1
|
He C, Wu H, Liu R, Liao J, Wang X, Shi H, Hou F, Reiter RJ, Liu G, Li X. Melatonin facilitates oocyte growth in goats and mice through increased nutrient reserves and enhanced mitochondrial function. FASEB J 2024; 38:e70052. [PMID: 39291773 DOI: 10.1096/fj.202400574r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/10/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Oogenesis involves two phases: initial volumetric growth driven by nutrient accumulation and subsequent nuclear maturation. While melatonin (MLT) has been employed as a supplement to enhance the quality of fully grown oocytes during nuclear maturation phase, its impact on oocyte growth remains poorly studied. Here, we provide in vivo evidence demonstrating that follicle-stimulating hormone increases MLT content in ovary. Administration of MLT improves oocyte growth and quality in mice and goats by enhancing nutrient reserves and mitochondrial function. Conversely, MLT-deficient mice have smaller oocytes and dysfunctional mitochondria. Exploring the clinical implications of MLT in promoting oocyte growth, we observe that a brief 2-day MLT treatment enhances oocyte quality and reproductive performance in older mice. These findings highlight the role of MLT in regulating oocyte growth and provide a specific treatment window for optimizing oocyte quality and reproductive performance in female animals.
Collapse
Affiliation(s)
- Changjiu He
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
- Xinjiang Western Animal Husbandry Co., Ltd, Shihezi, China
| | - Hao Wu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Sanya Institute of China Agricultural University, China Agricultural University, Beijing, China
| | - Ruiyan Liu
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianning Liao
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaodong Wang
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hongru Shi
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Fuqin Hou
- Xinjiang Western Animal Husbandry Co., Ltd, Shihezi, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Guoshi Liu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Sanya Institute of China Agricultural University, China Agricultural University, Beijing, China
| | - Xiang Li
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Gokyer D, Akinboro S, Zhou LT, Kleinhans A, Laronda MM, Duncan FE, Riley JK, Goldman KN, Babayev E. The oocyte microenvironment is altered in adolescents compared to oocyte donors. Hum Reprod Open 2024; 2024:hoae047. [PMID: 39211054 PMCID: PMC11361810 DOI: 10.1093/hropen/hoae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/03/2024] [Indexed: 09/04/2024] Open
Abstract
STUDY QUESTION Do the molecular signatures of cumulus cells (CCs) and follicular fluid (FF) of adolescents undergoing fertility preservation differ from that of oocyte donors? SUMMARY ANSWER The microenvironment immediately surrounding the oocyte, including the CCs and FF, is altered in adolescents undergoing fertility preservation compared to oocyte donors. WHAT IS KNOWN ALREADY Adolescents experience a period of subfecundity following menarche. Recent evidence suggests that this may be at least partially due to increased oocyte aneuploidy. Reproductive juvenescence in mammals is associated with suboptimal oocyte quality. STUDY DESIGN SIZE DURATION This was a prospective cohort study. Adolescents (10-19 years old, n = 23) and oocyte donors (22-30 years old, n = 31) undergoing ovarian stimulation and oocyte retrieval at a single center between 1 November 2020 and 1 May 2023 were enrolled in this study. PARTICIPANTS/MATERIALS SETTING METHODS Patient demographics, ovarian stimulation, and oocyte retrieval outcomes were collected for all participants. The transcriptome of CCs associated with mature oocytes was compared between adolescents (10-19 years old, n = 19) and oocyte donors (22-30 years old, n = 19) using bulk RNA-sequencing. FF cytokine profiles (10-19 years old, n = 18 vs 25-30 years old, n = 16) were compared using cytokine arrays. MAIN RESULTS AND THE ROLE OF CHANCE RNA-seq analysis revealed 581 differentially expressed genes in CCs of adolescents relative to oocyte donors, with 361 genes downregulated and 220 upregulated. Genes enriched in pathways involved in cell cycle and cell division (e.g. GO: 1903047, P = 3.5 × 10-43; GO: 0051983, P = 4.1 × 10-30; GO: 0000281, P = 7.7 × 10-15; GO: 0044839, P = 5.3 × 10-13) were significantly downregulated, while genes enriched in several pathways involved in cellular and vesicle organization (e.g. GO: 0010256, P = 1.2 × 10-8; GO: 0051129, P = 6.8 × 10-7; GO: 0016050, P = 7.4 × 10-7; GO: 0051640, P = 8.1 × 10-7) were upregulated in CCs of adolescents compared to oocyte donors. The levels of nine cytokines were significantly increased in FF of adolescents compared to oocyte donors: IL-1 alpha (2-fold), IL-1 beta (1.7-fold), I-309 (2-fold), IL-15 (1.6-fold), TARC (1.9-fold), TPO (2.1-fold), IGFBP-4 (2-fold), IL-12-p40 (1.7-fold), and ENA-78 (1.4-fold). Interestingly, seven of these cytokines have known pro-inflammatory roles. Importantly, neither the CC transcriptomes nor FF cytokine profiles were different in adolescents with or without cancer. LARGE SCALE DATA Original high-throughput sequencing data have been deposited in Gene Expression Omnibus (GEO) database with the accession number GSE265995. LIMITATIONS REASONS FOR CAUTION This study aims to gain insights into the associated gamete quality by studying the immediate oocyte microenvironment. The direct study of oocytes is more challenging due to sample scarcity, as they are cryopreserved for future use, but would provide a more accurate assessment of oocyte reproductive potential. WIDER IMPLICATIONS OF THE FINDINGS Our findings have implications for the adolescent fertility preservation cycles. Understanding the expected quality of cryopreserved eggs in this age group will lead to better counseling of these patients about their reproductive potential and may help to determine the number of eggs that is recommended to be banked to achieve a reasonable chance of future live birth(s). STUDY FUNDING/COMPETING INTERESTS This project was supported by Friends of Prentice organization SP0061324 (M.M.L. and E.B.), Gesualdo Family Foundation (Research Scholar: M.M.L.), and NIH/NICHD K12 HD050121 (E.B.). The authors have declared that no conflict of interest exists.
Collapse
Affiliation(s)
- Dilan Gokyer
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sophia Akinboro
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neuroscience, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Luhan T Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anna Kleinhans
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, USA
| | - Monica M Laronda
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Basic and Preclinical Science, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joan K Riley
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, USA
| | - Kara N Goldman
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, USA
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, USA
| |
Collapse
|
3
|
Bao S, Yin T, Liu S. Ovarian aging: energy metabolism of oocytes. J Ovarian Res 2024; 17:118. [PMID: 38822408 PMCID: PMC11141068 DOI: 10.1186/s13048-024-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/30/2024] [Indexed: 06/03/2024] Open
Abstract
In women who are getting older, the quantity and quality of their follicles or oocytes and decline. This is characterized by decreased ovarian reserve function (DOR), fewer remaining oocytes, and lower quality oocytes. As more women choose to delay childbirth, the decline in fertility associated with age has become a significant concern for modern women. The decline in oocyte quality is a key indicator of ovarian aging. Many studies suggest that age-related changes in oocyte energy metabolism may impact oocyte quality. Changes in oocyte energy metabolism affect adenosine 5'-triphosphate (ATP) production, but how related products and proteins influence oocyte quality remains largely unknown. This review focuses on oocyte metabolism in age-related ovarian aging and its potential impact on oocyte quality, as well as therapeutic strategies that may partially influence oocyte metabolism. This research aims to enhance our understanding of age-related changes in oocyte energy metabolism, and the identification of biomarkers and treatment methods.
Collapse
Affiliation(s)
- Shenglan Bao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, , Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China.
| |
Collapse
|
4
|
Wen J, Feng Y, Xue L, Yuan S, Chen Q, Luo A, Wang S, Zhang J. High-fat diet-induced L-saccharopine accumulation inhibits estradiol synthesis and damages oocyte quality by disturbing mitochondrial homeostasis. Gut Microbes 2024; 16:2412381. [PMID: 39410876 PMCID: PMC11485700 DOI: 10.1080/19490976.2024.2412381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 09/15/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
High-fat diet (HFD) has been linked to female infertility. However, the specific age at which HFD impacts ovarian function and the underlying mechanisms remain poorly understood. Here, we administered a HFD to female mice at various developmental stages: pre-puberty (4 weeks old), post-puberty (6 weeks old), young adult (9 weeks old), and middle age (32 weeks old). Our observations indicated that ovarian function was most significantly compromised when HFD was initiated at post-puberty. Consequently, post-puberty mice were chosen for further investigation. Through transplantation of fecal bacteria from the HFD mice to the mice on a normal diet, we confirmed that gut microbiota dysbiosis contributed to HFD-induced deteriorated fertility and disrupted estradiol synthesis. Utilizing untargeted and targeted metabolomics analyses, we identified L-saccharopine as a key metabolite, which was enriched in the feces, serum, and ovaries of HFD and HFD-FMT mice. Subsequent in vitro and in vivo experiments demonstrated that L-saccharopine disrupted mitochondrial homeostasis by impeding AMPKα/MFF-mediated mitochondrial fission. This disruption ultimately hindered estradiol synthesis and compromised oocyte quality. AICAR, an activator of AMPKα, ameliorated L-saccharopine induced mitochondrial damage in granulosa cells and oocytes, thereby enhancing E2 synthesis and improving oocyte quality. Collectively, our findings indicate that the accumulation of L-saccharopine may play a pivotal role in mediating HFD-induced ovarian dysfunction. This highlights the potential therapeutic benefits of targeting the gut microbiota-metabolite-ovary axis to address HFD-induced ovarian dysfunction.
