1
|
Zhang HL, Cui Q, Yu XT, Hou YX, Ma RJ, Lu PS, Wang Y, Sun SC, Wang HH. Rab32-based vesicles coordinate mitochondria and actin for spindle migration and organelle rearrangement in oocyte meiosis. J Adv Res 2025:S2090-1232(25)00294-2. [PMID: 40324632 DOI: 10.1016/j.jare.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025] Open
Abstract
INTRODUCTION Rab32 is a part of the Rab GTPase family, which is known as the regulator of vesicle transport for an array of cellular functions including endosomal transport, autophagy, generation of melanosomes, phagocytosis and inflammatory processes. OBJECTIVE However, the role of Rab32 in oocyte meiosis is still not well-defined. METHODS We depleted Rab32 expression by knock down approach, and we also disrupted Rab32 function by exogenous Rab32Q83L/T37N mRNA injection for mutation. RESULTS In our current investigation, we delved into its impacts on the cytoskeleton dynamics and the functionality of organelles during the meiotic maturation process in mouse oocytes. Rab32 expressed during oocyte meiosis and deletion of Rab32 or the expression of exogenous Rab32Q83L/T37N led to oocyte polar body extrusion defects or symmetric division. We showed that Rab32 was essential for ROCK1-based actin assembly which further led to spindle migration for the asymmetry. Besides, perturbation of Rab32 affected DRP1 phosphorylation for the spatial arrangement and functionality of mitochondria in mouse oocytes. And we found that Rab32 disruption caused the miscarriage of membrane organelles such as Golgi apparatus, ER, lysosome and CGs during oocyte meiosis, leading to ER stress and autophagy. CONCLUSIONS In summary, our study unravels the critical functions of Rab32 for the interplay between actin and mitochondria, which further facilitates movement of the spindle apparatus and organelles arrangement in mouse oocyte meiotic development.
Collapse
Affiliation(s)
- Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qian Cui
- Center of Reproductive Medicine, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, China
| | - Xiao-Ting Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yu-Xuan Hou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Rui-Jie Ma
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ping-Shuang Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Hong-Hui Wang
- Center of Reproductive Medicine, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, China.
| |
Collapse
|
2
|
Ren X, Hei Z, Ji K, Yan Y, Tian C, Wei Y, Sun Y. The Minute Virus of Canines (MVC) Activates the RhoA/ROCK1/MLC2 Signal Transduction Pathway Resulting in the Dissociation of Tight Junctions and Facilitating Occludin-Mediated Viral Infection. Microorganisms 2025; 13:695. [PMID: 40142587 PMCID: PMC11944487 DOI: 10.3390/microorganisms13030695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The Minute Virus of Canines (MVC), belonging to the genus Bocaparvovirus within the family Parvoviridae, is associated with enteritis and embryonic infection in neonatal canines. Viral attachment to host cells is a critical step in infection, and viral protein 2 (VP2) as an important structural protein of MVC influences host selection and infection severity. Nevertheless, little is known about the interaction between VP2 protein and host cells. In this study, we identified that VP2 directly interacts with the kinase domain of RhoA-associated protein kinase 1 (ROCK1) by using mass spectrometry and immunoprecipitation approach and demonstrated that the RhoA/ROCK1/myosin light chain 2 (MLC2) signaling pathway was activated during the early stage of MVC infection in Walter Reed canine cell/3873D (WRD) cells. Further studies indicated that RhoA/ROCK1-mediated phosphorylation of MLC2 triggers the contraction of the actomyosin ring, disrupts tight junctions, and exposes the tight junction protein Occludin, which facilitates the interaction between VP2 and Occludin. Specific inhibitors of RhoA and ROCK1 restored the MVC-induced intracellular translocation of Occludin and the increase in cell membrane permeability. Moreover, the two inhibitors significantly reduced viral protein expression and genomic copy number. Collectively, our study provides the first evidence that there is a direct interaction between the structural protein VP2 of MVC and ROCK1, and that the tight junction protein Occludin can serve as a potential co-receptor for MVC infection, which may offer new targets for anti-MVC strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuning Sun
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China; (X.R.); (Z.H.); (K.J.); (Y.Y.); (C.T.); (Y.W.)
| |
Collapse
|
3
|
Iannitti R, Mascanzoni F, Colanzi A, Spano D. The role of Golgi complex proteins in cell division and consequences of their dysregulation. Front Cell Dev Biol 2025; 12:1513472. [PMID: 39839669 PMCID: PMC11747491 DOI: 10.3389/fcell.2024.1513472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
The GC (Golgi complex) plays a pivotal role in the trafficking and sorting of proteins and lipids until they reach their final destination. Additionally, the GC acts as a signalling hub to regulate a multitude of cellular processes, including cell polarity, motility, apoptosis, DNA repair and cell division. In light of these crucial roles, the GC has garnered increasing attention, particularly given the evidence that a dysregulation of GC-regulated signalling pathways may contribute to the onset of various pathological conditions. This review examines the functions of the GC and GC-localised proteins in regulating cell cycle progression, in both mitosis and meiosis. It reviews the involvement of GC-resident proteins in the formation and orientation of the spindle during cell division. In light of the roles played by the GC in controlling cell division, this review also addresses the involvement of the GC in cancer development. Furthermore, TCGA (The Cancer Genome Atlas) database has been queried in order to retrieve information on the genetic alterations and the correlation between the expression of GC-localised proteins and the survival of cancer patients. The data presented in this review highlight the relevance of the GC in regulating cell cycle progression, cellular differentiation and tumourigenesis.
Collapse
Affiliation(s)
| | | | | | - Daniela Spano
- Department of Biomedical Sciences (DSB), Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
4
|
Chang H, Huang C, Cheng S, Li J, Wang X. Fbxo28 is essential for spindle migration and morphology during mouse oocyte meiosis I. Int J Biol Macromol 2024; 275:133232. [PMID: 38960234 DOI: 10.1016/j.ijbiomac.2024.133232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/28/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024]
Abstract
Spindle migration and assembly regulates asymmetric oocyte division, which is essential for fertility. Fbxo28, as a member of SCF (Skp1-Cul1-F-box) ubiquitin E3 ligases complex, is specifically expressed in oocytes. However, little is known about the functions of Fbxo28 in spindle assembly and migration during oocyte meiosis I. In present study, microinjection with morpholino oligonucleotides and exogenous mRNA for knockdown and rescue experiments, and immunofluorescence staining, western blot, timelapse confocal microscopy and chromosome spreading were utilized to explore the roles of Fbxo28 in asymmetric division during meiotic maturation. Our data suggested that Fbxo28 mainly localized at chromosomes and acentriolar microtubule-organizing centers (aMTOCs). Depletion of Fbxo28 did not affect polar body extrusion but caused defects in spindle morphology and migration, indicative of the failure of asymmetric division. Moreover, absence of Fbxo28 disrupted both cortical and cytoplasmic actin assembly and decreased the expression of ARPC2 and ARP3. These defects could be rescued by exogenous Fbxo28-myc mRNA supplement. Collectively, this study demonstrated that Fbxo28 affects spindle morphology and actin-based spindle migration during mouse oocyte meiotic maturation.
Collapse
Affiliation(s)
- Haoya Chang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China; Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chenyang Huang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Siyu Cheng
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Li
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Xiaohong Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China.
| |
Collapse
|
5
|
Zhang KH, Jiao L, Wang Y, Sun SC. Arf6 GTPase deficiency leads to porcine oocyte quality decline during aging. FASEB J 2024; 38:e23739. [PMID: 38884157 DOI: 10.1096/fj.202400893r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024]
Abstract
Arf6 is a member of ADP-ribosylation factor (Arf) family, which is widely implicated in the regulation of multiple physiological processes including endocytic recycling, cytoskeletal organization, and membrane trafficking during mitosis. In this study, we investigated the potential relationship between Arf6 and aging-related oocyte quality, and its roles on organelle rearrangement and cytoskeleton dynamics in porcine oocytes. Arf6 expressed in porcine oocytes throughout meiotic maturation, and it decreased in aged oocytes. Disruption of Arf6 led to the failure of cumulus expansion and polar body extrusion. Further analysis indicated that Arf6 modulated ac-tubulin for meiotic spindle organization and microtubule stability. Besides, Arf6 regulated cofilin phosphorylation and fascin for actin assembly, which further affected spindle migration, indicating the roles of Arf6 on cytoskeleton dynamics. Moreover, the lack of Arf6 activity caused the dysfunction of Golgi and ER for protein synthesis and signal transduction. Mitochondrial dysfunction was also observed in Arf6-deficient porcine oocytes, which was supported by the increased ROS level and abnormal membrane potential. In conclusion, our results reported that insufficient Arf6 was related to aging-induced oocyte quality decline through spindle organization, actin assembly, and organelle rearrangement in porcine oocytes.
Collapse
Affiliation(s)
- Kun-Huan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Le Jiao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Abdelhady AWA, Aguiar LH, Lee YL, Guo Z, Bovell RT, Crane PL, Diel de Amorim M, Cheong SH. Rho-associated coiled-coil containing kinase inhibitor improves outcomes of direct-transfer slow-cooled bovine blastocysts. Theriogenology 2023; 211:19-27. [PMID: 37556931 DOI: 10.1016/j.theriogenology.2023.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/02/2023] [Accepted: 07/23/2023] [Indexed: 08/11/2023]
Abstract
Direct-transfer slow-cooling cryopreservation is a widely used method for bovine embryo cryopreservation. However, the transfer of cryopreserved embryos is associated with reduced pregnancy rates. Rho-associated coiled-coil containing kinase inhibitor (ROCKi) has shown promise in improving the viability of post-warmed vitrified bovine embryos. Our objective was to investigate the effects of ROCKi treatment prior to slow-cooling or after cryopreservation on embryo viability. In vitro produced bovine embryos (n = 571) were randomly assigned to one of five groups: No-cryopreservation control group (NC-C), C-C group were cryopreserved by slow-rate cooling without ROCKi at any point, R-C group were incubated with ROCKi for 2 h before cryopreservation, C-R group were not exposed to ROCKi prior to cryopreservation but were cultured with ROCKi after cryopreservation, and R-R group were exposed to ROCKi before and after cryopreservation. Treatment group was significantly associated with blastocoel re-expansion, hatching, and degeneration (P < 0.0001). Blastocoel re-expansion rates were lower (P < 0.05) in the C-C (75.2 ± 4.2%) and R-C (85.2 ± 4.7%) groups compared with the NC-C (99.0 ± 0.7%), C-R (94.7 ± 2.6%) and the R-R (94.5 ± 2.9%) groups. The median time to re-expansion was significantly slowest in the C-C group (650, 560-915 min), followed by the R-C group (538, 421-611 min), then the C-R and R-R groups were similar (291, 261-361 and 321, 271-371 min) and the NC-C group was the fastest (196, 161-230 min) (P < 0.05). Similarly, the post-thaw hatching rate was lower, and the median time to hatching slower in the C-C (58.1 ± 7.0%, 2,033, 1634-2820 min) and R-C (65.7 ± 6.9%, 1,853, 1494-2356 min) groups compared with the NC-C (81.7 ± 6.0%, 1,309, 1084-1514 min), C-R (77.2 ± 6.5%, 1,384, 1013-1754 min) and R-R (82.0 ± 5.3%, 1,209, 943-1424 min) groups. ROCKi supplementation after cryopreservation resulted in fewer degenerated embryos (C-R = 8.9 ± 2.8%, and R-R 7.1 ± 2.8%) compared to the C-C (26.8 ± 4.3%) and R-C (17.9 ± 5.7%) groups. Exposure to ROCKi both before cryopreservation and after-cryopreservation yielded the best outcomes, similar to NC-C control group without cryopreservation, and significantly better than the C-C control group without supplements. Exposure to ROCKi after cryopreservation demonstrated greater benefits compared to exposure before cryopreservation alone. These findings suggest that ROCKi can potentially enhance cryosurvival of bovine embryos.
