1
|
Li M, Sun L, Zhou L, Wang D. Tilapia, a good model for studying reproductive endocrinology. Gen Comp Endocrinol 2024; 345:114395. [PMID: 37879418 DOI: 10.1016/j.ygcen.2023.114395] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/07/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
The Nile tilapia (Oreochromis niloticus), with a system of XX/XY sex determination, is a worldwide farmed fish with a shorter sexual maturation time than that of most cultured fish. Tilapia show a spawning cycle of approximately 14 days and can be artificially propagated in the laboratory all year round to obtain genetically all female (XX) and all male (XY) fry. Its genome sequence has been opened, and a perfect gene editing platform has been established. With a moderate body size, it is convenient for taking enough blood to measure hormone level. In recent years, using tilapia as animal model, we have confirmed that estrogen is crucial for female development because 1) mutation of star2, cyp17a1 or cyp19a1a (encoding aromatase, the key enzyme for estrogen synthesis) results in sex reversal (SR) due to estrogen deficiency in XX tilapia, while mutation of star1, cyp11a1, cyp17a2, cyp19a1b or cyp11c1 affects fertility due to abnormal androgen, cortisol and DHP levels in XY tilapia; 2) when the estrogen receptors (esr2a/esr2b) are mutated, the sex is reversed from female to male, while when the androgen receptors are mutated, the sex cannot be reversed; 3) the differentiated ovary can be transdifferentiated into functional testis by inhibition of estrogen synthesis, and the differentiated testis can be transdifferentiated into ovary by simultaneous addition of exogenous estrogen and androgen synthase inhibitor; 4) loss of male pathway genes amhy, dmrt1, gsdf causes SR with upregulation of cyp19a1a in XY tilapia. Disruption of estrogen synthesis rescues the male to female SR of amhy and gsdf but not dmrt1 mutants; 5) mutation of female pathway genes foxl2 and sf-1 causes SR with downregulation of cyp19a1a in XX tilapia; 6) the germ cell SR of foxl3 mutants fails to be rescued by estrogen treatment, indicating that estrogen determines female germ cell fate through foxl3. This review also summarized the effects of deficiency of other steroid hormones, such as androgen, DHP and cortisol, on fish reproduction. Overall, these studies demonstrate that tilapia is an excellent animal model for studying reproductive endocrinology of fish.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
2
|
Mukherjee D, Ghosal I, Dhar D, Das S, Chakraborty SB. Bioactive compounds from four Indian medicinal plants have different potency to induce sex reversal in Nile tilapia: A chromatographic, molecular docking and in silico analysis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116263. [PMID: 36781056 DOI: 10.1016/j.jep.2023.116263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal plants such as Basella alba (Family: Basellaceae), Tribulus terrestris (Family: Zygophyllaceae), Asparagus racemosus (Family: Asparagaceae) and Mucuna pruriens (Family: Fabaceae) are mentioned in Indian traditional system of medicine Ayurveda to possess androgenic activity and increase male virility. The plants have been reported to improve testosterone level and sperm production in experimental male rodents as well. AIM OF THE STUDY Male Nile tilapias grow more quickly than females and hence are preferred for monosex Nile tilapia culture. Ethanol extracts of B. alba leaves (EB) and T. terrestris seeds (ET), and methanol extract of A. racemosus roots (MA) and M. pruriens seeds (MM) were found effective to induce masculinization in Nile tilapia. The present study intends to evaluate the anti-aromatase activity of EB, ET, MA and MM, to identify the androgenic bioactive compounds in the extracts, and to determine their pharmacokinetics. The study may validate the use of those plant extracts and their major bioactive phytoconstituents in the field of aquaculture and pharmaceuticals. MATERIALS AND METHODS The four crude plant extracts were first fractioned through column and thin layer chromatography (TLC). Three days old Nile tilapia juveniles (mean weight 0.025 ± 0.009g; mean length 12.50 ± 0.12 mm; n = 50 fish/replicate, 3 replicates/treatment) were then fed diets fortified with the obtained fractions for 30 days. After 30 days, fish were sacrificed and gonad aromatase mRNA expression, and 11-ketotestosterone (11-KT) and estradiol (E2) levels were measured. Fractions yielding the highest male percentage for each plant were subject to gas chromatography-mass spectrometry (GC-MS) analysis. The in silico docking and SwissADME study were conducted with the components showing higher peak percentage in chromatogram. RESULTS After column chromatography and TLC analysis, EB, ET, MM and MA yielded 6 (EB1 - EB6), 8 (ET1- ET8), 14 (MM1-MM14) and 5 (MA1- MA5) fractions, respectively. Fish fed EB2, ET2, MA2 and MM13 fraction fortified diets showed significantly (p < 0.05) higher male percentage (92.32%-98.39%) compared to other treatment groups. EB2, ET2, MA2 and MM13 fed fish showed significantly (p < 0.05) higher 11-KT level compared to control male (+247.52 - +397.76%) and lower E2 level compared to control female (-95.92% to -90.65%). Aromatase mRNA expression was significantly (p < 0.05) down-regulated by all these four fractions (-1.32 to -5.65 fold) with respect to control female. GC-MS analysis revealed the presence of 1-Octadecene (OD) in EB2, Phenol, 2,4-bis(1,1-dimethylethyl) (PD) in ET2 and MA2, 9,12-Octadecadienoic acid (Z,Z)- (ODDA) in MM13. In silico molecular docking indicated that PD is more effective than ODDA and OD to inhibit aromatase. In addition, PD showed better pharmacokinetics and more drug-likeness compared to OD and ODDA in SwissADME analysis. CONCLUSION The present results indicate that ET and MA are more potent to produce all-male tilapia by means of aromatase inhibition. PD can be an ideal compound to achieve masculinization in Nile tilapia through dietary administration, but further investigation is required.
