1
|
Duan WK, Shaha SZ, Garcia Rivas JF, Wilson BL, Patel KJ, Domingo IK, Riddell MR. Placental cytotrophoblast microvillar stabilization is required for cell-cell fusion. Development 2025; 152:dev204619. [PMID: 40213950 PMCID: PMC12045602 DOI: 10.1242/dev.204619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 05/03/2025]
Abstract
The placenta is an essential organ of pregnancy required for maternal-fetal transport and communication. The surface of the placenta facing the maternal blood is formed by a single giant multinucleate cell: the syncytiotrophoblast. The syncytiotrophoblast is formed and maintained via fusion of progenitor cytotrophoblasts. Cell-cell fusion is a tightly regulated process, and in non-trophoblastic cells is accompanied by stereotypical alterations in cell shape by cells that have attained fusion-competence. The most prominent feature is the formation of actin-based membrane protrusions, but whether stereotypic morphological changes occur in fusion-competent cytotrophoblasts has not been characterized. Using a human placental explant model and trophoblast organoids, we identify microvilliation as a morphological feature that is enriched prior to fusion of cytotrophoblasts. Disruption of microvilli using an inhibitor of the actin-membrane cross-linker protein ezrin blocked cytotrophoblast fusion in both models. We provide evidence that cytotrophoblast microvilli are enriched in early endosomes and a pro-fusogenic protein. Thus, we propose that the polarized assembly of microvillar domains is crucial for mediating efficient syncytiotrophoblast development.
Collapse
Affiliation(s)
- Wendy K. Duan
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Sumaiyah Z. Shaha
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Juan F. Garcia Rivas
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Bethan L. Wilson
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Khushali J. Patel
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Ivan K. Domingo
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Meghan R. Riddell
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
2
|
Lea G, Doria-Borrell P, Ferrero-Micó A, Varma A, Simon C, Anderson H, Biggins L, De Clercq K, Andrews S, Niakan KK, Gahurova L, McGovern N, Pérez-García V, Hanna CW. Ectopic expression of DNMT3L in human trophoblast stem cells restores features of the placental methylome. Cell Stem Cell 2025; 32:276-292.e9. [PMID: 39788122 DOI: 10.1016/j.stem.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/07/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
The placental DNA methylation landscape is unique, with widespread partially methylated domains (PMDs). The placental "methylome" is conserved across mammals, a shared feature of many cancers, and extensively studied for links with pregnancy complications. Human trophoblast stem cells (hTSCs) offer exciting potential for functional studies to better understand this epigenetic feature; however, whether the hTSC epigenome recapitulates primary trophoblast remains unclear. We find that hTSCs exhibit an atypical methylome compared with trophectoderm and 1st trimester cytotrophoblast. Regardless of cell origin, oxygen levels, or culture conditions, hTSCs show localized DNA methylation within transcribed gene bodies and a complete loss of PMDs. Unlike early human trophoblasts, hTSCs display a notable absence of DNMT3L expression, which is necessary for PMD establishment in mouse trophoblasts. Remarkably, we demonstrate that ectopic expression of DNMT3L in hTSCs restores placental PMDs, supporting a conserved role for DNMT3L in de novo methylation in trophoblast development in human embryogenesis.
Collapse
Affiliation(s)
- Georgia Lea
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | - Anakha Varma
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Claire Simon
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Holly Anderson
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Laura Biggins
- Babraham Bioinformatics, Babraham Institute, Cambridge, UK
| | | | - Simon Andrews
- Babraham Bioinformatics, Babraham Institute, Cambridge, UK
| | - Kathy K Niakan
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Lenka Gahurova
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Naomi McGovern
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Vicente Pérez-García
- Centro de Investigación Príncipe Felipe, Valencia, Spain; Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| | - Courtney W Hanna
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Saadé K, Hussain MA, Bainbridge SA, St-Gelais R, Variola F, Fenech M. Cost-Effective Bioimpedance Spectroscopy System for Monitoring Syncytialization In Vitro: Experimental and Numerical Validation of BeWo Cell Fusion. MICROMACHINES 2024; 15:1506. [PMID: 39770259 PMCID: PMC11678286 DOI: 10.3390/mi15121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
The placenta plays a critical role in nutrient and oxygen exchange during pregnancy, yet the effects of medicinal drugs on this selective barrier remain poorly understood. To overcome this, this study presents a cost-effective bioimpedance spectroscopy (BIS) system to assess tight junction integrity and monolayer formation in BeWo b30 cells, a widely used model of the multinucleated maternal-fetal exchange surface of the placental barrier. Cells were cultured on collagen-coated porous membranes and treated with forskolin to induce controlled syncytialization. Electrical impedance was measured using an entry level impedance analyzer, while immunofluorescence staining was used to confirm monolayer formation and syncytialization. The measurements and staining confirmed the formation of a confluent monolayer on day 4. In fact, the electrical resistance tripled for treated samples indicating a more electrically restrictive barrier. This resistance remained constant for treated samples reflecting the intact barrier's integrity over the next 3 days. The measurements show that, on day 4, the electrical capacitance of the cells decreased for the treated samples as opposed to the untreated samples. This reflects that the surface area of the BeWo b30 cells decreased when the samples were treated with forskolin. Finally, a COMSOL model was developed to explore the effects of electrode positioning, depth, and distance on TEER measurements, explaining discrepancies in the literature. In fact, there was a substantial 97% and 39.4% difference in the obtained TEER values. This study demonstrates the AD2 device's feasibility for monitoring placental barrier integrity and emphasizes the need for standardized setups for comparable results. The system can hence be used to analyze drug effects and nutrient transfer across the placental barrier.
Collapse
Affiliation(s)
- Karim Saadé
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (M.A.H.); (R.S.-G.)
| | - Mohammed Areeb Hussain
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (M.A.H.); (R.S.-G.)
| | | | - Raphael St-Gelais
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (M.A.H.); (R.S.-G.)
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (M.A.H.); (R.S.-G.)
| | - Marianne Fenech
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (M.A.H.); (R.S.-G.)
| |
Collapse
|
4
|
López-Guzmán C, García AM, Vásquez AM. Alteration of Trophoblast Syncytialization by Plasmodium falciparum-Infected Erythrocytes. Microorganisms 2024; 12:1640. [PMID: 39203482 PMCID: PMC11356531 DOI: 10.3390/microorganisms12081640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Malaria during pregnancy has been associated with significant risks to both the mother and the fetus, leading to complications such as anemia, low birth weight, and increased infant mortality. The trophoblast cells, a key component of the placenta, are crucial for nutrient and oxygen exchange between mother and fetus. The differentiation of cytotrophoblasts (CTBs) into syncytiotrophoblasts (STBs) is critical for proper pregnancy development. These cells form the bi-stratified epithelium surrounding the placental villi. While previous studies have described an inflammatory activation of STB cells exposed to Plasmodium falciparum-infected erythrocytes (P. falciparum-IE) or components such as hemozoin (HZ), little is known about the direct effect this parasite may have on the epithelial turnover and function of trophoblast cells. This study aims to contribute to understanding mechanisms leading to placental damage during placental malaria using a BeWo cell line as a differentiation model. It was found that P. falciparum-IE interferes with the fusion of BeWo cells, affecting the differentiation process of trophoblast. A reduction in syncytialization could be associated with the adverse effects of infection in fetal health, altering the remodeling of the trophoblast epithelial barrier and reducing their capacity to exchange substances. However, further studies are necessary to assess alterations in the functionality of this epithelium.
Collapse
Affiliation(s)
- Carolina López-Guzmán
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Calle 62 #52-59, Torre 1, Laboratorio 610, Medellin 050001, Colombia
| | - Ana María García
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Calle 62 #52-59, Torre 1, Laboratorio 610, Medellin 050001, Colombia
| | - Ana María Vásquez
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Calle 62 #52-59, Torre 1, Laboratorio 610, Medellin 050001, Colombia
- Escuela de Microbiología, Universidad de Antioquia, Calle 67 #53-108, Bloque 5, Oficina 5-135, Medellin 050001, Colombia
| |
Collapse
|
5
|
Sieler M, Dörnen J, Dittmar T. How Much Do You Fuse? A Comparison of Cell Fusion Assays in a Breast Cancer Model. Int J Mol Sci 2024; 25:5668. [PMID: 38891857 PMCID: PMC11172233 DOI: 10.3390/ijms25115668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Cell fusion is a biological process that is crucial for the development and homeostasis of different tissues, but it is also pathophysiologically associated with tumor progression and malignancy. The investigation of cell fusion processes is difficult because there is no standardized marker. Many studies therefore use different systems to observe and quantify cell fusion in vitro and in vivo. The comparability of the results must be critically questioned, because both the experimental procedure and the assays differ between studies. The comparability of the fluorescence-based fluorescence double reporter (FDR) and dual split protein (DSP) assay was investigated as part of this study, in which general conditions were kept largely constant. In order to be able to induce both a high and a low cell fusion rate, M13SV1 breast epithelial cells were modified with regard to the expression level of the fusogenic protein Syncytin-1 and its receptor ASCT2 and were co-cultivated for 72 h with different breast cancer cell lines. A high number of fused cells was found in co-cultures with Syncytin-1-overexpressing M13SV1 cells, but differences between the assays were also observed. This shows that the quantification of cell fusion events in particular is highly dependent on the assay selected, but the influence of fusogenic proteins can be visualized very well.
