Lawrence P Reynolds
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Carl R Dahlen
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND
| | | | - Pawel P Borowicz
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Joel S Caton
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND
| |
Collapse
|
40
|
Hodonu A, Escobar M, Beach L, Hunt J, Rose J. Glycogen metabolism in mink uterine epithelial cells and its regulation by estradiol, progesterone and insulin. Theriogenology 2019; 130:62-70. [PMID: 30870708 DOI: 10.1016/j.theriogenology.2019.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
Glycogen content in mink uterine glandular and luminal epithelia (GE and LE) is maximal during estrus and is depleted before implantation while embryos are in diapause. Uterine glycogen synthesis in vivo is stimulated by estradiol (E2) while its mobilization is induced by progesterone (P4). Nevertheless, treatment of an immortalized mink uterine epithelial cell line (GMMe) with E2 did not affect glycogen production. Interestingly, insulin alone significantly increased synthesis of the nutrient and glycogen content in response to insulin + E2 was greater than for insulin alone. Our objectives were to determine: 1) If insulin receptor protein (INSR) is expressed by mink uterine GE and LE in vivo and if the amount differs between estrus, diapause and pregnancy; 2) if E2, P4 or insulin regulate insulin receptor gene (Insr) expression by GMMe cells, and 3) if E2 and P4 act independently to regulate glycogen metabolism by GMMe cells and/or if their effects are mediated in part through the actions of insulin. The mean (±S.E.) percent INSR content of uterine epithelia was greatest during diapause (GE: 15.65 ± 0.06, LE:16.56 ± 1.25), much less during pregnancy (GE: 2.53 ± 0.60, LE:2.25 ± 0.32) and barely detectable in estrus (GE: 0.03 ± 0.01, LE:0.02 ± 0.01). Glycogen concentrations in GMMe cells increased 10-fold in response to insulin and 20-fold with insulin + E2 when compared to controls. Expression of Insr was increased 2-fold by insulin and insulin + E2 when compared to controls and there was no difference between the two hormone treatments, indicating that E2 does not increase Insr expression in insulin-treated cells. To simulate E2-priming, cells were treated with Insulin + E2 for 24 h, followed by the same hormones + P4 for the second 24 h (Insulin + E2 → P4) which resulted in Insr and glycogen levels not different from controls. Similarly, cells treated with Insulin + P4 resulted in glycogen concentrations not different from controls. We conclude that the glycogenic actions of E2 on GMMe cells are due to increased responsiveness of the cells to insulin, but not as a result of up-regulation of the insulin receptor. Glycogen mobilization in response to P4 was the result of decreased glycogenesis and increased glycogenolysis occurring concomitantly with reduced Insr expression. Mink uterine glycogen metabolism appears to be regulated in a reproductive cycle-dependent manner in part as a result of the actions of E2 and P4 on cellular responsiveness to insulin.
Collapse
Affiliation(s)
- Ayokunle Hodonu
- Department of Biological Sciences, College of Science and Engineering, Idaho State University, Pocatello, ID, 83209, USA
| | - Mario Escobar
- Department of Biology, Brigham Young University-Idaho, Rexburg, ID, 83440, USA
| | - Logan Beach
- Department of Biology, Brigham Young University-Idaho, Rexburg, ID, 83440, USA
| | - Jason Hunt
- Department of Biology, Brigham Young University-Idaho, Rexburg, ID, 83440, USA
| | - Jack Rose
- Department of Biological Sciences, College of Science and Engineering, Idaho State University, Pocatello, ID, 83209, USA.
