1
|
Lai T, Mao A, Yang L, Ren Y, Yang X, Song W, Luo Y. Association of maternal metabolic risk factors with offspring body mass index (BMI) trajectories in early childhood: a retrospective cohort study. BMJ Open 2025; 15:e088641. [PMID: 40082003 PMCID: PMC11907022 DOI: 10.1136/bmjopen-2024-088641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
OBJECTIVE This study aimed to identify body mass index (BMI) growth trajectories from birth to 24 months of age and examine the independent and additive effects of four maternal metabolic risk factors, namely prepregnancy BMI, the rate of gestational weight gain, gestational diabetes mellitus (GDM) and gestational hypertension, on offspring growth trajectories in childhood in China. DESIGN A retrospective cohort study was conducted. SETTING The study used Maternal and Child Health Management Database in Chengdu, China, including the mothers' antenatal care data, birth certificate records and 0-3-year-old children's healthcare data. PARTICIPANTS The study included mothers who gave birth between January 2014 and December 2014, and followed their offspring through 31 December 2016. The final analysis included 4492 mother-child pairs. PRIMARY OUTCOME MEASURES The primary outcomes were children's BMI measurements from birth to 24 months of age. We performed group-based trajectories modelling to identify children's BMI growth trajectories. Then, we applied logistic regression to examine the associations between maternal metabolic risk factors and offspring BMI trajectories in childhood. RESULTS Four distinct trajectories were identified: stable low (16.83%), stable average (40.69%), stable high (32.06%) and early increase (10.42%) trajectories. Relative to the stable average trajectory, maternal prepregnancy overweight (adjusted OR (aOR)=2.001, 95% CI 1.482-2.702, p<0.001), an excessive rate of gestational weight gain (aOR=1.496, 95% CI 1.138-1.966, p=0.004) and GDM (aOR=1.470, 95% CI 1.097-1.970, p=0.010) were positively associated with their offspring being in the early increase trajectory. In addition, the children's risk of being included in the early increase trajectory showed an increasing trend with an increasing number of adverse maternal metabolic risk factors. CONCLUSION Exposure to maternal prepregnancy overweight, excessive rate of weight gain and GDM resulted in a greater risk of offspring exhibiting an early increase trajectory for BMI. Decreasing maternal metabolic risk before and during pregnancy and monitoring childhood growth trajectories may prevent or delay the onset of childhood obesity.
Collapse
Affiliation(s)
- Ting Lai
- Department of Healthcare, Chengdu Women's and Children's Central Hospital, Chengdu, Sichuan, China
| | - Ang Mao
- Department of Medical Administration, Chengdu Women's and Children's Central Hospital, Chengdu, Sichuan, China
| | - Liu Yang
- Department of Healthcare, Chengdu Women's and Children's Central Hospital, Chengdu, Sichuan, China
| | - Yan Ren
- Department of Healthcare, Chengdu Women's and Children's Central Hospital, Chengdu, Sichuan, China
| | - Xiao Yang
- Department of Obstetrics, Chengdu Women's and Children's Central Hospital, Chengdu, Sichuan, China
| | - Wei Song
- Department of Women and Children Health, Chengdu Municipal Health Commission, Chengdu, Sichuan, China
| | - Yingjuan Luo
- Department of Healthcare, Chengdu Women's and Children's Central Hospital, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Franzago M, Borrelli P, Di Nicola M, Cavallo P, D’Adamo E, Di Tizio L, Gazzolo D, Stuppia L, Vitacolonna E. From Mother to Child: Epigenetic Signatures of Hyperglycemia and Obesity during Pregnancy. Nutrients 2024; 16:3502. [PMID: 39458497 PMCID: PMC11510513 DOI: 10.3390/nu16203502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND In utero exposure to maternal hyperglycemia and obesity can trigger detrimental effects in the newborn through epigenetic programming. We aimed to assess the DNA methylation levels in the promoters of MC4R and LPL genes from maternal blood, placenta, and buccal swab samples collected in children born to mothers with and without obesity and Gestational Diabetes Mellitus (GDM). METHODS A total of 101 Caucasian mother-infant pairs were included in this study. Sociodemographic characteristics, clinical parameters, physical activity, and adherence to the Mediterranean diet were evaluated in the third trimester of pregnancy. Clinical parameters of the newborns were recorded at birth. RESULTS A negative relationship between MC4R DNA methylation on the fetal side of the GDM placenta and birth weight (r = -0.630, p = 0.011) of newborns was found. MC4R DNA methylation level was lower in newborns of GDM women (CpG1: 2.8% ± 3.0%, CpG2: 3.8% ± 3.3%) as compared to those of mothers without GDM (CpG1: 6.9% ± 6.2%, CpG2: 6.8% ± 5.6%; p < 0.001 and p = 0.0033, respectively), and it was negatively correlated with weight (r = -0.229; p = 0.035), head circumference (r = -0.236; p = 0.030), and length (r = -0.240; p = 0.027) at birth. LPL DNA methylation was higher on the fetal side of the placenta in obese patients as compared to normal-weight patients (66.0% ± 14.4% vs. 55.7% ± 15.2%, p = 0.037), and it was associated with maternal total cholesterol (r = 0.770, p = 0.015) and LDL-c (r = 0.783, p = 0.012). CONCLUSIONS These results support the role of maternal MC4R and LPL methylation in fetal programming and in the future metabolic health of children.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine, and Health Sciences, “G. D’Annunzio” University, Via dei Vestini, Chieti-Pescara, 66100 Chieti, Italy; (M.F.); (D.G.)
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
| | - Paola Borrelli
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy; (P.B.); (M.D.N.)
| | - Marta Di Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy; (P.B.); (M.D.N.)
| | - Pierluigi Cavallo
- Department of Medicine and Aging, School of Medicine, and Health Sciences, “G. D’Annunzio” University, Via dei Vestini, Chieti-Pescara, 66100 Chieti, Italy; (M.F.); (D.G.)
| | - Ebe D’Adamo
- Neonatal Intensive Care Unit, “G. D’Annunzio” University, 66100 Chieti, Italy;
| | - Luciano Di Tizio
- Department of Obstetrics and Gynaecology, SS. Annunziata Hospital, “G. D’Annunzio” University, 66100 Chieti, Italy;
| | - Diego Gazzolo
- Department of Medicine and Aging, School of Medicine, and Health Sciences, “G. D’Annunzio” University, Via dei Vestini, Chieti-Pescara, 66100 Chieti, Italy; (M.F.); (D.G.)
- Neonatal Intensive Care Unit, “G. D’Annunzio” University, 66100 Chieti, Italy;
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine, and Health Sciences, “G. D’Annunzio” University, Via dei Vestini, Chieti-Pescara, 66100 Chieti, Italy; (M.F.); (D.G.)