Collapse
Affiliation(s)
- Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (M.S.); (J.D.)
| | - Jessica Dörnen
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (M.S.); (J.D.)
- Faculty of Medicine, Ruhr University Bochum, 44789 Bochum, Germany
| | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (M.S.); (J.D.)
| |
Collapse
|
6
|
Jaremek A, Renaud SJ. Analyzing Trophoblast Fusion Using Immunofluorescence and Split Protein Complementation Assays. Methods Mol Biol 2024; 2728:87-98. [PMID: 38019393 DOI: 10.1007/978-1-0716-3495-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The fusion of cytotrophoblasts into a multinucleated syncytiotrophoblast is essential for placental development. For studies investigating syncytiotrophoblast formation, various methods are available to analyze the fusion efficiency of trophoblast cells in vitro. Here, we describe protocols for measuring trophoblast fusion using immunofluorescence and an assay employing complementary parts of a split green fluorescent protein that self-reassociates and generates a fluorescent signal following cell fusion. Together, these approaches allow for a comprehensive and robust analysis of the fusion index in trophoblast cells and can strengthen the accuracy and throughput of investigations into factors that may regulate syncytiotrophoblast development.
Collapse
Affiliation(s)
- Adam Jaremek
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
- Children's Health Research Institute, London, ON, Canada.
- Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
7
|
Yuan X, Liu X, Zhu F, Huang B, Lin L, Huang J, Wen L, Kilby MD, Baker PN, Fu Y, Wu W, Qi H, Tang J, Tong C. Endoplasmic reticulum stress impairs trophoblast syncytialization through upregulation of HtrA4 and causes early-onset preeclampsia. J Hypertens 2023; 41:2095-2106. [PMID: 37728094 DOI: 10.1097/hjh.0000000000003541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
OBJECTIVE Syncytiotrophoblasts form via mononuclear cytotrophoblast fusion during placentation and play a critical role in maternal-fetal communication. Impaired syncytialization inevitably leads to pregnancy-associated complications, including preeclampsia. Endoplasmic reticulum stress (ERS) is reportedly linked with preeclampsia, but little is known about its association with syncytialization. High temperature requirement factor A4 (HtrA4), a placental-specific protease, is responsible for protein quality control and placental syncytialization. This study aimed to investigate the relationship among HtrA4, ERS, and trophoblast syncytialization in the development of early-onset preeclampsia (EO-PE). METHODS HtrA4 expression and ERS in preeclamptic placentas and control placentas were analyzed by Western blotting and qRT-PCR. HtrA4 and ERS localization in placentas was determined by immunohistochemistry and immunofluorescence. BeWo cells were used to stimulate the effects of HtrA4 and ERS on syncytialization. RESULTS HtrA4 expression was upregulated in EO-PE and positively correlated with ERS. HtrA4 activity was increased in preeclampsia. Under normoxia, HtrA4 overexpression in BeWo cells did not alter the ERS level. In addition, treatment with hypoxia/reoxygenation (H/R) or an ERS inducer increased HtrA4 expression. HtrA4 upregulation suppressed the levels of syncytin-2 and β-HCG in the presence of forskolin (FSK), and this change was exaggerated after ERS activation. In addition, treatment with an ERS inhibitor markedly suppressed FSK-treated cell fusion in a manner related to downregulation of HtrA4 expression. CONCLUSION Our results suggest that ERS enables syncytialization of placental development by upregulating HtrA4, but that excessive HtrA4 expression and preexisting ERS impair syncytialization and cause EO-PE.
Collapse
Affiliation(s)
- Xi Yuan
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University
| | - Xiyao Liu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University
| | - Fangyu Zhu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University
| | - Biao Huang
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University
| | - Li Lin
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University
| | - Jiayu Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | - Mark D Kilby
- Fetal Medicine Centre, Birmingham Women's & Children's Foundation Trust
- Institute of Metabolism & Systems Research, College of Medical & Dental Sciences, University of Birmingham, Birmingham
| | - Philip N Baker
- College of Life Sciences, University of Leicester, Leicester, UK
| | - Yong Fu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University
| | - Weiwei Wu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi
| | - Hongbo Qi
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University
- Department of Obstetrics, Women and Children's Hospital of Chongqing Medical University
| | - Jing Tang
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University
- School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Chao Tong
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University
| |
Collapse
|
8
|
Wu H, Huang XY, Sun MX, Wang Y, Zhou HY, Tian Y, He B, Li K, Li DY, Wu AP, Wang H, Qin CF. Zika virus targets human trophoblast stem cells and prevents syncytialization in placental trophoblast organoids. Nat Commun 2023; 14:5541. [PMID: 37684223 PMCID: PMC10491779 DOI: 10.1038/s41467-023-41158-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Zika virus (ZIKV) infection during pregnancy threatens pregnancy and fetal health. However, the infectivity and pathological effects of ZIKV on placental trophoblast progenitor cells in early human embryos remain largely unknown. Here, using human trophoblast stem cells (hTSCs), we demonstrated that hTSCs were permissive to ZIKV infection, and resistance to ZIKV increased with hTSC differentiation. Combining gene knockout and transcriptome analysis, we demonstrated that the intrinsic expression of AXL and TIM-1, and the absence of potent interferon (IFN)-stimulated genes (ISGs) and IFNs contributed to the high sensitivity of hTSCs to ZIKV. Furthermore, using our newly developed hTSC-derived trophoblast organoid (hTSC-organoid), we demonstrated that ZIKV infection disrupted the structure of mature hTSC-organoids and inhibited syncytialization. Single-cell RNA sequencing (scRNA-seq) further demonstrated that ZIKV infection of hTSC-organoids disrupted the stemness of hTSCs and the proliferation of cytotrophoblast cells (CTBs) and probably led to a preeclampsia (PE) phenotype. Overall, our results clearly demonstrate that hTSCs represent the major target cells of ZIKV, and a reduced syncytialization may result from ZIKV infection of early developing placenta. These findings deepen our understanding of the characteristics and consequences of ZIKV infection of hTSCs in early human embryos.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing-Yao Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Meng-Xu Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Yue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang-Yu Zhou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, China
| | - Ying Tian
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Beijia He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - De-Yu Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Ai-Ping Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, China.
| |
Collapse
|
9
|
Su AL, Lash LH, Loch-Caruso R. N-Acetyl-L-cysteine and aminooxyacetic acid differentially modulate toxicity of the trichloroethylene metabolite S-(1,2-dichlorovinyl)-L-cysteine in human placental villous trophoblast BeWo cells. Toxicology 2023; 495:153611. [PMID: 37544576 PMCID: PMC10874504 DOI: 10.1016/j.tox.2023.153611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Trichloroethylene (TCE) is a known human carcinogen with toxicity attributed to its metabolism. S-(1,2-Dichlorovinyl)-L-cysteine (DCVC) is a metabolite of TCE formed downstream in TCE glutathione (GSH) conjugation and is upstream of several toxic metabolites. Despite knowledge that DCVC stimulates reactive oxygen species (ROS) generation and apoptosis in placental cells, the extent to which these outcomes are attributable to DCVC metabolism is unknown. The current study used N-acetyl-L-cysteine (NAC) at 5 mM and aminooxyacetic acid (AOAA) at 1 mM as pharmacological modifiers of DCVC metabolism to investigate DCVC toxicity at concentrations of 5-50 µM in the human placental trophoblast BeWo cell model capable of forskolin-stimulated syncytialization. Exposures of unsyncytialized BeWo cells, BeWo cells undergoing syncytialization, and syncytialized BeWo cells were studied. NAC pre/co-treatment with DCVC either failed to inhibit or exacerbated DCVC-induced H2O2 abundance, PRDX2 mRNA expression, and BCL2 mRNA expression. Although NAC increased mRNA expression of CYP3A4, which would be consistent with increased generation of the toxic metabolite N-acetyl-DCVC sulfoxide (NAcDCVCS), a CYP3A4 inhibitor ketoconazole did not significantly alter BeWo cell responses. Moreover, AOAA failed to inhibit cysteine conjugate β-lyase (CCBL), which bioactivates DCVC, and did not affect the percentage of nuclei condensed or fragmented, a measure of apoptosis, in all BeWo cell models. However, syncytialized cells had higher CCBL activity compared to unsyncytialized cells, suggesting that the former may be more sensitive to DCVC toxicity. Together, although neither NAC nor AOAA mitigated DCVC toxicity, differences in CCBL activity and potentially CYP3A4 expression dictated the differential toxicity derived from DCVC.