| |
Collapse
|
41
|
Grazul-Bilska AT, Bass CS, Kaminski SL, Ebel KK, Leke E, Thammasiri J, Kraisoon A, Navanukraw C, Holst M, Shelton M, Dorsam ST, Redmer DA. Effects of plane of nutrition and arginine on ovarian follicles in non-pregnant sheep: Cell proliferation, and expression of endothelial nitric oxide and its receptor. Acta Histochem 2019; 121:189-197. [PMID: 30591314 DOI: 10.1016/j.acthis.2018.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/07/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
The aim of this study was to investigate the role of the nitric oxide (NO) system in ovarian function, by determining if arginine (Arg) supplementation impacts follicle number, cell proliferation, and expression of the NO system members in nutritionally compromised ewes. Ewes were randomly assigned into maintenance (C, 100% requirements), excess (O; 2xC), or restricted (U; 0.6xC) diets 8 weeks prior to Arg treatment. Ewes were individually fed twice daily with pelleted diets. Ewes from each nutritional group were randomly assigned to one of two treatments: saline or Arg, which was initiated on day 0 of the estrous cycle and administered 3 times per day. Ovaries were collected at the early-luteal, mid-luteal and late-luteal/follicular phases of the estrous cycle to determine 1) the number of surface follicles, 2) follicle cell proliferation marked by Ki67 protein expression, and 3) expression of endothelial nitric oxide (eNOS; NOS3) and soluble guanylyl cyclase beta (sGC; GUCY1B3) protein and mRNA in granulosa (G) and theca (T) layers using immunohistochemistry followed by image analysis and qPCR, respectively. During nutritional treatment, C maintained body weight, O gained 6±1.2 kg, and U lost 14±1.3 kg. Our data show that: 1) Ki67 was expressed in all ovarian compartments, eNOS protein was detected in blood vessels of T and stroma, and sGC protein was detected in T cells, and blood vessels of T layer and other ovarian compartments; 2) plane of nutrition affected the number of surface follicles, and thus folliculogenesis, cell proliferation in the T layer, eNOS and sGC protein expression in T, and NOS3 and GUCY1B3 mRNA expression in G; 3) Arg treatment affected cell proliferation in G and T, eNOS and sGC protein expression in T, mRNA expression of NOS3 in T in all groups, and GUCY1B3 in G depending on the stage of the estrous cycle; and 4) G and T cell proliferation, and expression of eNOS and sGC protein in T was affected by the stage of the estrous cycle. Our data demonstrated that plane of nutrition and Arg are involved in the regulation of follicular functions in non-pregnant sheep.
Collapse
Affiliation(s)
- Anna T Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Casie S Bass
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Samantha L Kaminski
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Kaitlyn K Ebel
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Elizabeth Leke
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jiratti Thammasiri
- Department of Animal Science, Faculty of Agriculture and Agricultural Biotechnology, Khon Kaen University, Khon Kaen, Thailand
| | - Aree Kraisoon
- Department of Animal Science, Faculty of Agriculture and Agricultural Biotechnology, Khon Kaen University, Khon Kaen, Thailand
| | - Chainarong Navanukraw
- Department of Animal Science, Faculty of Agriculture and Agricultural Biotechnology, Khon Kaen University, Khon Kaen, Thailand
| | - Marisa Holst
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Mckenzi Shelton
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Sheri T Dorsam
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Dale A Redmer
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
42
|
Cai S, Zhu J, Zeng X, Ye Q, Ye C, Mao X, Zhang S, Qiao S, Zeng X. Maternal N-Carbamylglutamate Supply during Early Pregnancy Enhanced Pregnancy Outcomes in Sows through Modulations of Targeted Genes and Metabolism Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5845-5852. [PMID: 29804448 DOI: 10.1021/acs.jafc.8b01637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reducing pregnancy loss is important for improving reproductive efficiency for both human and mammalian animals. Our previous study demonstrates that maternal N-carbamylglutamate (NCG) supply during early pregnancy enhances embryonic survival in gilts. However, whether maternal NCG supply improves the pregnancy outcomes is still not known. Here we found maternal NCG supply during early pregnancy in sows significantly increased the numbers of total piglets born alive per litter ( P < 0.05) and significantly changed the levels of metabolites in amniotic fluid and serum involved in metabolism of energy, lipid, and glutathione and immunological regulation. The expression of endometrial progesterone receptor membrane component 1 (PGRMC1) was significantly increased by NCG supplementation ( P < 0.05) as well as the expression of PGRMC1, endothelial nitric oxide synthesases (eNOS), and lamin A/C in fetuses and placentae ( P < 0.05). Among the NCG-associated amino acids, arginine and glutamine, markedly increased PGRMC1 and eNOS expression in porcine trophectoderm cells ( P < 0.05), whereas glutamate could stimulate the expression of vimentin and lamin A/C in porcine trophectoderm (pTr) cells ( P < 0.05) and proline stimulated lamin A/C expression ( P < 0.05). Collectively, these data reveal the mechanisms of NCG in reducing early embryo loss. These findings have important implications that NCG has great potential to improve pregnancy outcomes in human and mammalian animals.