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
| |
Collapse
|
3
|
Xie JK, Wang Q, Chen YH, Tang SB, Sun HY, Ge ZJ, Zhang CL. Effects of multisuperovulation on the transcription and genomic methylation of oocytes and offspring. Clin Epigenetics 2024; 16:135. [PMID: 39342274 PMCID: PMC11439255 DOI: 10.1186/s13148-024-01746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Controlled ovarian stimulation is a common skill of assisted reproductive technologies (ARTs). In the clinic, some females would undergo more than one controlled ovarian stimulation cycle. However, few studies have focused on the influence of multi-superovulation on oocytes and offspring. RESULTS Here, we found that multi-superovulation disrupted the transcriptome of oocytes and that the differentially expressed genes (DEGs) were associated mainly with metabolism and fertilization. The disruption of mRNA degradation via poly (A) size and metabolism might be a reason for the reduced oocyte maturation rate induced by repeated superovulation. Multi-superovulation results in hypo-genomic methylation in oocytes. However, there was an increase in the methylation level of CGIs. The DMRs are not randomly distributed in genome elements. Genes with differentially methylated regions (DMRs) in promoters are enriched in metabolic pathways. With increasing of superovulation cycles, the glucose and insulin tolerance of offspring is also disturbed. CONCLUSIONS These results suggest that multi-superovulation has adverse effects on oocyte quality and offspring health.
Collapse
Affiliation(s)
- Juan-Ke Xie
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Qian Wang
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Yuan-Hui Chen
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Shou-Bin Tang
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement, in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hao-Yue Sun
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Zhao-Jia Ge
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement, in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Cui-Lian Zhang
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
4
|
Liang J, Huang F, Song Z, Tang R, Zhang P, Chen R. Impact of NAD+ metabolism on ovarian aging. Immun Ageing 2023; 20:70. [PMID: 38041117 PMCID: PMC10693113 DOI: 10.1186/s12979-023-00398-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+), a crucial coenzyme in cellular redox reactions, is closely associated with age-related functional degeneration and metabolic diseases. NAD exerts direct and indirect influences on many crucial cellular functions, including metabolic pathways, DNA repair, chromatin remodeling, cellular senescence, and immune cell functionality. These cellular processes and functions are essential for maintaining tissue and metabolic homeostasis, as well as healthy aging. Causality has been elucidated between a decline in NAD levels and multiple age-related diseases, which has been confirmed by various strategies aimed at increasing NAD levels in the preclinical setting. Ovarian aging is recognized as a natural process characterized by a decline in follicle number and function, resulting in decreased estrogen production and menopause. In this regard, it is necessary to address the many factors involved in this complicated procedure, which could improve fertility in women of advanced maternal age. Concerning the decrease in NAD+ levels as ovarian aging progresses, promising and exciting results are presented for strategies using NAD+ precursors to promote NAD+ biosynthesis, which could substantially improve oocyte quality and alleviate ovarian aging. Hence, to acquire further insights into NAD+ metabolism and biology, this review aims to probe the factors affecting ovarian aging, the characteristics of NAD+ precursors, and the current research status of NAD+ supplementation in ovarian aging. Specifically, by gaining a comprehensive understanding of these aspects, we are optimistic about the prominent progress that will be made in both research and therapy related to ovarian aging.
Collapse
Affiliation(s)
- Jinghui Liang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, 100730, China
| | - Feiling Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, 100730, China
| | - Zhaoqi Song
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian, China
| | - Ruiyi Tang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, 100730, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, 100730, China.
| |
Collapse
|
5
|
Luo M, Yi Y, Huang S, Dai S, Xie L, Liu K, Zhang S, Jiang T, Wang T, Yao B, Wang H, Xu D. Gestational dexamethasone exposure impacts hippocampal excitatory synaptic transmission and learning and memory function with transgenerational effects. Acta Pharm Sin B 2023; 13:3708-3727. [PMID: 37719378 PMCID: PMC10501875 DOI: 10.1016/j.apsb.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/20/2023] [Accepted: 05/06/2023] [Indexed: 09/19/2023] Open
Abstract
The formation of learning and memory is regulated by synaptic plasticity in hippocampal neurons. Here we explored how gestational exposure to dexamethasone, a synthetic glucocorticoid commonly used in clinical practice, has lasting effects on offspring's learning and memory. Adult offspring rats of prenatal dexamethasone exposure (PDE) displayed significant impairments in novelty recognition and spatial learning memory, with some phenotypes maintained transgenerationally. PDE impaired synaptic transmission of hippocampal excitatory neurons in offspring of F1 to F3 generations, and abnormalities of neurotransmitters and receptors would impair synaptic plasticity and lead to impaired learning and memory, but these changes failed to carry over to offspring of F5 and F7 generations. Mechanistically, altered hippocampal miR-133a-3p-SIRT1-CDK5-NR2B signaling axis in PDE multigeneration caused inhibition of excitatory synaptic transmission, which might be related to oocyte-specific high expression and transmission of miR-133a-3p. Together, PDE affects hippocampal excitatory synaptic transmission, with lasting consequences across generations, and CDK5 in offspring's peripheral blood might be used as an early-warning marker for fetal-originated learning and memory impairment.
Collapse
Affiliation(s)
- Mingcui Luo
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yiwen Yi
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Songqiang Huang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Shiyun Dai
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Lulu Xie
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430071, China
| | - Kexin Liu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shuai Zhang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Tao Jiang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Tingting Wang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Baozhen Yao
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Dan Xu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
6
|
Gong X, Dai S, Wang T, Zhang J, Fan G, Luo M, Yi Y, Wang H, Lu D, Xu D. MiR-17-5p/FOXL2/CDKN1B signal programming in oocytes mediates transgenerational inheritance of diminished ovarian reserve in female offspring rats induced by prenatal dexamethasone exposure. Cell Biol Toxicol 2023; 39:867-883. [PMID: 34537908 DOI: 10.1007/s10565-021-09645-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Prenatal dexamethasone exposure (PDE) induces long-term reproductive toxicity in female offspring. We sought to explore the transgenerational inheritance effects of PDE on diminished ovarian reserve (DOR) in female offspring. Dexamethasone was subcutaneously administered into pregnant Wistar rats from gestational day 9 (GD9) to GD20 to obtain fetal and adult offspring of the F1 generation. F1 adult females were mated with normal males to produce the F2 generation, and the F3 generation. The findings showed decrease of serum levels of anti-Müllerian hormone (AMH) that in the PDE group, decrease in number of primordial follicles, and upregulation of miR-17-5p expression before birth in F1 offspring rats. Expression of cyclin-dependent kinase inhibitor 1B (CDKN1B) and Forkhead Box L2 (FOXL2) were downregulated, and binding of FOXL2 and the CDKN1B promoter region was decreased in PDE groups of the F1, F2, and F3 generations. In vitro intervention experiments showed that glucocorticoid receptor (GR) was involved in activity of dexamethasone. These findings indicate that PDE can activate GR in fetal rat ovary and induce DOR of offspring, and its heritability is mediated by the cascade effect of miR-17-5p/FOXL2/CDKN1B. Increase in miR-17-5p expression in oocytes is the potential molecular basis for transgenerational inheritance of PDE effects.