Collapse
Affiliation(s)
- Jingyi Wen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Yanzhi Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Suzhen Yuan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
5
|
González-Alvarez ME, Keating AF. Hepatic and ovarian effects of perfluorooctanoic acid exposure differ in lean and obese adult female mice. Toxicol Appl Pharmacol 2023; 474:116614. [PMID: 37422089 DOI: 10.1016/j.taap.2023.116614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Obesity and overweight cause poor oocyte quality, miscarriage, infertility, polycystic ovarian syndrome, and offspring birth defects and affects 40% and 20% of US women and girls, respectively. Perfluorooctanoic acid (PFOA), a per- and poly-fluoroalkyl substance (PFAS), is environmentally persistent and has negative female reproductive effects including endocrine disruption, oxidative stress, altered menstrual cyclicity, and decreased fertility in humans and animal models. PFAS exposure is associated with non-alcoholic fatty liver disease which affects ∼24-26% of the US population. This study investigated the hypothesis that PFOA exposure impacts hepatic and ovarian chemical biotransformation and alters the serum metabolome. At 7 weeks of age, female lean, wild type (KK.Cg-a/a) or obese (KK.Cg-Ay/J) mice received saline (C) or PFOA (2.5 mg/Kg) per os for 15 d. Hepatic weight was increased by PFOA exposure in both lean and obese mice (P < 0.05) and obesity also increased liver weight (P < 0.05) compared to lean mice. The serum metabolome was also altered (P < 0.05) by PFOA exposure and differed between lean and obese mice. Exposure to PFOA altered (P < 0.05) the abundance of ovarian proteins with roles in xenobiotic biotransformation (lean - 6; obese - 17), metabolism of fatty acids (lean - 3; obese - 9), cholesterol (lean - 8; obese - 11), amino acids (lean - 18; obese - 19), glucose (lean - 7; obese - 10), apoptosis (lean - 18; obese - 13), and oxidative stress (lean - 3; obese - 2). Use of qRT-PCR determined that exposure to PFOA increased (P < 0.05) hepatic Ces1 and Chst1 in lean but Ephx1 and Gstm3 in obese mice. Also, obesity basally increased (P < 0.05) Nat2, Gpi and Hsd17b2 mRNA levels. These data identify molecular changes resultant from PFOA exposure that may cause liver injury and ovotoxicity in females. In addition, differences in toxicity induced by PFOA exposure occurs in lean and obese mice.
Collapse
Affiliation(s)
- M Estefanía González-Alvarez
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, IA 50011, United States of America
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
6
|
Schindler M, Geisler SM, Seeling T, Navarrete Santos A. Ectopic Lipid Accumulation Correlates with Cellular Stress in Rabbit Blastocysts from Diabetic Mothers. Int J Mol Sci 2023; 24:11776. [PMID: 37511535 PMCID: PMC10380447 DOI: 10.3390/ijms241411776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Maternal diabetes mellitus in early pregnancy leads to hyperlipidemia in reproductive tract organs and an altered embryonic environment. To investigate the consequences on embryonic metabolism, the effect of high environmental-lipid levels was studied in rabbit blastocysts cultured with a lipid mixture in vitro and in blastocysts from diabetic, hyperlipidemic rabbits in vivo. The gene and protein expression of marker molecules involved in lipid metabolism and stress response were analyzed. In diabetic rabbits, the expression of embryoblast genes encoding carnitine palmityl transferase 1 and peroxisome proliferator-activated receptors α and γ increased, whereas trophoblast genes encoding for proteins associated with fatty acid synthesis and β-oxidation decreased. Markers for endoplasmic (activating transcription factor 4) and oxidative stress (nuclear factor erythroid 2-related factor 2) were increased in embryoblasts, while markers for cellular redox status (superoxide dismutase 2) and stress (heat shock protein 70) were increased in trophoblasts from diabetic rabbits. The observed regulation pattern in vivo was consistent with an adaptation response to the hyperlipidemic environment, suggesting that maternal lipids have an impact on the intracellular metabolism of the preimplantation embryo in diabetic pregnancy and that embryoblasts are particularly vulnerable to metabolic stress.
Collapse
Affiliation(s)
- Maria Schindler
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University, 06108 Halle, Germany
| | - Sophia Mareike Geisler
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University, 06108 Halle, Germany
| | - Tom Seeling
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University, 06108 Halle, Germany
| | - Anne Navarrete Santos
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University, 06108 Halle, Germany
| |
Collapse
|
7
|
Tan TCY, Dunning KR. Non-invasive assessment of oocyte developmental competence. Reprod Fertil Dev 2022; 35:39-50. [PMID: 36592982 DOI: 10.1071/rd22217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oocyte quality is a key factor influencing IVF success. The oocyte and surrounding cumulus cells, known collectively as the cumulus oocyte complex (COC), communicate bi-directionally and regulate each other's metabolic function to support oocyte growth and maturation. Many studies have attempted to associate metabolic markers with oocyte quality, including metabolites in follicular fluid or 'spent medium' following maturation, gene expression of cumulus cells and measuring oxygen consumption in medium surrounding COCs. However, these methods fail to provide spatial metabolic information on the separate oocyte and cumulus cell compartments. Optical imaging of the autofluorescent cofactors - reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] and flavin adenine dinucleotide (FAD) - has been put forward as an approach to generate spatially resolved measurements of metabolism within individual cells of the COC. The optical redox ratio (FAD/[NAD(P)H+FAD]), calculated from these cofactors, can act as an indicator of overall metabolic activity in the oocyte and cumulus cell compartments. Confocal microscopy, fluorescence lifetime imaging microscopy (FLIM) and hyperspectral microscopy may be used for this purpose. This review provides an overview of current optical imaging techniques that capture the inner biochemistry within cells of the COC and discusses the potential for such imaging to assess oocyte developmental competence.
Collapse
Affiliation(s)
- Tiffany C Y Tan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Kylie R Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
8
|
Smits A, Marei WFA, Moorkens K, Bols PEJ, De Neubourg D, Leroy JLMR. Obese outbred mice only partially benefit from diet normalization or calorie restriction as preconception care interventions to improve metabolic health and oocyte quality. Hum Reprod 2022; 37:2867-2884. [PMID: 36342870 DOI: 10.1093/humrep/deac226] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
STUDY QUESTION Can diet normalization or a calorie-restricted diet for 2 or 4 weeks be used as a preconception care intervention (PCCI) in Western-type diet-induced obese Swiss mice to restore metabolic health and oocyte quality? SUMMARY ANSWER Metabolic health and oocyte developmental competence was already significantly improved in the calorie-restricted group after 2 weeks, while obese mice that underwent diet normalization showed improved metabolic health after 2 weeks and improved oocyte quality after 4 weeks. WHAT IS KNOWN ALREADY Maternal obesity is linked with reduced metabolic health and oocyte quality; therefore, infertile obese women are advised to lose weight before conception to increase pregnancy chances. However, as there are no univocal guidelines and the specific impact on oocyte quality is not known, strategically designed studies are needed to provide fundamental insights in the importance of the type and duration of the dietary weight loss strategy for preconception metabolic health and oocyte quality. STUDY DESIGN, SIZE, DURATION Outbred female Swiss mice were fed a control (CTRL) or high-fat/high-sugar (HF/HS) diet. After 7 weeks, some of the HF mice were put on two different PCCIs, resulting in four treatment groups: (i) only control diet for up to 11 weeks (CTRL_CTRL), (ii) only HF diet for up to 11 weeks (HF_HF), (iii) switch at 7 weeks from an HF to an ad libitum control diet (HF_CTRL) and (iv) switch at 7 weeks from an HF to a 30% calorie-restricted control diet (HF_CR) for 2 or 4 weeks. Metabolic health and oocyte quality were assessed at 2 and 4 weeks after the start of the intervention (n = 8 mice/treatment/time point). PARTICIPANTS/MATERIALS, SETTING, METHODS Changes in body weight were recorded. To study the impact on metabolic health, serum insulin, glucose, triglycerides, total cholesterol and alanine aminotransferase concentrations were measured, and glucose tolerance and insulin sensitivity were analyzed at PCCI Weeks 2 and 4. The quality of in vivo matured oocytes was evaluated by assessing intracellular lipid droplet content, mitochondrial activity and localization of active mitochondria, mitochondrial ultrastructure, cumulus cell targeted gene expression and oocyte in vitro developmental competence. MAIN RESULTS AND THE ROLE OF CHANCE Significant negative effects of an HF/HS diet on metabolic health and oocyte quality were confirmed (P < 0.05). HF_CTRL mice already showed restored body weight, serum lipid profile and glucose tolerance, similar to the CTRL_CTRL group after only 2 weeks of PCCI (P < 0.05 compared with HF_HF) while insulin sensitivity was not improved. Oocyte lipid droplet volume was reduced at PCCI Week 2 (P < 0.05 compared with HF_HF), while mitochondrial localization and activity were still aberrant. At PCCI Week 4, oocytes from HF_CTRL mice displayed significantly fewer mitochondrial ultrastructural abnormalities and improved mitochondrial activity (P < 0.05), while lipid content was again elevated. The in vitro developmental capacity of the oocytes was improved but did not reach the levels of the CTRL_CTRL mice. HF_CR mice completely restored cholesterol concentrations and insulin sensitivity already after 2 weeks. Other metabolic health parameters were only restored after 4 weeks of intervention with clear signs of fasting hypoglycemia. Although all mitochondrial parameters in HF_CR oocytes stayed aberrant, oocyte developmental competence in vitro was completely restored already after 2 weeks of intervention. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION In this study, we applied a relevant HF/HS Western-type diet to induce obesity in an outbred mouse model. Nevertheless, physiological differences should be considered when translating these results to the human setting. However, the in-depth study and follow-up of the metabolic health changes together with the strategic implementation of specific PCCI intervals (2 and 4 weeks) related to the duration of the mouse folliculogenesis (3 weeks), should aid in the extrapolation of our findings to the human setting. WIDER IMPLICATIONS OF THE FINDINGS Our study results with a specific focus on oocyte quality provide important fundamental insights to be considered when developing preconception care guidelines for obese metabolically compromised women wishing to become pregnant. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Flemish Research Fund (FWO-SB grant 1S25020N and FWO project G038619N). The authors declare there are no conflicts of interest.
Collapse
Affiliation(s)
- A Smits
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - W F A Marei
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium.,Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - K Moorkens
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - P E J Bols
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - D De Neubourg
- Centre for Reproductive Medicine, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - J L M R Leroy
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
9
|
Yang B, Huang S, Yang N, Cao A, Zhao L, Zhang J, Zhao G, Ma Q. Porcine bile acids promote the utilization of fat and vitamin A under low-fat diets. Front Nutr 2022; 9:1005195. [PMID: 36245518 PMCID: PMC9554479 DOI: 10.3389/fnut.2022.1005195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Fat-soluble vitamin malabsorption may occur due to low dietary fat content, even in the presence of an adequate supply of fat-soluble vitamins. Bile acids (BAs) have been confirmed as emulsifiers to promote fat absorption in high-fat diets. However, there are no direct evidence of exogenous BAs promoting the utilization of fat-soluble vitamins associated with fat absorption in vitro and in vivo. Therefore, we chose laying hens as model animals, as their diet usually does not contain much fat, to expand the study of BAs. BAs were investigated in vitro for emulsification, simulated intestinal digestion, and release rate of fat-soluble vitamins. Subsequently, a total of 450 healthy 45-week-old Hy-Line Gray laying hens were chosen for an 84-day feeding trial. They were divided into five treatments, feeding diets supplemented with 0, 30, 60, 90, and 120 mg/kg BAs, respectively. No extra fat was added to the basic diet (crude fat was 3.23%). In vitro, BAs effectively emulsified the water-oil interface. Moreover, BAs promoted the hydrolysis of fat by lipase to release more fatty acids. Although BAs increased the release rates of vitamins A, D, and E from vegetable oils, BAs improved for the digestion of vitamin A more effectively. Dietary supplementation of 60 mg/kg BAs in laying hens markedly improved the laying performance. The total number of follicles in ovaries increased in 30 and 60 mg/kg BAs groups. Both the crude fat and total energy utilization rates of BAs groups were improved. Lipase and lipoprotein lipase activities were enhanced in the small intestine in 60, 90, and 120 mg/kg BAs groups. Furthermore, we observed an increase in vitamin A content in the liver and serum of laying hens in the 60, 90, and 120 mg/kg BAs groups. The serum IgA content in the 90 and 120 mg/kg BAs groups was significantly improved. A decrease in serum malondialdehyde levels and an increase in glutathione peroxidase activity were also observed in BAs groups. The present study concluded that BAs promoted the absorption of vitamin A by promoting the absorption of fat even under low-fat diets, thereupon improving the reproduction and health of model animals.