Collapse
Affiliation(s)
| | - Luis Henrique Aguiar
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Yoke Lee Lee
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Ziqi Guo
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Rhasaan T Bovell
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Patrick L Crane
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Mariana Diel de Amorim
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
7
|
Ramos-Alvarez I, Lee L, Jensen RT. Cofilin activation in pancreatic acinar cells plays a pivotal convergent role for mediating CCK-stimulated enzyme secretion and growth. Front Physiol 2023; 14:1147572. [PMID: 37138671 PMCID: PMC10149936 DOI: 10.3389/fphys.2023.1147572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction: The actin regulatory protein, cofilin plays a key signaling role in many cells for numerous cellular responses including in proliferation, development, motility, migration, secretion and growth. In the pancreas it is important in islet insulin secretion, growth of pancreatic cancer cells and in pancreatitis. However, there are no studies on its role or activation in pancreatic acinar cells. Methods: To address this question, we studied the ability of CCK to activate cofilin in pancreatic acinar cells, AR42J cells and CCK1-R transfected Panc-1 cells, the signaling cascades involved and its effect on enzyme secretion and MAPK activation, a key mediator of pancreatic growth. Results: CCK (0.3 and 100 nM), TPA, carbachol, Bombesin, secretin and VIP decreased phospho-cofilin (i.e., activate cofilin) and both phospho-kinetic and inhibitor studies of cofilin, LIM kinase (LIMK) and Slingshot Protein Phosphatase (SSH1) demonstrated these conventional activators of cofilin were not involved. Serine phosphatases inhibitors (calyculin A and okadaic acid), however inhibited CCK/TPA-cofilin activation. Studies of various CCK-activated signaling cascades showed activation of PKC/PKD, Src, PAK4, JNK, ROCK mediated cofilin activation, but not PI3K, p38, or MEK. Furthermore, using both siRNA and cofilin inhibitors, cofilin activation was shown to be essential for CCK-mediated enzyme secretion and MAPK activation. Conclusion: These results support the conclusion that cofilin activation plays a pivotal convergent role for various cell signaling cascades in CCK mediated growth/enzyme secretion in pancreatic acini.
Collapse
Affiliation(s)
- Irene Ramos-Alvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lingaku Lee
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- National Kyushu Cancer Center, Department of Hepato-Biliary-Pancreatology, Fukuoka, Japan
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Yao M, Gong Z, Xu W, Shi X, Liu X, Tang Y, Xuan S, Su Y, Xu X, Luo M, Sui H. Establishment and optimization of an in vitro guinea pig oocyte maturation system. PLoS One 2023; 18:e0285016. [PMID: 37115798 PMCID: PMC10146542 DOI: 10.1371/journal.pone.0285016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Guinea pigs are a valuable animal model for studying various diseases, including reproductive diseases. However, techniques for generating embryos via embryo engineering in guinea pigs are limited; for instance, in vitro maturation (IVM) technique is preliminary for guinea pig oocytes. In this study, we aimed to establish and optimize an IVM method for guinea pig oocytes by investigating various factors, such as superovulation induced by different hormones, culture supplementation (e.g., amino acids, hormone, and inhibitors), culture conditions (e.g., oocyte type, culture medium type, and treatment time), and in vivo hCG stimulation. We found that oocytes collected from guinea pigs with superovulation induced by hMG have a higher IVM rate compared to those collected from natural cycling individuals. Moreover, we found that addition of L-cysteine, cystine, and ROS in the culture medium can increase the IVM rate. In addition, we demonstrated that in vivo stimulation with hCG for 3-8 h can further increase the IVM rate. As a result, the overall IVM rate of guinea pig oocytes under our optimized conditions can reach ~69%, and the mature oocytes have high GSH levels and normal morphology. In summary, we established an effective IVM method for guinea pig oocytes by optimizing various factors and conditions, which provides a basis for embryo engineering using guinea pigs as a model.
Collapse
Affiliation(s)
- Minhua Yao
- Department of Histology and Embryology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, P. R. China
| | - Zhaoqing Gong
- Department of Histology and Embryology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, P. R. China
| | - Weizhen Xu
- Department of Histology and Embryology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, P. R. China
| | - Xinlei Shi
- Department of Histology and Embryology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, P. R. China
| | - Xiaocui Liu
- Department of Histology and Embryology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, P. R. China
| | - Yangyang Tang
- Department of Histology and Embryology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, P. R. China
| | - Siyu Xuan
- Department of Histology and Embryology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, P. R. China
| | - Yanping Su
- Department of Histology and Embryology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, P. R. China
| | - Xinghua Xu
- Department of Histology and Embryology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, P. R. China
| | - Mingjiu Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, P. R. China
| | - Hongshu Sui
- Department of Histology and Embryology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, P. R. China
| |
Collapse
|
9
|
Shan MM, Zou YJ, Pan ZN, Zhang HL, Xu Y, Ju JQ, Sun SC. Kinesin motor KIFC1 is required for tubulin acetylation and actin-dependent spindle migration in mouse oocyte meiosis. Development 2022; 149:274327. [DOI: 10.1242/dev.200231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Mammalian oocyte maturation is a unique asymmetric division, which is mainly because of actin-based spindle migration to the cortex. In the present study, we report that a kinesin motor KIFC1, which is associated with microtubules for the maintenance of spindle poles in mitosis, is also involved in actin dynamics in murine oocyte meiosis, co-localizing with microtubules during mouse oocyte maturation. Depletion of KIFC1 caused the failure of polar body extrusion, and we found that meiotic spindle formation and chromosome alignment were disrupted. This might be because of the effects of KIFC1 on HDAC6 and NAT10-based tubulin acetylation, which further affected microtubule stability. Mass spectroscopy analysis revealed that KIFC1 also associated with several actin nucleation factors and we found that KIFC1 was essential for the distribution of actin filaments, which further affected spindle migration. Depletion of KIFC1 leaded to aberrant expression of formin 2 and the ARP2/3 complex, and endoplasmic reticulum distribution was also disturbed. Exogenous KIFC1 mRNA supplement could rescue these defects. Taken together, as well as its roles in tubulin acetylation, our study reported a previously undescribed role of kinesin KIFC1 on the regulation of actin dynamics for spindle migration in mouse oocytes.
Collapse
Affiliation(s)
- Meng-Meng Shan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Lee Y, Trout A, Marti-Gutierrez N, Kang S, Xie P, Mikhalchenko A, Kim B, Choi J, So S, Han J, Xu J, Koski A, Ma H, Yoon JD, Van Dyken C, Darby H, Liang D, Li Y, Tippner-Hedges R, Xu F, Amato P, Palermo GD, Mitalipov S, Kang E. Haploidy in somatic cells is induced by mature oocytes in mice. Commun Biol 2022; 5:95. [PMID: 35079104 PMCID: PMC8789866 DOI: 10.1038/s42003-022-03040-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Haploidy is naturally observed in gametes; however, attempts of experimentally inducing haploidy in somatic cells have not been successful. Here, we demonstrate that the replacement of meiotic spindles in mature metaphases II (MII) arrested oocytes with nuclei of somatic cells in the G0/G1 stage of cell cycle results in the formation of de novo spindles consisting of somatic homologous chromosomes comprising of single chromatids. Fertilization of such oocytes with sperm triggers the extrusion of one set of homologous chromosomes into the pseudo-polar body (PPB), resulting in a zygote with haploid somatic and sperm pronuclei (PN). Upon culture, 18% of somatic-sperm zygotes reach the blastocyst stage, and 16% of them possess heterozygous diploid genomes consisting of somatic haploid and sperm homologs across all chromosomes. We also generate embryonic stem cells and live offspring from somatic-sperm embryos. Our finding may offer an alternative strategy for generating oocytes carrying somatic genomes.
Collapse
Affiliation(s)
- Yeonmi Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
- Center for Embryo and Stem Cell Research, CHA Advanced Research Institute, CHA University, Seongnam, Gyeonggi, 13488, South Korea
| | - Aysha Trout
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Nuria Marti-Gutierrez
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Seoon Kang
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Philip Xie
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Aleksei Mikhalchenko
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Bitnara Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
| | - Jiwan Choi
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Seongjun So
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Jongsuk Han
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
| | - Jing Xu
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, 97006, USA
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Amy Koski
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Hong Ma
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Junchul David Yoon
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Crystal Van Dyken
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Hayley Darby
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Dan Liang
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Ying Li
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Rebecca Tippner-Hedges
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Fuhua Xu
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Paula Amato
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Gianpiero D Palermo
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Eunju Kang
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea.
- Center for Embryo and Stem Cell Research, CHA Advanced Research Institute, CHA University, Seongnam, Gyeonggi, 13488, South Korea.
| |
Collapse
|
11
|
Shang JZ, Li SR, Li XQ, Zhou YT, Ma X, Liu L, Niu D, Duan X. Simazine perturbs the maturational competency of mouse oocyte through inducing oxidative stress and DNA damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113105. [PMID: 34954678 DOI: 10.1016/j.ecoenv.2021.113105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Simazine is a triazine pesticides that typically detected in ground water and soil, and can reportedly affect reproductive health in humans and animals. However, the effect of simazine on female germ cell development remains unclear. In the present study, we observed that simazine exposure decreased oocyte maturation competence and embryonic developmental capacity. Importantly, simazine exposure disrupted microtubule stability and actin polymerization, resulting in failure of spindle assembly and migration. In addition, simazine exposure impaired mitochondrial function and cytosolic Ca2+ homeostasis in both oocyte and 2-cell embryos, thus increasing the levels of reactive oxygen species (ROS). Moreover, simazine exposure induced DNA damage and early apoptosis during oocyte maturation. Collectively, our results demonstrate that simazine exposure-induced mitochondrial dysfunction and apoptosis are major causes of poor oocytes quality.