Collapse
Affiliation(s)
- Xiaohan Gong
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Shiyun Dai
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Tingting Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Jinzhi Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Guanlan Fan
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Mingcui Luo
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Yiwen Yi
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Dianxiang Lu
- Research Center for high altitude medicine, Qinghai University, Qinghai, 810001, China.
| | - Dan Xu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
7
|
Hampl SE, Hassink SG, Skinner AC, Armstrong SC, Barlow SE, Bolling CF, Avila Edwards KC, Eneli I, Hamre R, Joseph MM, Lunsford D, Mendonca E, Michalsky MP, Mirza N, Ochoa ER, Sharifi M, Staiano AE, Weedn AE, Flinn SK, Lindros J, Okechukwu K. Clinical Practice Guideline for the Evaluation and Treatment of Children and Adolescents With Obesity. Pediatrics 2023; 151:e2022060640. [PMID: 36622135 DOI: 10.1542/peds.2022-060640] [Citation(s) in RCA: 417] [Impact Index Per Article: 208.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/10/2023] Open
|
8
|
Leroy JLMR, Meulders B, Moorkens K, Xhonneux I, Slootmans J, De Keersmaeker L, Smits A, Bogado Pascottini O, Marei WFA. Maternal metabolic health and fertility: we should not only care about but also for the oocyte! Reprod Fertil Dev 2022; 35:1-18. [PMID: 36592978 DOI: 10.1071/rd22204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metabolic disorders due to obesity and unhealthy lifestyle directly alter the oocyte's microenvironment and impact oocyte quality. Oxidative stress and mitochondrial dysfunction play key roles in the pathogenesis. Acute effects on the fully grown oocytes are evident, but early follicular stages are also sensitive to metabolic stress leading to a long-term impact on follicular cells and oocytes. Improving the preconception health is therefore of capital importance but research in animal models has demonstrated that oocyte quality is not fully recovered. In the in vitro fertilisation clinic, maternal metabolic disorders are linked with disappointing assisted reproductive technology results. Embryos derived from metabolically compromised oocytes exhibit persistently high intracellular stress levels due to weak cellular homeostatic mechanisms. The assisted reproductive technology procedures themselves form an extra burden for these defective embryos. Minimising cellular stress during culture using mitochondrial-targeted therapy could rescue compromised embryos in a bovine model. However, translating such applications to human in vitro fertilisation clinics is not simple. It is crucial to consider the sensitive epigenetic programming during early development. Research in humans and relevant animal models should result in preconception care interventions and in vitro strategies not only aiming at improving fertility but also safeguarding offspring health.
Collapse
Affiliation(s)
- J L M R Leroy
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - B Meulders
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - K Moorkens
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - I Xhonneux
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - J Slootmans
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - L De Keersmaeker
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - A Smits
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - O Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - W F A Marei
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
9
|
Keskin M, Thiruvengadam M. Phytochemicals from Natural Products for the Prevention and Treatment of Non-communicable Diseases. Curr Top Med Chem 2022; 22:1907-1908. [PMID: 36372927 DOI: 10.2174/156802662223221019141622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Merve Keskin
- Vocational School of Health Services Bilecik Seyh Edebali University Bilecik, Turkey
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
10
|
Li XY, Pan JX, Zhu H, Ding GL, Huang HF. Environmental epigenetic interaction of gametes and early embryos. Biol Reprod 2022; 107:196-204. [PMID: 35323884 DOI: 10.1093/biolre/ioac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/14/2022] Open
Abstract
In recent years, the developmental origins of diseases have been increasingly recognized and accepted. As such, it has been suggested that most adulthood chronic diseases such as diabetes, obesity, cardiovascular disease, and even tumors may develop at a very early stage. In addition to intrauterine environmental exposure, germ cells carry an important inheritance role as the primary link between the two generations. Adverse external influences during differentiation and development can cause damage to germ cells, which may then increase the risk of chronic disease development later in life. Here, we further elucidate and clarify the concept of gamete and embryo origins of adult diseases by focusing on the environmental insults on germ cells, from differentiation to maturation and fertilization.
Collapse
Affiliation(s)
- Xin-Yuan Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences
| | - Jie-Xue Pan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences
| | - Hong Zhu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences
| | - Guo-Lian Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - He-Feng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| |
Collapse
|
11
|
Han H, Xiao H, Wu Z, Liu L, Chen M, Gu H, Wang H, Chen L. The miR-98-3p/JAG1/Notch1 axis mediates the multigenerational inheritance of osteopenia caused by maternal dexamethasone exposure in female rat offspring. Exp Mol Med 2022; 54:298-308. [PMID: 35332257 PMCID: PMC8979986 DOI: 10.1038/s12276-022-00743-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/28/2021] [Accepted: 12/23/2021] [Indexed: 11/09/2022] Open
Abstract
As a synthetic glucocorticoid, dexamethasone is widely used to treat potential premature delivery and related diseases. Our previous studies have shown that prenatal dexamethasone exposure (PDE) can cause bone dysplasia and susceptibility to osteoporosis in female rat offspring. However, whether the effect of PDE on bone development can be extended to the third generation (F3 generation) and its multigenerational mechanism of inheritance have not been reported. In this study, we found that PDE delayed fetal bone development and reduced adult bone mass in female rat offspring of the F1 generation, and this effect of low bone mass caused by PDE even continued to the F2 and F3 generations. Furthermore, we found that PDE increases the expression of miR-98-3p but decreases JAG1/Notch1 signaling in the bone tissue of female fetal rats. Moreover, the expression changes of miR-98-3p/JAG1/Notch1 caused by PDE continued from the F1 to F3 adult offspring. Furthermore, the expression levels of miR-98-3p in oocytes of the F1 and F2 generations were increased. We also confirmed that dexamethasone upregulates the expression of miR-98-3p in vitro and shows targeted inhibition of JAG1/Notch1 signaling, leading to poor osteogenic differentiation of bone marrow mesenchymal stem cells. In conclusion, maternal dexamethasone exposure caused low bone mass in female rat offspring with a multigenerational inheritance effect, the mechanism of which is related to the inhibition of JAG1/Notch1 signaling caused by the continuous upregulation of miR-98-3p expression in bone tissues transmitted by F2 and F3 oocytes.
Collapse
Affiliation(s)
- Hui Han
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hao Xiao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Zhixin Wu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Liang Liu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ming Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hanwen Gu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.,Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
12
|
Breastfeeding and growth trajectory from birth to 5 years among children exposed and unexposed to gestational diabetes mellitus in utero. J Perinatol 2021; 41:1033-1042. [PMID: 33510423 DOI: 10.1038/s41372-021-00932-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/09/2020] [Accepted: 01/15/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVES This study aims to evaluate the association between exposure to gestational diabetes mellitus and growth trajectory from birth to 5 years and to test whether breastfeeding influences this association among children exposed and unexposed to gestational diabetes. STUDY DESIGN Weight at 0, 6, 12, and 18 months and 2, 3, 4, and 5 years were retrospectively collected for 103 children exposed and 63 children unexposed to gestational diabetes. Weight-for-age z-score was calculated. Mixed linear model for repeated measurements were computed to test whether breastfeeding was associated differently with weight-for-age z-score of children exposed or unexposed to diabetes. RESULTS Children exposed to gestational diabetes had greater z-score values at 6 months and 4 and 5 years (p < 0.10). Breastfeeding duration was not associated with weight-for-age z-score trajectory in any children. CONCLUSION Children exposed to gestational diabetes had a different growth trajectory in early life, but breastfeeding duration did not seem to influence this association.