Collapse
Affiliation(s)
- Debosree Mukherjee
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata, India.
| | - Indranath Ghosal
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata, India; Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen Normandie, Caen, France.
| | - Dipanjana Dhar
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan.
| | - Souvik Das
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata, India.
| | - Suman Bhusan Chakraborty
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata, India.
| |
Collapse
|
3
|
Qin Y, Liu H, Zhang P, Deng S, Qiu R, Yao L. Molecular cloning, expression and functional analysis of STAT2 in orange-spotted grouper, Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1245-1254. [PMID: 36206998 DOI: 10.1016/j.fsi.2022.09.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Signal transducer and activator of transcription 2 (STAT2) is an important molecule involved in the type I interferon signaling pathway. To better understand the functions of STAT2 in fish immune response, a STAT2 gene from orange-spotted grouper (Epinephelus coioides) (EcSTAT2) was cloned and characterized in this study. EcSTAT2 encoded a 802-amino acid peptide which shared 99.5% and 91.5% identity with giant grouper (Epinephelus lanceolatus) and leopard coral grouper (Plectropomus leopardus), respectively. Amino acid alignment analysis showed that EcSTAT2 contained five conserved domains, including N-terminal protein interaction domain, coiled coil domain (CCD), DNA binding domain (DBD), Src-homology 2 (SH2) domain, and C-terminal transactivation domain (TAD). Phylogenetic analysis indicated that EcSTAT2 clustered into fish STAT2 group and showed the nearest relationship to giant grouper STAT2. In healthy grouper, EcSTAT2 was distributed in all tissues tested, and the expression of EcSTAT2 was predominantly detected in spleen, kidney and gill. In vitro, EcSTAT2 expression was significantly increased in response to polyinosinic:polycytidylic acid [poly (I:C)] stimulation and red-spotted grouper nervous necrosis virus (RGNNV) infection. Subcellular localization showed that EcSTAT2 was located in the cytoplasm in a punctate manner. EcSTAT2 overexpression significantly inhibited RGNNV replication, as evidenced by the decreased severity of cytopathic effect (CPE) and the reduced expression levels of viral genes and protein. Consistently, knockdown of EcSTAT2 using small interfering RNA (siRNA) promoted RGNNV replication. Furthermore, EcSTAT2 overexpression increased both interferon (IFN) and interferon stimulated genes (ISGs) expression. In addition, EcSTAT2 knockdown decreased the transcription levels of IFN and ISGs. Together, our data demonstrated that EcSTAT2 exerted antiviral activity against RGNNV through up-regulation of host interferon response.
Collapse
Affiliation(s)
- Yinghui Qin
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang, 473061, China
| | - Haixiang Liu
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang, 473061, China
| | - Peipei Zhang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Si Deng
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang, 473061, China
| | - Reng Qiu
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang, 473061, China
| | - Lunguang Yao
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang, 473061, China.
| |
Collapse
|
4
|
Control of gonadal maturation and sex in grouper. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Soyano K, Amagai T, Yamaguchi T, Mushirobira Y, Xu WG, Phạm NT, Murata R. Endocrine Regulation of Maturation and Sex Change in Groupers. Cells 2022; 11:cells11050825. [PMID: 35269447 PMCID: PMC8909327 DOI: 10.3390/cells11050825] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/13/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Groupers are widely distributed in tropical and subtropical areas worldwide, are key species to coastal ecosystems, and valuable fishery targets. To facilitate artificial seed production technology for grouper aquaculture, the mechanisms of reproduction and gonad development are being elucidated for these important species. In addition, since groupers are sexually dimorphic fish with female-first maturity (protogynous hermaphrodite fish), research is being conducted to clarify the ecological mechanism of sex change and their reproductive physiology, focusing on the endocrine system. In recent years, research on groupers has also been conducted to understand changes in the coastal environment caused by ocean warming and man-made chemicals. However, due to difficulties associated with conducting research using wild populations for breeding experiments, knowledge of the physiology and ecology of these fish is lacking, especially their reproductive physiology. In this review, we present information on the reproductive physiology and endocrinology of groupers obtained to date, together with the characteristics of their life history.
Collapse
Affiliation(s)
- Kiyoshi Soyano
- Institute for East China Sea Research, Organization for Marine Sciences and Technology, Nagasaki University, 1551-7 Taira-machi, Nagasaki 851-2213, Japan; (T.A.); (Y.M.); (N.T.P.); (R.M.)
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan;
- Correspondence: ; Tel.: +81-95-850-7701; Fax: +81-95-840-1881
| | - Takafumi Amagai
- Institute for East China Sea Research, Organization for Marine Sciences and Technology, Nagasaki University, 1551-7 Taira-machi, Nagasaki 851-2213, Japan; (T.A.); (Y.M.); (N.T.P.); (R.M.)
| | - Tomofumi Yamaguchi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan;
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 148 Fukaiota, Ishigaki, Okinawa 907-0451, Japan
| | - Yuji Mushirobira
- Institute for East China Sea Research, Organization for Marine Sciences and Technology, Nagasaki University, 1551-7 Taira-machi, Nagasaki 851-2213, Japan; (T.A.); (Y.M.); (N.T.P.); (R.M.)
| | - Wen-Gang Xu
- School of Ocean, Yantai University, 30 Qingquan RD, Laishan District, Yantai 264005, China;
| | - Nhan Thành Phạm
- Institute for East China Sea Research, Organization for Marine Sciences and Technology, Nagasaki University, 1551-7 Taira-machi, Nagasaki 851-2213, Japan; (T.A.); (Y.M.); (N.T.P.); (R.M.)
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan;
- College of Aquaculture and Fisheries, Can Tho University, 3/2 Street, Xuan Khanh Ward, Ninh Kieu District, Can Tho City 900000, Vietnam
| | - Ryosuke Murata
- Institute for East China Sea Research, Organization for Marine Sciences and Technology, Nagasaki University, 1551-7 Taira-machi, Nagasaki 851-2213, Japan; (T.A.); (Y.M.); (N.T.P.); (R.M.)
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan;
| |
Collapse
|
6
|
Sex Determination and Differentiation in Teleost: Roles of Genetics, Environment, and Brain. BIOLOGY 2021; 10:biology10100973. [PMID: 34681072 PMCID: PMC8533387 DOI: 10.3390/biology10100973] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/19/2023]
Abstract
The fish reproductive system is a complex biological system. Nonetheless, reproductive organ development is conserved, which starts with sex determination and then sex differentiation. The sex of a teleost is determined and differentiated from bipotential primordium by genetics, environmental factors, or both. These two processes are species-specific. There are several prominent genes and environmental factors involved during sex determination and differentiation. At the cellular level, most of the sex-determining genes suppress the female pathway. For environmental factors, there are temperature, density, hypoxia, pH, and social interaction. Once the sexual fate is determined, sex differentiation takes over the gonadal developmental process. Environmental factors involve activation and suppression of various male and female pathways depending on the sexual fate. Alongside these factors, the role of the brain during sex determination and differentiation remains elusive. Nonetheless, GnRH III knockout has promoted a male sex-biased population, which shows brain involvement during sex determination. During sex differentiation, LH and FSH might not affect the gonadal differentiation, but are required for regulating sex differentiation. This review discusses the role of prominent genes, environmental factors, and the brain in sex determination and differentiation across a few teleost species.