Collapse
Affiliation(s)
- Anthony L Su
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| | - Lawrence H Lash
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA
| |
Collapse
|
10
|
Su AL, Harris SM, Elkin ER, Karnovsky A, Colacino J, Loch-Caruso RK. Trichloroethylene Metabolite S-(1,2-Dichlorovinyl)-l-cysteine Stimulates Changes in Energy Metabolites and Amino Acids in the BeWo Human Placental Trophoblast Model during Syncytialization. Chem Res Toxicol 2023; 36:882-899. [PMID: 37162359 PMCID: PMC10499396 DOI: 10.1021/acs.chemrestox.3c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Syncytialization, the fusion of cytotrophoblasts into an epithelial barrier that constitutes the maternal-fetal interface, is a crucial event of placentation. This process is characterized by distinct changes to amino acid and energy metabolism. A metabolite of the industrial solvent trichloroethylene (TCE), S-(1,2-dichlorovinyl)-l-cysteine (DCVC), modifies energy metabolism and amino acid abundance in HTR-8/SVneo extravillous trophoblasts. In the current study, we investigated DCVC-induced changes to energy metabolism and amino acids during forskolin-stimulated syncytialization in BeWo cells, a human villous trophoblastic cell line that models syncytialization in vitro. BeWo cells were exposed to forskolin at 100 μM for 48 h to stimulate syncytialization. During syncytialization, BeWo cells were also treated with DCVC at 0 (control), 10, or 20 μM. Following treatment, the targeted metabolomics platform, "Tricarboxylic Acid Plus", was used to identify changes in energy metabolism and amino acids. DCVC treatment during syncytialization decreased oleic acid, aspartate, proline, uridine diphosphate (UDP), UDP-d-glucose, uridine monophosphate, and cytidine monophosphate relative to forskolin-only treatment controls, but did not increase any measured metabolite. Notable changes stimulated by syncytialization in the absence of DCVC included increased adenosine monophosphate and guanosine monophosphate, as well as decreased aspartate and glutamate. Pathway analysis revealed multiple pathways in amino acid and sugar metabolisms that were altered with forskolin-stimulated syncytialization alone and DCVC treatment during syncytialization. Analysis of ratios of metabolites within the pathways revealed that DCVC exposure during syncytialization changed metabolite ratios in the same or different direction compared to syncytialization alone. Building off our oleic acid findings, we found that extracellular matrix metalloproteinase-2, which is downstream in oleic acid signaling, underwent the same changes as oleic acid. Together, the metabolic changes stimulated by DCVC treatment during syncytialization suggest changes in energy metabolism and amino acid abundance as potential mechanisms by which DCVC could impact syncytialization and pregnancy.
Collapse
Affiliation(s)
- Anthony L. Su
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Sean M. Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Elana R. Elkin
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Alla Karnovsky
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Justin Colacino
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rita Karen Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
11
|
Su AL, Loch-Caruso R. Apoptotic responses stimulated by the trichloroethylene metabolite S-(1,2-dichlorovinyl)-L-cysteine depend on cell differentiation state in BeWo human trophoblast cells. Toxicol In Vitro 2023; 86:105514. [PMID: 36336211 PMCID: PMC9949904 DOI: 10.1016/j.tiv.2022.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
During pregnancy, the placental villous cytotrophoblasts differentiate via cell fusion and multinucleation to create syncytiotrophoblasts, a cell type at the maternal-fetal interface. Apoptosis of syncytiotrophoblasts is associated with adverse pregnancy outcomes. The human trophoblast BeWo cell line has been used as an in vitro model for this differentiation process, also known as syncytialization. In the current study, we exposed unsyncytialized BeWo cells, BeWo cells undergoing syncytialization, and syncytialized BeWo cells to S-(1,2-dichlorovinyl)-L-cysteine (DCVC), a metabolite of the industrial chemical trichloroethylene (TCE). DCVC exposure at 50 μM for 48 h decreased cell viability, increased cytotoxicity, increased caspase 3/7 activity, and increased nuclear condensation or fragmentation in BeWo cells regardless of their differentiation status. Investigating mechanisms of apoptosis, DCVC increased H2O2 abundance and decreased PRDX2 mRNA in all three BeWo cell models. DCVC decreased tumor necrosis factor-receptor 1 (TNF-R1) concentration in media and decreased NFKB1 and PRDX1 mRNA expression in syncytialized BeWo cells only. DCVC decreased BCL2 mRNA expression in syncytializing BeWo cells and in syncytialized BeWo cells only. Decreased LGALS3 mRNA was seen in unsyncytialized BeWo cells only. Together, these data suggest roles for oxidative stress and pro-inflammatory mechanisms underlying apoptosis in BeWo cells with differences depending on differentiation state.
Collapse
Affiliation(s)
- Anthony L Su
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| |
Collapse
|
12
|
Abostait A, Tyrrell J, Abdelkarim M, Shojaei S, Tse WH, El-Sherbiny IM, Keijzer R, Labouta HI. Placental Nanoparticle Uptake-On-a-Chip: The Impact of Trophoblast Syncytialization and Shear Stress. Mol Pharm 2022; 19:3757-3769. [PMID: 36053057 DOI: 10.1021/acs.molpharmaceut.2c00216] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The placenta is a dynamic and complex organ that plays an essential role in the health and development of the fetus. Placental disorders can affect the health of both the mother and the fetus. There is currently an unmet clinical need to develop nanoparticle-based therapies to target and treat placental disorders. However, little is known about the interaction of nanoparticles (NPs) with the human placenta under biomimetic conditions. Specifically, the impact of shear stress exerted on the trophoblasts (placental epithelial cells) by the maternal blood flow, the gradual fusion of the trophoblasts along the gestation period (syncytialization), and the impact of microvilli formation on the cell uptake of NPs is not known. To this end, we designed dynamic placenta-on-a-chip models using BeWo cells to recapitulate the micro-physiological environment, and we induced different degrees of syncytialization via chemical induction with forskolin. We characterized the degree of syncytialization quantitatively by measuring beta human chorionic gonadotropin (β-hCG) secretion, as well as qualitatively by immunostaining the tight junction protein, ZO-1, and counter nuclear staining. We also characterized microvilli formation under static and dynamic conditions via F-actin staining. We used these models to measure the cell uptake of chondroitin sulfate a binding protein (CSA) conjugated and control liposomes using confocal microscopy, followed by image analysis. Interestingly, exposure of the cells to a dynamic flow of media intrinsically induced syncytialization and microvilli formation compared to static controls. Under dynamic conditions, BeWo cells produced more β-hCG in conditions that increased the cell exposure time to forskolin (p < 0.005). Our cell uptake results clearly show a combined effect of the exerted shear stress and forskolin treatment on the cell uptake of liposomes as uptake increased in forskolin exposed conditions (p < 0.05). Overall, the difference in the extent of cell uptake of liposomes among the different conditions clearly displays a need for the development of dynamic models of the placenta that consider the changes in the placental cell phenotype along the gestation period, including syncytialization, microvilli formation, and the expression of different transport and uptake receptors. Knowledge generated from this work will inform future research aiming at developing drug delivery systems targeting the placenta.