Collapse
|
13
|
miRNA320a-3p/RUNX2 signal programming mediates the transgenerational inheritance of inhibited ovarian estrogen synthesis in female offspring rats induced by prenatal dexamethasone exposure. Pharmacol Res 2021; 165:105435. [PMID: 33485996 DOI: 10.1016/j.phrs.2021.105435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 11/22/2022]
Abstract
Our previous studies found that prenatal dexamethasone exposure could cause abnormal follicular development in fetal rats. This study intends to observe the transgenerational inheritance effects of ovarian estrogen inhibition in offspring exposed to dexamethasone (0.2 mg/kg • d) from gestational day 9 (GD9) to GD20 in Wistar rats, and explore the intrauterine programming mechanisms. Prenatal dexamethasone exposure reduced the expression of ovarian cytochrome P450 aromatase (P450arom), the level of serum estradiol (E2) and the number of primordial follicles, while increased the number of atresia follicles before and after birth in F1 offspring rats. At the same time, the expression of miRNA320a-3p in F1 ovaries was down-regulated, and RUNX2 expression increased significantly. These changes were continued to F2 and F3 generations, accompanied by consistently down-regulated miRNA320a-3p expression in oocyte of F1 and F2 adult offspring. In vitro, fetal rat ovaries and KGN human ovarian granulosa cells were treated with dexamethasone. It showed that dexamethasone decreased miRNA320a-3p and P450arom expression, as well as E2 synthesis, and increased RUNX2 expression. All these effects could be reversed by the GR antagonist RU486. The overexpression of miRNA320a-3p in vitro could also reverse the effects of dexamethasone on RUNX2, P450arom, and E2 levels. The dual-luciferase reporter gene experiment further confirmed the direct targeted regulation of miRNA320a-3p on RUNX2. These results indicate that prenatal dexamethasone exposure induces ovarian E2 synthesis inhibition mediated by the GR/miRNA320a-3p/RUNX2/P450arom cascade signal in fetal rat ovary, which has transgenerational inheritance effects and may related to the inhibited miRNA320a-3p expression in oocyte.
Collapse
|
14
|
Ardıç C, Çolak S, Uzun K, Salı G, Aydemir T, Telatar G. Maternal Gestational Diabetes and Early Childhood Obesity: A Retrospective Cohort Study. Child Obes 2020; 16:579-585. [PMID: 33146559 DOI: 10.1089/chi.2020.0183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Recently, childhood obesity has become one of the most serious public health problems in the world. Gestational diabetes mellitus (GDM) is considered a risk factor for childhood overweight and obesity. The study aimed at investigating the relationship between maternal GDM and childhood obesity in children aged from 1 to 3 years. Methods: In this retrospective cohort study, 237 GDM and 296 non-GDM mothers and their offspring who were followed up by Family Medicine Clinics in Rize province of Turkey were assessed. World Health Organization (WHO) criteria were used for the diagnosis of maternal GDM. Crude and adjusted logistic regression models were calculated for the association of gestational diabetes and childhood overweight/obesity. Gender and age-specific percentile tables were used for the categorization of BMI. Results: Statistical analysis carried out with adjustment for potential confounders (mother's age, educational status, smoking status, BMI, gestational weight gain, children's gender, and gestational birth weight) provided results with an odds ratio of 2.99; 95% CI 1.14-7.94 and 7.77; 95% CI 1.92-31.37 for the impact of gestational diabetes on childhood overweight and obesity at 2 and 3 years of age, respectively. Conclusions: This study found evidence for maternal GDM to cause the risk of early childhood obesity. Therefore, proper intervention strategies are required for this high-risk population.
Collapse
Affiliation(s)
- Cüneyt Ardıç
- Department of Family Medicine, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Sabri Çolak
- Department of Obstetrics and Gynecology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Kerem Uzun
- Department of Family Medicine, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Görsel Salı
- Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Teslime Aydemir
- Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Gökhan Telatar
- Department of Public Health, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
15
|
Longkumer I, Devi NK, Murry B, Saraswathy KN. Differential risk factors and morbidity/mortality pattern in type 2 diabetes: A study among two Mendelian populations with different ancestry (India). Diabetes Metab Syndr 2020; 14:1769-1776. [PMID: 32942252 DOI: 10.1016/j.dsx.2020.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/29/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND AIMS Association studies of type 2 diabetes mellitus (T2DM) with risk factors have shown variable results. Moreover, population-specific comparative investigations are negligible. Therefore, the present study aimed to evaluate the association of dyslipidemia and obesity with impaired fasting glucose (IFG) and T2DM among two ethnically, geographically and culturally different populations in India. METHODS This was a cross-sectional study among Jats and Meiteis, each inhabiting a separate geographical region. A total of 2371 individuals, age ≥30 years were recruited through household survey. Obesity variables were captured using anthropometric measurements while fasting blood (2.5 mL) was drawn to measure lipid and glucose levels using enzymatic assay by spectrophotometer. Participants were categorized under normal, IFG and T2DM groups, indicative of diabetes progression stages. Statistical analysis was performed using SPSS 16.0 version. RESULTS Significant differential distribution of lipid and obesity variables among IFG and T2DM in both populations were observed. Odds ratio revealed high TC and all obesity variables except BMI posed significant increased risk for T2DM among Jats. Abnormal TG, VLDL, WC, and WHtR posed significant increased risk for T2DM among Meiteis. Age-cohort wise prevalence of T2DM showed increasing trend at ≥60 years among Jats and decreasing trend at ≥60 years among Meiteis, suggesting a potential higher morbidity in the former and mortality in latter because of T2DM. CONCLUSIONS The present study observed a differential association of risk factors for T2DM among Jats and Meiteis. This study emphasize the need to implement community-specific intervention programs for prevention, treatment and management of T2DM.
Collapse
Affiliation(s)
- Imnameren Longkumer
- Laboratory of Biochemical and Molecular Anthropology, Department of Anthropology, University of Delhi, Delhi, 110007, India
| | | | - Benrithung Murry
- Department of Anthropology, University of Delhi, Delhi, 110007, India
| | | |
Collapse
|
16
|
Xin Y, Jin Y, Ge J, Huang Z, Han L, Li C, Wang D, Zhu S, Wang Q. Involvement of SIRT3-GSK3β deacetylation pathway in the effects of maternal diabetes on oocyte meiosis. Cell Prolif 2020; 54:e12940. [PMID: 33107080 PMCID: PMC7791178 DOI: 10.1111/cpr.12940] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/16/2020] [Accepted: 10/03/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES It has been widely reported that maternal diabetes impairs oocyte quality. However, the responsible mechanisms remain to be explored. In the present study, we focused on whether SIRT3-GSK3β pathway mediates the meiotic defects in oocytes from diabetic mice. MATERIALS AND METHODS GSK3β functions in mouse oocyte meiosis were first detected by targeted siRNA knockdown. Spindle assembly and chromosome alignment were visualized by immunostaining and analysed under the confocal microscope. PCR-based site mutation of specific GSK3β lysine residues was used to confirm which lysine residues function in oocyte meiosis. siRNA knockdown coupled with cRNA overexpression was performed to detect SIRT3-GSK3β pathway functions in oocyte meiosis. Immunofluorescence was performed to detect ROS levels. T1DM mouse models were induced by a single intraperitoneal injection of streptozotocin. RESULTS In the present study, we found that specific depletion of GSK3β disrupts maturational progression and meiotic apparatus in mouse oocytes. By constructing site-specific mutants, we further revealed that acetylation state of lysine (K) 15 on GSK3β is essential for spindle assembly and chromosome alignment during oocyte meiosis. Moreover, non-acetylation-mimetic mutant GSK3β-K15R is capable of partly preventing the spindle/chromosome anomalies in oocytes with SIRT3 knockdown. A significant reduction in SIRT3 protein was detected in oocytes from diabetic mice. Of note, forced expression of GSK3β-K15R ameliorates maternal diabetes-associated meiotic defects in mouse oocytes, with no evident effects on oxidative stress. CONCLUSION Our data identify GSK3β as a cytoskeletal regulator that is required for the assembly of meiotic apparatus, and discover a beneficial effect of SIRT3-dependent GSK3β deacetylation on oocyte quality from diabetic mice.