Collapse
|
7
|
Guo CY, Tseng PW, Hwang JS, Wu GC, Chang CF. Potential role of DNA methylation of cyp19a1a promoter during sex change in protogynous orange-spotted grouper, Epinephelus coioides. Gen Comp Endocrinol 2021; 311:113840. [PMID: 34216589 DOI: 10.1016/j.ygcen.2021.113840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 11/26/2022]
Abstract
Estrogen has a pivotal role in early female differentiation and further ovarian development. Aromatase (Cyp19a) is responsible for the conversion of androgens to estrogens in vertebrates. In teleosts, cyp19a1a and it paralog cyp19a1b are mainly expressed in the ovary and hypothalamus, respectively. Decreased plasma estrogen levels and lower cyp19a1a expression are associated with the initiation of female-to-male sex change in protogynous grouper. However, an 17α-methyltestosterone (MT)-induced the sex change from a female to a precocious male is a transient phase, and a reversible sex change (induced male-to-female) occurs after chemical withdrawal. Thus, we used this characteristic to study the epigenetic modification of cyp19a1a promoter in orange-spotted grouper. CpG-rich region with a CpG island is located on the putative regulatory region of distal cyp19a1a promoter. Our results showed that cyp19a1a promoter exhibited tissue-specific methylation status. Low methylation levels of distal cyp19a1a promoter and hypomethylated (0-40%) clones of cyp19a1a promoter region were widely observed in the ovary but not shown in testis and other tissues. In femaleness, higher numbers of hypomethylated clones of cyp19a1a promoter region were observed in the vitellogenic oocyte stage compared to the primary oocyte stage. Furthermore, decreased numbers of hypomethylated clones of cyp19a1a promoter region were associated with the maleness during the female-to-male sex change. DNA methylation inhibitor (5-aza-2'-deoxycytidine) delayed the spermatogenesis process (according to germ cell stage and numbers: by decrease of sperm and increase of spermatocytes) but did not influence the reversed sex change in MT-induced bi-directional sex change. These results suggest that epigenetic modification of cyp19a1a promoter may play an important role during the sex change in orange-spotted grouper.
Collapse
Affiliation(s)
- Chun-Yang Guo
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan; Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Peng-Wei Tseng
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
8
|
Yang M, Wang Q, Chen J, Wang Y, Zhang Y, Qin Q. Identification of candidate SNPs and genes associated with anti-RGNNV using GWAS in the red-spotted grouper, Epinephelus akaara. FISH & SHELLFISH IMMUNOLOGY 2021; 112:31-37. [PMID: 33609701 DOI: 10.1016/j.fsi.2021.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/03/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
The red-spotted grouper, Epinephelus akaara, has been cultured widely in China, and in several countries of Southeast Asia, due to its important economic value. However, in recent years the outbreak of disease caused by red-spotted grouper nervous necrosis virus (RGNNV) has caused mass mortality in the stage of the grouper lifecycle from fry to juvenile, resulting in considerable economic loss in commercial aquaculture. However, the molecular mechanism underlying anti-RGNNV infection in red-spotted grouper has never been fully understood. To identify the anti-RGNNV related markers and candidate genes, we performed a genome-wide association study (GWAS) on a natural population of 100 individuals for a full-genome screen of the red-spotted grouper. In this research, 36,311 single, high quality nucleotide polymorphisms (SNPs) were developed. Two significantly associated SNPs and three suggestively associated SNPs were identified at the genome level. From these identified SNPs, five candidate genes were annotated: EPHA7, Osbpl2, GPC5, CDH4 and Pou3f1. These genes are involved in nervous system development, retinal formation, and lipid metabolism regulation. In combination with studies on the characteristics of NNV infection, it was speculated that in the fry stage of the grouper lifecycle, the immune system is not fully developed. Therefore, improved resistance to RGNNV may come through regulating nervous system development or lipid metabolism related pathways. In addition, the genotypes of SNPs associated with disease-resistant traits were analyzed. The markers and genes obtained in this study may facilitate a marker-assisted selection for red-spotted grouper aiming at disease resistance to RGNNV.
Collapse
Affiliation(s)
- Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qing Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jinpeng Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yuxin Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yong Zhang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong, Institute of Applied Biological Resources, Guangzhou, 510260, China; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong, Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
9
|
Xie QP, Li BB, Zhan W, Liu F, Tan P, Wang X, Lou B. A Transient Hermaphroditic Stage in Early Male Gonadal Development in Little Yellow Croaker, Larimichthys polyactis. Front Endocrinol (Lausanne) 2021; 11:542942. [PMID: 33584533 PMCID: PMC7873647 DOI: 10.3389/fendo.2020.542942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/07/2020] [Indexed: 01/13/2023] Open
Abstract
Animal taxa show remarkable variability in sexual reproduction, where separate sexes, or gonochorism, is thought to have evolved from hermaphroditism for most cases. Hermaphroditism accounts for 5% in animals, and sequential hermaphroditism has been found in teleost. In this study, we characterized a novel form of the transient hermaphroditic stage in little yellow croaker (Larimichthys polyactis) during early gonadal development. The ovary and testis were indistinguishable from 7 to 40 days post-hatching (dph). Morphological and histological examinations revealed an intersex stage of male gonads between 43 and 80 dph, which consist of germ cells, somatic cells, efferent duct, and early primary oocytes (EPOs). These EPOs in testis degenerate completely by 90 dph through apoptosis yet can be rescued by exogenous 17-β-estradiol. Male germ cells enter the mitotic flourishing stage before meiosis is initiated at 180 dph, and they undergo normal spermatogenesis to produce functional sperms. This transient hermaphroditic stage is male-specific, and the ovary development appears to be normal in females. This developmental pattern is not found in the sister species Larimichthys crocea or any other closely related species. Further examinations of serum hormone levels indicate that the absence of 11-ketotestosterone and elevated levels of 17-β-estradiol delineate the male intersex gonad stage, providing mechanistic insights on this unique phenomenon. Our research is the first report on male-specific transient hermaphroditism and will advance the current understanding of fish reproductive biology. This unique gonadal development pattern can serve as a useful model for studying the evolutionary relationship between hermaphroditism and gonochorism, as well as teleost sex determination and differentiation strategies.