Collapse
Affiliation(s)
- Amr Abostait
- College of Pharmacy, University of Manitoba, Winnipeg R3E 0T5, Canada.,Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada
| | - Jack Tyrrell
- College of Pharmacy, University of Manitoba, Winnipeg R3E 0T5, Canada
| | - Mahmoud Abdelkarim
- College of Pharmacy, University of Manitoba, Winnipeg R3E 0T5, Canada.,Biomedical Engineering, University of Manitoba, Winnipeg R3T 5V6, Canada
| | - Shahla Shojaei
- College of Pharmacy, University of Manitoba, Winnipeg R3E 0T5, Canada
| | - Wai Hei Tse
- Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada.,Depts of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology & Pathophysiology, University of Manitoba, Winnipeg R3A 1R9, Canada
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Richard Keijzer
- Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada.,Depts of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology & Pathophysiology, University of Manitoba, Winnipeg R3A 1R9, Canada
| | - Hagar I Labouta
- College of Pharmacy, University of Manitoba, Winnipeg R3E 0T5, Canada.,Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada.,Biomedical Engineering, University of Manitoba, Winnipeg R3T 5V6, Canada.,Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
13
|
Salerno E, Orlandi G, Ongaro C, d’Adamo A, Ruffini A, Carnevale G, Zardin B, Bertacchini J, Angeli D. Liquid flow in scaffold derived from natural source: experimental observations and biological outcome. Regen Biomater 2022; 9:rbac034. [PMID: 35747746 PMCID: PMC9211004 DOI: 10.1093/rb/rbac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/12/2022] [Accepted: 05/22/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigates the biological effects on a 3D scaffold based on hydroxyapatite cultured with MC3T3 osteoblasts in response to flow-induced shear stress (FSS). The scaffold adopted here (B-HA) derives from the biomorphic transformation of natural wood and its peculiar channel geometry mimics the porous structure of the bone. From the point of view of fluid dynamics, B-HA can be considered a network of micro-channels, intrinsically offering the advantages of a microfluidic system. This work, for the first time, offers a description of the fluid dynamic properties of the B-HA scaffold, which are strongly connected to its morphology. These features are necessary to determine the FSS ranges to be applied during in vitro studies to get physiologically relevant conditions. The selected ranges of FSS promoted the elongation of the attached cells along the flow direction and early osteogenic cell differentiation. These data confirmed the ability of B-HA to promote the differentiation process along osteogenic lineage. Hence, such a bioactive and naturally derived scaffold can be considered as a promising tool for bone regeneration applications.
Collapse
Affiliation(s)
- Elisabetta Salerno
- CNR-NANO S3 Research Center on nanoStructures and bioSystems at Surfaces , via Campi 213/A, Modena, I-41125, Italy
- University of Modena and Reggio Emilia Department of Sciences and Methods for Engineering, , Via Amendola 2, Reggio Emilia, 42122, Italy
| | - Giulia Orlandi
- University of Modena and Reggio Emilia Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, , Via del Pozzo 71, Modena, 41125, Italy
| | - Claudio Ongaro
- DIEF-Engineering Department “Enzo Ferrari” , Via Pietro Vivarelli 10, Modena, 41125, Italy
| | - Alessandro d’Adamo
- DIEF-Engineering Department “Enzo Ferrari” , Via Pietro Vivarelli 10, Modena, 41125, Italy
| | - Andrea Ruffini
- National Research Council (CNR) Institute of Science and Technology for Ceramics (ISTEC), , Via Granarolo 64, Faenza, 48018, Italy
| | - Gianluca Carnevale
- University of Modena and Reggio Emilia Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, , Via del Pozzo 71, Modena, 41125, Italy
| | - Barbara Zardin
- DIEF-Engineering Department “Enzo Ferrari” , Via Pietro Vivarelli 10, Modena, 41125, Italy
| | - Jessika Bertacchini
- University of Modena and Reggio Emilia Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, , Via del Pozzo 71, Modena, 41125, Italy
| | - Diego Angeli
- University of Modena and Reggio Emilia Department of Sciences and Methods for Engineering, , Via Amendola 2, Reggio Emilia, 42122, Italy
| |
Collapse
|
14
|
Generation of Cancer Stem/Initiating Cells by Cell-Cell Fusion. Int J Mol Sci 2022; 23:ijms23094514. [PMID: 35562905 PMCID: PMC9101717 DOI: 10.3390/ijms23094514] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/10/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
CS/ICs have raised great expectations in cancer research and therapy, as eradication of this key cancer cell type is expected to lead to a complete cure. Unfortunately, the biology of CS/ICs is rather complex, since no common CS/IC marker has yet been identified. Certain surface markers or ALDH1 expression can be used for detection, but some studies indicated that cancer cells exhibit a certain plasticity, so CS/ICs can also arise from non-CS/ICs. Another problem is intratumoral heterogeneity, from which it can be inferred that different CS/IC subclones must be present in the tumor. Cell–cell fusion between cancer cells and normal cells, such as macrophages and stem cells, has been associated with the generation of tumor hybrids that can exhibit novel properties, such as an enhanced metastatic capacity and even CS/IC properties. Moreover, cell–cell fusion is a complex process in which parental chromosomes are mixed and randomly distributed among daughter cells, resulting in multiple, unique tumor hybrids. These, if they have CS/IC properties, may contribute to the heterogeneity of the CS/IC pool. In this review, we will discuss whether cell–cell fusion could also lead to the origin of different CS/ICs that may expand the overall CS/IC pool in a primary tumor.
Collapse
|
15
|
Elkin ER, Su AL, Kilburn BA, Bakulski KM, Armant DR, Loch-Caruso R. Toxicity assessments of selected trichloroethylene and perchloroethylene metabolites in three in vitro human placental models. Reprod Toxicol 2022; 109:109-120. [PMID: 35304307 PMCID: PMC9107309 DOI: 10.1016/j.reprotox.2022.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 01/25/2023]
Abstract
Residential and occupational exposures to the industrial solvents perchloroethylene (PERC) and trichloroethylene (TCE) present public health concerns. In humans, maternal PERC and TCE exposures can be associated with adverse birth outcomes. Because PERC and TCE are biotransformed to toxic metabolites and placental dysfunction can contribute to adverse birth outcomes, the present study compared the toxicity of key PERC and TCE metabolites in three in vitro human placenta models. We measured cell viability and caspase 3 + 7 activity in the HTR-8/SVneo and BeWo cell lines, and caspase 3 + 7 activity in first trimester villous explant cultures. Cultures were exposed for 24 h to 5-100 µM S-(1,2-dichlorovinyl)-L-cysteine (DCVC) and S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC), or 5-200 µM trichloroacetate (TCA) and dichloroacetate (DCA). DCVC significantly reduced cell viability and increased caspase 3 + 7 activity in HTR-8/SVneo cells at a lower concentration (20 µM) compared with concentrations toxic to BeWo cells and villous explants. Similarly, TCVC reduced cell viability and increased caspase 3 + 7 activity in HTR-8/SVneo cells but not in BeWo cells. TCA and DCA had only negligible effects on HTR-8/SVneo or BeWo cells. This study advances understanding of potential risks of PERC and TCE exposure during pregnancy by identifying metabolites toxic in placental cells and tissues.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA; Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan, USA.
| | - Anthony L Su
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA; Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Brian A Kilburn
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - D Randall Armant
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA; Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Rodríguez-Frías F, Quer J, Tabernero D, Cortese MF, Garcia-Garcia S, Rando-Segura A, Pumarola T. Microorganisms as Shapers of Human Civilization, from Pandemics to Even Our Genomes: Villains or Friends? A Historical Approach. Microorganisms 2021; 9:2518. [PMID: 34946123 PMCID: PMC8708650 DOI: 10.3390/microorganisms9122518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Universal history is characterized by continuous evolution, in which civilizations are born and die. This evolution is associated with multiple factors, among which the role of microorganisms is often overlooked. Viruses and bacteria have written or decisively contributed to terrible episodes of history, such as the Black Death in 14th century Europe, the annihilation of pre-Columbian American civilizations, and pandemics such as the 1918 Spanish flu or the current COVID-19 pandemic caused by the coronavirus SARS-CoV-2. Nevertheless, it is clear that we could not live in a world without these tiny beings. Endogenous retroviruses have been key to our evolution and for the regulation of gene expression, and the gut microbiota helps us digest compounds that we could not otherwise process. In addition, we have used microorganisms to preserve or prepare food for millennia and more recently to obtain drugs such as antibiotics or to develop recombinant DNA technologies. Due to the enormous importance of microorganisms for our survival, they have significantly influenced the population genetics of different human groups. This paper will review the role of microorganisms as "villains" who have been responsible for tremendous mortality throughout history but also as "friends" who help us survive and evolve.