Collapse
Affiliation(s)
- Yongan Xin
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Yifei Jin
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Zhenyue Huang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Congyang Li
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Danni Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Shuai Zhu
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Li L, Jing Y, Dong MZ, Fan LH, Li QN, Wang ZB, Hou Y, Schatten H, Zhang CL, Sun QY. Type 1 diabetes affects zona pellucida and genome methylation in oocytes and granulosa cells. Mol Cell Endocrinol 2020; 500:110627. [PMID: 31639403 DOI: 10.1016/j.mce.2019.110627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 11/17/2022]
Abstract
Diabetes affects oocyte nuclear and cytoplasmic quality. In this study, we generated a type 1 diabetes (T1D) mouse model by STZ injection to study the effects of T1D on zona pellucida and genomic DNA methylation of oocytes and granulosa cells. T1D mice showed fewer ovulated oocytes, reduced ovarian reserve, disrupted estrus cycle, and significantly ruptured zona pellucida in 2-cell in vivo embryos compared to controls. Notably, diabetic oocytes displayed thinner zona pellucida and treatment of oocytes with high concentration glucose reduced the zona pellucida thickness. Differential methylation genes in oocytes and granulosa cells were analyzed by methylation sequencing. These genes were significantly enriched in GO terms by GO analysis, and these GO terms were involved in multiple aspects of growth and development. Most notably, the abnormal methylation genes in oocytes may be related to oocyte zona pellucida changes in diabetic mice. These findings provide novel basic data for further understanding and elucidating dysgenesis and epigenetic changes in type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Jing
- Reproductive Medicine Center of People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan Province, PR China; Reproductive Medicine Center of Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, PR China
| | - Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Hua Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian-Nan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Cui-Lian Zhang
- Reproductive Medicine Center of People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan Province, PR China; Reproductive Medicine Center of Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, PR China.
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
18
|
Moore AM, Xu Z, Kolli RT, White AJ, Sandler DP, Taylor JA. Persistent epigenetic changes in adult daughters of older mothers. Epigenetics 2019; 14:467-476. [PMID: 30879397 DOI: 10.1080/15592294.2019.1595299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Women of advanced maternal age account for an increasing proportion of live births in many developed countries across the globe. Offspring of older mothers are at an increased risk for a variety of subsequent health outcomes, including outcomes that do not manifest until childhood or adulthood. The molecular underpinnings of the association between maternal aging and offspring morbidity remain elusive. However, one possible mechanism is that maternal aging produces specific alterations in the offspring's epigenome in utero, and these epigenetic alterations persist into adulthood. We conducted an epigenome-wide association study (EWAS) of the effect of a mother's age on blood DNA methylation in 2,740 adult daughters using the Illumina Infinium HumanMethylation450 array. A false discovery rate (FDR) q-value threshold of 0.05 was used to identify differentially methylated CpG sites (dmCpGs). We identified 87 dmCpGs associated with increased maternal age. The majority (84%) of the dmCpGs had lower methylation in daughters of older mothers, with an average methylation difference of 0.6% per 5-year increase in mother's age. Thirteen genomic regions contained multiple dmCpGs. Most notably, nine dmCpGs were found in the promoter region of the gene LIM homeobox 8 (LHX8), which plays a pivotal role in female fertility. Other dmCpGs were found in genes associated with metabolically active brown fat, carcinogenesis, and neurodevelopmental disorders. We conclude that maternal age is associated with persistent epigenetic changes in daughters at genes that have intriguing links to health.
Collapse
Affiliation(s)
- Aaron M Moore
- a Epidemiology Branch , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC , USA
| | - Zongli Xu
- a Epidemiology Branch , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC , USA
| | - Ramya T Kolli
- b Epigenetics & Stem Cell Biology Laboratory , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC , USA
| | - Alexandra J White
- a Epidemiology Branch , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC , USA
| | - Dale P Sandler
- a Epidemiology Branch , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC , USA
| | - Jack A Taylor
- a Epidemiology Branch , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC , USA.,b Epigenetics & Stem Cell Biology Laboratory , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC , USA
| |
Collapse
|
19
|
Hu Z, Tylavsky FA, Han JC, Kocak M, Fowke JH, Davis RL, Lewinn K, Bush NR, Zhao Q. Maternal metabolic factors during pregnancy predict early childhood growth trajectories and obesity risk: the CANDLE Study. Int J Obes (Lond) 2019; 43:1914-1922. [PMID: 30705389 PMCID: PMC6669102 DOI: 10.1038/s41366-019-0326-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/08/2018] [Accepted: 01/13/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND We investigated the individual and additive effects of three modifiable maternal metabolic factors, including pre-pregnancy overweight/obesity, gestational weight gain (GWG), and gestational diabetes mellitus (GDM), on early childhood growth trajectories and obesity risk. METHODS A total of 1425 mother-offspring dyads (953 black and 472 white) from a longitudinal birth cohort were included in this study. Latent class growth modeling was performed to identify the trajectories of body mass index (BMI) from birth to 4 years in children. Poisson regression models were used to examine the associations between the maternal metabolic risk factors and child BMI trajectories and obesity risk at 4 years. RESULTS We identified three discrete BMI trajectory groups, characterized as rising-high-BMI (12.6%), moderate-BMI (61.0%), or low-BMI (26.4%) growth. Both maternal pre-pregnancy obesity (adjusted relative risk [adjRR] = 1.96; 95% confidence interval [CI]: 1.36-2.83) and excessive GWG (adjRR = 1.71, 95% CI: 1.13-2.58) were significantly associated with the rising-high-BMI trajectory, as manifested by rapid weight gain during infancy and a stable but high BMI until 4 years. All three maternal metabolic indices were significantly associated with childhood obesity at age 4 years (adjRR for pre-pregnancy obesity = 2.24, 95% CI: 1.62-3.10; adjRR for excessive GWG = 1.46, 95% CI: 1.01-2.09; and adjRR for GDM = 2.14, 95% = 1.47-3.12). In addition, risk of rising-high BMI trajectory or obesity at age 4 years was stronger among mothers with more than one metabolic risk factor. We did not observe any difference in these associations by race. CONCLUSION Maternal pre-pregnancy obesity, excessive GWG, and GDM individually and jointly predict rapid growth and obesity at age 4 years in offspring, regardless of race. Interventions targeting maternal obesity and metabolism may prevent or slow the rate of development of childhood obesity.