Collapse
Affiliation(s)
- Shuang Cai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , China
| | - Jinlong Zhu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , China
| | - Qianhong Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , China
| | - Changchuan Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , China
| | - Xiangbing Mao
- Animal Nutrition Institute , Sichuan Agricultural University , No. 211, Gongpinghuimin Road , Wenjiang District, Chengdu 611130 , China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science , South China Agricultural University , Guangzhou 510642 , China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , China
| |
Collapse
|
43
|
Crouse MS, McLean KJ, Greseth NP, Crosswhite MR, Pereira NN, Ward AK, Reynolds LP, Dahlen CR, Neville BW, Borowicz PP, Caton JS. Maternal nutrition and stage of early pregnancy in beef heifers: Impacts on expression of glucose, fructose, and cationic amino acid transporters in utero-placental tissues. J Anim Sci 2018; 95:5563-5572. [PMID: 29293768 DOI: 10.2527/jas2017.1983] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We hypothesized that maternal nutrition and day of gestation would impact utero-placental mRNA expression of the nutrient transporters , , , , and in beef heifers. Crossbred Angus heifers (n = 49) were estrous synchronized, bred via AI, assigned to nutritional treatment (CON = 100% of NRC requirements for 0.45 kg/d gain and RES = 60% of CON) and ovariohysterectomized on d 16, 34, or 50 of gestation (n = 6 to 9/d); Non-bred, non-pregnant (NB-NP) controls were fed the CON diet, not bred, and were ovariohysterectomized on d 16 of the synchronized estrous cycle = 6). The resulting arrangement of treatments was a 2 × 3 factorial + 1 (CON vs. RES × d 16, 34, or 50 + NB-NP controls). Caruncle (CAR), intercaruncular endometrium (ICAR), and fetal membranes (FM [chorioallantois]), were obtained from the pregnant uterine horn (the uterine horn containing the conceptus) immediately after ovariohysterectomy. On d 50 cotyledons (COT), intercotyledonary placenta (ICOT) and amnion (AMN) were also collected. Relative expression of nutrient transporters was determined for each tissue utilizing NB-NP-CAR and NB-NP-ICAR tissues as the baseline. For FM, NB-NP endometrium served as the baseline. There was no interaction of day × treatment ( ≥ 0.20) for any genes in CAR. However, CAR expression of was greater ( < 0.01) on d 16 compared with d 34 and 50, and , , and were greater ( ≤ 0.05) on d 34 compared with d 16 and 50. In ICAR, was the only gene to be influenced by the day × treatment interaction ( = 0.01), being greater in d 50 CON compared with d 34 CON and d 16 and 50 RES. In ICAR, expression of was greater ( < 0.01) on d 16 compared with d 34, and expression of was greater ( < 0.01) on d 34 and 50 compared with d 16. In FM, expression of was greater ( = 0.04) on d 16 compared with d 50 of gestation, and expression of was greater ( < 0.01) on d 34 and 50 compared with d 16. On d 50, expression of , , and expression were all greater ( < 0.05) in AMN compared with COT and ICOT, and expression of was greater ( < 0.01) in ICOT compared with COT and AMN. These data indicate that day was a more influential factor for mRNA expression of utero-placental glucose and cationic AA transporters than maternal nutritional status in heifers during early pregnancy.