Collapse
Affiliation(s)
- Jian-Zhou Shang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Shi-Ru Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiao-Qing Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yu-Ting Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiang Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Lu Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
12
|
Pan ZN, Liu JC, Ju JQ, Wang Y, Sun SC. LRRK2 regulates actin assembly for spindle migration and mitochondrial function in mouse oocyte meiosis. J Mol Cell Biol 2021; 14:6464148. [PMID: 34918122 PMCID: PMC8962687 DOI: 10.1093/jmcb/mjab079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Leucine-rich-repeat kinase 2 (LRRK2) belongs to the Roco GTPase family and is a large multidomain protein harboring both GTPase and kinase activities. LRRK2 plays indispensable roles in many processes, such as autophagy and vesicle trafficking in mitosis. In this study, we showed the critical roles of LRRK2 in mammalian oocyte meiosis. LRRK2 is mainly accumulated at the meiotic spindle periphery during oocyte maturation. Depleting LRRK2 led to the polar body extrusion defects and also induced large polar bodies in mouse oocytes. Mass spectrometry analysis and co-immunoprecipitation results showed that LRRK2 was associated with several actin-regulating factors, such as Fascin and Rho-kinase (ROCK), and depletion of LRRK2 affected the expression of ROCK, phosphorylated cofilin, and Fascin. Further analysis showed that LRRK2 depletion did not affect spindle organization but caused the failure of spindle migration, which was largely due to the decrease of cytoplasmic actin filaments. Moreover, LRRK2 showed a similar localization pattern to mitochondria, and LRRK2 was associated with several mitochondria-related proteins. Indeed, mitochondrial distribution and function were both disrupted in LRRK2-depleted oocytes. In summary, our results indicated the critical roles of LRRK2 in actin assembly for spindle migration and mitochondrial function in mouse oocyte meiosis.
Collapse
Affiliation(s)
- Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing-Cai Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Current approaches for assisted oocyte maturation in camels. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2021. [DOI: 10.12750/jarb.36.3.162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
14
|
Zou YJ, Shan MM, Wang HH, Pan ZN, Pan MH, Xu Y, Ju JQ, Sun SC. RAB14 GTPase is essential for actin-based asymmetric division during mouse oocyte maturation. Cell Prolif 2021; 54:e13104. [PMID: 34323331 PMCID: PMC8450121 DOI: 10.1111/cpr.13104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 12/19/2022] Open
Abstract
Objectives RAB14 is a member of small GTPase RAB family which localizes at the endoplasmic reticulum (ER), Golgi apparatus and endosomal compartments. RAB14 acts as molecular switches that shift between a GDP‐bound inactive state and a GTP‐bound active state and regulates circulation of vesicles between the Golgi and endosomal compartments. In present study, we investigated the roles of RAB14 during oocyte meiotic maturation. Materials and methods Microinjection with siRNA and exogenous mRNA for knock down and rescue, and immunofluorescence staining, Western blot and real‐time RT‐PCR were utilized for the study. Results Our results showed that RAB14 localized in the cytoplasm and accumulated at the cortex during mouse oocyte maturation, and it was also enriched at the spindle periphery. Depletion of RAB14 did not affect polar body extrusion but caused large polar bodies, indicating the failure of asymmetric division. We found that absence of RAB14 did not affect spindle organization but caused the spindle migration defects, and this might be due to the regulation on cytoplasmic actin assembly via the ROCK‐cofilin signalling pathway. We also found that RAB14 depletion led to aberrant Golgi apparatus distribution. Exogenous Myc‐Rab14 mRNA supplement could significantly rescue these defects caused by Rab14 siRNA injection. Conclusions Taken together, our results suggest that RAB14 affects ROCK‐cofilin pathway for actin‐based spindle migration and Golgi apparatus distribution during mouse oocyte meiotic maturation.
Collapse
Affiliation(s)
- Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng-Meng Shan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hong-Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,WEGO Holding Company Limited, Weihai, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yi Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Ral GTPase is essential for actin dynamics and Golgi apparatus distribution in mouse oocyte maturation. Cell Div 2021; 16:3. [PMID: 34112192 PMCID: PMC8194175 DOI: 10.1186/s13008-021-00071-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/02/2021] [Indexed: 11/11/2022] Open
Abstract
Background Ral family is a member of Ras-like GTPase superfamily, which includes RalA and RalB. RalA/B play important roles in many cell biological functions, including cytoskeleton dynamics, cell division, membrane transport, gene expression and signal transduction. However, whether RalA/B involve into the mammalian oocyte meiosis is still unclear. This study aimed to explore the roles of RalA/B during mouse oocyte maturation. Results Our results showed that RalA/B expressed at all stages of oocyte maturation, and they were enriched at the spindle periphery area after meiosis resumption. The injection of RalA/B siRNAs into the oocytes significantly disturbed the polar body extrusion, indicating the essential roles of RalA/B for oocyte maturation. We observed that in the RalA/B knockdown oocytes the actin filament fluorescence intensity was significantly increased at the both cortex and cytoplasm, and the chromosomes were failed to locate near the cortex, indicating that RalA/B regulate actin dynamics for spindle migration in mouse oocytes. Moreover, we also found that the Golgi apparatus distribution at the spindle periphery was disturbed after RalA/B depletion. Conclusions In summary, our results indicated that RalA/B affect actin dynamics for chromosome positioning and Golgi apparatus distribution in mouse oocytes.
Collapse
|
16
|
Abdel Rahman F, d'Almeida S, Zhang T, Asadi M, Bozoglu T, Bongiovanni D, von Scheidt M, Dietzel S, Schwedhelm E, Hinkel R, Laugwitz KL, Kupatt C, Ziegler T. Sphingosine-1-Phosphate Attenuates Lipopolysaccharide-Induced Pericyte Loss via Activation of Rho-A and MRTF-A. Thromb Haemost 2021; 121:341-350. [PMID: 33011963 DOI: 10.1055/s-0040-1716844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The high mortality seen in sepsis is caused by a systemic hypotension in part owing to a drastic increase in vascular permeability accompanied by a loss of pericytes. As has been shown previously, pericyte retention in the perivascular niche during sepsis can enhance the integrity of the vasculature and promote survival via recruitment of adhesion proteins such as VE-cadherin and N-cadherin. Sphingosine-1-phosphate (S1P) represents a lipid mediator regulating the deposition of the crucial adhesion molecule VE-cadherin at sites of interendothelial adherens junctions and of N-cadherin at endothelial-pericyte adherens junctions. Furthermore, in septic patients, S1P plasma levels are decreased and correlate with mortality in an indirectly proportional way. In the present study, we investigated the potential of S1P to ameliorate a lipopolysaccharide-induced septic hypercirculation in mice. Here we establish S1P as an antagonist of pericyte loss, vascular hyperpermeability, and systemic hypotension, resulting in an increased survival in mice. During sepsis S1P preserved VE-cadherin and N-cadherin deposition, mediated by a reduction of Src and cadherin phosphorylation. At least in part, this effect is mediated by a reduction of globular actin and a subsequent increase in nuclear translocation of MRTF-A (myocardin-related transcription factor A). These findings indicate that S1P may counteract pericyte loss and microvessel disassembly during sepsis and additionally emphasize the importance of pericyte-endothelial interactions to stabilize the vasculature.
Collapse
Affiliation(s)
- Farah Abdel Rahman
- Klinik & Poliklinik für Innere Medizin I, Klinikum Rechts der Isar, TU Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Sascha d'Almeida
- Klinik & Poliklinik für Innere Medizin I, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Tina Zhang
- Klinik & Poliklinik für Innere Medizin I, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Morad Asadi
- Klinik & Poliklinik für Innere Medizin I, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Tarik Bozoglu
- Klinik & Poliklinik für Innere Medizin I, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Dario Bongiovanni
- Klinik & Poliklinik für Innere Medizin I, Klinikum Rechts der Isar, TU Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Moritz von Scheidt
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Steffen Dietzel
- Walter-Brendl-Center for Experimental Medicine, LMU Munich, Munich, Germany
| | - Edzard Schwedhelm
- Center for Experimental Medicine, Institute of Clinical Pharmacology and Toxicology, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rabea Hinkel
- Klinik & Poliklinik für Innere Medizin I, Klinikum Rechts der Isar, TU Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, LMU Munich, Munich, Germany
| | - Karl Ludwig Laugwitz
- Klinik & Poliklinik für Innere Medizin I, Klinikum Rechts der Isar, TU Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Kupatt
- Klinik & Poliklinik für Innere Medizin I, Klinikum Rechts der Isar, TU Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Tilman Ziegler
- Klinik & Poliklinik für Innere Medizin I, Klinikum Rechts der Isar, TU Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
17
|
Lee SH, Lira-Albarrán S, Saadeldin IM. Comprehensive Proteomics Analysis of In Vitro Canine Oviductal Cell-Derived Extracellular Vesicles. Animals (Basel) 2021; 11:ani11020573. [PMID: 33672125 PMCID: PMC7926305 DOI: 10.3390/ani11020573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary As the dog shows unique and peculiar reproductive characteristics, assisted reproductive techniques such as in vitro maturation and in vitro fertilization have not been well-established compared with those of other mammals. Our recent work demonstrated the interplay between in vitro oviductal cell-derived extracellular vesicles (OC-EVs) and cumulus-oocyte complexes in dogs. Here, we provided for the first time a comprehensive proteomic analysis of OC-EVs. A total of 398 proteins were identified in all OC-EVs samples. A functional enrichment analysis indicated that these core proteins were involved in the key cellular metabolic process related to oocyte maturation and embryonic development. The current comprehensive description of the canine OC-EVs proteome would provide a fundamental resource for further understanding canine reproductive physiology, the interaction of sperms with female counterparts during fertilization, early pregnancy, and establishing an efficient system of in vitro embryo production. Abstract Dogs (Canis lupus familiaris) have unique and peculiar reproductive characteristics. While the interplay between in vitro oviductal cell-derived extracellular vesicles (OC-EVs) and cumulus-oocyte complexes in dogs has begun to be elucidated, no study has yet provided extensive information on the biological content and physiological function of OC-EVs and their role in canine oocyte development. Here, we aimed to provide the first comprehensive proteomic analysis of OC-EVs. We identified 398 proteins as present in all OC-EVs samples. The functional enrichment analysis using Gene Ontology terms and an Ingenuity Pathway Analysis revealed that the identified proteins were involved in several cellular metabolic processes, including translation, synthesis, expression, and protein metabolism. Notably, the proteins were also involved in critical canonical pathways with essential functions in oocyte and embryo development, such as ERK/MAPK, EIF2, PI3K/AKT, and mTOR signaling. These data would be an important resource for studying canine reproductive physiology and establishing a successful in vitro embryo production system in dogs.