Collapse
Affiliation(s)
- Zunsong Hu
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Frances A Tylavsky
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Joan C Han
- Departments of Pediatrics and Physiology, University of Tennessee Health Science Center, Memphis, TN, 38103, USA.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, 38103, USA
| | - Mehmet Kocak
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jay H Fowke
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Robert L Davis
- Department of Pediatrics, Center for Biomedical Informatics, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Kaja Lewinn
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, 94118, USA
| | - Nicole R Bush
- Departments of Pediatrics and Psychiatry, University of California San Francisco, San Francisco, CA, 94118, USA
| | - Qi Zhao
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
20
|
Wang Q, Tang SB, Song XB, Deng TF, Zhang TT, Yin S, Luo SM, Shen W, Zhang CL, Ge ZJ. High-glucose concentrations change DNA methylation levels in human IVM oocytes. Hum Reprod 2019; 33:474-481. [PMID: 29377995 DOI: 10.1093/humrep/dey006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/12/2018] [Indexed: 01/01/2023] Open
Abstract
STUDY QUESTION What are the effects of high-glucose concentrations on DNA methylation of human oocytes? SUMMARY ANSWER High-glucose concentrations altered DNA methylation levels of Peg3 and Adiponectin in human in vitro maturation oocytes. WHAT IS KNOWN ALREADY Maternal diabetes has a detrimental influence on oocyte quality including epigenetic modifications, as shown in non-human mammalian species. STUDY DESIGN, SIZE, DURATION Immature metaphase I (MI) stage oocytes of good quality were retrieved from patients who had normal ovarian potential and who underwent ICSI in the Reproductive Medicine Center of People's Hospital of Zhengzhou University. MI oocytes were cultured in medium with different glucose concentrations (control, 10 mM and 15 mM) in vitro and 48 h later, oocytes with first polar body extrusion were collected to check the DNA methylation levels. PARTICIPANTS/MATERIALS, SETTING, METHODS MI oocytes underwent in vitro maturation (IVM) at 37°C with 5% mixed gas for 48 h. Then the mature oocytes were treated with bisulfite buffer. Target sequences were amplified using nested or half-nested PCR and the DNA methylation status was tested using combined bisulfite restriction analysis (COBRA) and bisulfite sequencing (BS). MAIN RESULTS AND THE ROLE OF CHANCE High-glucose concentrations significantly decreased the first polar body extrusion rate. Compared to controls, the DNA methylation levels of Peg3 in human IVM oocytes were significantly higher in 10 mM (P < 0.001) and 15 mM (P < 0.001) concentrations of glucose. But the DNA methylation level of H19 was not affected by high-glucose concentrations in human IVM oocytes. We also found that there was a decrease in DNA methylation levels in the promoter of adiponectin in human IVM oocytes between controls and oocytes exposed to 10 mM glucose (P = 0.028). LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION It is not clear whether the alterations are beneficial or not for the embryo development and offspring health. The effects of high-glucose concentrations on the whole process of oocyte maturation are still not elucidated. Another issue is that the number of oocytes used in this study was limited. WIDER IMPLICATIONS OF THE FINDINGS This is the first time that the effects of high-glucose concentration on DNA methylation of human oocytes have been elucidated. Our result indicates that in humans, the high risk of chronic diseases in offspring from diabetic mothers may originate from abnormal DNA modifications in oocytes. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the fund of National Natural Science Foundation of China (81401198) and Doctor Foundation of Qingdao Agricultural University (1116008).The authors declare that there are no potential conflicts of interest relevant to this article.
Collapse
Affiliation(s)
- Qian Wang
- Reproductive Medicine Center of People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, P.R. China.,Reproductive Medicine Center of Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, P.R. China
| | - Shou-Bin Tang
- Department of Biology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, 700# Changcheng Road, Chengyang District, Qingdao 266109, P.R. China
| | - Xiao-Bing Song
- Reproductive Medicine Center of People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, P.R. China.,Reproductive Medicine Center of Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, P.R. China
| | - Teng-Fei Deng
- Reproductive Medicine Center of People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, P.R. China.,Reproductive Medicine Center of Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, P.R. China
| | - Ting-Ting Zhang
- Reproductive Medicine Center of People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, P.R. China.,Reproductive Medicine Center of Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, P.R. China
| | - Shen Yin
- Department of Biology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, 700# Changcheng Road, Chengyang District, Qingdao 266109, P.R. China
| | - Shi-Ming Luo
- Department of Biology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, 700# Changcheng Road, Chengyang District, Qingdao 266109, P.R. China
| | - Wei Shen
- Department of Biology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, 700# Changcheng Road, Chengyang District, Qingdao 266109, P.R. China
| | - Cui-Lian Zhang
- Reproductive Medicine Center of People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, P.R. China.,Reproductive Medicine Center of Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, P.R. China
| | - Zhao-Jia Ge
- Department of Biology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, 700# Changcheng Road, Chengyang District, Qingdao 266109, P.R. China
| |
Collapse
|
21
|
Diabetes in Pregnancy and MicroRNAs: Promises and Limitations in Their Clinical Application. Noncoding RNA 2018; 4:ncrna4040032. [PMID: 30424584 PMCID: PMC6316501 DOI: 10.3390/ncrna4040032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
Maternal diabetes is associated with an increased risk of complications for the mother and her offspring. The latter have an increased risk of foetal macrosomia, hypoglycaemia, respiratory distress syndrome, preterm delivery, malformations and mortality but also of life-long development of obesity and diabetes. Epigenetics have been proposed as an explanation for this long-term risk, and microRNAs (miRNAs) may play a role, both in short- and long-term outcomes. Gestation is associated with increasing maternal insulin resistance, as well as β-cell expansion, to account for the increased insulin needs and studies performed in pregnant rats support a role of miRNAs in this expansion. Furthermore, several miRNAs are involved in pancreatic embryonic development. On the other hand, maternal diabetes is associated with changes in miRNA both in maternal and in foetal tissues. This review aims to summarise the existing knowledge on miRNAs in gestational and pre-gestational diabetes, both as diagnostic biomarkers and as mechanistic players, in the development of gestational diabetes itself and also of short- and long-term complications for the mother and her offspring.
