1
|
Boyd HM, Frick KM, Kwapis JL. Connecting the Dots: Potential Interactions Between Sex Hormones and the Circadian System During Memory Consolidation. J Biol Rhythms 2023; 38:537-555. [PMID: 37464775 PMCID: PMC10615791 DOI: 10.1177/07487304231184761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Both the circadian clock and sex hormone signaling can strongly influence brain function, yet little is known about how these 2 powerful modulatory systems might interact during complex neural processes like memory consolidation. Individually, the molecular components and action of each of these systems have been fairly well-characterized, but there is a fundamental lack of information about how these systems cooperate. In the circadian system, clock genes function as timekeeping molecules that convey time-of-day information on a well-stereotyped cycle that is governed by the suprachiasmatic nucleus. Keeping time is particularly important to synchronize various physiological processes across the brain and body, including those that regulate memory consolidation. Similarly, sex hormones are powerful modulators of memory, with androgens, estrogens, and progestins, all influencing memory consolidation within memory-relevant brain regions like the hippocampus. Despite clear evidence that each system can influence memory individually, exactly how the circadian and hormonal systems might interact to impact memory consolidation remains unclear. Research investigating either sex hormone action or circadian gene function within memory-relevant brain regions has unveiled several notable places in which the two systems could interact to control memory. Here, we bring attention to known interactions between the circadian clock and sex hormone signaling. We then review sex hormone-mediated control of memory consolidation, highlighting potential nodes through which the circadian system might interact during memory formation. We suggest that the bidirectional relationship between these two systems is essential for proper control of memory formation based on an animal's hormonal and circadian state.
Collapse
Affiliation(s)
- Hannah M. Boyd
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania
| | - Karyn M. Frick
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin
| | - Janine L. Kwapis
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
2
|
Furtado A, Costa D, Lemos MC, Cavaco JE, Santos CRA, Quintela T. The impact of biological clock and sex hormones on the risk of disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:39-81. [PMID: 37709381 DOI: 10.1016/bs.apcsb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Molecular clocks are responsible for defining 24-h cycles of behaviour and physiology that are called circadian rhythms. Several structures and tissues are responsible for generating these circadian rhythms and are named circadian clocks. The suprachiasmatic nucleus of the hypothalamus is believed to be the master circadian clock receiving light input via the optic nerve and aligning internal rhythms with environmental cues. Studies using both in vivo and in vitro methodologies have reported the relationship between the molecular clock and sex hormones. The circadian system is directly responsible for controlling the synthesis of sex hormones and this synthesis varies according to the time of day and phase of the estrous cycle. Sex hormones also directly interact with the circadian system to regulate circadian gene expression, adjust biological processes, and even adjust their own synthesis. Several diseases have been linked with alterations in either the sex hormone background or the molecular clock. So, in this chapter we aim to summarize the current understanding of the relationship between the circadian system and sex hormones and their combined role in the onset of several related diseases.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Diana Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Manuel C Lemos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - J Eduardo Cavaco
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Cecília R A Santos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Telma Quintela
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal; UDI-IPG, Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal.
| |
Collapse
|
3
|
Starnes AN, Jones JR. Inputs and Outputs of the Mammalian Circadian Clock. BIOLOGY 2023; 12:508. [PMID: 37106709 PMCID: PMC10136320 DOI: 10.3390/biology12040508] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Circadian rhythms in mammals are coordinated by the central circadian pacemaker, the suprachiasmatic nucleus (SCN). Light and other environmental inputs change the timing of the SCN neural network oscillator, which, in turn, sends output signals that entrain daily behavioral and physiological rhythms. While much is known about the molecular, neuronal, and network properties of the SCN itself, the circuits linking the outside world to the SCN and the SCN to rhythmic outputs are understudied. In this article, we review our current understanding of the synaptic and non-synaptic inputs onto and outputs from the SCN. We propose that a more complete description of SCN connectivity is needed to better explain how rhythms in nearly all behaviors and physiological processes are generated and to determine how, mechanistically, these rhythms are disrupted by disease or lifestyle.