Collapse
Affiliation(s)
- Seok Hee Lee
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA;
- Correspondence: (S.H.L.); (I.M.S.); Tel.: +1-4154760932 (S.H.L.); +966-530910740 (I.M.S.)
| | - Saúl Lira-Albarrán
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA;
| | - Islam M Saadeldin
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- King Faisal Specialist Hospital & Research Centre, Department of Comparative Medicine, Riyadh 11211, Saudi Arabia
- Correspondence: (S.H.L.); (I.M.S.); Tel.: +1-4154760932 (S.H.L.); +966-530910740 (I.M.S.)
| |
Collapse
|
18
|
Saadeldin IM, Tukur HA, Aljumaah RS, Sindi RA. Rocking the Boat: The Decisive Roles of Rho Kinases During Oocyte, Blastocyst, and Stem Cell Development. Front Cell Dev Biol 2021; 8:616762. [PMID: 33505968 PMCID: PMC7829335 DOI: 10.3389/fcell.2020.616762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 01/09/2023] Open
Abstract
The rho-associated coiled-coil-containing proteins (ROCKs or rho kinase) are effectors of the small rho-GTPase rhoA, which acts as a signaling molecule to regulate a variety of cellular processes, including cell proliferation, adhesion, polarity, cytokinesis, and survival. Owing to the multifunctionality of these kinases, an increasing number of studies focus on understanding the pleiotropic effects of the ROCK signaling pathway in the coordination and control of growth (proliferation, initiation, and progression), development (morphology and differentiation), and survival in many cell types. There is growing evidence that ROCKs actively phosphorylate several actin-binding proteins and intermediate filament proteins during oocyte cytokinesis, the preimplantation embryos as well as the stem cell development and differentiation. In this review, we focus on the participation of ROCK proteins in oocyte maturation, blastocyst formation, and stem cell development with a special focus on the selective targeting of ROCK isoforms, ROCK1, and ROCK2. The selective switching of cell fate through ROCK inhibition would provide a novel paradigm for in vitro oocyte maturation, experimental embryology, and clinical applications.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia.,Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Hammed A Tukur
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Riyadh S Aljumaah
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ramya A Sindi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
19
|
Colombo M, Zahmel J, Jänsch S, Jewgenow K, Luvoni GC. Inhibition of Apoptotic Pathways Improves DNA Integrity but Not Developmental Competence of Domestic Cat Immature Vitrified Oocytes. Front Vet Sci 2020; 7:588334. [PMID: 33178729 PMCID: PMC7596218 DOI: 10.3389/fvets.2020.588334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Being a model for endangered wild felids, cryopreservation protocols for domestic cat oocytes are under continuous development. Immature vitrified oocytes (VOs) are a valuable resource for fertility preservation programs, but they often degenerate after warming and their in vitro development is poor. Since the exact mechanisms are not clear, this study assessed whether vitrification might trigger two apoptotic markers (DNA fragmentation and caspase activity, Experiment I) and the effects of a chemical inhibitor (i.e., the pan-caspase inhibitor Z-VAD-FMK) on the same markers (Experiment II) and on VOs in vitro development (Experiment III). The overarching aim was to check whether apoptosis inhibition might be a strategy to improve cat oocytes cryotolerance. In Experiment I, vitrification induced DNA fragmentation and increased caspase activity in VOs incubated for 24 h after warming (DNA fragmentation: 59.38%; caspase activity: 414.6 ± 326.8) compared to a fresh control (9.68%; 199.6 ± 178.3; p = 0.02). In Experiment II, the addition of Z-VAD-FMK to vitrification-warming and incubation media decreased DNA fragmentation and caspase activity (8.82%; 243.7 ± 106.9) compared to control (untreated) VOs (69.44%; 434.5 ± 248.3; p < 0.001). In Experiment III, Z-VAD-FMK brought maturation rates of treated VOs close to those of fresh oocytes (53.13 and 65.38%, respectively, p = 0.057), but there were no differences in VOs embryo development (cleavage rates; Z-VAD-FMK-treated VOs: 34.38%; control VOs: 31.78%; p = 0.69). In summary, vitrification increased apoptotic markers in cat VOs, and while Z-VAD-FMK was able to hinder DNA damage and caspase activity, its addition was not determinant for embryo development. To make the best use of VOs, other oocyte in vitro maturation and embryo culture strategies, such as the addition of other inhibitors or their prolonged use, should be investigated.
Collapse
Affiliation(s)
- Martina Colombo
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare "Carlo Cantoni", Università degli Studi di Milano, Milan, Italy
| | - Jennifer Zahmel
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Stefanie Jänsch
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Katarina Jewgenow
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Gaia Cecilia Luvoni
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare "Carlo Cantoni", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
20
|
Effects of Short-Term Inhibition of Rho Kinase on Dromedary Camel Oocyte In Vitro Maturation. Animals (Basel) 2020; 10:ani10050750. [PMID: 32344840 PMCID: PMC7277376 DOI: 10.3390/ani10050750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Our results revealed, for the first time, that short-term inhibition of Rho-associated protein kinases (ROCK) for 4 h prior to in vitro maturation (IVM) in a biphasic IVM approach improved oocyte nuclear maturation, producing more MII oocyte, through modulating the expression of cytokinesis- and antiapoptosis-related mRNA transcripts. This positive result suggests ROCK inhibitor as a potential candidate molecule to exploit in the control of oocyte meiotic maturation. Abstract This is the first report on a biphasic in vitro maturation (IVM) approach with a meiotic inhibitor to improve dromedary camel IVM. Spontaneous meiotic resumption poses a major setback for in vitro matured oocytes. The overall objective of this study was to improve in vitro maturation of dromedary camel oocytes using ROCK inhibitor (Y-27632) in a biphasic IVM to prevent spontaneous meiotic resumption. In the first experiment, we cultured immature cumulus–oocyte complexes (COCs, n = 375) in a prematuration medium supplemented with ROCK inhibitor (RI) for 2 h, 4 h, 6 h, and 24 h before submission to normal in vitro maturation to complete 28 h. The control was cultured for 28 h in the absence of RI. In the first phase of experiment two, we cultured COCs (n = 480) in the presence or absence (control) of RI for 2 h, 4 h, 6 h, and 24 h, and conducted real-time relative quantitative PCR (qPCR) on selected mRNA transcripts. The same was done in the second phase, but qPCR was done after completion of normal IVM. Assessment of nuclear maturation showed that pre-IVM for 4 h yielded an increase in MII oocyte (54.67% vs. 26.6% of control; p < 0.05). As expected, the same group showed the highest degree (2) of cumulus expansion. In experiment 2, qPCR results showed significantly higher expression of ACTB and BCL2 in the RI group treated for 4 h when compared with the other groups. However, their relative quantification after biphasic IVM did not reveal any significant difference, except for the positive response of BCL2 and BAX/BCL2 ratio after 4 and 6 h biphasic IVM. In conclusion, RI prevents premature oocyte maturation and gave a significantly positive outcome during the 4 h treatment. This finding is a paradigm for future investigation on dromedary camel biphasic IVM and for improving the outcome of IVM in this species.
Collapse
|
21
|
Zhou C, Zhang X, Chen Y, Liu X, Sun Y, Xiong B. Glutathione alleviates the cadmium exposure-caused porcine oocyte meiotic defects via eliminating the excessive ROS. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113194. [PMID: 31520902 DOI: 10.1016/j.envpol.2019.113194] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/15/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Heavy metal cadmium (Cd) is a widespread environmental contaminant with a potential toxicity that might adversely influence the health of experimental animals and humans. It has been known that Cd might accumulate in vertebrates for many years and thus leads to the hepatic and renal toxicity. Additionally, Cd concentration in the ovary increases with age and is highly related to the reproductive hazard. However, the underlying mechanisms regarding how Cd affects the female reproductive system especially the oocyte quality have not yet fully defined. Here, we reported that Cd exposure led to the defective nuclear maturation of oocytes via the impairment of cytoskeleton assembly, displaying the aberrant spindle organization, chromosome alignment and actin polymerization. In the meantime, Cd exposure caused the impaired cytoplasmic maturation by showing the disrupted dynamics of mitochondrial integrity and cortical granules, and thereby resulting in the compromised sperm binding ability and fertilization capacity of oocytes. More importantly, we found that glutathione (GSH) supplementation was able to recover the meiotic failure induced by Cd exposure through suppressing the excessive ROS level, DNA damage accumulation and apoptotic incidence. Taken together, our findings demonstrate that Cd exposure has the adverse effects on the oocyte meiotic maturation as well as subsequent fertilization, and provide a potential effective strategy to improve the quality of Cd-exposed oocytes.
Collapse
Affiliation(s)
- Changyin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xue Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yixuan Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangping Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuxin Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
22
|
Li L, Jing L, Zhao J, Lv J, Yang W, Li W, Zhou L. Valsartan inhibits RhoA-ROCK2-MYL pathway in rat model of alcoholic cardiomyopathy. Exp Ther Med 2019; 18:4313-4321. [PMID: 31777538 PMCID: PMC6862588 DOI: 10.3892/etm.2019.8079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 11/01/2018] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate variations in the Ras homolog gene family, member A (RhoA)-Rho-associated protein kinase 2 (ROCK2)-myosin light chain (MYL) pathway in a rat model of alcoholic cardiomyopathy (ACM) and the role of angiotensin-converting enzyme inhibitor drugs. Rat models of ACM were established via alcoholic gavage + free access to alcohol. The structural and functional changes of the heart were analyzed by hematoxylin-eosin staining, Masson's trichrome staining, immunohistochemistry staining, western blotting and fluorescence quantitative polymerase chain reaction. A total of 16 weeks later, a decreased ejection fraction and left ventricular fractional shortening in the alcohol group compared with the control group were demonstrated resulting in an increased left ventricular end diastolic diameter. These adverse effects were ameliorated following treatment with valsartan. In addition, the alcohol group revealed a disorganized arrangement of myocardial filaments, which was improved upon treatment with valsartan. RhoA and ROCK2 protein expression significantly increased in myocardial cells in the alcohol compared with the control group. Following drug intervention with valsartan, expression of RhoA and ROCK2 proteins were inhibited in the alcohol group. Furthermore, significantly elevated RhoA and ROCK2 and decreased MYL protein and mRNA expression in the alcohol group was demonstrated compared with the control group. Administration of valsartan reversed the expression profile of RhoA, ROCK and MYL in ACM. Expression of RhoA and ROCK were elevated with downregulation of MYL resulting in heart failure. However, the angiotensin receptor antagonist diminished the expression of RhoA and ROCK and enhanced the expression of MYL. The results of the present study suggest a curative effect of valsartan in ACM.