Collapse
Affiliation(s)
- Bowen Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Aizhi Cao
- Dezhou Key Laboratory for Applied Bile Acid Research, Shandong Longchang Animal Health Product Co., Ltd., Dezhou, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianyun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoxian Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Malott KF, Leon Parada K, Lee M, Swanson E, Luderer U. Gestational Benzo[a]pyrene Exposure Destroys F1 Ovarian Germ Cells Through Mitochondrial Apoptosis Pathway and Diminishes Surviving Oocyte Quality. Toxicol Sci 2022; 190:23-40. [PMID: 35993611 PMCID: PMC9960072 DOI: 10.1093/toxsci/kfac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Polycyclic aromatic hydrocarbons, including benzo[a]pyrene (BaP), are products of incomplete combustion. In female mouse embryos primordial germ cells proliferate before and after arriving at the gonadal ridge around embryonic (E) 10 and begin entering meiosis at E13.5. Now oocytes, they arrest in the first meiotic prophase beginning at E17.5. We previously reported dose-dependent depletion of ovarian follicles in female mice exposed to 2 or 10 mg/kg-day BaP E6.5-15.5. We hypothesized that embryonic ovaries are more sensitive to gestational BaP exposure during the mitotic developmental window, and that this exposure results in persistent oxidative stress in ovaries and oocytes of exposed F1 female offspring. We orally dosed timed-pregnant female mice with 0 or 2 mg/kg-day BaP in oil from E6.5-11.5 (mitotic window) or E12.5-17.5 (meiotic window). Cultured E13.5 ovaries were utilized to investigate the mechanism of BaP-induced germ cell death. We observed statistically significant follicle depletion and increased ovarian lipid peroxidation in F1 pubertal ovaries following BaP exposure during either prenatal window. Culture of E13.5 ovaries with BaP induced germ cell DNA damage and release of cytochrome c from the mitochondria in oocytes, confirming that BaP exposure induced apoptosis via the mitochondrial pathway. Mitochondrial membrane potential, oocyte lipid droplet (LD) volume, and mitochondrial-LD colocalization were decreased and mitochondrial superoxide levels were increased in the MII oocytes of F1 females exposed gestationally to BaP. Results demonstrate similar sensitivity to germ cell depletion and persistent oxidative stress in F1 ovaries and oocytes following gestational BaP exposure during mitotic or meiotic windows.
Collapse
Affiliation(s)
- Kelli F Malott
- Environmental Health Sciences Graduate Program, University of California, Irvine, Irvine, California 92617, USA,Department of Environmental and Occupational Health, University of California, Irvine, Irvine, California 92617, USA
| | - Kathleen Leon Parada
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92617, USA
| | - Melody Lee
- Department of Medicine, University of California, Irvine, Irvine, California 92617, USA
| | - Edward Swanson
- Department of Medicine, University of California, Irvine, Irvine, California 92617, USA
| | - Ulrike Luderer
- To whom correspondence should be addressed at Center for Occupational and Environmental Health, 100 Theory Drive, Suite 100, Irvine, CA 92617, USA. E-mail:
| |
Collapse
|
11
|
Malott KF, Reshel S, Ortiz L, Luderer U. Glutathione deficiency decreases lipid droplet stores and increases reactive oxygen species in mouse oocytes†. Biol Reprod 2022; 106:1218-1231. [PMID: 35238901 PMCID: PMC9198951 DOI: 10.1093/biolre/ioac032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/06/2022] [Accepted: 02/01/2022] [Indexed: 12/30/2022] Open
Abstract
Glutathione (GSH) is a tripeptide thiol antioxidant that has been shown to be important to overall reproductive health. Glutamate cysteine ligase, the rate-limiting enzyme in GSH synthesis consists of a catalytic and a modifier (GCLM) subunit. We previously showed that oxidative stress in the ovary and oocytes of Gclm-/- mice is associated with accelerated age-related decline in ovarian follicles and decreased female fertility due to preimplantation embryonic mortality. Mammalian preimplantation development is a highly regulated and energy-intensive process that primarily relies on coordination between lipid droplets (LDs) and mitochondria to maintain cellular homeostasis. In this study, we hypothesized that GSH deficiency in oocytes increases oxidative stress, leading to increased mitochondrial dysfunction and decreased LD consumption, thereby decreasing oocyte developmental competence. We observed that Gclm-/- oocytes have increased oxidative stress, primarily in the form of mitochondrial superoxide and decreased subcortical mitochondrial clusters. Further, Gclm-/- oocytes have decreased mitochondrial membrane potential (ΔΨm) compared with Gclm+/+. We surmise this is likely due to the decreased availability of LDs, as we observed a significant decrease in LD content in Gclm-/- oocytes compared with Gclm+/+. The decreased oocyte LD content is likely related to an altered serum lipidome, with Gclm-/- serum having relatively lower unsaturated fatty acids and triglycerides than that of Gclm+/+ and Gclm+/- females. Altogether these data support that decreased LDs and increased oxidative stress are primary drivers of decreased oocyte developmental competence in GSH-deficient oocytes.
Collapse
Affiliation(s)
- Kelli F Malott
- Environmental Health Sciences Graduate Program, University of California, Irvine, CA, USA
- Department of Environmental and Occupational Health, University of California, Irvine, CA, USA
- Department of Medicine, University of California, Irvine, CA, USA
| | - Samantha Reshel
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Laura Ortiz
- Department of Medicine, University of California, Irvine, CA, USA
| | - Ulrike Luderer
- Environmental Health Sciences Graduate Program, University of California, Irvine, CA, USA
- Department of Environmental and Occupational Health, University of California, Irvine, CA, USA
- Department of Medicine, University of California, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| |
Collapse
|
12
|
Zhu S, Wang Q. Metabolic control of oocyte development. Biol Reprod 2022; 107:54-61. [PMID: 35470861 DOI: 10.1093/biolre/ioac082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/19/2022] [Accepted: 04/18/2022] [Indexed: 11/12/2022] Open
Abstract
Well balanced and timed metabolism is essential for oocyte development. The effects of extrinsic nutrients on oocyte maturation have been widely reported. In contrast, intrinsic control of oogenesis by intracellular metabolites and metabolic enzymes has received little attention. The comprehensive characterization of metabolic patterns could lead to more complete understanding of regulatory mechanisms underlying oocyte development. A cell's metabolic state is integrated with epigenetic regulation. Epigenetic modifications in germ cells are therefore sensitive to parental environmental exposures. Nevertheless, direct genetic evidence for metabolites involvement in epigenetic establishment during oocyte development is still lacking. Moreover, metabolic disorder-induced epigenetic perturbations during oogenesis might mediate the inter/transgenerational effects of environmental insults. The molecular mechanisms responsible for this deserve further investigation. Here, we summarize the findings on metabolic regulation in oocyte maturation, and how it contributes to oocyte epigenetic modification. Finally, we propose a mouse model that metabolic disorder in oocyte serves as a potential factor mediating the maternal environment effects on offspring health.
Collapse
Affiliation(s)
- Shuai Zhu
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing 211166, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
13
|
Carnitines as Mitochondrial Modulators of Oocyte and Embryo Bioenergetics. Antioxidants (Basel) 2022; 11:antiox11040745. [PMID: 35453430 PMCID: PMC9024607 DOI: 10.3390/antiox11040745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023] Open
Abstract
Recently, the importance of bioenergetics in the reproductive process has emerged. For its energetic demand, the oocyte relies on numerous mitochondria, whose activity increases during embryo development under a fine regulation to limit ROS production. Healthy oocyte mitochondria require a balance of pyruvate and fatty acid oxidation. Transport of activated fatty acids into mitochondria requires carnitine. In this regard, the interest in the role of carnitines as mitochondrial modulators in oocyte and embryos is increasing. Carnitine pool includes the un-esterified l-carnitine (LC) and carnitine esters, such as acetyl-l-carnitine (ALC) and propionyl-l-carnitine (PLC). In this review, carnitine medium supplementation for counteracting energetic and redox unbalance during in vitro culture and cryopreservation is reported. Although most studies have focused on LC, there is new evidence that the addition of ALC and/or PLC may boost LC effects. Pathways activated by carnitines include antiapoptotic, antiglycative, antioxidant, and antiinflammatory signaling. Nevertheless, the potential of carnitine to improve energetic metabolism and oocyte and embryo competence remains poorly investigated. The importance of carnitine as a mitochondrial modulator may suggest that this molecule may exert a beneficial role in ovarian disfunctions associated with metabolic and mitochondrial alterations, including PCOS and reproductive aging.
Collapse
|
14
|
Liu T, Qu J, Tian M, Yang R, Song X, Li R, Yan J, Qiao J. Lipid Metabolic Process Involved in Oocyte Maturation During Folliculogenesis. Front Cell Dev Biol 2022; 10:806890. [PMID: 35433675 PMCID: PMC9009531 DOI: 10.3389/fcell.2022.806890] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Oocyte maturation is a complex and dynamic process regulated by the coordination of ovarian cells and numerous extraovarian signals. From mammal studies, it is learnt that lipid metabolism provides sufficient energy for morphological and cellular events during folliculogenesis, and numerous lipid metabolites, including cholesterol, lipoproteins, and 14-demethyl-14-dehydrolanosterol, act as steroid hormone precursors and meiotic resumption regulators. Endogenous and exogenous signals, such as gonadotropins, insulin, and cortisol, are the upstream regulators in follicular lipid metabolic homeostasis, forming a complex and dynamic network in which the key factor or pathway that plays the central role is still a mystery. Though lipid metabolites are indispensable, long-term exposure to a high-fat environment will induce irreversible damage to follicular cells and oocyte meiosis. This review specifically describes the transcriptional expression patterns of several lipid metabolism–related genes in human oocytes and granulosa cells during folliculogenesis, illustrating the spatiotemporal lipid metabolic changes in follicles and the role of lipid metabolism in female reproductive capacity. This study aims to elaborate the impact of lipid metabolism on folliculogenesis, thus providing guidance for improving the fertility of obese women and the clinical outcome of assisted reproduction.