Collapse
Affiliation(s)
| | - Jeff R. Jones
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
4
|
Lecour S, Du Pré BC, Bøtker HE, Brundel BJJM, Daiber A, Davidson SM, Ferdinandy P, Girao H, Gollmann-Tepeköylü C, Gyöngyösi M, Hausenloy DJ, Madonna R, Marber M, Perrino C, Pesce M, Schulz R, Sluijter JPG, Steffens S, Van Linthout S, Young ME, Van Laake LW. Circadian rhythms in ischaemic heart disease: key aspects for preclinical and translational research: position paper of the ESC working group on cellular biology of the heart. Cardiovasc Res 2022; 118:2566-2581. [PMID: 34505881 DOI: 10.1093/cvr/cvab293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/04/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Circadian rhythms are internal regulatory processes controlled by molecular clocks present in essentially every mammalian organ that temporally regulate major physiological functions. In the cardiovascular system, the circadian clock governs heart rate, blood pressure, cardiac metabolism, contractility, and coagulation. Recent experimental and clinical studies highlight the possible importance of circadian rhythms in the pathophysiology, outcome, or treatment success of cardiovascular disease, including ischaemic heart disease. Disturbances in circadian rhythms are associated with increased cardiovascular risk and worsen outcome. Therefore, it is important to consider circadian rhythms as a key research parameter to better understand cardiac physiology/pathology, and to improve the chances of translation and efficacy of cardiac therapies, including those for ischaemic heart disease. The aim of this Position Paper by the European Society of Cardiology Working Group Cellular Biology of the Heart is to highlight key aspects of circadian rhythms to consider for improvement of preclinical and translational studies related to ischaemic heart disease and cardioprotection. Applying these considerations to future studies may increase the potential for better translation of new treatments into successful clinical outcomes.
Collapse
Affiliation(s)
- Sandrine Lecour
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Bastiaan C Du Pré
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Andreas Daiber
- Department of Cardiology, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Henrique Girao
- Faculty of Medicine, Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | | | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
- The Hatter Cardiovascular Institute, University College London, London, UK
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy
- Department of Internal Medicine, University of Texas Medical School in Houston, Houston, TX, USA
| | - Michael Marber
- King's College London BHF Centre, The Rayne Institute, St Thomas' Hospital, London, UK
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies & Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, Berlin 10178, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Martin E Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Linda W Van Laake
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
5
|
Moeller JS, Bever SR, Finn SL, Phumsatitpong C, Browne MF, Kriegsfeld LJ. Circadian Regulation of Hormonal Timing and the Pathophysiology of Circadian Dysregulation. Compr Physiol 2022; 12:4185-4214. [PMID: 36073751 DOI: 10.1002/cphy.c220018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circadian rhythms are endogenously generated, daily patterns of behavior and physiology that are essential for optimal health and disease prevention. Disruptions to circadian timing are associated with a host of maladies, including metabolic disease and obesity, diabetes, heart disease, cancer, and mental health disturbances. The circadian timing system is hierarchically organized, with a master circadian clock located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks throughout the CNS and periphery. The SCN receives light information via a direct retinal pathway, synchronizing the master clock to environmental time. At the cellular level, circadian rhythms are ubiquitous, with rhythms generated by interlocking, autoregulatory transcription-translation feedback loops. At the level of the SCN, tight cellular coupling maintains rhythms even in the absence of environmental input. The SCN, in turn, communicates timing information via the autonomic nervous system and hormonal signaling. This signaling couples individual cellular oscillators at the tissue level in extra-SCN brain loci and the periphery and synchronizes subordinate clocks to external time. In the modern world, circadian disruption is widespread due to limited exposure to sunlight during the day, exposure to artificial light at night, and widespread use of light-emitting electronic devices, likely contributing to an increase in the prevalence, and the progression, of a host of disease states. The present overview focuses on the circadian control of endocrine secretions, the significance of rhythms within key endocrine axes for typical, homeostatic functioning, and implications for health and disease when dysregulated. © 2022 American Physiological Society. Compr Physiol 12: 1-30, 2022.
Collapse
Affiliation(s)
- Jacob S Moeller
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA
| | - Savannah R Bever
- Department of Psychology, University of California, Berkeley, California, USA
| | - Samantha L Finn
- Department of Psychology, University of California, Berkeley, California, USA
| | | | - Madison F Browne
- Department of Psychology, University of California, Berkeley, California, USA
| | - Lance J Kriegsfeld
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA.,Department of Psychology, University of California, Berkeley, California, USA.,Department of Integrative Biology, University of California, Berkeley, California, USA.,The Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
6
|
Yao Y, Silver R. Mutual Shaping of Circadian Body-Wide Synchronization by the Suprachiasmatic Nucleus and Circulating Steroids. Front Behav Neurosci 2022; 16:877256. [PMID: 35722187 PMCID: PMC9200072 DOI: 10.3389/fnbeh.2022.877256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Background Steroids are lipid hormones that reach bodily tissues through the systemic circulation, and play a major role in reproduction, metabolism, and homeostasis. All of these functions and steroids themselves are under the regulation of the circadian timing system (CTS) and its cellular/molecular underpinnings. In health, cells throughout the body coordinate their daily activities to optimize responses to signals from the CTS and steroids. Misalignment of responses to these signals produces dysfunction and underlies many pathologies. Questions Addressed To explore relationships between the CTS and circulating steroids, we examine the brain clock located in the suprachiasmatic nucleus (SCN), the daily fluctuations in plasma steroids, the mechanisms producing regularly recurring fluctuations, and the actions of steroids on their receptors within the SCN. The goal is to understand the relationship between temporal control of steroid secretion and how rhythmic changes in steroids impact the SCN, which in turn modulate behavior and physiology. Evidence Surveyed The CTS is a multi-level organization producing recurrent feedback loops that operate on several time scales. We review the evidence showing that the CTS modulates the timing of secretions from the level of the hypothalamus to the steroidogenic gonadal and adrenal glands, and at specific sites within steroidogenic pathways. The SCN determines the timing of steroid hormones that then act on their cognate receptors within the brain clock. In addition, some compartments of the body-wide CTS are impacted by signals derived from food, stress, exercise etc. These in turn act on steroidogenesis to either align or misalign CTS oscillators. Finally this review provides a comprehensive exploration of the broad contribution of steroid receptors in the SCN and how these receptors in turn impact peripheral responses. Conclusion The hypothesis emerging from the recognition of steroid receptors in the SCN is that mutual shaping of responses occurs between the brain clock and fluctuating plasma steroid levels.