Collapse
|
22
|
Gaeini A, Baghaban Eslaminejad M, Choobineh S, Mousavi N, Satarifard S, Shafieineek L. Effects of exercise prior or during pregnancy in high fat diet fed mice alter bone gene expression of female offspring: An experimental study. Int J Reprod Biomed 2017; 15:93-100. [DOI: 10.29252/ijrm.15.2.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
23
|
Kadakol A, Sharma N, Kulkarni YA, Gaikwad AB. Esculetin: A phytochemical endeavor fortifying effect against non-communicable diseases. Biomed Pharmacother 2016; 84:1442-1448. [DOI: 10.1016/j.biopha.2016.10.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 02/06/2023] Open
|
24
|
Sex-specific associations of low birth weight with adult-onset diabetes and measures of glucose homeostasis: Brazilian Longitudinal Study of Adult Health. Sci Rep 2016; 6:37032. [PMID: 27845438 PMCID: PMC5109479 DOI: 10.1038/srep37032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 10/24/2016] [Indexed: 11/22/2022] Open
Abstract
Emerging evidence suggests sex differences in the early origins of adult metabolic disease, but this has been little investigated in developing countries. We investigated sex-specific associations between low birth weight (LBW; <2.5 kg) and adult-onset diabetes in 12,525 participants from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Diabetes was defined by self-reported information and laboratory measurements. In confounder-adjusted analyses, LBW (vs. 2.5–4 kg) was associated with higher prevalence of diabetes in women (Prevalence Ratio (PR) 1.54, 95% CI: 1.32–1.79), not in men (PR 1.06, 95% CI: 0.91–1.25; Pheterogeneity = 0.003). The association was stronger among participants with maternal diabetes (PR 1.60, 95% CI: 1.35–1.91), than those without (PR 1.15, 95% CI: 0.99–1.32; Pheterogeneity = 0.03). When jointly stratified by sex and maternal diabetes, the association was observed for women with (PR 1.77, 95% CI: 1.37–2.29) and without (PR 1.45, 95% CI: 1.20–1.75) maternal diabetes. In contrast, in men, LBW was associated with diabetes in participants with maternal diabetes (PR 1.45, 95% CI: 1.15–1.83), but not in those without (PR 0.92, 95% CI: 0.74–1.14). These sex-specific findings extended to continuous measures of glucose homeostasis. LBW was associated with higher diabetes prevalence in Brazilian women, and in men with maternal diabetes, suggesting sex-specific intrauterine effects on adult metabolic health.
Collapse
|
25
|
Zhang YP, Zhang YY, Duan DD. From Genome-Wide Association Study to Phenome-Wide Association Study: New Paradigms in Obesity Research. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:185-231. [PMID: 27288830 DOI: 10.1016/bs.pmbts.2016.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is a condition in which excess body fat has accumulated over an extent that increases the risk of many chronic diseases. The current clinical classification of obesity is based on measurement of body mass index (BMI), waist-hip ratio, and body fat percentage. However, these measurements do not account for the wide individual variations in fat distribution, degree of fatness or health risks, and genetic variants identified in the genome-wide association studies (GWAS). In this review, we will address this important issue with the introduction of phenome, phenomics, and phenome-wide association study (PheWAS). We will discuss the new paradigm shift from GWAS to PheWAS in obesity research. In the era of precision medicine, phenomics and PheWAS provide the required approaches to better definition and classification of obesity according to the association of obese phenome with their unique molecular makeup, lifestyle, and environmental impact.
Collapse
Affiliation(s)
- Y-P Zhang
- Pediatric Heart Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Y-Y Zhang
- Department of Cardiology, Changzhou Second People's Hospital, Changzhou, Jiangsu, China
| | - D D Duan
- Laboratory of Cardiovascular Phenomics, Center for Cardiovascular Research, Department of Pharmacology, and Center for Molecular Medicine, University of Nevada School of Medicine, Reno, NV, United States.
| |
Collapse
|
26
|
Skau JKH, Nordin ABA, Cheah JCH, Ali R, Zainal R, Aris T, Ali ZM, Matzen P, Biesma R, Aagaard-Hansen J, Hanson MA, Norris SA. A complex behavioural change intervention to reduce the risk of diabetes and prediabetes in the pre-conception period in Malaysia: study protocol for a randomised controlled trial. Trials 2016; 17:215. [PMID: 27117703 PMCID: PMC4847351 DOI: 10.1186/s13063-016-1345-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/15/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Over the past two decades, the population of Malaysia has grown rapidly and the prevalence of diabetes mellitus in Malaysia has dramatically increased, along with the frequency of obesity, hyperlipidaemia and hypertension. Early-life influences play an important role in the development of non-communicable diseases. Indeed, maternal lifestyle and conditions such as gestational diabetes mellitus or obesity can affect the risk of diabetes in the next generation. Lifestyle changes can help to prevent the development of type 2 diabetes mellitus. This is a protocol for an unblinded, community-based, randomised controlled trial in two arms to evaluate the efficacy of a complex behavioural change intervention, combining motivational interviewing provided by a community health promoter and access to a habit formation mobile application, among young Malaysian women and their spouses prior to pregnancy. METHOD/DESIGN Eligible subjects will be Malaysian women in the age group 20 to 39 years, who are nulliparous, not diagnosed with diabetes and own a smartphone. With an alpha-value of 0.05, a statistical power of 90 %, 264 subjects will need to complete the study. Subjects with their spouses will be randomised to either the intervention or the control arm for an 8-month period. The primary endpoint is change in waist circumference from baseline to end of intervention period and secondary endpoints are changes in anthropometric parameters, biochemical parameters, change in health literacy level, dietary habits, physical activity and stress level. Primary endpoint and the continuous secondary endpoints will be analysed in a linear regression model, whereas secondary endpoints on an ordinal scale will be analysed by using the chi-squared test. A multivariate linear model for the primary endpoint will be undertaken to account for potential confounders. This study has been approved by the Medical Research and Ethics Committee of the Ministry of Health Malaysia (protocol number: NMRR-14-904-21963) on 21 September 2015. DISCUSSION This study protocol describes the first community-based randomised controlled trial, to examine the efficacy of a complex intervention in improving the pre-pregnancy health of young Malaysian women and their spouses. Results from this trial will contribute to improve policy and practices regarding complex behavioural change interventions to prevent diabetes in the pre-conception period in Malaysia and other low- and middle-income country settings. TRIAL REGISTRATION This trial is registered with ClinicalTrials.gov (www.clinicaltrials.gov) on 30 November 2015, Identifier: NCT02617693 .
Collapse
Affiliation(s)
- Jutta K. H. Skau
- />MRC Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Julius C. H. Cheah
- />School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia
| | - Roslinah Ali
- />Institute of Health System Research, Ministry of Health, Selangor, Malaysia
| | - Ramli Zainal
- />Pharmaceutical Policy and Strategic Planning Division, Pharmaceutical Services Division, Ministry of Health Malaysia, Selangor, Malaysia
| | - Tahir Aris
- />Institute of Public Health, Ministry of Health, Kuala Lumpur, Malaysia
| | - Zainudin Mohd Ali
- />State Health Department Negeri Sembilan, Ministry of Health, Seremban, Malaysia
| | - Priya Matzen
- />Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
| | - Regien Biesma
- />Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
- />Department of Epidemiology and Public Health Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jens Aagaard-Hansen
- />MRC Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- />Health Promotion Research, Steno Diabetes Center, Gentofte, Denmark
| | - Mark A. Hanson
- />Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
| | - Shane A. Norris
- />MRC Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
27
|
Effects of Gestational Magnetic Resonance Imaging on Methylation Status of Leptin Promoter in the Placenta and Cord Blood. PLoS One 2016; 11:e0147371. [PMID: 26789724 PMCID: PMC4720398 DOI: 10.1371/journal.pone.0147371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/04/2016] [Indexed: 12/11/2022] Open
Abstract
Over the past two decades, magnetic resonance imaging (MRI) has been widely used for diagnosis in gestational women. Though it has several advantages, animal and human studies on the safety of MRI for the fetus remain inconclusive. Epigenetic modifications, which are crucial for cellular functioning, are prone to being affected by environmental changes. Therefore, we hypothesized that MRI during gestation may cause epigenetic modification alterations. Here, we investigated DNA methylation patterns of leptin promoter in the placenta and cord blood of women exposed to MRI during gestation. Results showed that average methylation levels of leptin in the placenta and cord blood were not affected by MRI. We also found that the methylation levels in the placenta and cord blood were not affected by different magnetic fields (1.5T and 3.0T MRI). However, if pregnant women were exposed to MRI at 15 to 20 weeks of gestation, the methylation level of leptin in cord blood was visibly lower than that of pregnant women exposed to MRI after 20-weeks of gestation (P = 0.037). mRNA expression level of leptin in cord blood was also altered, though mRNA expression of leptin in the placenta was not significantly affected. Therefore, we concluded that gestational MRI may not have major effects on the methylation level of leptin in cord blood and the placenta except for MRI applied before 20 weeks of gestation.