Collapse
Affiliation(s)
- Luyifei Li
- Department of Internal Critical Illness, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Ling Jing
- Department of The Fourth Cardiovascular, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Jiyi Zhao
- Department of The Fourth Cardiovascular, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Jiachen Lv
- Department of Colorectal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Wen Yang
- Department of The First Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Weimin Li
- Department of The Fifth Cardiovascular, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Lijun Zhou
- Department of The Fourth Cardiovascular, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
23
|
Zhang Y, Wang HH, Wan X, Xu Y, Pan MH, Sun SC. Inhibition of protein kinase D disrupts spindle formation and actin assembly during porcine oocyte maturation. Aging (Albany NY) 2019; 10:3736-3744. [PMID: 30555056 PMCID: PMC6326681 DOI: 10.18632/aging.101667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/15/2018] [Indexed: 12/17/2022]
Abstract
Protein kinase D (PKD) subfamily which includes PKD1, PKD2 and PKD3 is a novel family of serine/threonine kinases. PKD has been widely implicated in the regulation of multiple physiological effects including immune responses, apoptosis and cell proliferation. However, the roles of PKD in oocytes have not been fully clarified. In this study we investigated the regulatory functions of PKD during porcine oocyte maturation. Our results indicated that PKD expressed in porcine oocytes and the inhibition of PKD family activity led to the failure of meiosis resumption and the first polar body extrusion. Further analysis indicated that the spindle assembly and chromosome alignment were disrupted after PKD family inhibition, and this might be through its regulatory role on MAPK phosphorylation. We also found that PKD phosphorylated cofilin for actin assembly, which further affected cortical actin distribution, indicating the roles of PKD family on cytoskeleton. In addition, a decreased expression of PKD in postovulatory aging porcine oocytes was observed, which might connect PKD with cytoskeleton defects in aged oocytes. Taken together, these results suggest that PKD possesses important functions in porcine oocyte maturation by regulating spindle organization and actin assembly.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong-Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Liu J, Wang QC, Duan X, Cui XS, Kim NH, Zhang Y, Sun SC. Profilin 1 plays feedback role in actin-mediated polar body extrusion in mouse oocytes. Reprod Fertil Dev 2019; 30:752-758. [PMID: 29096761 DOI: 10.1071/rd17354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/30/2017] [Indexed: 12/31/2022] Open
Abstract
Mammalian oocytes undergo several crucial processes during meiosis maturation, including spindle formation and migration and polar body extrusion, which rely on the regulation of actin. As a small actin-binding protein, profilin 1 plays a central role in the regulation of actin assembly. However, the functions of profilin 1 in mammalian oocytes are uncertain. To investigate the function of profilin 1 in oocytes, immunofluorescent staining was first used to examine profilin 1 localisation. The results showed that profilin 1 was localised around the meiotic spindles and was colocalised with cytoplasmic actin. Knockdown (KD) of profilin 1 with specific morpholino microinjection resulted in failure of polar body extrusion. This failure resulted from an increase of actin polymerisation both at membranes and in the cytoplasm. Furthermore, western blot analysis revealed that the expression of Rho-associated kinase (ROCK) and phosphorylation levels of myosin light chain (MLC) were significantly altered after KD of profilin 1. Thus, the results indicate that a feedback mechanism between profilin, actin and ROCK-MLC2 regulates actin assembly during mouse oocyte maturation.
Collapse
Affiliation(s)
- Jun Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiao-Chu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Duan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
25
|
Zhang Y, Wan X, Wang HH, Pan MH, Pan ZN, Sun SC. RAB35 depletion affects spindle formation and actin-based spindle migration in mouse oocyte meiosis. ACTA ACUST UNITED AC 2019; 25:359-372. [DOI: 10.1093/molehr/gaz027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/28/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022]
Abstract
Abstract
Mammalian oocyte maturation involves a unique asymmetric cell division, in which meiotic spindle formation and actin filament-mediated spindle migration to the oocyte cortex are key processes. Here, we report that the vesicle trafficking regulator, RAB35 GTPase, is involved in regulating cytoskeleton dynamics in mouse oocytes. RAB35 GTPase mainly accumulated at the meiotic spindle periphery and cortex during oocyte meiosis. Depletion of RAB35 by morpholino microinjection led to aberrant polar body extrusion and asymmetric division defects in almost half the treated oocytes. We also found that RAB35 affected SIRT2 and αTAT for tubulin acetylation, which further modulated microtubule stability and meiotic spindle formation. Additionally, we found that RAB35 associated with RHOA in oocytes and modulated the ROCK–cofilin pathway for actin assembly, which further facilitated spindle migration for oocyte asymmetric division. Importantly, microinjection of Myc-Rab35 cRNA into RAB35-depleted oocytes could significantly rescue these defects. In summary, our results suggest that RAB35 GTPase has multiple roles in spindle stability and actin-mediated spindle migration in mouse oocyte meiosis.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hong-Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Chen B, Zhang C, Wang Z, Chen Y, Xie H, Li S, Liu X, Liu Z, Chen P. Mechanistic insights into Nav1.7-dependent regulation of rat prostate cancer cell invasiveness revealed by toxin probes and proteomic analysis. FEBS J 2019; 286:2549-2561. [PMID: 30927332 DOI: 10.1111/febs.14823] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/29/2019] [Accepted: 02/27/2019] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channels are involved in tumor metastasis, as potentiating or attenuating their activities affects the migration and invasion process of tumor cells. In the present study, we tested the effect of two peptide toxins, JZTX-I and HNTX-III which function as Nav1.7 activator and inhibitor, respectively, on the migration and invasion ability of prostate cancer (PCa) cell line Mat-LyLu. These two peptides showed opposite effects, and subsequently a comparative proteomic analysis characterized 64 differentially expressed membrane proteins from the JZTX-I- and HNTX-III-treated groups. Among these, 15 proteins were down-regulated and 49 proteins were up-regulated in the HNTX-III group. Bioinformatic analysis showed eight proteins are cytoskeleton proteins or related regulators, which might play important roles in the metastasis of Mat-LyLu cells. The altered expressions of four of these proteins, fascin, muskelin, annexin A2, and cofilin-1, were validated by western blot analysis. Further function network analysis of these proteins revealed that the Rho family GTPases RhoA and Rac1 might be of particular importance for the rat PCa cell invasion. Pharmacological data revealed that JZTX-I and HNTX-III could modulate the Rho signaling pathway in a Nav1.7-dependent manner. In summary, this study suggests that the Nav1.7-dependent regulation of Rho GTPase activity plays a vital role in Mat-LyLu cell migration and invasion and provides new insights into the treatment of PCa.
Collapse
Affiliation(s)
- Bo Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.,The Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Changxin Zhang
- The Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zijun Wang
- The Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yan Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Huali Xie
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Sha Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoqian Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.,The Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Ping Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.,The Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
27
|
Zhang Y, Wu L, Wan X, Wang H, Li X, Pan Z, Sun S. Loss of PKC mu function induces cytoskeletal defects in mouse oocyte meiosis. J Cell Physiol 2019; 234:18513-18523. [DOI: 10.1002/jcp.28487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Lan‐Lan Wu
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Hong‐Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Xiao‐Han Li
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Zhen‐Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Shao‐Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| |
Collapse
|
28
|
Wang HH, Zhang Y, Tang F, Pan MH, Wan X, Li XH, Sun SC. Rab23/Kif17 regulate oocyte meiotic progression by modulating tubulin acetylation and actin dynamics. Development 2019; 146:dev.171280. [DOI: 10.1242/dev.171280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/16/2019] [Indexed: 02/02/2023]
Abstract
Cytoskeletal dynamics are involved in multiple cellular processes during oocyte meiosis, including spindle organization, actin-based spindle migration, and polar body extrusion. Here, we report that the vesicle trafficking protein Rab23, a GTPase, drives the motor protein Kif17 and that this is important for spindle organization and actin dynamics during mouse oocyte meiosis. GTP-bound Rab23 accumulated at the spindle and promoted migration of Kif17 to the spindle poles. Depletion of Rab23 or Kif17 caused polar body extrusion failure. Further analysis showed that depletion of Rab23/Kif17 perturbed spindle formation and chromosome alignment, possibly by affecting tubulin acetylation. Kif17 regulated tubulin acetylation by associating with αTAT and Sirt2, and depletion of Kif17 altered expression of these proteins. Moreover, depletion of Kif17 decreased the level of cytoplasmic actin, which abrogated spindle migration to the cortex. The tail domain of Kif17 associated with constituents of the RhoA-ROCK-LIMK-cofilin pathway to modulate assembly of actin filaments. Taken together, our results demonstrate that the Rab23-Kif17-cargo complex regulates tubulin acetylation for spindle organization and drives actin-mediated spindle migration during meiosis.
Collapse
Affiliation(s)
- Hong-Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
29
|
Ma TJ, Zhang ZW, Lu YL, Zhang YY, Tao DC, Liu YQ, Ma YX. CLOCK and BMAL1 stabilize and activate RHOA to promote F-actin formation in cancer cells. Exp Mol Med 2018; 50:1-15. [PMID: 30287810 PMCID: PMC6172197 DOI: 10.1038/s12276-018-0156-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 02/05/2023] Open
Abstract
Circadian genes control most of the physiological functions in cancer cells, including cell proliferation, migration, and invasion. The CLOCK and BMAL1 complex plays a central role in circadian rhythms. Previous studies have shown that circadian genes may act as oncogenes or tumor-suppressor genes. In addition, F-actin, regulated by RHOA, has been shown to participate in tumor progression. However, the roles of the CLOCK and BMAL1 genes in the regulation of tumor progression via the RHOA-ROCK-CFL pathway remain largely unclear. Here we first indicate that the rearrangement of F-actin is regulated by CLOCK and BMAL1. We found that CLOCK and BMAL1 can upregulate RHOA expression by inhibiting CUL3-mediated ubiquitination and activate RHOA by reducing the interaction between RHOA and RhoGDI. Consequently, CLOCK and BMAL1 control the expression of the components of the RHOA-ROCK-CFL pathway, which alters the dynamics of F-actin/G-actin turnover and promotes cancer cell proliferation, migration, and invasion. In conclusion, our research proposes a novel insight into the role of CLOCK and BMAL1 in tumor cells.