Collapse
Affiliation(s)
- Yifan Yao
- Department of Psychology, Columbia University, New York City, NY, United States
- *Correspondence: Yifan Yao,
| | - Rae Silver
- Department of Psychology, Columbia University, New York City, NY, United States
- Department of Neuroscience, Barnard College, New York City, NY, United States
- Department of Psychology, Barnard College, New York City, NY, United States
- Department of Pathology and Cell Biology, Graduate School, Columbia University Irving Medical Center, New York City, NY, United States
| |
Collapse
|
7
|
Alvord VM, Kantra EJ, Pendergast JS. Estrogens and the circadian system. Semin Cell Dev Biol 2021; 126:56-65. [PMID: 33975754 DOI: 10.1016/j.semcdb.2021.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 11/26/2022]
Abstract
Circadian rhythms are ~24 h cycles of behavior and physiology that are generated by a network of molecular clocks located in nearly every tissue in the body. In mammals, the circadian system is organized hierarchically such that the suprachiasmatic nucleus (SCN) is the main circadian clock that receives light information from the eye and entrains to the light-dark cycle. The SCN then coordinates the timing of tissue clocks so internal rhythms are aligned with environmental cycles. Estrogens interact with the circadian system to regulate biological processes. At the molecular level, estrogens and circadian genes interact to regulate gene expression and cell biology. Estrogens also regulate circadian behavior across the estrous cycle. The timing of ovulation during the estrous cycle requires coincident estrogen and SCN signals. Studies using circadian gene reporter mice have also elucidated estrogen regulation of peripheral tissue clocks and metabolic rhythms. This review synthesizes current understanding of the interplay between estrogens and the circadian system, with a focus on female rodents, in regulating molecular, physiological, and behavioral processes.
Collapse
|
8
|
Zhao L, Yang L, Zhang J, Xiao Y, Wu M, Ma T, Wang X, Zhang L, Jiang H, Chao HW, Wang A, Jin Y, Chen H. Bmal1 promotes prostaglandin E 2 synthesis by upregulating Ptgs2 transcription in response to increasing estradiol levels in day 4 pregnant mice. Am J Physiol Endocrinol Metab 2021; 320:E747-E759. [PMID: 33554778 DOI: 10.1152/ajpendo.00466.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/31/2021] [Indexed: 12/28/2022]
Abstract
Prostaglandin G/H synthase 2 (PTGS2) is a rate-limiting enzyme in prostaglandin synthesis. The present study assessed the role of the uterine circadian clock on Ptgs2 transcription in response to steroid hormones during early pregnancy. We demonstrated that the core clock genes (Bmal1, Per2, Nr1d1, and Dbp), Vegf, and Ptgs2, and their encoded proteins, have rhythmic expression in the mouse uterus from days 3.5 to 4.5 (D3.5-4.5) of pregnancy. Progesterone (P4) treatment of cultured uterus endometrial stromal cells (UESCs) isolated from mPer2Luciferase reporter gene knock-in mice on D4 induced a phase shift in PER2::LUCIFERASE oscillations. This P4-induced phase shift of PER2::LUCIFERASE oscillations was significantly attenuated by the P4 antagonist RU486. Additionally, the amplitude of PER2::LUCIFERASE oscillations was increased by estradiol (E2) treatment in the presence of P4. Consistently, the mRNA levels of clock genes (Bmal1 and Per2), Vegf, and Ptgs2 were markedly increased by E2 treatment of UESCs in the presence of P4. Treatment with E2 also promoted prostaglandin E2 (PGE2) synthesis by UESCs. Depletion of Bmal1 in UESCs by small-interfering RNA (siRNA) decreased the transcript levels of clock genes (Nr1d1 and Dbp), Vegf, and Ptgs2 compared with nonsilencing siRNA treatment. Bmal1 knockdown also inhibited PGE2 synthesis. Moreover, the mRNA expression levels of clock genes (Nr1d1 and Dbp), Vegf, and Ptgs2, and their respective proteins were significantly decreased in the uterus of Bmal1-/- mice. Thus, these data suggest that Bmal1 in mice promotes PGE2 synthesis by upregulating Ptgs2 in response to increases in E2 on D4 of pregnancy.NEW & NOTEWORTHY Rhythmic expression of Bmal1 and Ptgs2 was observed in the uterus isolated from D3.5-4.5 of pregnant mice. E2 increased the expression of Bmal1 and Ptg2 in UESCs isolated from mice on D4. The expression of Ptgs2 was significantly decreased in Bmal1-siRNA treated UESCs. Bmal1 knockdown also inhibited PGE2 synthesis. Thus, these data suggest that Bmal1 in mice promotes PGE2 synthesis by upregulating Ptgs2 in response to increases in E2 on D4 of pregnancy.