Collapse
Affiliation(s)
- Tao Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiangxue Qu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Mengyuan Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Xueling Song
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Jie Yan,
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Babayev E, Duncan FE. Age-associated changes in cumulus cells and follicular fluid: the local oocyte microenvironment as a determinant of gamete quality. Biol Reprod 2022; 106:351-365. [PMID: 34982142 PMCID: PMC8862720 DOI: 10.1093/biolre/ioab241] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/15/2021] [Accepted: 12/30/2021] [Indexed: 01/07/2023] Open
Abstract
The ovary is the first organ to age in humans with functional decline evident already in women in their early 30s. Reproductive aging is characterized by a decrease in oocyte quantity and quality, which is associated with an increase in infertility, spontaneous abortions, and birth defects. Reproductive aging also has implications for overall health due to decreased endocrinological output. Understanding the mechanisms underlying reproductive aging has significant societal implications as women globally are delaying childbearing and medical interventions have greatly increased the interval between menopause and total lifespan. Age-related changes inherent to the female gamete are well-characterized and include defects in chromosome and mitochondria structure, function, and regulation. More recently, it has been appreciated that the extra-follicular ovarian environment may have important direct or indirect impacts on the developing gamete, and age-dependent changes include increased fibrosis, inflammation, stiffness, and oxidative damage. The cumulus cells and follicular fluid that directly surround the oocyte during its final growth phase within the antral follicle represent additional critical local microenvironments. Here we systematically review the literature and evaluate the studies that investigated the age-related changes in cumulus cells and follicular fluid. Our findings demonstrate unique genetic, epigenetic, transcriptomic, and proteomic changes with associated metabolomic alterations, redox status imbalance, and increased apoptosis in the local oocyte microenvironment. We propose a model of how these changes interact, which may explain the rapid decline in gamete quality with age. We also review the limitations of published studies and highlight future research frontiers.
Collapse
Affiliation(s)
- Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
16
|
Tsuji A, Ikeda Y, Murakami M, Kitagishi Y, Matsuda S. Reduction of oocyte lipid droplets and meiotic failure due to biotin deficiency was not rescued by restoring the biotin nutritional status. Nutr Res Pract 2022; 16:314-329. [PMID: 35663441 PMCID: PMC9149319 DOI: 10.4162/nrp.2022.16.3.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/29/2021] [Accepted: 09/09/2021] [Indexed: 11/04/2022] Open
Affiliation(s)
- Ai Tsuji
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women's University, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women's University, Nara 630-8506, Japan
| | - Mutsumi Murakami
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women's University, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women's University, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women's University, Nara 630-8506, Japan
| |
Collapse
|
17
|
Modulation of lipid metabolism through multiple pathways during oocyte maturation and embryo culture in bovine. ZYGOTE 2021; 30:258-266. [PMID: 34405786 DOI: 10.1017/s0967199421000629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lipid accumulation occurs in cultured embryos and is associated with reduced cryotolerance. Here we report the use of a multiple pathway lipid modulator cocktail (l-carnitine, linoleic acid and forskolin) to improve cryosurvival. First, we stained oocytes and embryos with Oil Red to examine the time course of lipid accumulation during in vitro fertilization (IVF) and embryo culture. Then we evaluated the effects of the lipid modulators cocktail on lipid content, developmental rates and survival after vitrification. In our conditions, lipid accumulation was detected (P < 0.05) at the end of in vitro maturation (IVM) and after 4 days of embryo culture (D4-D5). In experiment 1, we used lipid modulator cocktail during IVM. Reduced (P < 0.05) lipid accumulation was detected in oocytes (Control: 49.9 ± 1.6, Lip. Mod. IVM: 45.0 ± 1.8) but no changes were present at blastocyst stage (Control: 62.4 ± 2.6, Lip. Mod. IVM: 66.8 ± 2.7). Treated oocytes presented decreased (P < 0.05) blastocyst rates and lower (P < 0.05) re-expansion after vitrification. In experiment 2, lipid modulators cocktail was used during embryo culture (from D4-D7 or D6-D7). Treatment had an effect on lipid metabolism, as lipid content was increased (P < 0.05) in D7 blastocysts in treated groups (Control: 52.7 ± 3.1a, D4: 65.9 ± 2.6b, D6: 78.1 ± 2.7b). However, no effect was present for cleavage, blastocyst and cryosurvival rates. No difference was detected in mean cell number comparing the three groups (Control: 78.9 ± 9.6, D4: 82.6 ± 16.5, D6: 68.3 ± 7.8), but apoptosis rate was increased (P < 0.05) in vitrified-warmed blastocysts from treated groups (Control: 14.77*, D4: 22.28, D6: 22.22). We concluded that the combined use of lipid modulators was efficient to promote changes in lipid content of oocytes and embryos in bovine, but those changes did not reflect positively on embryo development or cryosurvival.
Collapse
|
18
|
Richani D, Dunning KR, Thompson JG, Gilchrist RB. Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence. Hum Reprod Update 2020; 27:27-47. [PMID: 33020823 DOI: 10.1093/humupd/dmaa043] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/19/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Within the antral follicle, the oocyte is reliant on metabolic support from its surrounding somatic cells. Metabolism plays a critical role in oocyte developmental competence (oocyte quality). In the last decade, there has been significant progress in understanding the metabolism of the cumulus-oocyte complex (COC) during its final stages of growth and maturation in the follicle. Certain metabolic conditions (e.g. obesity) or ART (e.g. IVM) perturb COC metabolism, providing insights into metabolic regulation of oocyte quality. OBJECTIVE AND RATIONALE This review provides an update on the progress made in our understanding of COC metabolism, and the metabolic conditions that influence both meiotic and developmental competence of the oocyte. SEARCH METHODS The PubMed database was used to search for peer-reviewed original and review articles. Searches were performed adopting the main terms 'oocyte metabolism', 'cumulus cell metabolism', 'oocyte maturation', 'oocyte mitochondria', 'oocyte metabolism', 'oocyte developmental competence' and 'oocyte IVM'. OUTCOMES Metabolism is a major determinant of oocyte quality. Glucose is an essential requirement for both meiotic and cytoplasmic maturation of the COC. Glucose is the driver of cumulus cell metabolism and is essential for energy production, extracellular matrix formation and supply of pyruvate to the oocyte for ATP production. Mitochondria are the primary source of ATP production within the oocyte. Recent advances in real-time live cell imaging reveal dynamic fluctuations in ATP demand throughout oocyte maturation. Cumulus cells have been shown to play a central role in maintaining adequate oocyte ATP levels by providing metabolic support through gap junctional communication. New insights have highlighted the importance of oocyte lipid metabolism for oocyte oxidative phosphorylation for ATP production, meiotic progression and developmental competence. Within the last decade, several new strategies for improving the developmental competence of oocytes undergoing IVM have emerged, including modulation of cyclic nucleotides, the addition of precursors for the antioxidant glutathione or endogenous maturation mediators such as epidermal growth factor-like peptides and growth differentiation factor 9/bone morphogenetic protein 15. These IVM additives positively alter COC metabolic endpoints commonly associated with oocyte competence. There remain significant challenges in the study of COC metabolism. Owing to the paucity in non-invasive or in situ techniques to assess metabolism, most work to date has used in vitro or ex vivo models. Additionally, the difficulty of measuring oocyte and cumulus cell metabolism separately while still in a complex has led to the frequent use of denuded oocytes, the results from which should be interpreted with caution since the oocyte and cumulus cell compartments are metabolically interdependent, and oocytes do not naturally exist in a naked state until after fertilization. There are emerging tools, including live fluorescence imaging and photonics probes, which may provide ways to measure the dynamic nature of metabolism in a single oocyte, potentially while in situ. WIDER IMPLICATIONS There is an association between oocyte metabolism and oocyte developmental competence. Advancing our understanding of basic cellular and biochemical mechanisms regulating oocyte metabolism may identify new avenues to augment oocyte quality and assess developmental potential in assisted reproduction.
Collapse
Affiliation(s)
- Dulama Richani
- School of Women's and Children's Health, Fertility & Research Centre, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Kylie R Dunning
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, Australia
| | - Jeremy G Thompson
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, Australia
| | - Robert B Gilchrist
- School of Women's and Children's Health, Fertility & Research Centre, University of New South Wales Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Histone Acetyltransferase MOF Blocks Acquisition of Quiescence in Ground-State ESCs through Activating Fatty Acid Oxidation. Cell Stem Cell 2020; 27:441-458.e10. [PMID: 32610040 DOI: 10.1016/j.stem.2020.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/26/2020] [Accepted: 06/07/2020] [Indexed: 02/08/2023]
Abstract
Self-renewing embryonic stem cells (ESCs) respond to environmental cues by exiting pluripotency or entering a quiescent state. The molecular basis underlying this fate choice remains unclear. Here, we show that histone acetyltransferase MOF plays a critical role in this process through directly activating fatty acid oxidation (FAO) in the ground-state ESCs. We further show that the ground-state ESCs particularly rely on elevated FAO for oxidative phosphorylation (OXPHOS) and energy production. Mof deletion or FAO inhibition induces bona fide quiescent ground-state ESCs with an intact core pluripotency network and transcriptome signatures akin to the diapaused epiblasts in vivo. Mechanistically, MOF/FAO inhibition acts through reducing mitochondrial respiration (i.e., OXPHOS), which in turn triggers reversible pluripotent quiescence specifically in the ground-state ESCs. The inhibition of FAO/OXPHOS also induces quiescence in naive human ESCs. Our study suggests a general function of the MOF/FAO/OXPHOS axis in regulating cell fate determination in stem cells.
Collapse
|
20
|
A Comparative Analysis of Oocyte Development in Mammals. Cells 2020; 9:cells9041002. [PMID: 32316494 PMCID: PMC7226043 DOI: 10.3390/cells9041002] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Sexual reproduction requires the fertilization of a female gamete after it has undergone optimal development. Various aspects of oocyte development and many molecular actors in this process are shared among mammals, but phylogeny and experimental data reveal species specificities. In this chapter, we will present these common and distinctive features with a focus on three points: the shaping of the oocyte transcriptome from evolutionarily conserved and rapidly evolving genes, the control of folliculogenesis and ovulation rate by oocyte-secreted Growth and Differentiation Factor 9 and Bone Morphogenetic Protein 15, and the importance of lipid metabolism.