Collapse
Affiliation(s)
- Teng-Jiao Ma
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital and Collaborative Innovation Center, Sichuan University, 610041, Chengdu, China
| | - Zhi-Wei Zhang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital and Collaborative Innovation Center, Sichuan University, 610041, Chengdu, China
| | - Yi-Lu Lu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital and Collaborative Innovation Center, Sichuan University, 610041, Chengdu, China
| | - Ying-Ying Zhang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital and Collaborative Innovation Center, Sichuan University, 610041, Chengdu, China
| | - Da-Chang Tao
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital and Collaborative Innovation Center, Sichuan University, 610041, Chengdu, China
| | - Yun-Qiang Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital and Collaborative Innovation Center, Sichuan University, 610041, Chengdu, China
| | - Yong-Xin Ma
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital and Collaborative Innovation Center, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
30
|
Pan ZN, Lu Y, Tang F, Pan MH, Wan X, Lan M, Zhang Y, Sun SC. RAB8A GTPase regulates spindle migration and Golgi apparatus distribution via ROCK-mediated actin assembly in mouse oocyte meiosis†. Biol Reprod 2018; 100:711-720. [DOI: 10.1093/biolre/ioy217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/03/2018] [Accepted: 09/30/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei Lan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
31
|
Wei Z, Greaney J, Zhou C, A Homer H. Cdk1 inactivation induces post-anaphase-onset spindle migration and membrane protrusion required for extreme asymmetry in mouse oocytes. Nat Commun 2018; 9:4029. [PMID: 30279413 PMCID: PMC6168559 DOI: 10.1038/s41467-018-06510-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/31/2018] [Indexed: 11/09/2022] Open
Abstract
Female meiotic divisions are extremely asymmetric, producing large oocytes and small polar bodies (PBs). In mouse oocytes, the spindle relocates to the cortex before anaphase of meiosis I (MI). It is presumed that by displacing the future midzone, pre-anaphase spindle repositioning alone ensures asymmetry. But how subsequent anaphase events might contribute to asymmetric PB extrusion (PBE) is unknown. Here, we find that inactivation of cyclin-dependent kinase 1 (Cdk1) induces anaphase and simultaneously triggers cytoplasmic formin-mediated F-actin polymerisation that propels the spindle into the cortex causing it to protrude while anaphase progresses. Significantly, if post-anaphase-onset spindle migration fails, protrusion and asymmetry are severely threatened even with intact pre-anaphase migration. Conversely, post-anaphase migration can completely compensate for failed pre-anaphase migration. These data identify a cell-cycle-triggered phase of spindle displacement occurring after anaphase-onset, which, by inducing protrusion, is necessary for extreme asymmetry in mouse oocytes and uncover a pathway for maximising unequal division.
Collapse
Affiliation(s)
- Zhe Wei
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Jessica Greaney
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Chenxi Zhou
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Hayden A Homer
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia.
| |
Collapse
|
32
|
Duan X, Sun SC. Actin cytoskeleton dynamics in mammalian oocyte meiosis†. Biol Reprod 2018; 100:15-24. [DOI: 10.1093/biolre/ioy163] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Xing Duan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
33
|
Exposure to podophyllotoxin inhibits oocyte meiosis by disturbing meiotic spindle formation. Sci Rep 2018; 8:10145. [PMID: 29976965 PMCID: PMC6033908 DOI: 10.1038/s41598-018-28544-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
Podophyllotoxin is used as medical cream which is widely applied to genital warts and molluscum contagiosum. Although previous study showed that podophyllotoxin had minimal toxicity, it was forbidden to use during pregnancy since it might be toxic to the embryos. In present study we used mouse as the model and tried to examine whether podophyllotoxin exposure was toxic to oocyte maturation, which further affected embryo development. Our results showed that podophyllotoxin exposure inhibited mouse oocyte maturation, showing with the failure of polar body extrusion, and the inhibitory effects of podophyllotoxin on oocytes was dose-depended. Further studies showed that the meiotic spindle formation was disturbed, the chromosomes were misaligned and the fluorescence signal of microtubule was decreased, indicating that podophyllotoxin may affect microtubule dynamics for spindle organization. Moreover, the oocytes which reached metaphase II under podophyllotoxin exposure also showed aberrant spindle morphology and chromosome misalignment, and the embryos generated from these oocytes showed low developmental competence. We also found that the localization of p44/42 MAPK and gamma-tubulin was disrupted, which further confirmed the effects of podophyllotoxin on meiotic spindle formation. In all, our results indicated that podophyllotoxin exposure could affect mouse oocyte maturation by disturbing microtubule dynamics and meiotic spindle formation.
Collapse
|
34
|
Shah JS, Sabouni R, Cayton Vaught KC, Owen CM, Albertini DF, Segars JH. Biomechanics and mechanical signaling in the ovary: a systematic review. J Assist Reprod Genet 2018; 35:1135-1148. [PMID: 29691711 PMCID: PMC6063820 DOI: 10.1007/s10815-018-1180-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/05/2018] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Mammalian oogenesis and folliculogenesis share a dynamic connection that is critical for gamete development. For maintenance of quiescence or follicular activation, follicles must respond to soluble signals (growth factors and hormones) and physical stresses, including mechanical forces and osmotic shifts. Likewise, mechanical processes are involved in cortical tension and cell polarity in oocytes. Our objective was to examine the contribution and influence of biomechanical signaling in female mammalian gametogenesis. METHODS We performed a systematic review to assess and summarize the effects of mechanical signaling and mechanotransduction in oocyte maturation and folliculogenesis and to explore possible clinical applications. The review identified 2568 publications of which 122 met the inclusion criteria. RESULTS The integration of mechanical and cell signaling pathways in gametogenesis is complex. Follicular activation or quiescence are influenced by mechanical signaling through the Hippo and Akt pathways involving the yes-associated protein (YAP), transcriptional coactivator with PDZ-binding motif (TAZ), phosphatase and tensin homolog deleted from chromosome 10 (PTEN) gene, the mammalian target of rapamycin (mTOR), and forkhead box O3 (FOXO3) gene. CONCLUSIONS There is overwhelming evidence that mechanical signaling plays a crucial role in development of the ovary, follicle, and oocyte throughout gametogenesis. Emerging data suggest the complexities of mechanotransduction and the biomechanics of oocytes and follicles are integral to understanding of primary ovarian insufficiency, ovarian aging, polycystic ovary syndrome, and applications of fertility preservation.
Collapse
Affiliation(s)
- Jaimin S Shah
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Texas at Houston Health Science Center, Houston, TX, USA
| | - Reem Sabouni
- Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kamaria C Cayton Vaught
- Howard W. and Georgeanna Seegar Jones Division of Reproductive Sciences and Women's Health Research, Baltimore, MD, USA
| | - Carter M Owen
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - James H Segars
- Howard W. and Georgeanna Seegar Jones Division of Reproductive Sciences and Women's Health Research, Baltimore, MD, USA.
- Gynecology and Obstetrics, 720 Rutland Avenue/Ross 624, Baltimore, MD, 21205, USA.
| |
Collapse
|
35
|
Duan X, Zhang Y, Chen KL, Zhang HL, Wu LL, Liu HL, Wang ZB, Sun SC. The small GTPase RhoA regulates the LIMK1/2-cofilin pathway to modulate cytoskeletal dynamics in oocyte meiosis. J Cell Physiol 2018; 233:6088-6097. [PMID: 29319181 DOI: 10.1002/jcp.26450] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/05/2018] [Indexed: 01/30/2023]
Abstract
LIM kinases (LIMK1/2) are LIM domain-containing serine/threonine/tyrosine kinases that mediate multiple cellular processes in mitosis. In the present study, we explored the functional roles and potential signaling pathway of LIMK1/2 during mouse oocyte meiosis. Disruption of LIMK1/2 activity and expression significantly decreased oocyte polar body extrusion. Live-cell imaging revealed that spindle migration was disturbed after both LIMK1 and LIMK2 knock down, and this might be due to aberrant distribution of actin filaments in the oocyte cytoplasm and cortex. Meanwhile, our results demonstrated that the function of LIMK1 and LIMK2 in actin assembly was related to cofilin phosphorylation levels. In addition, disruption of LIMK1/2 activity significantly increased the percentage of oocytes with abnormal spindle morphologies, which was confirmed by the abnormal p-MAPK localization. We further, explored the upstream molecules of LIMK1/2, and we found that after depletion of ROCK, phosphorylation of LIMK1/2 and cofilin were significantly decreased. Moreover, RhoA inhibition caused the decreased expression of ROCK, p-LIMK1/2, and cofilin. In summary, our results indicated that the small GTPase RhoA regulated LIMK1/2-cofilin to modulate cytoskeletal dynamics during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Xing Duan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kun-Lin Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lan-Lan Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hong-Lin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
36
|
An L, Liu J, Du Y, Liu Z, Zhang F, Liu Y, Zhu X, Ling P, Chang S, Hu Y, Li Y, Xu B, Yang L, Xue F, Presicce GA, Du F. Synergistic effect of cysteamine, leukemia inhibitory factor, and Y27632 on goat oocyte maturation and embryo development in vitro. Theriogenology 2018; 108:56-62. [DOI: 10.1016/j.theriogenology.2017.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022]
|
37
|
Vesicular transport protein Arf6 modulates cytoskeleton dynamics for polar body extrusion in mouse oocyte meiosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:455-462. [DOI: 10.1016/j.bbamcr.2017.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/30/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023]
|
38
|
Jin ZL, Jo YJ, Namgoong S, Kim NH. CAP1 mediated actin cycling via ADF/cofilin is essential for asymmetric division in mouse oocytes. J Cell Sci 2018; 131:jcs.222356. [DOI: 10.1242/jcs.222356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/23/2018] [Indexed: 11/20/2022] Open
Abstract
Dynamic reorganization of the actin cytoskeleton is fundamental to a number of cellular events, and various actin-regulatory proteins modulate actin polymerization and depolymerization. Cyclase-associated proteins (CAPs), highly conserved actin monomer-binding proteins, have been known to promote actin disassembly by enhancing the actin-severing activity of ADF/cofilin. In this study, we found that CAP1 regulated actin remodeling during mouse oocyte maturation. Efficient actin disassembly during oocyte maturation is essential for asymmetric division and cytokinesis. CAP1 knockdown impaired meiotic spindle migration and asymmetric division, and it resulted in an accumulation of excessive actin filaments near the spindles. In contrast, CAP1 overexpression reduced actin mesh levels. CAP1 knockdown also rescued the decrease in cofilin overexpression-mediated actin levels, and simultaneous expression of human CAP1 (hCAP1) and cofilin synergistically decreased cytoplasmic actin levels. Overexpression of hCAP1 decreased the amount of phosphorylated cofilin, indicating that CAP1 facilitated actin depolymerization via interaction with ADF/cofilin during mouse oocyte maturation. Taken together, our results provide evidence of the importance of dynamic actin recycling by CAP1 and cofilin in the asymmetric division of mouse female gametes.