Collapse
Affiliation(s)
- Lijia Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Luda Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Jing Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yaoyao Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Meina Wu
- Key Laboratory of Cellular Physiology, Department of Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Tiantian Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Xiaoyu Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Linlin Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Haizhen Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Hsu-Wen Chao
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
Elderbrock EK, Hau M, Greives TJ. Sex steroids modulate circadian behavioral rhythms in captive animals, but does this matter in the wild? Horm Behav 2021; 128:104900. [PMID: 33245879 DOI: 10.1016/j.yhbeh.2020.104900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/21/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Nearly all organisms alter physiological and behavioral activities across the twenty-four-hour day. Endogenous timekeeping mechanisms, which are responsive to environmental and internal cues, allow organisms to anticipate predictable environmental changes and time their daily activities. Among-individual variation in the chronotype, or phenotypic output of these timekeeping mechanisms (i.e. timing of daily behaviors), is often observed in organisms studied under naturalistic environmental conditions. The neuroendocrine system, including sex steroids, has been implicated in the regulation and modulation of endogenous clocks and their behavioral outputs. Numerous studies have found clear evidence that sex steroids modulate circadian and daily timing of activities in captive animals under controlled conditions. However, little is known about how sex steroids influence daily behavioral rhythms in wild organisms or what, if any, implication this may have for survival and reproductive fitness. Here we review the evidence that sex steroids modulate daily timing in vertebrates under controlled conditions. We then discuss how this relationship may be relevant for the reproductive success and fitness of wild organisms and discuss the limited evidence that sex steroids modulate circadian rhythms in wild organisms.
Collapse
Affiliation(s)
- Emily K Elderbrock
- North Dakota State University, Department of Biological Sciences, Fargo, ND, USA.
| | - Michaela Hau
- Max Planck Institute for Ornithology, Evolutionary Physiology Research Group, Seewiesen, Germany; University of Konstanz, Department of Biology, Konstanz, Germany
| | - Timothy J Greives
- North Dakota State University, Department of Biological Sciences, Fargo, ND, USA
| |
Collapse
|
10
|
Das M, Ellies LG, Kumar D, Sauceda C, Oberg A, Gross E, Mandt T, Newton IG, Kaur M, Sears DD, Webster NJG. Time-restricted feeding normalizes hyperinsulinemia to inhibit breast cancer in obese postmenopausal mouse models. Nat Commun 2021; 12:565. [PMID: 33495474 PMCID: PMC7835248 DOI: 10.1038/s41467-020-20743-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/04/2020] [Indexed: 01/30/2023] Open
Abstract
Accumulating evidence indicates that obesity with its associated metabolic dysregulation, including hyperinsulinemia and aberrant circadian rhythms, increases the risk for a variety of cancers including postmenopausal breast cancer. Caloric restriction can ameliorate the harmful metabolic effects of obesity and inhibit cancer progression but is difficult to implement and maintain outside of the clinic. In this study, we aim to test a time-restricted feeding (TRF) approach on mouse models of obesity-driven postmenopausal breast cancer. We show that TRF abrogates the obesity-enhanced mammary tumor growth in two orthotopic models in the absence of calorie restriction or weight loss. TRF also reduces breast cancer metastasis to the lung. Furthermore, TRF delays tumor initiation in a transgenic model of mammary tumorigenesis prior to the onset of obesity. Notably, TRF increases whole-body insulin sensitivity, reduces hyperinsulinemia, restores diurnal gene expression rhythms in the tumor, and attenuates tumor growth and insulin signaling. Importantly, inhibition of insulin secretion with diazoxide mimics TRF whereas artificial elevation of insulin through insulin pumps implantation reverses the effect of TRF, suggesting that TRF acts through modulating hyperinsulinemia. Our data suggest that TRF is likely to be effective in breast cancer prevention and therapy.