Collapse
Affiliation(s)
- Francisco Rodríguez-Frías
- Clinical Biochemistry Research Group, Department of Biochemistry, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.F.C.); (S.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Josep Quer
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - David Tabernero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Maria Francesca Cortese
- Clinical Biochemistry Research Group, Department of Biochemistry, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.F.C.); (S.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Selene Garcia-Garcia
- Clinical Biochemistry Research Group, Department of Biochemistry, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.F.C.); (S.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Ariadna Rando-Segura
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
- Department of Microbiology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
| | - Tomas Pumarola
- Department of Microbiology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
| |
Collapse
|
17
|
YAP1 nuclear efflux and transcriptional reprograming follow membrane diminution upon VSV-G-induced cell fusion. Nat Commun 2021; 12:4502. [PMID: 34301937 PMCID: PMC8302681 DOI: 10.1038/s41467-021-24708-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Cells in many tissues, such as bone, muscle, and placenta, fuse into syncytia to acquire new functions and transcriptional programs. While it is known that fused cells are specialized, it is unclear whether cell-fusion itself contributes to programmatic-changes that generate the new cellular state. Here, we address this by employing a fusogen-mediated, cell-fusion system to create syncytia from undifferentiated cells. RNA-Seq analysis reveals VSV-G-induced cell fusion precedes transcriptional changes. To gain mechanistic insights, we measure the plasma membrane surface area after cell-fusion and observe it diminishes through increases in endocytosis. Consequently, glucose transporters internalize, and cytoplasmic glucose and ATP transiently decrease. This reduced energetic state activates AMPK, which inhibits YAP1, causing transcriptional-reprogramming and cell-cycle arrest. Impairing either endocytosis or AMPK activity prevents YAP1 inhibition and cell-cycle arrest after fusion. Together, these data demonstrate plasma membrane diminishment upon cell-fusion causes transient nutrient stress that may promote transcriptional-reprogramming independent from extrinsic cues.
Collapse
|
18
|
HtrA4 is up-regulated during trophoblast syncytialization and BeWo cells fail to syncytialize without HtrA4. Sci Rep 2021; 11:14363. [PMID: 34257367 PMCID: PMC8277827 DOI: 10.1038/s41598-021-93520-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/25/2021] [Indexed: 01/14/2023] Open
Abstract
The outer layer of the human placenta comprises syncytiotrophoblast, which forms through fusion of cytotrophoblasts (syncytialization), and plays a critical role in maternal-fetal communication including nutrient/oxygen transportation and hormone secretion. Impairment in syncytialization inevitably affects pregnancy outcomes. High temperature requirement factor A 4 (HtrA4) is a placental-specific protease, expressed by various trophoblasts including syncytiotrophoblast, and significantly elevated in preeclampsia at disease presentation. However, it is unknown whether HtrA4 is important for syncytialization. Here we first examined HtrA4 expression in primary human cytotrophoblasts during syncytialization which occurs spontaneously in culture, and in BeWo cells which syncytialize upon forskolin stimulation. The success of syncytialization in each model was confirmed by significant up-regulation/secretion of β-hCG, and the concurrent down-regulation of E-cadherin. In both models, HtrA4 mRNA and protein increased concomitantly with syncytialization. Furthermore, the secreted levels of β-hCG and HtrA4 correlated significantly and positively in both models. We next knocked out HtrA4 in BeWo by CRISPR/Cas9. Upon forskolin treatment, control BeWo profoundly up-regulated β-hCG and syncytin-1, down-regulated E-cadherin, and at the same time increased the formation of multinucleated cells, whereas BeWo cells without HtrA4 did not alter any of these parameters. Our data thus suggest that HtrA4 plays an essential role in syncytialization.
Collapse
|
19
|
Wong MK, Li EW, Adam M, Selvaganapathy PR, Raha S. Establishment of an in vitro placental barrier model cultured under physiologically relevant oxygen levels. Mol Hum Reprod 2021; 26:353-365. [PMID: 32159799 DOI: 10.1093/molehr/gaaa018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
The human placental barrier facilitates many key functions during pregnancy, most notably the exchange of all substances between the mother and fetus. However, preclinical models of the placental barrier often lacked the multiple cell layers, syncytialization of the trophoblast cells and the low oxygen levels that are present within the body. Therefore, we aimed to design and develop an in vitro model of the placental barrier that would reinstate these factors and enable improved investigations of barrier function. BeWo placental trophoblastic cells and human umbilical vein endothelial cells were co-cultured on contralateral sides of an extracellular matrix-coated transwell insert to establish a multilayered barrier. Epidermal growth factor and forskolin led to significantly increased multi-nucleation of the BeWo cell layer and increased biochemical markers of syncytial fusion, for example syncytin-1 and hCGβ. Our in vitro placental barrier possessed size-specific permeability, with 4000-Da molecules experiencing greater transport and a lower apparent permeability coefficient than 70 000-Da molecules. We further demonstrated that the BeWo layer had greater resistance to smaller molecules compared to the endothelial layer. Chronic, physiologically low oxygen exposure (3-8%) increased the expression of hypoxia-inducible factor 1α and syncytin-1, further increased multi-nucleation of the BeWo cell layer and decreased barrier permeability only against smaller molecules (457 Da/4000 Da). In conclusion, we built a novel in vitro co-culture model of the placental barrier that possessed size-specific permeability and could function under physiologically low oxygen levels. Importantly, this will enable future researchers to better study the maternal-fetal transport of nutrients and drugs during pregnancy.
Collapse
Affiliation(s)
- Michael K Wong
- Graduate Program of Medical Science, McMaster University, Hamilton, Ontario, Canada.,Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Edward W Li
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Mohamed Adam
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Sandeep Raha
- Graduate Program of Medical Science, McMaster University, Hamilton, Ontario, Canada.,Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada.,Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| |
Collapse
|
20
|
Apicella C, Ruano CSM, Jacques S, Gascoin G, Méhats C, Vaiman D, Miralles F. Urothelial Cancer Associated 1 (UCA1) and miR-193 Are Two Non-coding RNAs Involved in Trophoblast Fusion and Placental Diseases. Front Cell Dev Biol 2021; 9:633937. [PMID: 34055770 PMCID: PMC8155540 DOI: 10.3389/fcell.2021.633937] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
A bioinformatics screen for non-coding genes was performed from microarrays analyzing on the one hand trophoblast fusion in the BeWo cell model, and on the other hand, placental diseases (preeclampsia and Intra-Uterine Growth Restriction). Intersecting the deregulated genes allowed to identify two miRNA (mir193b and miR365a) and one long non-coding RNA (UCA1) that are pivotal for trophoblast fusion, and deregulated in placental diseases. We show that miR-193b is a hub for the down-regulation of 135 cell targets mainly involved in cell cycle progression and energy usage/nutrient transport. UCA1 was explored by siRNA knock-down in the BeWo cell model. We show that its down-regulation is associated with the deregulation of important trophoblast physiology genes, involved in differentiation, proliferation, oxidative stress, vacuolization, membrane repair and endocrine production. Overall, UCA1 knockdown leads to an incomplete gene expression profile modification of trophoblast cells when they are induced to fuse into syncytiotrophoblast. Then we performed the same type of analysis in cells overexpressing one of the two major isoforms of the STOX1 transcription factor, STOX1A and STOX1B (associated previously to impaired trophoblast fusion). We could show that when STOX1B is abundant, the effects of UCA1 down-regulation on forskolin response are alleviated.
Collapse
Affiliation(s)
- Clara Apicella
- Institut Cochin, Université de Paris, U1016 INSERM, UMR 8104, CNRS, Paris, France
| | - Camino S M Ruano
- Institut Cochin, Université de Paris, U1016 INSERM, UMR 8104, CNRS, Paris, France
| | - Sébastien Jacques
- Institut Cochin, Université de Paris, U1016 INSERM, UMR 8104, CNRS, Paris, France
| | - Géraldine Gascoin
- Unité Mixte de Recherche MITOVASC, Équipe Mitolab, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France.,Réanimation et Médecine Néonatales, Centre Hospitalier Universitaire, Angers, France
| | - Céline Méhats
- Institut Cochin, Université de Paris, U1016 INSERM, UMR 8104, CNRS, Paris, France
| | - Daniel Vaiman
- Institut Cochin, Université de Paris, U1016 INSERM, UMR 8104, CNRS, Paris, France
| | - Francisco Miralles
- Institut Cochin, Université de Paris, U1016 INSERM, UMR 8104, CNRS, Paris, France
| |
Collapse
|
21
|
A simple method to isolate term trophoblasts and maintain them in extended culture. Placenta 2021; 108:1-10. [PMID: 33780666 DOI: 10.1016/j.placenta.2021.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/24/2021] [Accepted: 03/14/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Primary trophoblast cultures obtained from term placentae are an important research tool. Term trophoblasts, while isolated as mononuclear cells, spontaneously fuse to form multinucleated syncytial clusters. Since term trophoblast cells do not replicate in vitro, contaminating cells can overgrow the culture limiting the lifespan of primary trophoblast cultures to about seven days. We aimed to develop a method that would allow the prolonged culture of term trophoblasts. METHODS Trophoblasts were isolated from term placentae, following vaginal or cesarean section delivery, using either trypsin/DNase or dispase/DNase to digest the tissue. Purity of the trophoblasts was confirmed using flow cytometry prior to plating and during culture using immunocytochemistry. Cell death was examined with propidium iodide and trophoblast fusion monitored using PKH67 membrane stain. RESULTS Digestion of term villous tissue with dispase/DNase resulted in the release of significantly more trophoblasts than digestion with trypsin/DNase (n = 8, p = 0.0051). Viability of the trophoblasts was unaffected by enzyme choice. The use of Advanced DMEM/F12 supplemented with 2% fetal bovine serum allowed culture of the trophoblasts with minimal cell death or contamination for 30 days. Despite prolonged culture over half of the trophoblasts remained mononuclear. DISCUSSION We report a simple, optimized method to isolate and culture trophoblasts from term placentae for prolonged periods without substantial contamination with other cell types. Consistent with previous findings, trophoblasts cultured using our method were able to syncytialise, forming multi-nucleated syncytia. This extended growth time allows long term in vitro experimentation to further understand the nature of trophoblasts.