Collapse
|
44
|
Elmetwally MA, Lenis Y, Tang W, Wu G, Bazer FW. Effects of catecholamines on secretion of interferon tau and expression of genes for synthesis of polyamines and apoptosis by ovine trophectoderm†. Biol Reprod 2018; 99:611-628. [DOI: 10.1093/biolre/ioy085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Mohammed A Elmetwally
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas, USA
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, Egypt
| | - Yasser Lenis
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas, USA
- Centauro Research Group, School of Veterinary Medicine, Faculty of Agrarian Science, Universidad de Antioquia, Medellín, Colombia
- Faculty of Agricultural Sciences, U.D.C.A, Bogota, Colombia
| | - Wanjin Tang
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
45
|
Lenis YY, Johnson GA, Wang X, Tang WW, Dunlap KA, Satterfield MC, Wu G, Hansen TR, Bazer FW. Functional roles of ornithine decarboxylase and arginine decarboxylase during the peri-implantation period of pregnancy in sheep. J Anim Sci Biotechnol 2018; 9:10. [PMID: 29410783 PMCID: PMC5781304 DOI: 10.1186/s40104-017-0225-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/19/2017] [Indexed: 01/03/2023] Open
Abstract
Background Polyamines stimulate DNA transcription and mRNA translation for protein synthesis in trophectoderm cells, as well as proliferation and migration of cells; therefore, they are essential for development and survival of conceptuses (embryo/fetus and placenta). The ovine conceptus produces polyamines via classical and non-classical pathways. In the classical pathway, arginine (Arg) is transformed into ornithine, which is then decarboxylated by ornithine decarboxylase (ODC1) to produce putrescine which is the substrate for the production of spermidine and spermine. In the non-classical pathway, Arg is converted to agmatine (Agm) by arginine decarboxylase (ADC), and Agm is converted to putrescine by agmatinase (AGMAT). Methods Morpholino antisense oligonucleotides (MAOs) were designed and synthesized to inhibit translational initiation of the mRNAs for ODC1 and ADC, in ovine conceptuses. Results The morphologies of MAO control, MAO-ODC1, and MAO-ADC conceptuses were normal. Double knockdown of ODC1 and ADC (MAO-ODC1:ADC) resulted in two phenotypes of conceptuses; 33% of conceptuses appeared to be morphologically and functionally normal (phenotype a) and 67% of the conceptuses presented an abnormal morphology and functionality (phenotype b). Furthermore, MAO-ODC1:ADC (a) conceptuses had greater tissue concentrations of Agm, putrescine, and spermidine than MAO control conceptuses, while MAO-ODC1:ADC (b) conceptuses only had greater tissue concentrations of Agm . Uterine flushes from ewes with MAO-ODC1:ADC (a) had greater amounts of arginine, aspartate, tyrosine, citrulline, lysine, phenylalanine, isoleucine, leucine, and glutamine, while uterine flushes of ewes with MAO-ODC1:ADC (b) conceptuses had lower amount of putrescine, spermidine, spermine, alanine, aspartate, glutamine, tyrosine, phenylalanine, isoleucine, leucine, and lysine. Conclusions The double-knockdown of translation of ODC1 and ADC mRNAs was most detrimental to conceptus development and their production of interferon tau (IFNT). Agm, polyamines, amino acids, and adequate secretion of IFNT are critical for establishment and maintenance of pregnancy during the peri-implantation period of gestation in sheep. Electronic supplementary material The online version of this article (10.1186/s40104-017-0225-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasser Y Lenis
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA.,3Centauro Research Group, School of Veterinary Medicine, Faculty of Agrarian Science, Universidad de Antioquia, Calle 70 No, 52-21 Medellín, Colombia.,Faculty of Agricultural Sciences, Calle 222 No. 55-37, UDCA, Bogota, Colombia
| | - Gregory A Johnson
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - Xiaoqiu Wang
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA.,5Present address: National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 USA
| | - Wendy W Tang
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - Kathrin A Dunlap
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - M Carey Satterfield
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA
| | - Guoyao Wu
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - Thomas R Hansen
- 6Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Fuller W Bazer
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
46
|
Toledo MZ, Baez GM, Garcia-Guerra A, Lobos NE, Guenther JN, Trevisol E, Luchini D, Shaver RD, Wiltbank MC. Effect of feeding rumen-protected methionine on productive and reproductive performance of dairy cows. PLoS One 2017; 12:e0189117. [PMID: 29261700 PMCID: PMC5738048 DOI: 10.1371/journal.pone.0189117] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/20/2017] [Indexed: 01/29/2023] Open
Abstract