Collapse
Affiliation(s)
- Manasi Das
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA
| | - Lesley G Ellies
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Deepak Kumar
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA
| | - Consuelo Sauceda
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA
| | - Alexis Oberg
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Emilie Gross
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA
| | - Tyler Mandt
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Isabel G Newton
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Mehak Kaur
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA
| | - Dorothy D Sears
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Family Medicine and Public Health, Division of Preventive Medicine, University of California San Diego, La Jolla, CA, USA
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Nicholas J G Webster
- VA San Diego Healthcare System, San Diego, CA, USA.
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Johnston JG, Speed JS, Becker BK, Kasztan M, Soliman RH, Rhoads MK, Tao B, Jin C, Geurts AM, Hyndman KA, Pollock JS, Pollock DM. Diurnal Control of Blood Pressure Is Uncoupled From Sodium Excretion. Hypertension 2020; 75:1624-1634. [PMID: 32306766 PMCID: PMC7228023 DOI: 10.1161/hypertensionaha.119.13908] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Abstract
The diurnal rhythms of sodium handling and blood pressure are thought to be regulated by clock genes, such as Bmal1. However, little is known about the regulation of these factors by Bmal1, especially in rats. Using a novel whole-body Bmal1 knockout rat model (Bmal1-/-), we hypothesized that time of day regulation of sodium excretion is dependent on Bmal1. Using telemetry to continuously record mean arterial pressure, we observed that male and female Bmal1-/- rats had significantly reduced mean arterial pressure over the course of 24 hours compared with littermate controls. The circadian mean arterial pressure pattern remained intact in both sexes of Bmal1-/- rats, which is in contrast to the Bmal1-/- mouse model. Male Bmal1-/- rats had no significant difference in baseline sodium excretion between 12-hour active and inactive periods, indicating a lack of diurnal control independent of maintained mean arterial pressure rhythms. Female Bmal1-/- rats, however, had significantly greater sodium excretion during the active versus inactive period similar to controls. Thus, we observed a clear dissociation between circadian blood pressure and control of sodium excretion that is sex dependent. These findings are consistent with a more robust ability of females to maintain control of sodium excretion, and furthermore, demonstrate a novel role for Bmal1 in control of diurnal blood pressure independent of sodium excretion.
Collapse
Affiliation(s)
- Jermaine G. Johnston
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Joshua S. Speed
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216
| | - Bryan K. Becker
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Malgorzata Kasztan
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Reham H. Soliman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Megan K. Rhoads
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Binli Tao
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Chunhua Jin
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Aron M. Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Kelly A. Hyndman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jennifer S. Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - David M. Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
12
|
Yaw AM, Duong TV, Nguyen D, Hoffmann HM. Circadian rhythms in the mouse reproductive axis during the estrous cycle and pregnancy. J Neurosci Res 2020; 99:294-308. [PMID: 32128870 DOI: 10.1002/jnr.24606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/17/2020] [Accepted: 02/12/2020] [Indexed: 12/26/2022]
Abstract
Molecular and behavioral timekeeping is regulated by the circadian system which includes the brain's suprachiasmatic nucleus (SCN) that translates environmental light information into neuronal and endocrine signals aligning peripheral tissue rhythms to the time of day. Despite the critical role of circadian rhythms in fertility, it remains unexplored how circadian rhythms change within reproductive tissues during pregnancy. To determine how estrous cycle and pregnancy impact phase relationships of reproductive tissues, we used PER2::Luciferase (PER2::LUC) circadian reporter mice and determined the time of day of PER2::LUC peak (phase) in the SCN, pituitary, uterus, and ovary. The relationships between reproductive tissue PER2::LUC phases changed throughout the estrous cycle and late pregnancy and were accompanied by changes to PER2::LUC period in the SCN, uterus, and ovary. To determine if the phase relationship adaptations were driven by sex steroids, we asked if progesterone, a hormone involved in estrous cyclicity and pregnancy, could regulate Per2-luciferase expression. Using an in vitro transfection assay, we found that progesterone increased Per2-luciferase expression in immortalized SCN (SCN2.2) and arcuate nucleus (KTAR) cells. In addition, progesterone shortened PER2::LUC period in ex vivo uterine tissue recordings collected during pregnancy. As progesterone dramatically increases during pregnancy, we evaluated wheel-running patterns in PER2::LUC mice. We confirmed that activity levels decrease during pregnancy and found that activity onset was delayed. Although SCN, but not arcuate nucleus, PER2::LUC period changed during late pregnancy, onset of locomotor activity did not correlate with SCN or arcuate nucleus PER2::LUC period.