Collapse
Affiliation(s)
- Qing-Ping Xie
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, China
| | - Bing-Bing Li
- School of Fishery, Zhejiang Ocean University, Zhoushan, China
| | - Wei Zhan
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Feng Liu
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Peng Tan
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, China
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Alabama Agricultural Experiment Station, Auburn, AL, United States
- The HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Bao Lou
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
10
|
Wu GC, Dufour S, Chang CF. Molecular and cellular regulation on sex change in hermaphroditic fish, with a special focus on protandrous black porgy, Acanthopagrus schlegelii. Mol Cell Endocrinol 2021; 520:111069. [PMID: 33127483 DOI: 10.1016/j.mce.2020.111069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022]
Abstract
In teleost fish, sex can be determined by genetic factors, environmental factors, or both. Unlike in gonochoristic fish, in which sex is fixed in adults, sex can change in adults of hermaphroditic fish species. Thus, sex is generated during the initial gonadal differentiation stage (primary sex differentiation) and later during sexual fate alternation (secondary sex differentiation) in hermaphroditic fish species. Depending on the species, sex phase alternation can be induced by endogenous cues (such as individual age and body size) or by social cues (such as sex ratio or relative body size within the population). In general, the fluctuation in plasma estradiol-17β (E2) levels is correlated with the sexual fate alternation in hermaphroditic fish. Hormonal treatments can artificially induce sexual phase alternation in sequential hermaphroditic fishes, but in a transient and reversible manner. This is the case for the E2-induced female phase in protandrous black porgy and the methyltestosterone (MT)- or aromatase inhibitor (AI)-induced male phase in protogynous grouper. Recent reviews have focused on the different forms of sex change in fish who undergo sequential sex change, especially in terms of gene expression and the role of hormones. In this review, we use the protandrous black porgy, a nonsocial cue-influenced hermaphroditic species, with digonic gonads (ovarian and testis separated by a connective tissue), as a model to describe our findings and discuss the molecular and cellular regulation of sexual fate determination in hermaphroditic fish.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231, Paris Cedex 05, France
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| |
Collapse
|
11
|
Peter Dennis L, Nocillado J, Palma P, Amagai T, Soyano K, Elizur A. Development of a giant grouper Luteinizing Hormone (LH) Enzyme-Linked Immunosorbent Assay (ELISA) and its use towards understanding sexual development in grouper. Gen Comp Endocrinol 2020; 296:113542. [PMID: 32585213 DOI: 10.1016/j.ygcen.2020.113542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 10/23/2022]
Abstract
A recombinant giant grouper Luteinizing Hormone (LH) consisting of tethered beta and alpha subunits was produced in a yeast expression system. The giant grouper LH β-subunit was also produced and administered to rabbits for antibody development. The recombinant LH and its antibody were used to develop an Enzyme Linked Immunosorbent Assay (ELISA). This ELISA enabled detection of plasma LH levels in groupers at a sensitivity between 391 pg/ml and 200 ng/ml. Different species of grouper were assayed with this ELISA in conjunction with gonadal histology and body condition data to identify links between circulating LH levels and sexual development. We found that circulating levels of LH decreased when oocytes began to degenerate, and sex-transition gonadal characteristics were apparent when LH levels decreased further. When circulating LH levels were related to body condition (body weight/ body length), transitioning-stage fish had relatively high body condition but low plasma LH levels. This observation was similar across multiple grouper species and indicates that plasma LH levels combined with body condition may be a marker for early male identification in the protogynous hermaphrodite groupers.
Collapse
Affiliation(s)
- Lachlan Peter Dennis
- Genecology Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC 4558, Queensland, Australia
| | - Josephine Nocillado
- Genecology Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC 4558, Queensland, Australia
| | - Peter Palma
- Genecology Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC 4558, Queensland, Australia; Aquaculture Department, Southeast Asian Fisheries Development Center, Tigbauan 5021, Iloilo, Philippines
| | - Takafumi Amagai
- Institute for East China Sea Research, Nagasaki University, Bunkyomachi 852-8131, Nagasaki, Japan
| | - Kiyoshi Soyano
- Institute for East China Sea Research, Nagasaki University, Bunkyomachi 852-8131, Nagasaki, Japan
| | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC 4558, Queensland, Australia.
| |
Collapse
|
12
|
Yang M, Wang Y, Chen J, Wang Q, Wei S, Wang S, Qin Q. Functional analysis of Epinephelus coioides peroxisome proliferative-activated receptor α (PPARα): Involvement in response to viral infection. FISH & SHELLFISH IMMUNOLOGY 2020; 102:257-266. [PMID: 32315742 DOI: 10.1016/j.fsi.2020.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Peroxisome proliferative-activated receptor α (PPARα) belongs to the superfamily of nuclear receptors (NR). Studies have demonstrated that PPARα functions in energy metabolism, hepatic function, immune response, cell cycle, and apoptosis. In teleost fish, few studies have investigated the role of PPARα in the immune response. In this study, the grouper PPARα gene (EcPPARα) was investigated for its role in viral infection. The open reading frame of EcPPARα encoded a protein of 469 amino acids and contained an N-terminal domain (NTD), a DNA-binding domain (DBD), a hinge region, and a C-terminal ligand-binding domain (LBD). Phylogenetic analysis revealed that EcPPARα was most closely related to homologous genes in Sander lucioperca and Perca flavescens. Upon challenge with SGIV (Singapore grouper iridovirus) and RGNNV (Red-spotted grouper nervous necrosis virus), EcPPARα expression levels were significantly upregulated in different tissues. Subcellular localization analysis showed that the EcPPARα protein localized throughout the cytoplasm and nucleus with diffuse intracellular expression patterns, which is consistent with the localization pattern of mammalian PPARs. Based on morphological observation of cytopathic effect (CPEs), viral gene expression mRNAs, and virus titer assays, the results presented here showed that an overexpression of EcPPARα promoted SGIV production in grouper spleen cells. Overexpression of EcPPARα significantly inhibited the expression of several cytokines, including interferon-related genes (IFN-γ, ISG15, MXI, MXII, MAVS and MDA5), inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and Toll like receptor adaptors (TRAF6 and MyD88). Luciferase activity of IFN-α, IFN-γ, ISRE and NF-κB promoters was also significantly decreased in EcPPARα overexpression cells. Due to these detected interferon-related genes and inflammatory cytokines play important antiviral effect against SGIV in grouper, we speculated that the promotion effect of EcPPARα on SGIV replication may be caused by down-regulation of interferon and inflammatory response. In addition, through apoptotic body observation, capspase-3 activity detection, and flow cytometry analysis, it was found that overexpression of EcPPARα promoted SGIV-induced apoptosis in fathead minnow (FHM) cells. These data may increase an understanding of the role of PPARα in fish antiviral immune responses and apoptosis.