The objectives of this study were to evaluate the effects of daily top-dressing (individually feeding on the top of the total mixed ration) with rumen-protected methionine (RPM) from 30 ± 3 until 126 ± 3 Days in milk on productive and reproductive performance in lactating dairy cows. A total of 309 lactating dairy Holstein cows (138 primiparous and 171 multiparous) were randomly assigned to treatment diets containing either RPM (21.2 g of RPM + 38.8 g of dried distillers grain; 2.34% Methionine [Met] of metabolizable protein [MP]) or Control (CON; 60 g of dried distillers grain; 1.87% Met of MP). Plasma amino acids were evaluated at the time of artificial insemination (AI) and near pregnancy diagnosis. Milk production and milk composition were evaluated monthly. Pregnancy was diagnosed on Day 28 (by Pregnancy-specific protein B [PSPB]), 32, 47, and 61 (by ultrasound) and sizes of embryonic and amniotic vesicle were determined by ultrasound on Day 33 after AI. Feeding RPM increased plasma Met at 6, 9, 12, and 18 hours after top-dressing with a peak at 12 hours (52.4 vs 26.0 μM; P < 0.001) and returned to basal by 24 hours. Cows fed RPM had a small increase in milk protein percentage (3.08 vs 3.00%; P = 0.04) with no differences on milk yield and milk protein yield. Additionally, in multiparous cows, RPM feeding increased milk protein (3.03 vs 2.95%; P = 0.05) and fat (3.45 vs 3.14%; P = 0.01) percentages, although no effects were observed in primiparous cows. In multiparous cows fed RPM, pregnancy loss was lower between Days 28 to 61 (19.6 [10/51] vs. 6.1% [3/49]; P = 0.03) or between Days 32 to 61 (8.9 [4/45] vs. 0 [0/0] %; P = 0.03), although, there was no effect of treatment on pregnancy loss in primiparous cows. Consistent with data on pregnancy loss, RPM feeding increased embryonic abdominal diameter (P = 0.01) and volume (P = 0.009) and amniotic vesicle volume (P = 0.04) on Day 33 of pregnancy in multiparous cows but had no effect on embryonic size in primiparous cows. Thus, the increase in plasma Met concentrations after feeding RPM was sufficient to produce a small increase in milk protein percentage and to improve embryonic size and pregnancy maintenance in multiparous cows. Further studies are needed to confirm these responses and understand the biological mechanisms that underlie these responses as well as the timing and concentrations of circulating Met that are needed to produce this effect.
Collapse
Affiliation(s)
- Mateus Z. Toledo
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, Unites States of America
| | - Giovanni M. Baez
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, Unites States of America
| | - Alvaro Garcia-Guerra
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, Unites States of America
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Nelson E. Lobos
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, Unites States of America
| | - Jerry N. Guenther
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, Unites States of America
| | - Eduardo Trevisol
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, Unites States of America
| | - Daniel Luchini
- Adisseo USA Inc., Alpharetta, Georgia, Unites States of America
| | - Randy D. Shaver
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, Unites States of America
| | - Milo C. Wiltbank
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, Unites States of America
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
47
|
Raheem KA. Cytokines, growth factors and macromolecules as mediators of implantation in mammalian species. Int J Vet Sci Med 2017; 6:S6-S14. [PMID: 30761315 PMCID: PMC6161864 DOI: 10.1016/j.ijvsm.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 12/12/2022] Open
Abstract
Implantation is one of the most critical steps in mammalian reproduction and implantation failure constitutes a major cause of infertility in both animals and humans. The mechanism of implantation is exclusively under the control of ovarian steroids progesterone and oestrogen whose actions are mediated in a complex phenomenon that involves a number of cytokines and growth factors. According to a plethora of literature on implantation in mammalian species, prominent of these cytokines and growth factor playing crucial roles in implantation include integrin, osteopontin, integrin, insulin-like growth factor and leukaemia inhibitory factor. Others are cluster domain 44, hyaluronan system and many non-adhesive molecules such as glycoprotein mucin 1. In this review, the specific roles played by these molecules are expatiated. Generally, they function as adhesive molecules that facilitate attachment of ligands/proteins on the trophectoderm to their respective receptors on endometrial luminal epithelia or vice versa. Sometimes, they also function as signalling molecules that enhance communication between implanting blastocyst and receptive endometrium. This is of particular importance in embryo culture and embryo transfer where in vitro derived blastocyst unlike the in vivo condition, is not exposed to these substances and hence, their absence may be partly responsible for the low implantation rate observed in the surrogate. Appreciation of the roles played by these cytokines, growth factors and molecules as revealed in this review will spur further research on these topics, facilitate their inclusion in embryo culture media (if positively required) and are considered as vital aspect while developing strategies to improve fertility.