Collapse
|
22
|
Colson A, Depoix CL, Baldin P, Hubinont C, Sonveaux P, Debiève F. Hypoxia-inducible factor 2 alpha impairs human cytotrophoblast syncytialization: New insights into placental dysfunction and fetal growth restriction. FASEB J 2020; 34:15222-15235. [PMID: 32954526 DOI: 10.1096/fj.202001681r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 09/03/2020] [Indexed: 01/01/2023]
Abstract
Insufficient remodeling of uterine arteries causes pregnancy-related diseases, including fetal growth restriction and preeclampsia. In these situations, reduced maternal blood flow in the placenta is thought to be responsible for the persistence of a low oxygen environment throughout pregnancy. We hypothesized that chronic activation of transcription factors hypoxia-inducible factors (HIFs) actively participates in placental underdevelopment, which impairs fetal growth. The computer-assisted analysis in pathological placentas revealed an increased number of HIF-2α-positive nuclei in the syncytium compared to normal human placentas, while HIF-1α stabilization was unchanged. Specific involvement of HIF-2α was confirmed in primary human cytotrophoblasts rendered deficient for HIF1A or HIF2A. Silencing HIF2A increased the expression of main syncytialization markers as well as differentiation and syncytium formation. It also improved placental growth factor bioavailability. None of these changes was seen when silencing HIF1A. Conversely, the experimental induction of HIF-2α expression repressed forskolin-induced differentiation in BeWo choriocarcinoma cells. Our mechanistic insights evidence that transcription factor HIF-2α impairs placental function, thus suggesting its participation in fetal growth restriction and preeclampsia when placentas become chronically hypoxic. Furthermore, it suggests the possibility to develop novel molecular targeting therapies for placental dysfunction.
Collapse
Affiliation(s)
- Arthur Colson
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium.,Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Christophe Louis Depoix
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Pamela Baldin
- Department of Pathology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Corinne Hubinont
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium.,Department of Obstetrics, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Frédéric Debiève
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium.,Department of Obstetrics, Cliniques universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
23
|
Shahin-Shamsabadi A, Selvaganapathy PR. π-SACS: pH Induced Self-Assembled Cell Sheets Without the Need for Modified Surfaces. ACS Biomater Sci Eng 2020; 6:5346-5356. [PMID: 33455283 DOI: 10.1021/acsbiomaterials.0c01073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to form tissue-like constructs that have high cell density with proper cell-cell and cell-ECM interactions is critical for many applications including tissue models for drug discovery and tissue regeneration. Newly emerging bioprinting methods sometimes lack the high cellular density needed to provide biophysical cues to orchestrate cellular behavior to recreate tissue architecture and function. Alternate methods using self-assembly can be used to create tissue-like constructs with high cellular density and well-defined microstructure in the form of spheroids, organoids, or cell sheets. Cell sheets have a particularly interesting architecture in the context of tissue regeneration and repair as they can be applied as patches to integrate with surrounding tissues. Until now, the preparation of these sheets has involved culturing on specialized substrates that can be triggered by temperature or phase change (hydrophobic to hydrophilic) to release cells growing on them and form sheets. Here a new technique is proposed that allows delamination of cells and secreted ECM and rapid self-assembly into a cell sheet using a simple pH trigger and without the need to use responsive surfaces or applying external stimuli such as electrical and magnetic fields, only with routine tissue culture plates. This technique can be used with cells that are capable of syncytialization and fusion such as skeletal muscle cells and placenta cells. Using C2C12 myoblast cells we show that the pH trigger induces a rapid delamination of the cells as a continuous layer that self-assembles into a thick dense sheet. The delamination process has little effect on cell viability and maturation and preserves the ECM components that allow sheets to adhere to each other within a short incubation time enabling formation of thicker constructs when multiple sheets are stacked (double- and quadruple-layer constructs are formed here). These thick grafts can be used for regeneration purposes or as in vitro models.
Collapse
Affiliation(s)
| | - P Ravi Selvaganapathy
- School of Biomedical Engineering, McMaster University, Ontario L8S4K1, Canada.,Department of Mechanical Engineering, McMaster University, Ontario L8S4L7, Canada
| |
Collapse
|
24
|
Wang R, Yu R, Zhu C, Lin HY, Lu X, Wang H. Tubulin detyrosination promotes human trophoblast syncytium formation. J Mol Cell Biol 2020; 11:967-978. [PMID: 31408157 PMCID: PMC6927241 DOI: 10.1093/jmcb/mjz084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/22/2019] [Accepted: 07/11/2019] [Indexed: 12/03/2022] Open
Abstract
Human trophoblast syncytialization is one of the most important yet least understood events during placental development. In this study, we found that detyrosinated α-tubulin (detyr-α-tub), which is negatively regulated by tubulin tyrosine ligase (TTL), was elevated during human placental cytotrophoblast fusion. Correspondingly, relatively high expression of TTL protein was observed in first-trimester human placental cytotrophoblast cells, but fusing trophoblast cells exhibited much lower levels of TTL. Notably, fusion of preeclamptic cytotrophoblast cells was compromised but could be partially rescued by knockdown of TTL levels. Mechanistically, chronic downregulation of TTL in trophoblast cells resulted in significantly elevated expression of detyr-α-tub. Restoration of detyr-α-tub thus contributed to the cell surface localization of the fusogenic protein Syncytin-2 and the gap junction protein Connexin 43 (Cx43), which in turn promoted successful fusion between trophoblast cells. Taken together, the results suggest that tubulin detyrosination plays an essential role in human trophoblast fusogenic protein aggregation and syncytialization. Insufficient tubulin detyrosination leads to defects in syncytialization and potentially to the onset of preeclampsia.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruoxuan Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hai-Yan Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyin Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Goldman-Wohl D, Greenfield C, Eisenberg-Loebl I, Denichenko P, Jbara A, Karni R, Ariel I, Yagel S. Trophoblast lineage specific expression of the alternative splicing factor RBFOX2 suggests a role in placental development. Placenta 2020; 100:142-149. [PMID: 32762877 DOI: 10.1016/j.placenta.2020.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION RBFOX2, an RNA-binding protein, controls tissue-specific alternative splicing of exons in diverse processes of development. The progenitor cytotrophoblast of the human placenta differentiates into either the syncytiotrophoblast, formed via cell fusion, or the invasive extravillous trophoblast lineage. The placenta affords a singular system where a role for RBFOX2 in both cell invasion and cell fusion may be studied. We investigated a role for RBFOX2 in trophoblast cell differentiation, as a foundation for investigations of RBFOX2 in embryo implantation and placental development. METHODS Immunohistochemistry of RBFOX2 was performed on placental tissue sections from three trimesters of pregnancy and from pathological pregnancies. Primary trophoblast cell culture and immunofluorescence were employed to determine RBFOX2 expression upon cell fusion. Knockdown of RBFOX2 expression was performed with βhCG and syncytin-1 as molecular indicators of fusion. RESULTS In both normal and pathological placentas, RBFOX2 expression was confined to the cytotrophoblast and the extravillous trophoblast, but absent from the syncytiotrophoblast. Additionally, we showed that primary trophoblasts that spontaneously fused in cell culture downregulated RBFOX2 expression. In functional experiments, knockdown expression of RBFOX2 significantly upregulated βhCG, while the upregulation of syncytin-1 did not reach statistical significance. DISCUSSION RBFOX2, by conferring mRNA diversity, may act as a regulator switch in trophoblast differentiation to either the fusion or invasive pathways. By studying alternative splicing we further our understanding of placental development, yielding possible insights into preeclampsia, where expression of antiangiogenic isoforms produced through alternative splicing play a critical role in disease development and severity.