Collapse
|
21
|
Tahir MS, Nguyen LT, Schulz BL, Boe-Hansen GA, Thomas MG, Moore SS, Lau LY, Fortes MRS. Proteomics Recapitulates Ovarian Proteins Relevant to Puberty and Fertility in Brahman Heifers ( Bos indicus L.). Genes (Basel) 2019; 10:E923. [PMID: 31726744 PMCID: PMC6895798 DOI: 10.3390/genes10110923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
High fertility and early puberty in Bos indicus heifers are desirable and genetically correlated traits in beef production. The hypothalamus-pituitary-ovarian (HPO) axis synthesizes steroid hormones, which contribute to the shift from the pre-pubertal state into the post-pubertal state and influence subsequent fertility. Understanding variations in abundance of proteins that govern steroid synthesis and ovarian signaling pathways remains crucial to understanding puberty and fertility. We used whole ovaries of six pre-pubertal and six post-pubertal Brahman heifers to conduct differential abundance analyses of protein profiles between the two physiological states. Extracted proteins were digested into peptides followed by identification and quantification with massspectrometry (MS) by sequential window acquisition of all instances of theoretical fragment ion mass spectrometry (SWATH-MS). MS and statistical analysis identified 566 significantly differentially abundant (DA) proteins (adjusted p < 0.05), which were then analyzed for gene ontology and pathway enrichment. Our data indicated an up-regulation of steroidogenic proteins contributing to progesterone synthesis at luteal phase post-puberty. Proteins related to progesterone signaling, TGF-β, retinoic acid, extracellular matrix, cytoskeleton, and pleiotrophin signaling were DA in this study. The DA proteins probably relate to the formation and function of the corpus luteum, which is only present after ovulation, post-puberty. Some DA proteins might also be related to granulosa cells signaling, which regulates oocyte maturation or arrest in ovaries prior to ovulation. Ten DA proteins were coded by genes previously associated with reproductive traits according to the animal quantitative trait loci (QTL) database. In conclusion, the DA proteins and their pathways were related to ovarian activity in Bos indicus cattle. The genes that code for these proteins may explain some known QTLs and could be targeted in future genetic studies.
Collapse
Affiliation(s)
- Muhammad S. Tahir
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Loan T. Nguyen
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Queensland, Australia; (L.T.N.); (S.S.M.)
| | - Benjamin L. Schulz
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Gry A. Boe-Hansen
- School of Veterinary Sciences, University of Queensland, Brisbane 4343, Queensland, Australia;
| | - Milton G. Thomas
- Department of Animal Science, Colorado State University, Fort Collins, CO 80523, USA;
| | - Stephen S. Moore
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Queensland, Australia; (L.T.N.); (S.S.M.)
| | - Li Yieng Lau
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Marina R. S. Fortes
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| |
Collapse
|
22
|
Jeong SG, Lee SE, Kim WJ, Park YG, Yoon JW, Park CO, Park HJ, Kim EY, Park SP. Pioglitazone improves porcine oocyte maturation and subsequent parthenogenetic embryo development in vitro by increasing lipid metabolism. Mol Reprod Dev 2019; 86:1245-1254. [PMID: 31429176 DOI: 10.1002/mrd.23252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 06/30/2019] [Indexed: 12/17/2022]
Abstract
Optimization of culture conditions is important to improve oocyte maturation and subsequent embryo development. In particular, this study analyzed the effects of increasing concentrations of PIO in the maturation medium on spindle formation and chromosome alignment, glutathione, and intracellular ROS levels and expression of selected genes related to maternal markers, apoptosis, and lipid metabolism. The percentage of oocytes displaying normal spindle formation and chromosome alignment was higher in the 1 µM PIO (1 PIO)-treated group than in the control group. The glutathione level was significantly higher in the 1 PIO-treated group than in the control group, while the reactive oxygen species level did not differ. Expression of maternal marker (MOS and GDF9), antiapoptotic (BIRC5), and lipid metabolism-related (ACADS, CPT2, SREBF1, and PPARG) genes was higher in the 1 PIO-treated group than in the control group, while expression of a proapoptotic gene (CASP3) was lower. The blastocyst formation rate and the percentage of blastocysts that reached at least the hatching stage on Days 6 and 7, and the percentage of blastocysts containing more than 128 cells were significantly higher in the 1 PIO-treated group than in the control group. These results indicate that PIO treatment during in vitro maturation improves porcine oocyte maturation and subsequent parthenogenetic embryo development mainly by enhancing lipid metabolism and antioxidant defense in oocytes.
Collapse
Affiliation(s)
- Sang-Gi Jeong
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea
| | - Seung-Eun Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea
| | - Won-Jae Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea
| | - Yun-Gwi Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea
| | - Jae-Wook Yoon
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea
| | - Chan-Oh Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea
| | - Hyo-Jin Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea
| | - Eun-Young Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea.,Mirae Cell Bio, Seoul, Korea
| | - Se-Pill Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea.,Mirae Cell Bio, Seoul, Korea
| |
Collapse
|
23
|
Fatty Acid β-Oxidation Is Essential in Leptin-Mediated Oocytes Maturation of Yellow Catfish Pelteobagrus fulvidraco. Int J Mol Sci 2018; 19:ijms19051457. [PMID: 29757976 PMCID: PMC5983613 DOI: 10.3390/ijms19051457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 11/23/2022] Open
Abstract
Although several studies have been conducted to study leptin function, information is very scarce on the molecular mechanism of leptin in fatty acid β-oxidation and oocytes maturation in fish. In this study, we investigated the potential role of fatty acid β-oxidation in leptin-mediated oocytes maturation in Pelteobagrus fulvidraco. Exp. 1 investigated the transcriptomic profiles of ovary and the differential expression of genes involved in β-oxidation and oocytes maturation following rt-hLEP injection; rt-hLEP injection was associated with significant changes in the expression of genes, including twenty-five up-regulated genes (CPT1, Acsl, Acadl, Acadm, Hadhb, Echsl, Hsd17b4, Acca, PPARα, CYP8B1, ACOX1, ACBP, MAPK, RINGO, Cdc2, MEK1, IGF-1R, APC/C, Cdk2, GnRHR, STAG3, SMC1, FSHβ and C-Myc) and ten down-regulated gene (PPARγ, FATCD36, UBC, PDK1, Acads, Raf, Fizzy, C3H-4, Raf and PKC), involved in fatty acid β-oxidation and oocytes maturation. In Exp. 2, rt-hLEP and specific inhibitors AG490 (JAK-STAT inhibitor) were used to explore whether leptin induced oocytes maturation, and found that leptin incubation increased the diameters of oocytes and percentage of germinal vesicle breakdown (GVBD)-MII oocytes, up-regulated mRNA levels of genes involved in oocytes maturation and that leptin-induced oocyte maturation was related to activation of JAK-STAT pathway. In Exp. 3, primary oocytes of P. fulvidraco were treated with (R)-(+)-etomoxir (an inhibitor of β-oxidation) or l-carnitine (an enhancer of β-oxidation) for 48 h under rt-hLEP incubation. Exp. 3 indicated that the inhibition of fatty acid β-oxidation resulted in the down-regulation of gene expression involved in oocytes maturation, and repressed the leptin-induced up-regulation of these gene expression. Activation of fatty acid β-oxidation improved the maturation rate and mean diameter of oocytes, and up-regulated gene expression involved in oocytes maturation. Leptin is one of the main factors that links fatty acid β-oxidation with oocyte maturation; β-oxidation is essential for leptin-mediated oocyte maturation in fish.
Collapse
|
24
|
Virant-Klun I, Bauer C, Ståhlberg A, Kubista M, Skutella T. Human oocyte maturation in vitro is improved by co-culture with cumulus cells from mature oocytes. Reprod Biomed Online 2018; 36:508-523. [PMID: 29503212 DOI: 10.1016/j.rbmo.2018.01.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
The conventional method of human oocyte maturation in vitro in the presence of gonadotrophins continues to be a relatively low-success procedure in the assisted conception programme owing to suboptimal maturation conditions in the absence of an ovarian 'niche' and poor understanding of this procedure at the molecular level in oocytes. In this study, the gene expression profiles of human oocytes were analysed according to their manner of maturation: in vivo (in the ovaries) or in vitro (matured either by the conventional method or by a new approach - co-cultured with cumulus cells of mature oocytes from the same patient). Our results show that the in-vitro maturation procedure strongly affects the gene expression profile of human oocytes, including several genes involved in transcriptional regulation, embryogenesis, epigenetics, development, and the cell cycle. The in-vitro maturation of oocytes co-cultured with cumulus cells from mature oocytes provides an ovarian 'niche' to some degree, which improves oocyte maturation rates and their gene expression profile to the extent that they are more comparable to oocytes that naturally mature in the ovarian follicle.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia.