Collapse
Affiliation(s)
- Zhe-Long Jin
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Yu-Jin Jo
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Suk Namgoong
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| |
Collapse
|
39
|
Pan MH, Wang F, Lu Y, Tang F, Duan X, Zhang Y, Xiong B, Sun SC. FHOD1 regulates cytoplasmic actin-based spindle migration for mouse oocyte asymmetric cell division. J Cell Physiol 2017; 233:2270-2278. [PMID: 28708292 DOI: 10.1002/jcp.26099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/13/2017] [Indexed: 12/25/2022]
Abstract
FHOD1 is a member of Diaphanous-related formins (DRFs) which belongs to the Formin family. Previous studies have shown that the DFRs might affect several cellular functions such as morphogenesis, cytokinesis, cell polarity, and embryonic differentiation. However, there is no evidence showing the functions of FHOD1 during oocyte meiosis. This study is aimed at exploring the roles of FHOD1 during the mammalian oocyte maturation. Immunofluorescent staining showed that FHOD1 was restricted to the nucleus in germinal vesicle (GV) stage of the oocytes, after the GV breakdown FHOD1 was primarily located at two poles of the spindle at both metaphases I and II stages. Knockdown of FHOD1 by siRNA injection did not affect polar body extrusion but generated the large polar bodies. In addition, we observed the spindle migration failure in metaphase I oocytes, with a large number of meiotic spindles anchoring in the center of cytoplasm. The expression level of cytoplasmic actin but not cortex actin was significantly reduced, indicating that FHOD1 regulates cytoplasmic actin distribution for the spindle movement. Furthermore, we found that the disruption of ROCK (the Rho-dependent protein kinase) with inhibitor Y-27632 caused the decreased FHOD1 protein expression. Therefore, our data indicate that FHOD1 is regulated by ROCK for cytoplasm actin assembly and spindle migration during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yujie Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Feng Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing Duan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
40
|
Arayatham S, Tiptanavattana N, Tharasanit T. Effects of vitrification and a Rho-associated coiled-coil containing protein kinase 1 inhibitor on the meiotic and developmental competence of feline oocytes. J Reprod Dev 2017; 63:511-517. [PMID: 28804108 PMCID: PMC5649101 DOI: 10.1262/jrd.2017-004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Oocyte cryopreservation is the technique of choice for the long-term storage of female gametes. However, it induces an irreversible loss of oocyte viability and function. We examined the effects of vitrification and a
Rho-associated coiled-coil containing protein kinase 1 (ROCK1) inhibitor (ROCKi) on the meiotic and developmental competence of feline oocytes. We examined the expression of LIM kinase (LIMK) 1 and 2, with and
without ROCKi treatment. Cumulus oocyte complexes (COCs) were matured in vitro with 0, 10, 20, and 40 µM ROCKi. The oocytes were subsequently assessed for maturation rate and embryo development following
in vitro fertilization. We repeated the COC experiment, but vitrified and warmed the COCs prior to culture. We detected LIMK1 and LIMK2 expression in feline oocytes, which could
be downregulated by ROCKi treatment. The ROCKi at 10 µM affected neither meiotic nor developmental competence (P > 0.05, versus control). However, high concentrations of ROCKi during maturation induced meiotic arrest at
metaphase I. Appropriate concentrations of ROCKi significantly improved the normal fertilization rate of vitrified warmed oocytes (49.4 ± 3.4%) compared with that of the control (42.8 ± 8.6%, P < 0.05). The ROCKi also
significantly improved the embryo cleavage rate (36.1 ± 3.8%) as compared with the non-treated control (27.4 ± 2.5%, P < 0.05). Thus, this study revealed that the main mediators of the ROCK cascade (LIM kinases) are expressed
in feline oocytes. The ROCKi (10 µM) did not compromise the meiotic or developmental competence of feline oocytes. In addition, 10 µM ROCKi improved the cytoplasmic maturation of vitrified–warmed oocytes as indicated by their
fertilization competence.
Collapse
Affiliation(s)
- Saengtawan Arayatham
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Narong Tiptanavattana
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
41
|
Zhang Y, Wang QC, Liu J, Xiong B, Cui XS, Kim NH, Sun SC. The small GTPase CDC42 regulates actin dynamics during porcine oocyte maturation. J Reprod Dev 2017; 63:505-510. [PMID: 28781348 PMCID: PMC5649100 DOI: 10.1262/jrd.2017-034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian oocyte undergoes an asymmetric division during meiotic maturation, producing a small polar body and a haploid gamete. This process involves the dynamics of actin filaments, and the guanosine triphosphatase (GTPase) protein superfamily is a major regulator of actin assembly. In the present study, the small GTPase CDC42 was shown to participate in the meiotic maturation of porcine oocytes. Immunofluorescent staining showed that CDC42 was mainly localized at the periphery of the oocytes, and accumulated with microtubules. Deactivation of CDC42 protein activity with the effective inhibitor ML141 caused a decrease in actin distribution in the cortex, which resulted in a failure of polar body extrusion. Moreover, western blot analysis revealed that besides the Cdc42-N-WASP pathway previously reported in mouse oocytes, the expression of ROCK and p-cofilin, two molecules involved in actin dynamics, was also decreased after CDC42 inhibition during porcine oocyte maturation. Thus, our study demonstrates that CDC42 is an indispensable protein during porcine oocyte meiosis, and CDC42 may interact with N-WASP, ROCK, and cofilin in the assembly of actin filaments during porcine oocyte maturation.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiao-Chu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
42
|
Lu Y, Zhang Y, Pan MH, Kim NH, Sun SC, Cui XS. Daam1 regulates fascin for actin assembly in mouse oocyte meiosis. Cell Cycle 2017; 16:1350-1356. [PMID: 28682694 DOI: 10.1080/15384101.2017.1325045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
As a formin protein, Daam1 (Dishevelled-associated activator of morphogenesis 1) is reported to regulate series of cell processes like endocytosis, cell morphology and migration via its effects on actin assembly in mitosis. However, whether Daam1 plays roles in female meiosis remains uncertain. In this study, we investigated the expression and functions of Daam1 during mouse oocyte meiosis. Our results indicated that Daam1 localized at the cortex of oocytes, which was similar with actin filaments. After Daam1 morpholino (MO) microinjection, the expression of Daam1 significantly decreased, which resulted in the failure of oocyte polar body extrusion. These results might be due to the defects of actin assembly, since the decreased fluorescence intensity of actin filaments in oocyte cortex and cytoplasm were observed. However, Daam1 knockdown seemed not to affect the meiotic spindle movement. In addition, we found that fascin might be the down effector of Daam1, since the protein expression of fascin decreased after Daam1 knockdown. Thus, our data suggested that Daam1 affected actin assembly during oocyte meiotic division via the regulation of fascin expression.
Collapse
Affiliation(s)
- Yujie Lu
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Yu Zhang
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Meng-Hao Pan
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Nam-Hyung Kim
- b Department of Animal Sciences , Chungbuk National University , Cheongju , Korea
| | - Shao-Chen Sun
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Xiang-Shun Cui
- b Department of Animal Sciences , Chungbuk National University , Cheongju , Korea
| |
Collapse
|
43
|
Wang H, Guo J, Lin Z, Namgoong S, Oh JS, Kim NH. Filamin A is required for spindle migration and asymmetric division in mouse oocytes. FASEB J 2017; 31:3677-3688. [PMID: 28487281 DOI: 10.1096/fj.201700056r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/17/2017] [Indexed: 11/11/2022]
Abstract
Dynamic changes in the actin network are crucial for the cortical migration of spindles and establishment of polarity, to ensure asymmetric division during meiotic maturation. In this study, filamin A (FLNA) was found to be an essential actin regulator that controlled spindle migration and asymmetric division during oocyte meiosis. FLNA was localized in the cytoplasm and enriched at the cortex and near the chromosomes. Knockdown of FLNA impaired meiotic asymmetric division and spindle migration with a decrease in the amount of cytoplasmic actin mesh and cortical actin levels. Moreover, FLNA knockdown reduced the phosphorylation of cofilin and Rho kinase (ROCK) near the spindle. Similar phenotypes, such as decreased filament actin levels, impaired spindle migration and polar body extrusion, were observed when active cofilin (S3A) was overexpressed or ROCK was inhibited. Notably, we found that FLNA and ROCK interacted directly in mouse oocytes. Taken together, our results show that FLNA plays crucial roles in asymmetric division during meiotic maturation by regulating ROCK-cofilin-mediated actin reorganization.-Wang, H., Guo J., Lin, Z., Namgoong, S., Oh, J. S., Kim, N.-H. Filamin A is required for spindle migration and asymmetric division in mouse oocytes.
Collapse
Affiliation(s)
- HaiYang Wang
- Department of Animal Sciences, Chungbuk National University, Cheongju, South Korea
| | - Jing Guo
- Department of Animal Sciences, Chungbuk National University, Cheongju, South Korea
| | - ZiLi Lin
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Suk Namgoong
- Department of Animal Sciences, Chungbuk National University, Cheongju, South Korea
| | - Jeong Su Oh
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, South Korea;
| |
Collapse
|
44
|
Jia RX, Duan X, Song SJ, Sun SC. LIMK1/2 inhibitor LIMKi 3 suppresses porcine oocyte maturation. PeerJ 2016; 4:e2553. [PMID: 27761340 PMCID: PMC5068415 DOI: 10.7717/peerj.2553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 09/12/2016] [Indexed: 12/24/2022] Open
Abstract
LIMKi 3 is a specific selective LIMK inhibitor against LIMK1 and LIMK2, while LIMK1 and LIMK2 are the main regulators of actin cytoskeleton to participate in many cell activities. However, the effect of LIMKi 3 in porcine oocyte meiosis is still unclear. The present study was designed to investigate the effects of LIMKi 3 and potential regulatory role of LIMK1/2 on porcine oocyte meiotic maturation. Immunofluorescent staining of p-LIMK1/2 antibody showed that LIMK1/2 was localized mainly to the cortex of porcine oocyte, which co-localized with actin. After LIMKi 3 treatment, the diffusion of COCs became weak and the rate of polar body extrusion was decreased. This could be rescued by moving oocytes to fresh medium. After prolonging the culture time of oocytes, the maturation rate of porcine oocyte increased in LIMKi 3 groups, indicating that LIMKi 3 may suppress the cell cycle during porcine oocyte maturation. We also found that after LIMKi 3 treatment actin distribution was significantly disturbed at porcine oocyte membranes and cytoplasm, indicating the conserved roles of LIMK1/2 on actin dynamics. Next we examined the meiotic spindle positioning in porcine oocyte, and the results showed that a majority of spindles were not attached to the cortex of porcine oocyte, indicating that LIMKi 3 may affect actin-mediated spindle positioning. Taken together, these results showed that LIMK1/2 inhibitor LIMKi 3 had a repressive role on porcine oocyte meiotic maturation.