Collapse
Affiliation(s)
- Kabir A Raheem
- Dept. of Theriogenology, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria
| |
Collapse
|
48
|
Lenis YY, Elmetwally MA, Tang W, Satterfield C, Dunlap K, Wu G, Bazer FW. Functional roles of agmatinase during the peri-implantation period of pregnancy in sheep. Amino Acids 2017; 50:293-308. [PMID: 29196820 DOI: 10.1007/s00726-017-2515-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/21/2017] [Indexed: 01/15/2023]
Abstract
This study investigated the effect of agmatine (Agm) in proliferation of ovine trophecdoderm cells (oTr1) as well as the importance of the arginine decarboxylase (ADC) and agmatinase (AGMAT) alternative pathway for synthesis of polyamines in ovine conceptuses during the peri-implantation period of pregnancy. Morpholino antisense oligonucleotides (MAOs) were used to inhibit translation of mRNAs for ODC1 alone, AGMAT alone, and their combination. Rambouillet ewes (N = 50) were assigned randomly to the following treatments on Day 8 of pregnancy: MAO control (n = 10); MAO-ODC1 (n = 8); MAO-ADC (n = 6); MAO-ODC1:MAO-ADC (n = 9); or MAO-ODC1:MAO-AGMAT (n = 9). Ewes were ovario-hysterectomized on Day 16 of pregnancy to obtain uterine flushings, uterine endometrium, and conceptus tissues. Inhibition of translation of both ODC1 and AGMAT resulted in 22% of ewes having morphologically and functionally normal (elongated and healthy) conceptuses designated MAO-ODC1:MAO-AGMAT (A). But, 78% of the MAO-ODC1:MAO-AGMAT ewes had morphologically and functionally abnormal (not elongated and fragmented) conceptuses designated MAO-ODC1:MAO-AGMAT (B). The pregnancy rate was less (22%; P < 0.05) for MAO-ODC1:MAO-AGMAT ewes than for MAO-control (80%), MAO-ODC1 (75%), MAO-ADC (84%), and MAO-ODC1:MAO-ADC (44%) ewes. Moreover, inhibition of translational of both ODC1 and AGMAT mRNAs increased expression of ADC, SLC22A1, SLC22A2, and SLC22A3 mRNAs, as well as abundances of agmatine, putrescine, spermindine, and spermine in conceptus tissue. However, MAO-ODC1:AGMAT(B) ewes had greater abundances of agmatine, putrescine, and spermidine and reduced amounts of spermine in uterine flushes. Thus, in vivo knockdown of translation of ODC1 and AGMAT mRNAs increased expression of genes for the synthesis and transport of polyamines in ovine conceptuses during the peri-implantation period of pregnancy.