Collapse
Affiliation(s)
- Debra Goldman-Wohl
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Caryn Greenfield
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Iris Eisenberg-Loebl
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Polina Denichenko
- IMRIC Hadassah-Hebrew University School of Medicine, Jerusalem, Israel
| | - Amina Jbara
- IMRIC Hadassah-Hebrew University School of Medicine, Jerusalem, Israel
| | - Rotem Karni
- IMRIC Hadassah-Hebrew University School of Medicine, Jerusalem, Israel
| | - Ilana Ariel
- Department of Pathology Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Simcha Yagel
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
26
|
Cheng LC, Zheng D, Baljinnyam E, Sun F, Ogami K, Yeung PL, Hoque M, Lu CW, Manley JL, Tian B. Widespread transcript shortening through alternative polyadenylation in secretory cell differentiation. Nat Commun 2020; 11:3182. [PMID: 32576858 PMCID: PMC7311474 DOI: 10.1038/s41467-020-16959-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/29/2020] [Indexed: 11/29/2022] Open
Abstract
Most eukaryotic genes produce alternative polyadenylation (APA) isoforms. Here we report that, unlike previously characterized cell lineages, differentiation of syncytiotrophoblast (SCT), a cell type critical for hormone production and secretion during pregnancy, elicits widespread transcript shortening through APA in 3'UTRs and in introns. This global APA change is observed in multiple in vitro trophoblast differentiation models, and in single cells from placentas at different stages of pregnancy. Strikingly, the transcript shortening is unrelated to cell proliferation, a feature previously associated with APA control, but instead accompanies increased secretory functions. We show that 3'UTR shortening leads to transcripts with higher mRNA stability, which augments transcriptional activation, especially for genes involved in secretion. Moreover, this mechanism, named secretion-coupled APA (SCAP), is also executed in B cell differentiation to plasma cells. Together, our data indicate that SCAP tailors the transcriptome during formation of secretory cells, boosting their protein production and secretion capacity.
Collapse
Affiliation(s)
- Larry C Cheng
- Graduate Program in Quantitative Biomedicine, School of Graduate Studies, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Program in Gene Expression and Regulation, and Center for Systems and Computational Biology, Wistar Institute, Philadelphia, PA 19104, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Erdene Baljinnyam
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Fangzheng Sun
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Koichi Ogami
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Percy Luk Yeung
- Robert Wood Johnson Medical School and Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Mainul Hoque
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Chi-Wei Lu
- Robert Wood Johnson Medical School and Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Bin Tian
- Graduate Program in Quantitative Biomedicine, School of Graduate Studies, Rutgers University, New Brunswick, NJ 08901, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
- Program in Gene Expression and Regulation, and Center for Systems and Computational Biology, Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Li Z, Kurosawa O, Iwata H. A comparative study of key physiological stem cell parameters between three human trophoblast cell lines. Biochem Biophys Res Commun 2020; 525:1038-1045. [DOI: 10.1016/j.bbrc.2020.03.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/06/2020] [Indexed: 01/21/2023]
|
28
|
Li Z, Kurosawa O, Iwata H. Establishment of human trophoblast stem cells from human induced pluripotent stem cell-derived cystic cells under micromesh culture. Stem Cell Res Ther 2019; 10:245. [PMID: 31391109 PMCID: PMC6686486 DOI: 10.1186/s13287-019-1339-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/26/2019] [Accepted: 07/14/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Trophoblasts as a specific cell lineage are crucial for the correct function of the placenta. Human trophoblast stem cells (hTSCs) are a proliferative population that can differentiate into syncytiotrophoblasts and extravillous cytotrophoblasts. Many studies have reported that chemical supplements induce the differentiation of trophoblasts from human induced pluripotent stem cells (hiPSCs). However, there have been no reports of the establishment of proliferative hTSCs from hiPSCs. Our previous report showed that culturing hiPSCs on micromesh as a bioscaffold induced cystic cells with trophoblast properties. Here, we aimed to establish hTSCs from hiPSCs. METHODS We used the micromesh culture technique to induce hiPSC differentiation into trophoblast cysts. We then reseeded and purified cystic cells. RESULTS The cells derived from the reseeded cysts were highly proliferative. Low expression levels of pluripotency genes and high expression levels of TSC-specific genes were detected in proliferative cells. The cells could be passaged, and further directional differentiation into syncytiotrophoblast- and extravillous cytotrophoblast-like cells was confirmed by marker expression and hormone secretion. CONCLUSIONS We established hiPSC-derived hTSCs, which may be applicable for studying the functions of trophoblasts and the placenta. Our experimental system may provide useful tools for understanding the pathogenesis of infertility owing to trophoblast defects in the future.
Collapse
Affiliation(s)
- Zhuosi Li
- The "Compass to Healthy Life" Research Complex Program, RIKEN Institute, Kobe, 650-0047, Japan.
| | - Osamu Kurosawa
- The "Compass to Healthy Life" Research Complex Program, RIKEN Institute, Kobe, 650-0047, Japan
| | - Hiroo Iwata
- The "Compass to Healthy Life" Research Complex Program, RIKEN Institute, Kobe, 650-0047, Japan.,Research Promotion Institution for COI Site, Kyoto University, Kyoto, Japan
| |
Collapse
|
29
|
Brukman NG, Uygur B, Podbilewicz B, Chernomordik LV. How cells fuse. J Cell Biol 2019; 218:1436-1451. [PMID: 30936162 PMCID: PMC6504885 DOI: 10.1083/jcb.201901017] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Brukman et al. review cell–cell fusion mechanisms, focusing on the identity of the fusogens that mediate these processes and the regulation of their activities. Cell–cell fusion remains the least understood type of membrane fusion process. However, the last few years have brought about major advances in understanding fusion between gametes, myoblasts, macrophages, trophoblasts, epithelial, cancer, and other cells in normal development and in diseases. While different cell fusion processes appear to proceed via similar membrane rearrangements, proteins that have been identified as necessary and sufficient for cell fusion (fusogens) use diverse mechanisms. Some fusions are controlled by a single fusogen; other fusions depend on several proteins that either work together throughout the fusion pathway or drive distinct stages. Furthermore, some fusions require fusogens to be present on both fusing membranes, and in other fusions, fusogens have to be on only one of the membranes. Remarkably, some of the proteins that fuse cells also sculpt single cells, repair neurons, promote scission of endocytic vesicles, and seal phagosomes. In this review, we discuss the properties and diversity of the known proteins mediating cell–cell fusion and highlight their different working mechanisms in various contexts.
Collapse
Affiliation(s)
- Nicolas G Brukman
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Berna Uygur
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | | | - Leonid V Chernomordik
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
30
|
Lu X, Wang R, Zhu C, Wang H, Lin HY, Gu Y, Cross JC, Wang H. Fine-Tuned and Cell-Cycle-Restricted Expression of Fusogenic Protein Syncytin-2 Maintains Functional Placental Syncytia. Cell Rep 2018; 21:1150-1159. [PMID: 29091755 DOI: 10.1016/j.celrep.2017.10.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/12/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022] Open
Abstract
Many types of multinucleated cells (syncytia) generated by cell-cell fusion are post-mitotic, but it remains unclear how this state is maintained and why. Here, we utilized the fluorescent ubiquitination-based cell-cycle indicator (Fucci) reporter system to show that human placental trophoblast cells were all in the G0 phase before they fuse. Expression of the fusogenic protein (fusogen) Syncytin-2 was confined to G0 cells. Overexpression of Syncytin-2 in cycling cells overrode the cell-cycle restriction and enabled fusion of cells in the S/G2/M phases but resulted in the unstable syncytia retaining mitotic features. The Syncytin-2-induced syncytia were functionally compromised with respect to pathogen defense and hormone secretion. We found that, during trophoblast fusion, the cell-cycle inhibitor p21 interacted with the GCM1 transcription factor, and this complex bound to the promoter of Syncytin-2 and promoted its transcription. These findings demonstrate that G0-restricted Syncytin-2 expression is a prerequisite for development of functional post-mitotic syncytia.
Collapse
Affiliation(s)
- Xiaoyin Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haibin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hai-Yan Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Gu
- The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - James C Cross
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T1S 1A2, Canada; Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB T1S 1A2, Canada; Department of Obstetrics and Gynecology, University of Calgary, Calgary, AB T1S 1A2, Canada; Department of Medical Genetics, University of Calgary, Calgary, AB T1S 1A2, Canada.