Collapse
Affiliation(s)
- Alexandra M Yaw
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| | - Thu V Duong
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| | - Duong Nguyen
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| | - Hanne M Hoffmann
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
13
|
Pérez-Mendoza M, Rivera-Zavala JB, Rodríguez-Guadarrama AH, Montoya-Gomez LM, Carmona-Castro A, Díaz-Muñoz M, Miranda-Anaya M. Daily cycle in hepatic lipid metabolism in obese mice, Neotomodon alstoni: Sex differences. Chronobiol Int 2018; 35:643-657. [PMID: 29370528 DOI: 10.1080/07420528.2018.1424178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Disruption of circadian rhythms influences the pathogenesis of obesity, particularly with the basic regulation of food intake and metabolism. A link between metabolism and the circadian clock is the peroxisome proliferator-activated receptors (PPARs). The Neotomodon alstoni mouse, known as the "Mexican volcano mouse," may develop obesity if fed a normo-caloric diet. This manuscript documents the changes in part of the hepatic lipid homeostasis in both sexes of lean and obese N. alstoni mice, comparing the daily changes in the BMAL1 clock protein, in regulators of lipid metabolism (PGC-1α, PPARα-γ, SREBP-1c, and CPT-1α) and in free fatty acid (FFA) and hepatic triacylglyceride (TAG) metabolites in light-dark cycles. Hepatic tissue and blood were collected at 5, 10, 15, 19, and 24 h. Samples were analyzed by western blotting to determine the relative presence of protein. The results indicate that obesity affects daily changes in lipid metabolism and the BMAL1 profile in females considerably more than in males. These results suggest that the impact of obesity on lipid metabolism has important differences according to sex.
Collapse
Affiliation(s)
- Moisés Pérez-Mendoza
- a Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias , Universidad Nacional Autónoma de México , Juriquilla , Qro
| | - Julieta Berenice Rivera-Zavala
- a Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias , Universidad Nacional Autónoma de México , Juriquilla , Qro
| | - Asael H Rodríguez-Guadarrama
- a Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias , Universidad Nacional Autónoma de México , Juriquilla , Qro
| | - Luis M Montoya-Gomez
- a Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias , Universidad Nacional Autónoma de México , Juriquilla , Qro
| | - Agustín Carmona-Castro
- b Departamento de Biología Celular; Facultad de Ciencias , Ciudad Universitaria, Universidad Nacional Autónoma de México , Ciudad de México , México
| | - Mauricio Díaz-Muñoz
- c Departamento de Neurobiología Celular y Molecular , Instituto de Neurobiología, Universidad Nacional Autónoma de México , Campus Juriquilla, Querétaro, Qro , México
| | - Manuel Miranda-Anaya
- a Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias , Universidad Nacional Autónoma de México , Juriquilla , Qro
| |
Collapse
|
14
|
Ovariectomy influences the circadian rhythm of locomotor activity and the photic phase shifts in the volcano mouse. Physiol Behav 2017; 182:77-85. [DOI: 10.1016/j.physbeh.2017.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 11/18/2022]
|
15
|
Chun LE, Woodruff ER, Morton S, Hinds LR, Spencer RL. Variations in Phase and Amplitude of Rhythmic Clock Gene Expression across Prefrontal Cortex, Hippocampus, Amygdala, and Hypothalamic Paraventricular and Suprachiasmatic Nuclei of Male and Female Rats. J Biol Rhythms 2015; 30:417-36. [PMID: 26271538 DOI: 10.1177/0748730415598608] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The molecular circadian clock is a self-regulating transcription/translation cycle of positive (Bmal1, Clock/Npas2) and negative (Per1,2,3, Cry1,2) regulatory components. While the molecular clock has been well characterized in the body's master circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), only a few studies have examined both the positive and negative clock components in extra-SCN brain tissue. Furthermore, there has yet to be a direct comparison of male and female clock gene expression in the brain. This comparison is warranted, as there are sex differences in circadian functioning and disorders associated with disrupted clock gene expression. This study examined basal clock gene expression (Per1, Per2, Bmal1 mRNA) in the SCN, prefrontal cortex (PFC), rostral agranular insula, hypothalamic paraventricular nucleus (PVN), amygdala, and hippocampus of male and female rats at 4-h intervals throughout a 12:12 h light:dark cycle. There was a significant rhythm of Per1, Per2, and Bmal1 in the SCN, PFC, insula, PVN, subregions of the hippocampus, and amygdala with a 24-h period, suggesting the importance of an oscillating molecular clock in extra-SCN brain regions. There were 3 distinct clock gene expression profiles across the brain regions, indicative of diversity among brain clocks. Although, generally, the clock gene expression profiles were similar between male and female rats, there were some sex differences in the robustness of clock gene expression (e.g., females had fewer robust rhythms in the medial PFC, more robust rhythms in the hippocampus, and a greater mesor in the medial amygdala). Furthermore, females with a regular estrous cycle had attenuated aggregate rhythms in clock gene expression in the PFC compared with noncycling females. This suggests that gonadal hormones may modulate the expression of the molecular clock.