Collapse
Affiliation(s)
- Yasser Y Lenis
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.,Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX, 77843, USA.,Centauro Research Group, School of Veterinary Medicine, Faculty of Agrarian Science, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia.,Faculty of Agricultural Sciences, UDCA, Calle 222 No. 55-37, Bogota, Colombia
| | - Mohammed A Elmetwally
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.,Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX, 77843, USA.,Faculty of Veterinary Medicine, Department of Theriogenology, Mansoura University, Mansoura, 35516, Egypt
| | - Wanjin Tang
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.,Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX, 77843, USA
| | - Carey Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Kathrin Dunlap
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.,Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA. .,Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
49
|
Abstract
Polyamines are polycationic molecules that contain two or more amino groups (-NH3 +) and are present in all eukaryotic and prokaryotic cells. Polyamines are synthesized from arginine, ornithine, and proline, and from methionine as the methyl-group donor. In the traditional pathway for polyamine synthesis, arginase converts arginine into ornithine, which is decarboxylated by ornithine decarboxylase (ODC1) to generate putrescine. The latter is converted to spermidine and spermine. Recent studies have indicated the existence of 'non-classical pathways' for the generation of putrescine from arginine and proline in animal cells. Specifically, arginine decarboxylase (ADC) catalyzes the conversion of arginine into agmatine, which is hydrolyzed by agmatinase (AGMAT) to form putrescine. Additionally, proline is oxidized by proline oxidase to yield pyrroline-5-carboxylate, which undergoes transamination with glutamate to produce ornithine for decarboxylation by ODC1. Intracellular production of polyamines is controlled by antizymes binding to and inactivating ODC1. Polyamines exert effects that include stimulation of cell division and proliferation, gene expression for the survival of cells, DNA and protein synthesis, regulation of apoptosis, oxidative stress, angiogenesis, and cell-cell communication activity. Accordingly, polyamines are essential for early embryonic development and successful pregnancy outcome in mammals. In this paper the main concepts on the history, structure and molecular pathways of polyamines as well as their physiological role on angiogenesis, and reproductive physiology are reviewed.
Collapse
|
50
|
Fernandes JRD, Jain S, Banerjee A. Expression of ODC1, SPD, SPM and AZIN1 in the hypothalamus, ovary and uterus during rat estrous cycle. Gen Comp Endocrinol 2017; 246:9-22. [PMID: 28315656 DOI: 10.1016/j.ygcen.2017.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/17/2017] [Accepted: 03/06/2017] [Indexed: 01/09/2023]
Abstract
The aim of the present study was to investigate variation in the expression pattern of ornithine decarboxylase (ODC1), spermine (SPM), spermidine (SPD) and antizyme inhibitor (AZIN1) in hypothalamus, ovary and uterus during the estrous cycle of rats. Further, to understand any correlation between polyamines and GnRH I expression in hypothalamus; effect of putrescine treatment on GnRH I expression in hypothalamus and progesterone and estradiol levels in serum were investigated. The study also aims in quantifying all the immunohistochemistry images obtained based on pixel counting algorithm to yield the relative pixel count. This algorithm uses a red green blue (RGB) colour thresholding approach to quantify the intensity of the chromogen present. The result of the present study demonstrates almost similar expression pattern of polyamine and polyamine related factors, ODC1, SPD, SPM and AZIN1, with that of hypothalamic GnRH I, all of which mainly localized in the medial preoptic area (MPA) of the hypothalamus, during the proestrus, estrus and diestrus. This suggest that hypothalamic GnRH I expression is under regulation of polyamines. The study showed significant increase in hypothalamic GnRH I expression for both the doses of putrescine treatment to adult female rats. Further, it was shown that in ovary expression pattern of ODC1, SPM, SPD and AZIN1 were similar with that of steroidogenic factor, StAR during the estrous cycle, and putrescine supplementation increased significantly estradiol and progesterone levels in serum, all suggesting ovarian polyamines are involved in regulation of ovarian steroidogenesis. Localization of these factors in the theca and granulosa cells suggest involvement of polyamines in the process of folliculogenesis and luteinization; and ODC1, SPD, SPM and AZIN1 in oocyte further suggests polyamine role in maintenance of oocyte physiology. Finally, in uterus SPM and AZIN1 were localized throughout the estrous cycle, being comparatively more during the metestrus phase. There was intense immunostaining of SPD in the luminal and glandular epithelium during the metestrus and diestrus phases of the estrous cycle suggesting these all the three polyamines as such play important role in regulation of uterine physiology.
Collapse
Affiliation(s)
- Joseph R D Fernandes
- Dept. of Biological Sciences, BITS Pilani KK Birla Goa Campus, Goa 403726, India
| | - Sammit Jain
- Dept. of Biological Sciences, BITS Pilani KK Birla Goa Campus, Goa 403726, India
| | - Arnab Banerjee
- Dept. of Biological Sciences, BITS Pilani KK Birla Goa Campus, Goa 403726, India.
| |
Collapse
|