| | | | - Anders Ståhlberg
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, The Sahlgrenska Academy University of Gothenburg, 41390, Gothenburg, Sweden
| | | | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
25
|
Pan JX, Tan YJ, Wang FF, Hou NN, Xiang YQ, Zhang JY, Liu Y, Qu F, Meng Q, Xu J, Sheng JZ, Huang HF. Aberrant expression and DNA methylation of lipid metabolism genes in PCOS: a new insight into its pathogenesis. Clin Epigenetics 2018; 10:6. [PMID: 29344314 PMCID: PMC5767000 DOI: 10.1186/s13148-018-0442-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/08/2018] [Indexed: 11/10/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS), whose etiology remains uncertain, is a highly heterogenous and genetically complex endocrine disorder. The aim of this study was to identify differentially expressed genes (DEGs) in granulosa cells (GCs) from PCOS patients and make epigenetic insights into the pathogenesis of PCOS. Results Included in this study were 110 women with PCOS and 119 women with normal ovulatory cycles undergoing in vitro fertilization acting as the control group. RNA-seq identified 92 DEGs unique to PCOS GCs in comparison with the control group. Bioinformatic analysis indicated that synthesis of lipids and steroids was activated in PCOS GCs. 5-Methylcytosine analysis demonstrated that there was an approximate 25% reduction in global DNA methylation of GCs in PCOS women (4.44 ± 0.65%) compared with the controls (6.07 ± 0.72%; P < 0.05). Using MassArray EpiTYPER quantitative DNA methylation analysis, we also found hypomethylation of several gene promoters related to lipid and steroid synthesis, which might result in the aberrant expression of these genes. Conclusions Our results suggest that hypomethylated genes related to the synthesis of lipid and steroid may dysregulate expression of these genes and promote synthesis of steroid hormones including androgen, which could partially explain mechanisms of hyperandrogenism in PCOS. Electronic supplementary material The online version of this article (10.1186/s13148-018-0442-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie-Xue Pan
- 1The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 China.,2The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang 310006 China.,4Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| | - Ya-Jing Tan
- 1The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Fang-Fang Wang
- 2The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang 310006 China
| | - Ning-Ning Hou
- 2The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang 310006 China
| | - Yu-Qian Xiang
- 1The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Jun-Yu Zhang
- 1The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Ye Liu
- 1The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Fan Qu
- 2The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang 310006 China
| | - Qing Meng
- 2The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang 310006 China
| | - Jian Xu
- 2The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang 310006 China
| | - Jian-Zhong Sheng
- 2The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang 310006 China.,3Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, 310058 China
| | - He-Feng Huang
- 1The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 China.,2The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang 310006 China
| |
Collapse
|
26
|
Tsuji A, Nakamura T, Shibata K. Effects of Mild and Severe Vitamin B 1 Deficiencies on the Meiotic Maturation of Mice Oocytes. Nutr Metab Insights 2017; 10:1178638817693824. [PMID: 28469464 PMCID: PMC5395269 DOI: 10.1177/1178638817693824] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/24/2017] [Indexed: 12/22/2022] Open
Abstract
We investigated the effects of vitamin B1 deficiency on the meiosis maturation of oocytes. Female Crl:CD1 (ICR) mice were fed a 20% casein diet (control group) or a vitamin B1–free diet (test group). The vitamin B1 concentration in ovary was approximately 30% lower in the test group than in the control group. Oocyte meiosis was not affected by vitamin B1 deficiency when the deficiency was not accompanied by body weight loss. On the contrary, frequency of abnormal oocyte was increased by vitamin B1 deficiency when deficiency was accompanied by body weight loss (referred to as severe vitamin B1 deficiency; frequency of abnormal oocyte, 13.8% vs 43.7%, P = .0071). The frequency of abnormal oocytes was decreased by refeeding of a vitamin B1–containing diet (13.9% vs 22.9%, P = .503). These results suggest that severe vitamin B1 deficiency inhibited meiotic maturation of oocytes but did not damage immature oocytes.
Collapse
Affiliation(s)
- Ai Tsuji
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture, Hikone, Japan
| | - Toshinobu Nakamura
- Department of Animal BioScience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Katsumi Shibata
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture, Hikone, Japan
| |
Collapse
|
27
|
Guo J, Lu WF, Liang S, Choi JW, Kim NH, Cui XS. Peroxisome proliferator-activated receptor δ improves porcine blastocyst hatching via the regulation of fatty acid oxidation. Theriogenology 2016; 90:266-275. [PMID: 28166979 DOI: 10.1016/j.theriogenology.2016.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 11/07/2016] [Accepted: 11/19/2016] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptor δ (Pparδ) is a nuclear receptor that plays critical roles in lipid metabolism, glucose metabolism, and cell growth and differentiation. Several recent studies have shown that Pparδ promotes blastocyst hatching in vitro. However, the mechanism by which it promotes preimplantation embryonic development in vitro remains unclear. In this study, oocytes and parthenotes were treated with a specific agonist of PPARδ, GW501516. The activation of PPARδ had no effect on oocyte maturation for 1 μM and 10 μM GW501516 compared with the control group. Additionally, the PPARδ agonist did not affect blastocyst formation (77.79 ± 3.59% [10 μM], 79.00 ± 5.53% [50 μM], and 79.64 ± 6.00% [100 μM] vs. 81.69 ± 2.61% [control]). However, the blastocyst hatching rate was significantly greater for parthenotes treated with 10 and 50 μM agonist, and did not differ between those treated with 100 μM agonist and the control group (61.80 ± 3.03% [10 μM], 65.10 ± 5.25% [50 μM], and 38.85 ± 7.45% [100 μM] vs. 41.77 ± 10.88% [0 μM]). Activation of PPARδ also increased blastocyst quality and cell number, as well as ATP production. There were no clear differences in mitochondrial membrane potential, mitochondrion copy number, or glucose consumption between the treatment and control groups. However, PPARδ activation enhanced lipid accumulation via Fabp3 and Fabp5. Fatty acid oxidation also increased in response to treatment with the agonist via the rate-limiting gene Cpt2. Reactive oxygen species were modified and REDOX maintenance-related gene expression increased significantly in GW501516-exposed blastocysts. In addition, the activation of PPARδ resulted in changes in miRNA content. After treatment with the PPARδ agonist, miR-99 increased and miR-32 decreased. These data showed that PPARδ has a positive impact on blastocyst hatching via the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Jing Guo
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju, 361-763, Republic of Korea
| | - Wen-Fa Lu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Shuang Liang
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju, 361-763, Republic of Korea
| | - Jeong-Woo Choi
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju, 361-763, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju, 361-763, Republic of Korea.
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju, 361-763, Republic of Korea.
| |
Collapse
|
28
|
Boudoures AL, Chi M, Thompson A, Zhang W, Moley KH. The effects of voluntary exercise on oocyte quality in a diet-induced obese murine model. Reproduction 2015; 151:261-70. [PMID: 26700938 DOI: 10.1530/rep-15-0419] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/22/2015] [Indexed: 12/31/2022]
Abstract
Obesity negatively affects many aspects of the human body including reproductive function. In females, the root of the decline in fertility is linked to problems in the oocyte. Problems seen in oocytes that positively correlate with increasing BMI include changes to the metabolism, lipid accumulation, meiosis, and metaphase II (MII) spindle structure. Studies in mice indicate that dietary interventions fail to reverse these problems. How exercise affects the oocytes has not been addressed. Therefore, we hypothesized an exercise intervention would improve oocyte quality. Here we show that in a mouse model of an exercise, intervention can improve lipid metabolism in germinal vesicle (GV) stage oocytes. Oocytes significantly increased activity and transcription of the β-oxidation enzyme hydroxyacyl-coenzyme A dehydrogenase in response to exercise training only if the mice had been fed a high-fat diet (HFD). An exercise intervention also reversed the lipid accumulation seen in GV stage oocytes of HFD females. However, delays in meiosis and disorganized MII spindles remained present. Therefore, exercise is able to improve, but not reverse, damage imparted on oocytes as a result of an HFD and obesity. By utilizing an exercise intervention on an HFD, we determined only lipid content, and lipid metabolism is changed in GV oocytes. Moving forward, interventions to improve oocyte quality may need to be more targeted to the oocyte specifically. Because of the HFD-induced deficiency in β-oxidation, dietary supplementation with substrates to improve lipid utilization may be more beneficial.
Collapse
Affiliation(s)
- Anna L Boudoures
- Division of Basic Science ResearchDepartment of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8064, St Louis, Missouri 63110, USA
| | - Maggie Chi
- Division of Basic Science ResearchDepartment of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8064, St Louis, Missouri 63110, USA
| | - Alysha Thompson
- Division of Basic Science ResearchDepartment of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8064, St Louis, Missouri 63110, USA
| | - Wendy Zhang
- Division of Basic Science ResearchDepartment of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8064, St Louis, Missouri 63110, USA
| | - Kelle H Moley
- Division of Basic Science ResearchDepartment of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8064, St Louis, Missouri 63110, USA
| |
Collapse
|
29
|
Bertoldo MJ, Faure M, Dupont J, Froment P. AMPK: a master energy regulator for gonadal function. Front Neurosci 2015; 9:235. [PMID: 26236179 PMCID: PMC4500899 DOI: 10.3389/fnins.2015.00235] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/19/2015] [Indexed: 12/11/2022] Open
Abstract
From C. elegans to mammals (including humans), nutrition and energy metabolism significantly influence reproduction. At the cellular level, some detectors of energy status indicate whether energy reserves are abundant (obesity), or poor (diet restriction). One of these detectors is AMPK (5′ AMP-activated protein kinase), a protein kinase activated by ATP deficiency but also by several natural substances such as polyphenols or synthetic molecules like metformin, used in the treatment of insulin resistance. AMPK is expressed in muscle and liver, but also in the ovary and testis. This review focuses on the main effects of AMPK identified in gonadal cells. We describe the role of AMPK in gonadal steroidogenesis, in proliferation and survival of somatic gonadal cells and in the maturation of oocytes or spermatozoa. We discuss also the role of AMPK in germ and somatic cell interactions within the cumulus-oocyte complex and in the blood testis barrier. Finally, the interface in the gonad between AMPK and modification of metabolism is reported and discussion about the role of AMPK on fertility, in regards to the treatment of infertility associated with insulin resistance (male obesity, polycystic ovary syndrome).
Collapse
Affiliation(s)
- Michael J Bertoldo
- Discipline of Obstetrics and Gynaecology, School of Women's and Children's Health, University of New South Wales Sydney, NSW, Australia
| | - Melanie Faure
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, UMR85 Nouzilly, France
| | - Joëlle Dupont
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, UMR85 Nouzilly, France
| | - Pascal Froment
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, UMR85 Nouzilly, France
| |
Collapse
|
30
|
Valsangkar DS, Downs SM. Acetyl CoA carboxylase inactivation and meiotic maturation in mouse oocytes. Mol Reprod Dev 2015; 82:679-93. [PMID: 26043180 DOI: 10.1002/mrd.22505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 05/09/2015] [Indexed: 12/24/2022]
Abstract
In mouse oocytes, meiotic induction by pharmacological activation of PRKA (adenosine monophosphate-activated protein kinase; formerly known as AMPK) or by hormones depends on stimulation of fatty acid oxidation (FAO). PRKA stimulates FAO by phosphorylating and inactivating acetyl CoA carboxylase (ACAC; formerly ACC), leading to decreased malonyl CoA levels and augmenting fatty-acid transport into mitochondria. We investigated a role for ACAC inactivation in meiotic resumption by testing the effect of two ACAC inhibitors, CP-640186 and Soraphen A, on mouse oocytes maintained in meiotic arrest in vitro. These inhibitors significantly stimulated the resumption of meiosis in arrested cumulus cell-enclosed oocytes, denuded oocytes, and follicle-enclosed oocytes. This stimulation was accompanied by an increase in FAO. Etomoxir, a malonyl CoA analogue, prevented meiotic resumption as well as the increase in FAO induced by ACAC inhibition. Citrate, an ACAC activator, and CBM-301106, an inhibitor of malonyl CoA decarboxylase, which converts malonyl CoA to acetyl CoA, suppressed both meiotic induction and FAO induced by follicle-stimulating hormone, presumably by maintaining elevated malonyl CoA levels. Mouse oocyte-cumulus cell complexes contain both isoforms of ACAC (ACACA and ACACB); when wild-type and Acacb(-/-) oocytes characteristics were compared, we found that these single-knockout oocytes showed a significantly higher FAO level and a reduced ability to maintain meiotic arrest, resulting in higher rates of germinal vesicle breakdown. Collectively, these data support the model that ACAC inactivation contributes to the maturation-promoting activity of PRKA through stimulation of FAO.