Collapse
Affiliation(s)
- Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yuxin Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jinpeng Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qing Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shina Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaowen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
13
|
Yu Q, Peng C, Ye Z, Tang Z, Li S, Xiao L, Liu S, Yang Y, Zhao M, Zhang Y, Lin H. An estradiol-17β/miRNA-26a/cyp19a1a regulatory feedback loop in the protogynous hermaphroditic fish, Epinephelus coioides. Mol Cell Endocrinol 2020; 504:110689. [PMID: 31891771 DOI: 10.1016/j.mce.2019.110689] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022]
Abstract
Cyp19a1a is a key gene responsible for the production of estradiol-17β (E2), the main functional estrogen and a major downstream regulator of reproduction in teleost fish. It is widely known that CYP19 gene expression, aromatase activity, and E2 production can influence gonadal differentiation and sex reversal in teleost fish, but the feedback mechanisms whereby E2 regulates cyp19a1a remain poorly understood, especially regarding the potential roles of endogenous small RNA molecules (miRNAs). Here, we identified miR-26a-5p as a regulatory factor of its predicted target gene (cyp19a1a). In vitro and in vivo studies showed that miR-26a-5p can decrease cyp19a1a expression. Furthermore, high doses of E2 act as a repressor of miR-26a-5p. This study proposes a regulatory feedback loop whereby E2 regulates cyp19a1a through miR-26a-5p, and suggests that this positive feedback is an important aspect of the control of E2 production.
Collapse
Affiliation(s)
- Qi Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266373, China; Southern Marine Science and Engineering Guangdong Laboratory (ZhanJiang), Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Cheng Peng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, China
| | - Zhifeng Ye
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Zhujing Tang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (ZhanJiang), Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ling Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (ZhanJiang), Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Su Liu
- Marine Fisheries Development Center of Guangdong Province, Huizhou, 516081, China
| | - Yuqing Yang
- Marine Fisheries Development Center of Guangdong Province, Huizhou, 516081, China
| | - Mi Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266373, China; Southern Marine Science and Engineering Guangdong Laboratory (ZhanJiang), Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Marine Fisheries Development Center of Guangdong Province, Huizhou, 516081, China.
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| |
Collapse
|
14
|
Xiao L, Guo Y, Wang D, Zhao M, Hou X, Li S, Lin H, Zhang Y. Beta-Hydroxysteroid Dehydrogenase Genes in Orange-Spotted Grouper ( Epinephelus coioides): Genome-Wide Identification and Expression Analysis During Sex Reversal. Front Genet 2020; 11:161. [PMID: 32194632 PMCID: PMC7064643 DOI: 10.3389/fgene.2020.00161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Beta-hydroxysteroid dehydrogenases (β-HSDs) are a group of steroidogenic enzymes that are involved in steroid biosynthesis and metabolism, and play a crucial role in mammalian physiology and development, including sex determination and differentiation. In the present study, a genome-wide analysis identified the numbers of β-hsd genes in orange-spotted grouper (Epinephelus coioides) (19), human (Homo sapiens) (22), mouse (Mus musculus) (24), chicken (Gallus gallus) (16), xenopus (Xenopus tropicalis) (24), coelacanth (Latimeria chalumnae) (17), spotted gar (Lepisosteus oculatus) (14), zebrafish (Danio rerio) (19), fugu (Takifugu rubripes) (19), tilapia (Oreochromis niloticus) (19), medaka (Oryzias latipes) (19), stickleback (Gasterosteus aculeatus) (17) and common carp (Cyprinus carpio) (27) samples. A comparative analysis revealed that the number of β-hsd genes in teleost fish was no greater than in tetrapods due to gene loss followed by a teleost-specific whole-genome duplication event. Based on transcriptome data from grouper brain and gonad samples during sex reversal, six β-hsd genes had relatively high expression levels in the brain, indicating that these genes may be required for neurogenesis or the maintenance of specific biological processes in the brain. In the gonad, two and eight β-hsd genes were up- and downregulated, respectively, indicating their important roles in sex reversal. Our results demonstrated that β-hsd genes may be involved in the sex reversal of grouper by regulating the synthesis and metabolism of sex steroid hormones.
Collapse
Affiliation(s)
- Ling Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yin Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dengdong Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mi Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xin Hou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Marine Fisheries Development Center of Guangdong Province, Huizhou, China
| |
Collapse
|
15
|
Wang Y, Yu Y, Wang Q, Wei S, Wang S, Qin Q, Yang M. PPAR-δ of orange-spotted grouper exerts antiviral activity against fish virus and regulates interferon signaling and inflammatory factors. FISH & SHELLFISH IMMUNOLOGY 2019; 94:38-49. [PMID: 31470135 DOI: 10.1016/j.fsi.2019.08.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Peroxisome proliferator-activated receptor δ (PPAR-δ), also called PPAR-β or PPAR-β/δ, is a member of the peroxisome proliferator-activated receptor (PPAR) family, which belongs to the nuclear steroid receptor superfamily. Activated PPARs participate in the regulation of lipid and glucose metabolism and also affect cellular proliferation, differentiation, and apoptosis, and the immune responses. To investigate the roles of PPAR-δ in Singapore grouper iridovirus (SGIV) infection, we cloned and characterized the gene encoding a PPAR-δ homologue from the orange-spotted grouper, Epinephelus coioides (EcPPAR-δ). EcPPAR-δ encodes a 514-amino-acid polypeptide, with 95.29% and 74.76% homologue to the Seriola dumerili and human proteins, respectively. EcPPAR-δ contains a typical DNA-binding domain and a ligand-binding domain. Its expression was induced by SGIV infection in vitro. A subcellular localization analysis showed that EcPPAR-δ localizes throughout the cytoplasm and nucleus, with a diffuse intracellular expression pattern. SGIV replication was reduced by EcPPAR-δ overexpression, which was evident in the reduced severity of the cytopathic effect, reduced viral gene transcription, and the reduced expression of the viral capsid protein. The replication of SGIV increased with the knockdown of EcPPAR-δ. The overexpression and silencing of EcPPAR-δ in grouper spleen cells showed that EcPPAR-δ plays a positive role in the regulation of the interferon signaling pathway, but has an anti-inflammatory effect on the inflammatory response. The anti-inflammatory effect of EcPPAR-δ may be related to its function in maintaining cell homeostasis. Because the interferon signaling pathway plays an important role in antiviral immune responses, we speculate that the activation of the interferon signaling pathway by EcPPAR-δ overexpression underlies its inhibitory effect on SGIV replication. Together, our data greatly extend our understanding of the roles of the EcPPAR-δ family members in the pathogenesis of fish viruses.