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
31
|
Tet3-Mediated DNA Demethylation Contributes to the Direct Conversion of Fibroblast to Functional Neuron. Cell Rep 2016; 17:2326-2339. [DOI: 10.1016/j.celrep.2016.10.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/29/2016] [Accepted: 10/24/2016] [Indexed: 11/21/2022] Open
|
32
|
Zheng R, Li Y, Sun H, Lu X, Sun BF, Wang R, Cui L, Zhu C, Lin HY, Wang H. Deep RNA sequencing analysis of syncytialization-related genes during BeWo cell fusion. Reproduction 2016; 153:REP-16-0343. [PMID: 27742864 DOI: 10.1530/rep-16-0343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022]
Abstract
The syncytiotrophoblast (STB) plays a key role in maintaining the function of the placenta during human pregnancy. However, the molecular network that orchestrates STB development remains elusive. The aim of this study was to obtain broad and deep insight into human STB formation via transcriptomics. We adopted RNA sequencing (RNA-Seq) to investigate genes and isoforms involved in forskolin (FSK)-induced fusion of BeWo cells. BeWo cells were treated with 50 μM FSK or dimethylsulfoxide (DMSO) as a vehicle control for 24 and 48 h, and the mRNAs at 0, 24 and 48 h was sequenced. We detected 28,633 expressed genes and identified 1,902 differentially expressed genes (DEGs) after FSK treatment for 24 and 48 h. Among the 1,902 DEGs, 461 were increased and 395 were decreased at 24 h, while 879 were up-regulated and 763 were down-regulated at 48 h. When the 856 DEGs identified at 24 h were traced individually at 48 h, they separated into 6 dynamic patterns via a K-means algorithm, and most were enriched in down-even and up-even patterns. Moreover, the Gene Ontology (GO) terms syncytium formation, cell junction assembly, cell fate commitment, calcium ion transport, regulation of epithelial cell differentiation and cell morphogenesis involved in differentiation were clustered, and the MAPK pathway was most significantly regulated. Analyses of alternative splicing isoforms detected 123,200 isoforms, of which 1,376 were differentially expressed. The present deep analysis of the RNA-Seq data of BeWo cell fusion provides important clues for understanding the mechanisms underlying human STB formation.
Collapse
Affiliation(s)
- Ru Zheng
- R Zheng, State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yue Li
- Y Li, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Huiying Sun
- H Sun, Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, CAS Center for Excellence in Molecular Cell Science, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyin Lu
- X Lu, State Key Laboratory of Reproductive Biology Beijing, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bao-Fa Sun
- B Sun, Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, CAS Center for Excellence in Molecular Cell Science, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Rui Wang
- R Wang, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lina Cui
- L Cui, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chiense Academy of Sciences, Beijing, China
| | - Cheng Zhu
- C Zhu, State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hai-Yan Lin
- H Lin, State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongmei Wang
- H Wang, State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
St-Pierre J, Fraser M, Vaillancourt C. Inhibition of placental 11beta-hydroxysteroid dehydrogenase type 2 by lead. Reprod Toxicol 2016; 65:133-138. [DOI: 10.1016/j.reprotox.2016.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/28/2016] [Accepted: 06/21/2016] [Indexed: 01/06/2023]
|
34
|
Lu X, He Y, Zhu C, Wang H, Chen S, Lin HY. Twist1 is involved in trophoblast syncytialization by regulating GCM1. Placenta 2016; 39:45-54. [PMID: 26992674 DOI: 10.1016/j.placenta.2016.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/21/2015] [Accepted: 01/08/2016] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The multinucleated syncytiotrophoblast (STB) is maintained and regenerated by the fusion of underlying cytotrophoblast cells (CTBs) and is responsible for a number of functions in the human placenta. Deficiencies in this structure may result in pregnancy-associated diseases. However, the detailed mechanisms underlying trophoblast syncytialization await further investigation. METHODS The location of the transcription factor Twist1 in human placental tissues was identified by immunohistochemistry. The expression of Twist1 and glial cells missing-1 (GCM1) was evaluated by qPCR or western blotting in two cell-fusion models including forskolin-induced fusion of BeWo cells and spontaneous syncytialization of CTBs. The key role of Twist1 in trophoblast differentiation was identified using BeWo cells transfected with Twist1-specific siRNA. We investigated the effect of hypoxia on the expression of Twist1 and GCM1 in primary CTBs cultured with 2% oxygen. The Twist1 binding region in the GCM1 gene was detected by chromatin-immunoprecipitation. RESULTS Twist1 was expressed in human placental tissues, and the expression of Twist1 and GCM1 increased in a time-dependent manner during spontaneous syncytialization of primary CTBs and forskolin-induced fusion of BeWo cells. A reduction in Twist1 and GCM1 expression was observed under hypoxic conditions and was accompanied by inhibition of trophoblast syncytialization. Moreover, siRNA-mediated silencing of Twist1 resulted in inhibition of BeWo cells fusion and down-regulation of GCM1 expression. Furthermore, Twist1 was found to bind to the E-box-enriched region in intron 2 of the GCM1 gene during forskolin-induced fusion of BeWo cells. DISCUSSION The above results suggest that Twist1 is required during trophoblast syncytialization. Twist1 may promote trophoblast syncytialization by regulating the expression of GCM1.
Collapse
Affiliation(s)
- Xiaoyin Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Yuxia He
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Cheng Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Shiling Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
| | - Hai-Yan Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China.
| |
Collapse
|
35
|
Mayhew T. Morphomics: An integral part of systems biology of the human placenta. Placenta 2015; 36:329-40. [DOI: 10.1016/j.placenta.2015.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 01/03/2023]
|
36
|
Than NG, Romero R, Xu Y, Erez O, Xu Z, Bhatti G, Leavitt R, Chung TH, El-Azzamy H, LaJeunesse C, Wang B, Balogh A, Szalai G, Land S, Dong Z, Hassan SS, Chaiworapongsa T, Krispin M, Kim CJ, Tarca AL, Papp Z, Bohn H. Evolutionary origins of the placental expression of chromosome 19 cluster galectins and their complex dysregulation in preeclampsia. Placenta 2014; 35:855-65. [PMID: 25266889 PMCID: PMC4203431 DOI: 10.1016/j.placenta.2014.07.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/04/2014] [Accepted: 07/28/2014] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The dysregulation of maternal-fetal immune tolerance is one of the proposed mechanisms leading to preeclampsia. Galectins are key regulator proteins of the immune response in vertebrates and maternal-fetal immune tolerance in eutherian mammals. Previously we found that three genes in a Chr19 cluster encoding for human placental galectin-13 (PP13), galectin-14 and galectin-16 emerged during primate evolution and may confer immune tolerance to the semi-allogeneic fetus. MATERIALS AND METHODS This study involved various methodologies for gene and protein expression profiling, genomic DNA methylation analyses, functional assays on differentiating trophoblasts including gene silencing, luciferase reporter and methylation assays. These methods were applied on placental specimens, umbilical cord blood cells, primary trophoblasts and BeWo cells. Genomic DNA sequences were analyzed for transposable elements, transcription factor binding sites and evolutionary conservation. RESULTS AND DISCUSSION The villous trophoblastic expression of Chr19 cluster galectin genes is developmentally regulated by DNA methylation and induced by key transcription factors of villous placental development during trophoblast fusion and differentiation. This latter mechanism arose via the co-option of binding sites for these transcription factors through promoter evolution and the insertion of an anthropoid-specific L1PREC2 transposable element into the 5' untranslated region of an ancestral gene followed by gene duplication events. Among placental Chr19 cluster galectin genes, the expression of LGALS13 and LGALS14 is down-regulated in preterm severe preeclampsia associated with SGA. We reveal that this phenomenon is partly originated from the dysregulated expression of key transcription factors controlling trophoblastic functions and galectin gene expression. In addition, the differential DNA methylation of these genes was also observed in preterm preeclampsia irrespective of SGA. CONCLUSIONS These findings reveal the evolutionary origins of the placental expression of Chr19 cluster galectins. The complex dysregulation of these genes in preeclampsia may alter immune tolerance mechanisms at the maternal-fetal interface.
Collapse
Affiliation(s)
- N G Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary; Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| | - R Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA.
| | - Y Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - O Erez
- Department of Obstetrics and Gynecology, Ben-Gurion University, Beer-Sheva, Israel
| | - Z Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - G Bhatti
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - R Leavitt
- Zymo Research Corporation, Irvine, CA, USA
| | - T H Chung
- Zymo Research Corporation, Irvine, CA, USA
| | - H El-Azzamy
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - C LaJeunesse
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - B Wang
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - A Balogh
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA; Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - G Szalai
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - S Land
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Z Dong
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - S S Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - T Chaiworapongsa
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - M Krispin
- Zymo Research Corporation, Irvine, CA, USA
| | - C J Kim
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - A L Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Z Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - H Bohn
- Behringwerke AG, Marburg/Lahn, Germany
| |
Collapse
|