Collapse
Affiliation(s)
- Deepa S Valsangkar
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | - Stephen M Downs
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
31
|
Takeo S, Abe T, Shirasuna K, Kuwayama T, Iwata H. Effect of 5-aminoimidazole-4-carboxamide ribonucleoside on the mitochondrial function and developmental ability of bovine oocytes. Theriogenology 2015; 84:490-7. [PMID: 26001600 DOI: 10.1016/j.theriogenology.2015.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 03/15/2015] [Accepted: 03/17/2015] [Indexed: 02/07/2023]
Abstract
Oocyte nuclear maturation depends on sufficient energy supply through oxidative phosphorylation and β-oxidation. AMP-activated protein kinase (AMPK) is an energy sensor controlling the oocyte energy metabolism. The main aim of this study was to examine the effect of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), a potent activator of AMPK, on the ATP content and mitochondrial DNA copy number (Mt-number) of bovine oocytes and on their developmental ability. Oocytes were collected from slaughterhouse-derived bovine ovaries. When these oocytes were cultured in a maturation medium containing 0-, 50-, 250-, and 500-μM AICAR, higher AICAR concentrations reduced the rate of meiotic maturation and the ATP content in oocytes, whereas lower AICAR increased the ATP content in oocytes without affecting the maturation rate. Supplementation of the maturation medium with a low concentration of AICAR (50 and 250 μM) increased phospho-AMPK expression level, as determined by immunostaining. In addition, AICAR treatment increased the ATP content in oocytes, which remained elevated for as long as 2 days after fertilization. On culturing the oocytes with AICAR (250 μM), the fertilization outcome, rate of blastulation, and total cell number of the blastocysts significantly improved. When the proteosomal mitochondrial degradation was inhibited by supplementing the maturation medium with MG132, the Mt-number, as determined by real-time polymerase chain reaction, significantly increased. However, the treatment of oocytes with AICAR did not affect the Mt-number in the presence or absence of MG132. From these data, we conclude that low concentrations of AICAR improved the embryonic developmental ability, presumably via the upregulation of the ATP content in oocytes, but the increase in the ATP content was not due to the upregulation of mitochondrial biogeneration.
Collapse
Affiliation(s)
- Shun Takeo
- Department of Animal Science, Tokyo University of Agriculture, Atsugi City, Kanagawa, Japan
| | - Takahito Abe
- Department of Animal Science, Tokyo University of Agriculture, Atsugi City, Kanagawa, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Atsugi City, Kanagawa, Japan
| | - Takehito Kuwayama
- Department of Animal Science, Tokyo University of Agriculture, Atsugi City, Kanagawa, Japan
| | - Hisataka Iwata
- Department of Animal Science, Tokyo University of Agriculture, Atsugi City, Kanagawa, Japan.
| |
Collapse
|
32
|
Downs SM. Nutrient pathways regulating the nuclear maturation of mammalian oocytes. Reprod Fertil Dev 2015; 27:572-82. [DOI: 10.1071/rd14343] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/10/2015] [Indexed: 12/15/2022] Open
Abstract
Oocyte maturation is defined as that phase of development whereby a fully grown oocyte reinitiates meiotic maturation, completes one meiotic division with extrusion of a polar body, then arrests at MII until fertilisation. Completion of maturation depends on many different factors, not the least of which is the proper provision of energy substrates to fuel the process. Interaction of the oocyte and somatic compartment of the follicle is critical and involves numerous signals exchanged between the two cell types in both directions. One of the prominent functions of the cumulus cells is the channelling of metabolites and nutrients to the oocyte to help stimulate germinal vesicle breakdown and direct development to MII. This entails the careful integration and coordination of numerous metabolic pathways, as well as oocyte paracrine signals that direct certain aspects of cumulus cell metabolism. These forces collaborate to produce a mature oocyte that, along with accompanying physiological changes called cytoplasmic maturation, which impart subsequent developmental competence to the oocyte, can be fertilised and develop to term. This review focuses on nuclear maturation and the metabolic interplay that regulates it, with special emphasis on data generated in the mouse.
Collapse
|
33
|
Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril 2014; 103:303-16. [PMID: 25497448 DOI: 10.1016/j.fertnstert.2014.11.015] [Citation(s) in RCA: 432] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/08/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023]
Abstract
Bidirectional somatic cell-oocyte signaling is essential to create a changing intrafollicular microenvironment that controls primordial follicle growth into a cohort of growing follicles, from which one antral follicle is selected to ovulate a healthy oocyte. Such intercellular communications allow the oocyte to determine its own fate by influencing the intrafollicular microenvironment, which in turn provides the necessary cellular functions for oocyte developmental competence, which is defined as the ability of the oocyte to complete meiosis and undergo fertilization, embryogenesis, and term development. These coordinated somatic cell-oocyte interactions attempt to balance cellular metabolism with energy requirements during folliculogenesis, including changing energy utilization during meiotic resumption. If these cellular mechanisms are perturbed by metabolic disease and/or maternal aging, molecular damage of the oocyte can alter macromolecules, induce mitochondrial mutations, and reduce adenosine triphosphate production, all of which can harm the oocyte. Recent technologies are now exploring transcriptional, translational, and post-translational events within the human follicle with the goal of identifying biomarkers that reliably predict oocyte quality in the clinical setting.
Collapse
|
34
|
Elis S, Desmarchais A, Maillard V, Uzbekova S, Monget P, Dupont J. Cell proliferation and progesterone synthesis depend on lipid metabolism in bovine granulosa cells. Theriogenology 2014; 83:840-53. [PMID: 25583222 DOI: 10.1016/j.theriogenology.2014.11.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 12/31/2022]
Abstract
In dairy cows, lipids are essential to support energy supplies for all biological functions, especially during early lactation. Lipid metabolism is crucial for sustaining proper reproductive function. Alteration of lipid metabolism impacts follicular development and affects oocyte developmental competence. Indeed, nonesterified fatty acids are able to decrease granulosa cell (GC) proliferation and affect estradiol synthesis, thus potentially affecting follicular growth and viability. The objective of this study was to assess the impact of lipid metabolism on bovine GCs, through the use of the lipid metabolism inhibitors etomoxir, an inhibitor of fatty acid (FA) oxidation through inhibition of carnitine palmitoyl transferase 1 (CPT1), and C75, an inhibitor of FA synthesis through inhibition of fatty acid synthase. We showed that etomoxir and C75 significantly inhibited DNA synthesis in vitro; C75 also significantly decreased progesterone synthesis. Both inhibitors significantly reduced AMPK (5' adenosine monophosphate-activated protein kinase) and acetyl-CoA carboxylase phosphorylation. Etomoxir also affected the AKT (protein kinase B) signaling pathway. Combined, these data suggest that both FA oxidation and synthesis are important for the bovine GCs to express a proliferative and steroidogenic phenotype and, thus, for sustaining follicular growth. Despite these findings, it is important to note that the changes caused by the inhibitors of FA metabolism on GCs in vitro are globally mild, suggesting that lipid metabolism is not as critical in GCs as was observed in the oocyte-cumulus complex. Further studies are needed to investigate the detailed mechanisms by which lipid metabolism interacts with GC functions.
Collapse
Affiliation(s)
- Sebastien Elis
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université François Rabelais de Tours, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France; IFCE, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France.
| | - Alice Desmarchais
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université François Rabelais de Tours, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France; IFCE, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Virginie Maillard
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université François Rabelais de Tours, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France; IFCE, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Svetlana Uzbekova
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université François Rabelais de Tours, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France; IFCE, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Philippe Monget
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université François Rabelais de Tours, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France; IFCE, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Joëlle Dupont
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université François Rabelais de Tours, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France; IFCE, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
35
|
Simerman AA, Hill DL, Grogan TR, Elashoff D, Clarke NJ, Goldstein EH, Manrriquez AN, Chazenbalk GD, Dumesic DA. Intrafollicular cortisol levels inversely correlate with cumulus cell lipid content as a possible energy source during oocyte meiotic resumption in women undergoing ovarian stimulation for in vitro fertilization. Fertil Steril 2014; 103:249-57. [PMID: 25439840 DOI: 10.1016/j.fertnstert.2014.09.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/23/2014] [Accepted: 09/23/2014] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To determine whether follicular fluid (FF) cortisol levels affect cumulus cell (CC) lipid content during oocyte meiotic resumption, and whether CCs express genes for glucocorticoid action. DESIGN Prospective cohort study. SETTING Academic medical center. PATIENT(S) Thirty-seven nonobese women underwent ovarian stimulation for in vitro fertilization (IVF). INTERVENTION(S) At oocyte retrieval, FF was aspirated from the first follicle (>16 mm in size) of each ovary and pooled CCs were collected. MAIN OUTCOME MEASURE(S) Follicular fluid cortisol and cortisone analysis was performed with the use of liquid chromatography-tandem mass spectrometry. CCs were stained with lipid fluorescent dye Bodipy FL C16 to determine lipid content with the use of confocal microscopy. Quantitative real-time polymerase chain reaction was used to detect CC gene expression of 11β-hydroxysteroid dehydrogenase (11β-HSD) types 1 and 2, glucocorticoid receptor (NR3C1), lipoprotein lipase (LPL), and hormone-sensitive lipase (HSL). RESULT(S) Adjusting for maternal age, FF cortisol levels negatively correlated with CC lipid content and positively correlated with numbers of total and mature oocytes. CCs expressed genes for 11β-HSD type 1 as the predominant 11β-HSD isoform, NR3C1, LPL, and HSL. CONCLUSION(S) FF cortisol levels may regulate CC lipolysis during oocyte meiotic resumption and affect oocyte quality during IVF.