Collapse
Affiliation(s)
- Yuxin Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yepin Yu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qing Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shina Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shaowen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
16
|
MT-Feeding-Induced Impermanent Sex Reversal in the Orange-Spotted Grouper during Sex Differentiation. Int J Mol Sci 2018; 19:ijms19092828. [PMID: 30235790 PMCID: PMC6163612 DOI: 10.3390/ijms19092828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 11/24/2022] Open
Abstract
In this study, we systematically investigated the process of sex reversal induced by 17-methyltestosterone (MT) feeding and MT-feeding withdrawal at the ovary differentiation stage in orange-spotted groupers, Epinephelus coioides. Gonadal histology showed that MT feeding induced a precocious sex reversal from immature ovaries to testes, bypassing the formation of an ovarian cavity, and MT-feeding withdrawal led to an ovarian fate. In both the MT feeding and MT-feeding withdrawal phases, cytochrome P450 family 11 subfamily B (cyp11b) gene expression and serum 11-KT levels were not significantly changed, suggesting that the MT-treated fish did not generate endogenous steroids, even though active spermatogenesis occurred. Finally, by tracing doublesex-expressing and Mab-3-related transcription factor 1 (dmrt1)-expressing cells and TUNEL (terminal deoxynucleotidyl transferase 2-deoxyuridine, 5-triphosphate nick end labeling) assays, we found that the efferent duct formed first, and then, the germ cells and somatic cells of the testicular tissue were generated around the efferent duct during MT-feeding-induced precocious sex reversal. Collectively, our findings provide insights into the molecular and cellular mechanisms underlying sex reversal induced by exogenous hormones during sex differentiation in the protogynous orange-spotted grouper.
Collapse
|
17
|
|
18
|
Wu GC, Chang CF. Primary males guide the femaleness through the regulation of testicular Dmrt1 and ovarian Cyp19a1a in protandrous black porgy. Gen Comp Endocrinol 2018; 261:198-202. [PMID: 28188743 DOI: 10.1016/j.ygcen.2017.01.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 11/30/2022]
Abstract
Controlling the development of the sexes is critically important for the broodstock management in aquaculture. Sex steroids are widely used for sex control of fish. However, hermaphroditic fish have a plastic sex, and a stable sex is difficult to maintain with sex steroids. We used the black porgy (Acanthopagrus schlegelii) as a model to understand the possible mechanism of sexual fate decision. Low exogenous estradiol (E2) induced male development. In contrast, high exogenous E2 induced the regression of the testis and the development of the ovary and resulted in an unstable expression of femaleness (passive femaleness, with ovaries containing only the primary oocytes). The removal of testicular tissue by surgery resulted in the early development of vitellogenic oocytes and active femaleness. Our data also demonstrated that the male-to-female sex change is blocked by the maintenance of male function with gonadotropin-induced dmrt1 expression in the testis. Furthermore, our data also indicated that ovarian cyp19a1a expression is regulated by the testis through epigenetic modifications. Therefore, the primary male guides the femaleness in the protandrous black porgy and the transition of sexual fate from male to female is determined by the status of the testicular tissue.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Ocean, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Ocean, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
19
|
Cuco AP, Santos JI, Abrantes N, Gonçalves F, Wolinska J, Castro BB. Concentration and timing of application reveal strong fungistatic effect of tebuconazole in a Daphnia-microparasitic yeast model. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:141-163. [PMID: 29096087 DOI: 10.1016/j.aquatox.2017.08.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 05/13/2023]
Abstract
Given the importance of pollutant effects on host-parasite relationships and disease spread, the main goal of this study was to assess the influence of different exposure scenarios for the fungicide tebuconazole (concentration×timing of application) on a Daphnia-microparasitic yeast experimental system. Previous results had demonstrated that tebuconazole is able to suppress Metschnikowia bicuspidata infection at ecologically-relevant concentrations; here, we aimed to obtain an understanding of the mechanism underlying the anti-parasitic (fungicidal or fungistatic) action of tebuconazole. We exposed the Daphnia-yeast system to four nominal tebuconazole concentrations at four timings of application (according to the predicted stage of parasite development), replicated on two Daphnia genotypes, in a fully crossed experiment. An "all-or-nothing" effect was observed, with tebuconazole completely suppressing infection from 13.5μgl-1 upwards, independent of the timing of tebuconazole application. A follow-up experiment confirmed that the suppression of infection occurred within a narrow range of tebuconazole concentrations (3.65-13.5μgl-1), although a later application of the fungicide had to be compensated for by a slight increase in concentration to elicit the same anti-parasitic effect. The mechanism behind this anti-parasitic effect seems to be the inhibition of M. bicuspidata sporulation, since tebuconazole was effective in preventing ascospore production even when applied at a later time. However, this fungicide also seemed to affect the vegetative growth of the yeast, as demonstrated by the enhanced negative effect of the parasite (increasing mortality in one of the host genotypes) at a later time of application of tebuconazole, when no signs of infection were observed. Fungicide contamination can thus affect the severity and spread of disease in natural populations, as well as the inherent co-evolutionary dynamics in host-parasite systems.