Collapse
|
28
|
Abstract
BACKGROUND To examine the contribution of generational epigenetic dysregulation to the inception of obesity and its adiposopathic consequences. METHODS Sources for this review included searches of PubMed, Google Scholar, and international government/major association websites using terms including adiposity, adiposopathy, epigenetics, genetics, and obesity. RESULTS Excessive energy storage in adipose tissue often results in fat cell and fat organ dysfunction, which may cause metabolic and fat mass disorders. The adverse clinical manifestations of obesity are not solely due to the amount of body fat (adiposity), but are also dependent on anatomical and functional perturbations (adiposopathy or 'sick fat'). This review describes extragenetic factors and genetic conditions that promote obesity. It also serves as an introduction to epigenetic dysregulation (i.e., abnormalities in gene expression that occur without alteration in the genetic code itself), which may contribute to obesity and adiposopathic metabolic health outcomes in offspring. Within the epigenetic paradigm, obesity is a transgenerational disease, with weight lost or gained by either parent potentially impacting generational risk for obesity and its complications. CONCLUSIONS Epigenetics may be an important contributor to the emergence of obesity and its complications as global epidemics. Although transgenerational epigenetic influences present challenges, they may also present interventional opportunities, via justifying weight management for individuals before, during, and after pregnancy and for future generations.
Collapse
Affiliation(s)
- Harold Bays
- a a Louisville Metabolic and Atherosclerosis Research Center (L-MARC) , Louisville , KY , USA
| | - Wendy Scinta
- b b Medical Weight Loss of NY , Fayetteville , NY , USA
- c c State University of New York , Upstate Department of Family Medicine , Syracuse , NY , USA
| |
Collapse
|
29
|
Schatten H, Sun QY, Prather R. The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility. Reprod Biol Endocrinol 2014; 12:111. [PMID: 25421171 PMCID: PMC4297407 DOI: 10.1186/1477-7827-12-111] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/04/2014] [Indexed: 11/12/2022] Open
Abstract
Mitochondria play vital roles in oocyte functions and they are critical indicators of oocyte quality which is important for fertilization and development into viable offspring. Quality-compromised oocytes are correlated with infertility, developmental disorders, reduced blastocyst cell number and embryo loss in which mitochondrial dysfunctions play a significant role. Increasingly, women affected by metabolic disorders such as diabetes or obesity and oocyte aging are seeking treatment in IVF clinics to overcome the effects of adverse metabolic conditions on mitochondrial functions and new treatments have become available to restore oocyte quality. The past decade has seen enormous advances in potential therapies to restore oocyte quality and includes dietary components and transfer of mitochondria from cells with mitochondrial integrity into mitochondria-impaired oocytes. New technologies have opened up new possibilities for therapeutic advances which will increase the success rates for IVF of oocytes from women with compromised oocyte quality.
Collapse
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO USA
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100080 Beijing, China
| | - Randall Prather
- National Swine Resource and Research Center, University of Missouri, 65211 Columbia, USA
- Division of Animal Science, University of Missouri, 65211 Columbia, USA
| |
Collapse
|
30
|
Abstract
It has become a current social trend for women to delay childbearing. However, the quality of oocytes from older females is compromised and the pregnancy rate of older women is lower. With the increased rate of delayed childbearing, it is becoming more and more crucial to understand the mechanisms underlying the compromised quality of oocytes from older women, including mitochondrial dysfunctions, aneuploidy and epigenetic changes. Establishing proper epigenetic modifications during oogenesis and early embryo development is an important aspect in reproduction. The reprogramming process may be influenced by external and internal factors that result in improper epigenetic changes in germ cells. Furthermore, germ cell epigenetic changes might be inherited by the next generations. In this review, we briefly summarise the effects of ageing on oocyte quality. We focus on discussing the relationship between ageing and epigenetic modifications, highlighting the epigenetic changes in oocytes from advanced-age females and in post-ovulatory aged oocytes as well as the possible underlying mechanisms.
Collapse
Affiliation(s)
- Zhao-Jia Ge
- Reproductive Medicine CenterHenan Provincial People's Hospital, #7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province 450003, People's Republic of ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of ChinaReproductive Medicine CenterPeople's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, People's Republic of ChinaDepartment of Veterinary PathobiologyUniversity of Missouri, Columbia, Missouri 65211, USA Reproductive Medicine CenterHenan Provincial People's Hospital, #7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province 450003, People's Republic of ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of ChinaReproductive Medicine CenterPeople's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, People's Republic of ChinaDepartment of Veterinary PathobiologyUniversity of Missouri, Columbia, Missouri 65211, USA Reproductive Medicine CenterHenan Provincial People's Hospital, #7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province 450003, People's Republic of ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of ChinaReproductive Medicine CenterPeople's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, People's Republic of ChinaDepartment of Veterinary PathobiologyUniversity of Missouri, Columbia, Missouri 65211, USA
| | - Heide Schatten
- Reproductive Medicine CenterHenan Provincial People's Hospital, #7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province 450003, People's Republic of ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of ChinaReproductive Medicine CenterPeople's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, People's Republic of ChinaDepartment of Veterinary PathobiologyUniversity of Missouri, Columbia, Missouri 65211, USA
| | - Cui-Lian Zhang
- Reproductive Medicine CenterHenan Provincial People's Hospital, #7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province 450003, People's Republic of ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of ChinaReproductive Medicine CenterPeople's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, People's Republic of ChinaDepartment of Veterinary PathobiologyUniversity of Missouri, Columbia, Missouri 65211, USA Reproductive Medicine CenterHenan Provincial People's Hospital, #7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province 450003, People's Republic of ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of ChinaReproductive Medicine CenterPeople's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, People's Republic of ChinaDepartment of Veterinary PathobiologyUniversity of Missouri, Columbia, Missouri 65211, USA
| | - Qing-Yuan Sun
- Reproductive Medicine CenterHenan Provincial People's Hospital, #7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province 450003, People's Republic of ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of ChinaReproductive Medicine CenterPeople's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, People's Republic of ChinaDepartment of Veterinary PathobiologyUniversity of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
31
|
Schubert C. World of Reproductive Biology. Biol Reprod 2014. [DOI: 10.1095/biolreprod.114.124339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|