Collapse
Affiliation(s)
- Lauren E Chun
- Department of Psychology & Neuroscience, University of Colorado Boulder, USA
| | | | - Sarah Morton
- Department of Psychology & Neuroscience, University of Colorado Boulder, USA
| | - Laura R Hinds
- Department of Psychology & Neuroscience, University of Colorado Boulder, USA
| | - Robert L Spencer
- Department of Psychology & Neuroscience, University of Colorado Boulder, USA
| |
Collapse
|
16
|
Saunders EF, Fernandez-Mendoza J, Kamali M, Assari S, McInnis MG. The effect of poor sleep quality on mood outcome differs between men and women: A longitudinal study of bipolar disorder. J Affect Disord 2015; 180:90-6. [PMID: 25885066 PMCID: PMC4448970 DOI: 10.1016/j.jad.2015.03.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND Sleep disturbance is bi-directionally related to mood de-stabilization in bipolar disorder (BD), and sleep quality differs in men and women. We aimed to determine whether perception of poor sleep quality would have a different effect on mood outcome in men versus women. METHODS We assessed association between sleep quality (Pittsburgh Sleep Quality Index (PSQI)) at study intake and mood outcome over 2 years in subjects from the Prechter Longitudinal Study of Bipolar Disorder (N=216; 29.6% males). The main outcome measure was the severity, variability, and frequency of mood episodes measured by self-report over 2 years of follow-up. Multivariable linear regression models stratified by sex examined the relationship between PSQI with mood outcomes, while age, stressful life events, mood state and neuroticism at baseline were controlled. RESULTS In women, poor sleep quality at baseline predicted increased severity (B=0.28, p<0.001) and frequency of episodes (B=0.32, p<0.001) of depression, and poor sleep quality was a stronger predictor than baseline depression; poor sleep quality predicted increased severity (B=0.19, p<0.05) and variability (B=0.20, p<0.05) of mania, and frequency of mixed episodes (B=0.27, p<0.01). In men, baseline depression and neuroticism were stronger predictors of mood outcome compared to poor sleep quality. LIMITATIONS We measured perception of sleep quality, but not objective changes in sleep. CONCLUSIONS In a longitudinal study of BD, women reported poorer perceived sleep quality than men, and poor sleep quality predicted worse mood outcome in BD. Clinicians should be sensitive to addressing sleep complaints in women with BD early in treatment to improve outcome in BD.
Collapse
Affiliation(s)
- Erika F.H. Saunders
- Department of Psychiatry, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA,University of Michigan Medical School, Department of Psychiatry, Ann Arbor, MI,University of Michigan Depression Center, Ann Arbor, MI
| | - Julio Fernandez-Mendoza
- Department of Psychiatry, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center, 500 University Drive, P.O. Box 850, Mail Code: HO73, Hershey, PA, USA; Sleep Research & Treatment Center, Department of Psychiatry, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA.
| | - Masoud Kamali
- University of Michigan Medical School, Department of Psychiatry, Ann Arbor, MI, USA; University of Michigan Depression Center, Ann Arbor, MI, USA.
| | - Shervin Assari
- University of Michigan Medical School, Department of Psychiatry, Ann Arbor, MI, USA; University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Melvin G. McInnis
- University of Michigan Medical School, Department of Psychiatry, Ann Arbor, MI,University of Michigan Depression Center, Ann Arbor, MI
| |
Collapse
|
17
|
Mereness AL, Murphy ZC, Sellix MT. Developmental programming by androgen affects the circadian timing system in female mice. Biol Reprod 2015; 92:88. [PMID: 25695720 DOI: 10.1095/biolreprod.114.126409] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/11/2015] [Indexed: 12/16/2022] Open
Abstract
Circadian clocks play essential roles in the timing of events in the mammalian hypothalamo-pituitary-ovarian (HPO) axis. The molecular oscillator driving these rhythms has been localized to tissues of the HPO axis. It has been suggested that synchrony among these oscillators is a feature of normal reproductive function. The impact of fertility disorders on clock function and the role of the clock in the etiology of endocrine pathology remain unknown. Polycystic ovarian syndrome (PCOS) is a particularly devastating fertility disorder, affecting 5%-10% of women at childbearing age with features including a polycystic ovary, anovulation, and elevated serum androgen. Approximately 40% of these women have metabolic syndrome, marked by hyperinsulinemia, dyslipidemia, and insulin resistance. It has been suggested that developmental exposure to excess androgen contributes to the etiology of fertility disorders, including PCOS. To better define the role of the timing system in these disorders, we determined the effects of androgen-dependent developmental programming on clock gene expression in tissues of the metabolic and HPO axes. Female PERIOD2::luciferase (PER2::LUC) mice were exposed to androgen (dihydrotestosterone [DHT]) in utero (Days 16-18 of gestation) or for 9-10 wk (DHT pellet) beginning at weaning (pubertal androgen excess [PAE]). As expected, both groups of androgen-treated mice had disrupted estrous cycles. Analysis of PER2::LUC expression in tissue explants revealed that excess androgen produced circadian misalignment via tissue-dependent effects on phase distribution. In vitro treatment with DHT differentially affected the period of PER2::LUC expression in tissue explants and granulosa cells, indicating that androgen has direct and tissue-specific effects on clock gene expression that may account for the effects of developmental programming on the timing system.