Collapse
Affiliation(s)
- Ariel A Simerman
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California
| | - David L Hill
- ART Reproductive Center, Beverly Hills, California
| | - Tristan R Grogan
- Department of Medicine Statistics Core, University of California, Los Angeles, Los Angeles, California
| | - David Elashoff
- Department of Medicine Statistics Core, University of California, Los Angeles, Los Angeles, California
| | - Nigel J Clarke
- Quest Diagnostics Nichols Institute, San Juan Capistrano, California
| | - Ellen H Goldstein
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California
| | - Alexa N Manrriquez
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California
| | - Gregorio D Chazenbalk
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California
| | - Daniel A Dumesic
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
36
|
Sanchez-Lazo L, Brisard D, Elis S, Maillard V, Uzbekov R, Labas V, Desmarchais A, Papillier P, Monget P, Uzbekova S. Fatty acid synthesis and oxidation in cumulus cells support oocyte maturation in bovine. Mol Endocrinol 2014; 28:1502-21. [PMID: 25058602 DOI: 10.1210/me.2014-1049] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Oocyte meiotic maturation requires energy from various substrates including glucose, amino acids, and lipids. Mitochondrial fatty acid (FA) β-oxidation (FAO) in the oocyte is required for meiotic maturation, which is accompanied by differential expression of numerous genes involved in FAs metabolism in surrounding cumulus cells (CCs) in vivo. The objective was to elucidate components involved in FAs metabolism in CCs during oocyte maturation. Twenty-seven genes related to lipogenesis, lipolysis, FA transport, and FAO were chosen from comparative transcriptome analysis of bovine CCs before and after maturation in vivo. Using real-time PCR, 22 were significantly upregulated at different times of in vitro maturation (IVM) in relation to oocyte meiosis progression from germinal vesicle breakdown to metaphase-II. Proteins FA synthase, acetyl-coenzyme-A carboxylase, carnitine palmitoyltransferase, perilipin 2, and FA binding protein 3 were detected by Western blot and immunolocalized to CCs and oocyte cytoplasm, with FA binding protein 3 concentrated around oocyte chromatin. By mass spectrometry, CCs lipid profiling was shown to be different before and after IVM. FAO inhibitors etomoxir and mildronate dose-dependently decreased the oocyte maturation rate in vitro. In terms of viability, cumulus enclosed oocytes were more sensitive to etomoxir than denuded oocytes. In CCs, etomoxir (150 μM) led to downregulation of lipogenesis genes and upregulated lipolysis and FAO genes. Moreover, the number of lipid droplets decreased, whereas several lipid species were more abundant compared with nontreated CCs after IVM. In conclusion, FAs metabolism in CCs is important to maintain metabolic homeostasis and may influence meiosis progression and survival of enclosed oocytes.
Collapse
Affiliation(s)
- Laura Sanchez-Lazo
- Institut National de la Recherche Agronomique Unité Mixte de Recherche (UMR) 85, Centre National de la Recherche Scientifique UMR 7247, Université François Rabelais de Tours, and L'Institut français du cheval et de l'équitation, Physiologie de la Reproduction et des Comportements (L.S.-L., D.B., S.E., V.M., V.L., A.D., P.P., P.M., S.U.), F-37380 Nouzilly, France; Electron Microscopy Department (R.U.), AN Belozersky Institute of Physical and Chemical Biology, Moscow State University, 119899 Moscow, Russia; and Laboratoire Biologie Cellulaire et Microscopie Electronique (R.U.), Faculté de Médecine, Université François Rabelais, Tours, 37000 France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction 2014; 148:R15-27. [DOI: 10.1530/rep-13-0251] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metabolism and ATP levels within the oocyte and adjacent cumulus cells are associated with quality of oocyte and optimal development of a healthy embryo. Lipid metabolism provides a potent source of energy and its importance during oocyte maturation is being increasingly recognised. The triglyceride and fatty acid composition of ovarian follicular fluid has been characterised for many species and is influenced by nutritional status (i.e. dietary fat, fasting, obesity and season) as well as lactation in cows. Lipid in oocytes is a primarily triglyceride of specific fatty acids which differ by species, stored in distinct droplet organelles that re-localise during oocyte maturation. The presence of lipids, particularly saturated vs unsaturated fatty acids, in in vitro maturation systems affects oocyte lipid content as well as developmental competence. Triglycerides are metabolised by lipases that have been localised to cumulus cells as well as oocytes. Fatty acids generated by lipolysis are further metabolised by β-oxidation in mitochondria for the production of ATP. β-oxidation is induced in cumulus–oocyte complexes (COCs) by the LH surge, and pharmacological inhibition of β-oxidation impairs oocyte maturation and embryo development. Promoting β-oxidation with l-carnitine improves embryo development in many species. Thus, fatty acid metabolism in the mammalian COC is regulated by maternal physiological and in vitro environmental conditions; and is important for oocyte developmental competence.
Collapse
|
38
|
Brisard D, Chesnel F, Elis S, Desmarchais A, Sánchez-Lazo L, Chasles M, Maillard V, Uzbekova S. Tribbles expression in cumulus cells is related to oocyte maturation and fatty acid metabolism. J Ovarian Res 2014; 7:44. [PMID: 24834131 PMCID: PMC4022380 DOI: 10.1186/1757-2215-7-44] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/10/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In mammals, the Tribbles family includes widely expressed serine-threonine kinase-like proteins (TRIB1, TRIB2 and TRIB3) that are involved in multiple biological processes including cell proliferation and fatty acid (FA) metabolism. Our recent studies highlighted the importance of FA metabolism in cumulus cells (CC) during oocyte maturation in vertebrates and reported a higher TRIB1 expression in CC surrounding in vivo mature oocytes as compared to immature ooocytes in mice and cows. The objective was to investigate Tribbles expression patterns in bovine CC during in vitro maturation (IVM) and to examine their roles in the cumulus-oocyte complex. METHODS Tribbles gene expression was analyzed in bovine and murine CC using quantitative RT-PCR. Proteins were detected using Western blot and intracellular localization was assessed by immunofluorescence. Bovine COCs were treated with etomoxir, an inhibitor of FA oxidation (FAO) which blocks CPT1 activity, during 6 h and 18 h IVM. Oocyte meiotic stage was assessed and expression of Tribbles and lipid metabolism genes was quantified in CC. RESULTS AND DISCUSSION TRIB1 and TRIB3 were more strongly expressed whereas TRIB2 was less expressed in CC surrounding the oocytes from preovulatory follicles than in CC of immature ones. In CC, Tribbles were located in the cytoplasm and nucleus; in mitotic cells TRIB2 and TRIB3 were detected in the spindle. In the oocyte, Tribbles proteins were detected in the ooplasm; also TRIB2 and TRIB3 were more accumulated in the germinal vesicle. In bovine CC, expression of TRIB1 and TRIB3 was transiently increased at a time preceding oocyte meiosis resumption in vitro. Treatment with etomoxir (150 μM) during IVM resulted in a significant reduction of oocyte maturation rate and decreased MAPK3/1 phosphorylation in the oocytes. In CC, 18 h IVM of etomoxir treatment significantly increased expression of TRIB1, TRIB3, CPTA1 (enzyme regulating FA entry in mitochondria for FAO) and CD36 (thrombospondin receptor involved in FA transport). Under the same conditions, expression of TRIB2 and ACACA (Acetyl coenzyme A carboxylase involved in FA synthesis) decreased in CC. All considered, Tribbles family members may be involved in cell proliferation and in FAO signaling in CC and participate in oocyte meiotic resumption regulation.
Collapse
Affiliation(s)
- Daphné Brisard
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France ; CNRS UMR7247, Nouzilly 37380, France ; Université François Rabelais de Tours, Tours 37000, France ; IFCE, Nouzilly 37380, France
| | - Franck Chesnel
- CNRS, Université de Rennes 1, UMR6290, Rennes 35000, France
| | - Sébastien Elis
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France ; CNRS UMR7247, Nouzilly 37380, France ; Université François Rabelais de Tours, Tours 37000, France ; IFCE, Nouzilly 37380, France
| | - Alice Desmarchais
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France ; CNRS UMR7247, Nouzilly 37380, France ; Université François Rabelais de Tours, Tours 37000, France ; IFCE, Nouzilly 37380, France
| | - Laura Sánchez-Lazo
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France ; CNRS UMR7247, Nouzilly 37380, France ; Université François Rabelais de Tours, Tours 37000, France ; IFCE, Nouzilly 37380, France
| | - Manon Chasles
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France ; CNRS UMR7247, Nouzilly 37380, France ; Université François Rabelais de Tours, Tours 37000, France ; IFCE, Nouzilly 37380, France
| | - Virginie Maillard
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France ; CNRS UMR7247, Nouzilly 37380, France ; Université François Rabelais de Tours, Tours 37000, France ; IFCE, Nouzilly 37380, France
| | - Svetlana Uzbekova
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France ; CNRS UMR7247, Nouzilly 37380, France ; Université François Rabelais de Tours, Tours 37000, France ; IFCE, Nouzilly 37380, France
| |
Collapse
|
39
|
Regulation of fatty acid oxidation in mouse cumulus-oocyte complexes during maturation and modulation by PPAR agonists. PLoS One 2014; 9:e87327. [PMID: 24505284 PMCID: PMC3914821 DOI: 10.1371/journal.pone.0087327] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/19/2013] [Indexed: 12/30/2022] Open
Abstract
Fatty acid oxidation is an important energy source for the oocyte; however, little is known about how this metabolic pathway is regulated in cumulus-oocyte complexes. Analysis of genes involved in fatty acid oxidation showed that many are regulated by the luteinizing hormone surge during in vivo maturation, including acyl-CoA synthetases, carnitine transporters, acyl-CoA dehydrogenases and acetyl-CoA transferase, but that many are dysregulated when cumulus-oocyte complexes are matured under in vitro maturation conditions using follicle stimulating hormone and epidermal growth factor. Fatty acid oxidation, measured as production of 3H2O from [3H]palmitic acid, occurs in mouse cumulus-oocyte complexes in response to the luteinizing hormone surge but is significantly reduced in cumulus-oocyte complexes matured in vitro. Thus we sought to determine whether fatty acid oxidation in cumulus-oocyte complexes could be modulated during in vitro maturation by lipid metabolism regulators, namely peroxisome proliferator activated receptor (PPAR) agonists bezafibrate and rosiglitazone. Bezafibrate showed no effect with increasing dose, while rosiglitazone dose dependently inhibited fatty acid oxidation in cumulus-oocyte complexes during in vitro maturation. To determine the impact of rosiglitazone on oocyte developmental competence, cumulus-oocyte complexes were treated with rosiglitazone during in vitro maturation and gene expression, oocyte mitochondrial activity and embryo development following in vitro fertilization were assessed. Rosiglitazone restored Acsl1, Cpt1b and Acaa2 levels in cumulus-oocyte complexes and increased oocyte mitochondrial membrane potential yet resulted in significantly fewer embryos reaching the morula and hatching blastocyst stages. Thus fatty acid oxidation is increased in cumulus-oocyte complexes matured in vivo and deficient during in vitro maturation, a known model of poor oocyte quality. That rosiglitazone further decreased fatty acid oxidation during in vitro maturation and resulted in poor embryo development points to the developmental importance of fatty acid oxidation and the need for it to be optimized during in vitro maturation to improve this reproductive technology.
Collapse
|