Collapse
Affiliation(s)
- Ana P Cuco
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal.
| | - Joana I Santos
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Nelson Abrantes
- CESAM, University of Aveiro, Aveiro, Portugal; Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Fernando Gonçalves
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Bruno B Castro
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
20
|
Zhang J, Huang X, Ni S, Liu J, Hu Y, Yang Y, Yu Y, Zhou L, Qin Q, Huang Y. Grouper STAT1a is involved in antiviral immune response against iridovirus and nodavirus infection. FISH & SHELLFISH IMMUNOLOGY 2017; 70:351-360. [PMID: 28916355 DOI: 10.1016/j.fsi.2017.09.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/01/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
Signal Transducer and Activator of Transcription 1 (STAT1) has been demonstrated to function as a critical mediator in multiple cell processes, such as cell proliferation, cell death, and innate immune response. Interestingly, two orthologues of human STAT1, including STAT1a and STAT1b genes have been identified in different fish. However, the detailed roles of fish STAT1a in virus replication still remained largely uncertain. Here, we cloned a STAT1a from orange-spotted grouper Epinephelus coioides (EcSTAT1a) and characterized its roles during fish virus infection. EcSTAT1a encoded a 751-aa peptide which shared 97% and 93% identity to STAT1 from mandarin fish (Siniperca chuatsi) and Malabar grouper (Epinephelus malabaricus), respectively. Amino acid alignment analysis showed that EcSTAT1a contained a STAT-int domain, a STAT-alpha domain, a STAT-bind domain (DNA binding domain), a SH2 domain and a STAT1-TAZ2 bind domain. In examined tissues from healthy grouper, the expression of EcSTAT1a was predominant in intestine, gill and liver. In grouper cells, the relative expression levels of EcSTAT1a was significantly increased during red-spotted grouper nervous necrosis virus (RGNNV) or Singapore grouper iridovirus (SGIV) infection. Under fluorescence microscopy, we found that EcSTAT1a mainly localized in the cytoplasm. The ectopic expression of EcSTAT1a in vitro significantly delayed the cytopathic effect (CPE) progression evoked by RGNNV and SGIV. Further studies showed that the expression levels of viral genes, including SGIV major capsid protein (MCP), VP19, ICP-18, LITAF and RGNNV coat protein (CP), RNA-dependent RNA polymerase (RdRp) were all significantly reduced in EcSTAT1a overexpressing cells compared to the control vector transfected cells, suggested that EcSTAT1a exerted antiviral activity against iridovirus and nodavirus. Furthermore, overexpression of EcSTAT1a significantly increased the expression of interferon related cytokines or effectors and pro-inflammatory factors. Together, our results elucidated that EcSTAT1a might function as a critical antiviral factor by regulating the host interferon immune and inflammation response.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiaohong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; University of Chinese Academy of Sciences, Beijing, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Songwei Ni
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jiaxin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yin Hu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Ying Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yepin Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China
| | - Linli Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China.
| | - Youhua Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; University of Chinese Academy of Sciences, Beijing, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
21
|
Wu GC, Li HW, Tey WG, Lin CJ, Chang CF. Expression profile of amh/Amh during bi-directional sex change in the protogynous orange-spotted grouper Epinephelus coioides. PLoS One 2017; 12:e0185864. [PMID: 29016690 PMCID: PMC5634590 DOI: 10.1371/journal.pone.0185864] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/20/2017] [Indexed: 01/13/2023] Open
Abstract
Gonadal differentiation is tightly regulated by the initial sex determining gene and the downstream sex-related genes in vertebrates. However, sex change in fish can alter the sexual fate from one sex to the other. Chemical-induced maleness in the protogynous orange-spotted grouper is transient, and a reversible sex change occurs after the chemical treatment is withdrawn. We used these characteristics to study Amh signaling during bi-directional sex change in the grouper. We successfully induced the female-to-male sex change by chemical (aromatase inhibitor, AI, or methyltestosterone, MT) treatment. A dormant gonad (a low proliferation rate of early germ cells and no characteristics of both sexes) was found during the transient phase of reversible male-to-female sex change after the withdrawal of chemical administration. Our results showed that amh (anti-mullerian hormone) and its receptor amhr2 (anti-mullerian hormone receptor type 2) were significantly increased in the gonads during the process of female-to-male sex change. Amh is expressed in the Sertoli cells surrounding the type A spermatogonia in the female-to-male grouper. Male-related gene (dmrt1 and sox9) expression was immediately decreased in MT-terminated males during the reversible male-to-female sex change. However, Amh expression was found in the surrounding cells of type A spermatogonia-like cells during the transient phase of reversible male-to-female sex change. This phenomenon is correlated with the dormancy of type A spermatogonia-like cells. Thus, Amh signaling is suggested to play roles in regulating male differentiation during the female-to-male sex change and in inhibiting type-A spermatogonia-like cell proliferation/differentiation during the reversible male-to-female sex change. We suggest that Amh signaling might play dual roles during bi-directional sex change in grouper.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail: (GCW); (CFC)
| | - Hau-Wen Li
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Wei-Guan Tey
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail: (GCW); (CFC)
| |
Collapse
|
22
|
Oike A, Kodama M, Nakamura Y, Nakamura M. A Threshold Dosage of Testosterone for Female-to-Male Sex Reversal in Rana rugosa Frogs. ACTA ACUST UNITED AC 2016; 325:532-538. [PMID: 27677985 DOI: 10.1002/jez.2037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/15/2016] [Accepted: 06/15/2016] [Indexed: 11/09/2022]
Abstract
Androgens play a critical role in testicular differentiation in many species of vertebrates. While female-to-male sex reversal can be induced by testosterone (T) in some species of amphibians, the mechanism still remains largely unknown even at the histological level. In this study, we determined a threshold dosage of T to induce female-to-male sex reversal in the Japanese frog Rana (R.) rugosa. Tadpoles were allowed to metamorphose into frogs with T present in the rearing water. At 0.2 ng/mL T, female frogs formed tissue comprising a mixture of ovary and testis, the so-called ovotestis, the size of which was significantly smaller than the wild-type ovary. Histological changes occurring in the oocytes of T-treated ovaries induced oocyte degeneration in the masculinizing ovaries leading to their final disappearance. In parallel, many germ cells emerged in the cortex of the ovotestis and, later, in the medulla as well. RT-PCR analysis revealed upregulated expression of CYP17 and Dmrt1 but not 17βHSD in the ovotestis, and downregulation of Pat1a expression. Furthermore, immunohistology revealed CYP17-positive signals in the cortex of the masculinizing ovary, spreading throughout the whole area as the testis developed. These results indicate that oocytes are sensitive to T in the ovary of R. rugosa and that male-type germ cells expand in the masculinizing gonad (testis) contemporaneous with oocyte disappearance.