Collapse
Affiliation(s)
- Amanda L Mereness
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Zachary C Murphy
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Michael T Sellix
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
18
|
Xu J, Xu Y, Miao B, Deng M, Wang Y, Xiang P, Zhou C. Influence of menstrual cycle on the expression of clock genes in peripheral blood mononuclear cells in Macaca fascicularis. Eur J Obstet Gynecol Reprod Biol 2015; 186:54-8. [PMID: 25637813 DOI: 10.1016/j.ejogrb.2015.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 12/16/2014] [Accepted: 01/12/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate whether the expression patterns of periphery clock genes were influenced by menstrual cycle in a monkey model. STUDY DESIGN In this preliminary study, the expression patterns of four clock genes (Bmal1, Clock, Cry1 and Per2) in peripheral blood mononuclear cells (PBMCs) from 6 female Macaca fascicularis in menstrual, late follicular and mid luteal phases of menstrual cycle were determined by qrt-PCR. RESULTS Bmal1 and Per2 mRNA levels were found to exhibit significant diurnal rhythms in all phases of the menstrual cycle. The expression of Cry1 mRNA was statistically rhythmic in late follicular and mid luteal phases. A main effect of menstrual cycle existed on the rhythms of Bmal1, Cry1 and Per2 expression, but not Clock expression. No significant differences were detected between menstrual phase and late follicular phase in all clock genes. Significant differences were found on the expression of Bmal1, Cry1 or Per2 mRNA between late follicular phase and mid luteal phase, when no difference existed in estrogen level, indicating the role of progesterone on biological clock gene expression. Furthermore, the peak of Bmal1 mRNA level slightly advanced in mid luteal phase compared with that in menstrual and late follicular phases. CONCLUSION The expression patterns of clock genes in PBMCs were influenced by menstrual cycle, potentially by the change of progesterone levels, and this effect maybe correlated with early pregnancy.
Collapse
Affiliation(s)
- Jian Xu
- Reproductive Medicine Center, Guangzhou Women and Children's Medical Center, Guangzhou, China; Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road II, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Yanwen Xu
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road II, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China.
| | - Benyu Miao
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road II, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Mingfen Deng
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road II, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Yizi Wang
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road II, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Canquan Zhou
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road II, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China.
| |
Collapse
|
19
|
Abstract
Rhythmic events in the female reproductive system depend on the coordinated and synchronized activity of multiple neuroendocrine and endocrine tissues. This coordination is facilitated by the timing of gene expression and cellular physiology at each level of the hypothalamo-pituitary-ovarian (HPO) axis, including the basal hypothalamus and forebrain, the pituitary gland, and the ovary. Central to this pathway is the primary circadian pacemaker in the suprachiasmatic nucleus (SCN) that, through its myriad outputs, provides a temporal framework for gonadotropin release and ovulation. The heart of the timing system, a transcription-based oscillator, imparts SCN pacemaker cells and a company of peripheral tissues with the capacity for daily oscillations of gene expression and cellular physiology. Although the SCN sits comfortably at the helm, peripheral oscillators (such as the ovary) have undefined but potentially critical roles. Each cell type of the ovary, including theca cells, granulosa cells, and oocytes, harbor a molecular clock implicated in the processes of follicular growth, steroid hormone synthesis, and ovulation. The ovarian clock is influenced by the reproductive cycle and diseases that perturb the cycle and/or follicular growth can disrupt the timing of clock gene expression in the ovary. Chronodisruption is known to negatively affect reproductive function and fertility in both rodent models and women exposed to shiftwork schedules. Thus, influencing clock function in the HPO axis with chronobiotics may represent a novel avenue for the treatment of common fertility disorders, particularly those resulting from chronic circadian disruption.
Collapse
Affiliation(s)
- Michael T. Sellix
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
20
|
Gender associated circadian oscillations of the clock genes in rat choroid plexus. Brain Struct Funct 2014; 220:1251-62. [DOI: 10.1007/s00429-014-0720-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 01/28/2014] [Indexed: 12/11/2022]
|