Collapse
Affiliation(s)
- Ru-Xia Jia
- College of Animal Science & Technology, Nanjing Agricultural University , Nanjing , China
| | - Xing Duan
- College of Animal Science & Technology, Nanjing Agricultural University , Nanjing , China
| | - Si-Jing Song
- College of Animal Science & Technology, Nanjing Agricultural University , Nanjing , China
| | - Shao-Chen Sun
- College of Animal Science & Technology, Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
45
|
Namgoong S, Kim NH. Roles of actin binding proteins in mammalian oocyte maturation and beyond. Cell Cycle 2016; 15:1830-43. [PMID: 27152960 DOI: 10.1080/15384101.2016.1181239] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Actin nucleation factors, which promote the formation of new actin filaments, have emerged in the last decade as key regulatory factors controlling asymmetric division in mammalian oocytes. Actin nucleators such as formin-2, spire, and the ARP2/3 complex have been found to be important regulators of actin remodeling during oocyte maturation. Another class of actin-binding proteins including cofilin, tropomyosin, myosin motors, capping proteins, tropomodulin, and Ezrin-Radixin-Moesin proteins are thought to control actin cytoskeleton dynamics at various steps of oocyte maturation. In addition, actin dynamics controlling asymmetric-symmetric transitions after fertilization is a new area of investigation. Taken together, defining the mechanisms by which actin-binding proteins regulate actin cytoskeletons is crucial for understanding the basic biology of mammalian gamete formation and pre-implantation development.
Collapse
Affiliation(s)
- Suk Namgoong
- a Department of Animal Sciences , Chungbuk National University , Cheong-Ju , ChungChungBuk-do , Republic of Korea
| | - Nam-Hyung Kim
- a Department of Animal Sciences , Chungbuk National University , Cheong-Ju , ChungChungBuk-do , Republic of Korea
| |
Collapse
|
46
|
Duan X, Liu J, Zhu CC, Wang QC, Cui XS, Kim NH, Xiong B, Sun SC. RhoA-mediated MLC2 regulates actin dynamics for cytokinesis in meiosis. Cell Cycle 2015; 15:471-7. [PMID: 26701676 DOI: 10.1080/15384101.2015.1128590] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
During oocyte meiosis, the bipolar spindle forms in the central cytoplasm and then migrates to the cortex. Subsequently, the oocyte extrudes the polar body through two successive asymmetric divisions, which are regulated primarily by actin filaments. Myosin light chain2 (MLC2) phosphorylation plays pivotal roles in smooth muscle contraction, stress fiber formation, cell motility and cytokinesis. However, whether MLC2 phosphorylation participates in the oocyte polarization and asymmetric division has not been clarified. The present study investigated the expression and functions of MLC2 during mouse oocyte meiosis. Our result showed that p-MLC2 was localized in the oocyte cortex, with a thickened cap above the chromosomes. Meanwhile, p-MLC2 was also localized in the poles of spindle. Disruption of MLC2 activity by MLC2 knock down (KD) caused the failure of polar body extrusion. Immunofluorescent staining showed that a large proportion of oocytes arrested in telophase stage and failed to undergo cytokinesis after culturing for 12 hours. In the meantime, actin filament staining at oocyte membrane and cytoplasm were reduced in MLC2 KD oocytes. Finally, we found that the phosphorylation of MLC2 protein levels was decreased after disruption of RhoA activity. Above all, our data indicated that the RhoA-mediated MLC2 regulates the actin organization for cytokinesis during mouse oocyte maturation.
Collapse
Affiliation(s)
- Xing Duan
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Jun Liu
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Cheng-Cheng Zhu
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Qiao-Chu Wang
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Xiang-Shun Cui
- b Department of Animal Sciences , Chungbuk National University , Cheongju , Korea
| | - Nam-Hyung Kim
- b Department of Animal Sciences , Chungbuk National University , Cheongju , Korea
| | - Bo Xiong
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Shao-Chen Sun
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
47
|
Abstract
SummaryMeiotic maturation of oocytes requires a variety of ATP-dependent reactions, such as germinal vesicle breakdown, spindle formation, and rearrangement of plasma membrane structure, which is required for fertilization. Mitochondria are accordingly expected be localized to subcellular sites of energy utilization. Although microtubule-dependent cellular traffic for mitochondria has been studied extensively in cultured neuronal (and some other somatic) cells, the molecular mechanism of their dynamics in mammalian oocytes at different stages of maturation remains obscure. The present work describes dynamic aspects of mitochondria in porcine oocytes at the germinal vesicle stage. After incubation of oocytes with MitoTracker Orange followed by centrifugation, mitochondria-enriched ooplasm was obtained using a glass needle and transferred into a recipient oocyte. The intracellular distribution of the fluorescent mitochondria was then observed over time using a laser scanning confocal microscopy equipped with an incubator. Kinetic analysis revealed that fluorescent mitochondria moved from central to subcortical areas of oocytes and were dispersed along plasma membranes. Such movement of mitochondria was inhibited by either cytochalasin B or cytochalasin D but not by colcemid, suggesting the involvement of microfilaments. This method of visualizing mitochondrial dynamics in live cells permits study of the pathophysiology of cytoskeleton-dependent intracellular traffic of mitochondria and associated energy metabolism during meiotic maturation of oocytes.
Collapse
|
48
|
Jang WI, Jo YJ, Kim HC, Jia JL, Namgoong S, Kim NH. Non-muscle tropomyosin (Tpm3) is crucial for asymmetric cell division and maintenance of cortical integrity in mouse oocytes. Cell Cycle 2015; 13:2359-69. [PMID: 25483187 DOI: 10.4161/cc.29333] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tropomyosins are actin-binding cytoskeletal proteins that play a pivotal role in regulating the function of actin filaments in muscle and non-muscle cells; however, the roles of non-muscle tropomyosins in mouse oocytes are unknown. This study investigated the expression and functions of non-muscle tropomyosin (Tpm3) during meiotic maturation of mouse oocytes. Tpm3 mRNA was detected at all developmental stages in mouse oocytes. Tpm3 protein was localized at the cortex during the germinal vesicle and germinal vesicle breakdown stages. However, the overall fluorescence intensity of Tpm3 immunostaining was markedly decreased in metaphase II oocytes. Knockdown of Tpm3 impaired asymmetric division of oocytes and spindle migration, considerably reduced the amount of cortical actin, and caused membrane blebbing during cytokinesis. Expression of a constitutively active cofilin mutant and Tpm3 overexpression confirmed that Tpm3 protects cortical actin from depolymerization by cofilin. The data indicate that Tpm3 plays crucial roles in maintaining cortical actin integrity and asymmetric cell division during oocyte maturation, and that dynamic regulation of cortical actin by Tpm3 is critical to ensure proper polar body protrusion.
Collapse
Affiliation(s)
- Woo-In Jang
- a Department of Animal Sciences; Chungbuk National University; Cheongju, Chungbuk, Republic of Korea
| | | | | | | | | | | |
Collapse
|
49
|
Lee SR, Xu YN, Jo YJ, Namgoong S, Kim NH. The Rho-GTPase effector ROCK regulates meiotic maturation of the bovine oocyte via myosin light chain phosphorylation and cofilin phosphorylation. Mol Reprod Dev 2015; 82:849-58. [PMID: 26175189 DOI: 10.1002/mrd.22524] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/08/2015] [Indexed: 02/02/2023]
Abstract
Oocyte meiosis involves a unique asymmetric division involving spindle movement from the central cytoplasm to the cortex, followed by polar body extrusion. ROCK is a Rho-GTPase effector involved in various cellular functions in somatic cells as well as oocyte meiosis. ROCK was previously shown to promote actin organization by phosphorylating several downstream targets, including LIM domain kinase (LIMK), phosphorylated cofilin (p-cofilin), and myosin light chain (MLC). In this study, we investigated the roles of ROCK and MLC during bovine oocyte meiosis. We found that ROCK was localized around the nucleus at the oocyte's germinal-vesicle (GV) stage, but spreads to the rest of the cytoplasm in later developmental stages. On the other hand, phosphorylated MLC (p-MLC) localized at the cortex, and its abundance decreased by the metaphase-II stage. Disrupting ROCK activity, via RNAi or the chemical inhibitor Y-27632, blocked both cell cycle progression and polar body extrusion. ROCK inhibition also resulted in decreased cortical actin, p-cofilin, and p-MLC levels. Similar to the phenotype associated with inhibition of ROCK activity, inhibition of MLC kinase by the chemical inhibitor ML-7 caused defects in polar body extrusion. Collectively, our results suggest that the ROCK/MLC/actomyosin as well as ROCK/LIMK/cofilin pathways regulate meiotic spindle migration and cytokinesis during bovine oocyte maturation.
Collapse
Affiliation(s)
- So-Rim Lee
- Department of Animal Sciences, Chungbuk National University, Cheong-ju, South Korea
| | - Yong-Nan Xu
- Department of Veterinary Medicine, College of Agriculture, Yanbian university, Yanji, Jilin Province, China
| | - Yu-Jin Jo
- Department of Animal Sciences, Chungbuk National University, Cheong-ju, South Korea
| | - Suk Namgoong
- Department of Animal Sciences, Chungbuk National University, Cheong-ju, South Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheong-ju, South Korea
| |
Collapse
|
50
|
Zhang Y, Duan X, Cao R, Liu HL, Cui XS, Kim NH, Rui R, Sun SC. Small GTPase RhoA regulates cytoskeleton dynamics during porcine oocyte maturation and early embryo development. Cell Cycle 2015; 13:3390-403. [PMID: 25485583 DOI: 10.4161/15384101.2014.952967] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mammalian oocyte maturation is distinguished by asymmetric division that is regulated primarily by cytoskeleton, including microtubules and microfilaments. Small Rho GTPase RhoA is a key regulator of cytoskeletal organization which regulates cell polarity, migration, and division. In this study, we investigated the roles of RhoA in mammalian oocyte meiosis and early embryo cleavage. (1) Disrupting RhoA activity or knock down the expression of RhoA caused the failure of polar body emission. This may have been due to decreased actin assembly and subsequent spindle migration defects. The involvement of RhoA in this process may have been though its regulation of actin nucleators ROCK, p-Cofilin, and ARP2 expression. (2) In addition, spindle morphology was also disrupted and p-MAPK expression decreased in RhoA inhibited or RhoA KD oocytes, which indicated that RhoA also regulated MAPK phosphorylation for spindle formation. (3) Porcine embryo development was also suppressed by inhibiting RhoA activity. Two nuclei were observed in one blastomere, and actin expression was reduced, which indicated that RhoA regulated actin-based cytokinesis of porcine embryo. Thus, our results demonstrated indispensable roles for RhoA in regulating porcine oocyte meiosis and cleavage during early embryo development.
Collapse
Affiliation(s)
- Yu Zhang
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | | | | | | | | | | | | | | |
Collapse
|