Collapse
Affiliation(s)
- Akira Oike
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Maho Kodama
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Yoriko Nakamura
- Department of Science Education, Faculty of Education, Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Masahisa Nakamura
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
23
|
Zheng Y, Chen J, Liu Y, Gao J, Yang Y, Zhang Y, Bing X, Gao Z, Liang H, Wang Z. Molecular mechanism of endocrine system impairment by 17α-methyltestosterone in gynogenic Pengze crucian carp offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 128:143-152. [PMID: 26938152 DOI: 10.1016/j.ecoenv.2015.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/23/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
The effects of synthetic androgen 17α-methyltestosterone (MT) on endocrine impairment were examined in crucian carp. Immature 7-month old mono-female Pengze crucian carp (Pcc) F2 offspring were exposed to 50 and 100 μg/L of MT (week 2, 4, and 8). Gonadosomatic index, hepatosomatic index and intestine weight altered considerably and oocyte development was repressed. In the treatment groups, ovarian 11-ketotestosterone decreased, whereas 17β-estradiol and testosterone increased, and ovarian aromatase activities increased at week 4. However, in the brain tissue, those values significantly decreased. Quantitative RT-PCR analysis demonstrated changes in steroid receptor genes and upregulation of steroidogenic genes (Pcc-3bhsd, Pcc-11bhsd2 Pcc-cyp11a1), while the other three steroidogenic genes (Pcc-cyp17a1, Pcc-cyp19a1a and Pcc-star) decreased from week 4 to week 8. Ovarian, hepatic Pcc-vtg B and vitellogenin concentration increased in both 50 and 100 μg/L of MT exposure groups. This study adds further information regarding the effects of androgens on the development of previtellogenic oocytes, which suggests that MT could directly target estrogen signaling pathway, or indirectly affect steroidogenesis and vitellogenesis.
Collapse
Affiliation(s)
- Yao Zheng
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China; Freshwater Fisheries Research Center, Key Open Laboratory of Ecological Environment and Resources of Inland Fisheries, Chinese Academy of Fishery Sciences, China; Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, HZAU, Wuhan 430070, China
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Key Open Laboratory of Ecological Environment and Resources of Inland Fisheries, Chinese Academy of Fishery Sciences, China; Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yan Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Jiancao Gao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Yanping Yang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China; Freshwater Fisheries Research Center, Key Open Laboratory of Ecological Environment and Resources of Inland Fisheries, Chinese Academy of Fishery Sciences, China; Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Xuwen Bing
- Freshwater Fisheries Research Center, Key Open Laboratory of Ecological Environment and Resources of Inland Fisheries, Chinese Academy of Fishery Sciences, China; Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Zexia Gao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, HZAU, Wuhan 430070, China
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
24
|
Wu GC, Tey WG, Li HW, Chang CF. Sexual Fate Reprogramming in the Steroid-Induced Bi-Directional Sex Change in the Protogynous Orange-Spotted Grouper, Epinephelus coioides. PLoS One 2015; 10:e0145438. [PMID: 26714271 PMCID: PMC4694621 DOI: 10.1371/journal.pone.0145438] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 12/03/2015] [Indexed: 11/18/2022] Open
Abstract
Androgen administration has been widely used for masculinization in fish. The mechanism of the sex change in sexual fate regulation is not clear. Oral administration or pellet implantation was applied. We orally applied an aromatase inhibitor (AI, to decrease estrogen levels) and 17α-methyltestosterone (MT, to increase androgen levels) to induce masculinization to clarify the mechanism of the sex change in the protogynous orange-spotted grouper. After 3 mo of AI/MT administration, male characteristics were observed in the female-to-male sex change fish. These male characteristics included increased plasma 11-ketotestosterone (11-KT), decreased estradiol (E2) levels, increased male-related gene (dmrt1, sox9, and cyp11b2) expression, and decreased female-related gene (figla, foxl2, and cyp19a1a) expression. However, the reduced male characteristics and male-to-female sex change occurred after AI/MT-termination in the AI- and MT-induced maleness. Furthermore, the MT-induced oocyte-depleted follicle cells (from MT-implantation) had increased proliferating activity, and the sexual fate in a portion of female gonadal soma cells was altered to male function during the female-to-male sex change. In contrast, the gonadal soma cells were not proliferative during the early process of the male-to-female sex change. Additionally, the male gonadal soma cells did not alter to female function during the male-to-female sex change in the AI/MT-terminated fish. After MT termination in the male-to-female sex-changed fish, the differentiated male germ cells showed increased proliferating activities together with dormancy and did not show characteristics of both sexes in the early germ cells. In conclusion, these findings indicate for the first time in a single species that the mechanism involved in the replacement of soma cells is different between the female-to-male and male-to-female sex change processes in grouper. These results also demonstrate that sexual fate determination (secondary sex determination) is regulated by endogenous sex steroid levels.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- * E-mail: (G-CW); (C-FC)
| | - Wei-Guan Tey
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Hau-Wen Li
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- * E-mail: (G-CW); (C-FC)
| |
Collapse
|
25
|
Matthiessen P, Weltje L. A review of the effects of azole compounds in fish and their possible involvement in masculinization of wild fish populations. Crit Rev Toxicol 2015; 45:453-67. [PMID: 25899164 DOI: 10.3109/10408444.2015.1018409] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Endocrine-mediated effects in fish populations have been widely documented. Most attention has been focused on feminization caused by estrogenic substances, but this paper reviews evidence for the effects of a group of fungicides and pharmaceuticals, the azoles, which have been reported to cause masculinization in fish. The paper considers information from laboratory studies on the effects of azole compounds on fish endocrinology, and on the potential existence of such effects in wild fish. The occurrence of some azoles in effluents and surface waters has also been briefly reviewed. Under laboratory conditions, many azoles are able to cause masculinization or defeminization in fish by inhibition of the P450 enzyme aromatase (CYP19). However, in no case where such effects have been observed in the field has a link been established with this group of substances. In most instances, other more convincing explanations have been proposed. Peak concentrations of some azoles in surface waters can approach those which, under continuous long-term exposure in the laboratory, might lead to some aromatase inhibition. However, available data on exposure and effects provide reassurance that the concentrations of azoles found in surface waters are too low to cause adverse effects in fish by interference with their endocrine system. Compared to the widespread observations of feminization and estrogenic effects in (male) fish, there are relatively few papers describing masculinization or defeminization in (female) wild fish populations, suggesting that this is quite a rare phenomenon. The significance of this result is emphasized by the fact that fish are among the best studied organisms in the environment.
Collapse
Affiliation(s)
- Peter Matthiessen
- Independent Consultant in Ecotoxicology, Old School House , Brow Edge, Backbarrow, Ulverston, Cumbria , UK
| | | |
Collapse
|
26
|
Schubert C. Switching Sexual Identity. Biol Reprod 2015. [DOI: 10.1095/biolreprod.114.126862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|