1
|
Dong L, Wu H, Qi F, Xu Y, Chen W, Wang Y, Cai P. Non-coding RNA-mediated granulosa cell dysfunction during ovarian aging: From mechanisms to potential interventions. Noncoding RNA Res 2025; 12:102-115. [PMID: 40144342 PMCID: PMC11938093 DOI: 10.1016/j.ncrna.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
As the earliest aging organ in the reproductive system, the ovary has both reproductive and endocrine functions, which are closely related to overall female health. The exact pathogenesis of ovarian aging (OA) remains incompletely understood, with granulosa cells (GCs) dysfunction playing a significant role in this process. Recent advancements in research and biotechnology have highlighted the importance of non-coding RNAs (ncRNAs), including micro RNAs, long non-coding RNAs, and circular RNAs, in regulating the biological functions of GCs through gene expression modulation. This paper provides a comprehensive overview of the role of ncRNAs in various cellular functions such as apoptosis, autophagy, proliferation, and steroid synthesis in GCs, and explores the underlying regulatory mechanisms. Additionally, the therapeutic potential of ncRNAs, particularly those carried by exosomes derived from mesenchymal stem cells, in delaying OA is discussed. Understanding the regulatory mechanisms of ncRNAs in GC function and the current progress in this field is crucial for identifying effective biomarkers and therapeutic targets, ultimately aiding in the early diagnosis, prognostic assessment, and individualized treatment of OA.
Collapse
Affiliation(s)
- Li Dong
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haicui Wu
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fanghua Qi
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Xu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wen Chen
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuqi Wang
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pingping Cai
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
2
|
Kuchakzadeh F, Ai J, Ebrahimi-Barough S. Tissue engineering and stem cell-based therapeutic strategies for premature ovarian insufficiency. Regen Ther 2024; 25:10-23. [PMID: 38108045 PMCID: PMC10724490 DOI: 10.1016/j.reth.2023.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Premature ovarian insufficiency (POI), also known as premature ovarian failure (POF), is a complex endocrine disease that commonly affects women under the age of 40. It is characterized by the cessation of ovarian function before the age of 40, leading to infertility and hormonal imbalances. The currently available treatment options for POI are limited and often ineffective. Tissue engineering and stem cell-based therapeutic strategies have emerged as promising approaches to restore ovarian function and improve the quality of life for women affected by POI. This review aims to provide a comprehensive overview of the types of stem cells and biomaterials used in the treatment of POI, including their biological characteristics and mechanisms of action. It explores various sources of stem cells, including embryonic stem cells, induced pluripotent stem cells, and adult stem cells, and their potential applications in regenerating ovarian tissue. Additionally, this paper discusses the development of biomaterials and scaffolds that mimic the natural ovarian microenvironment and support the growth and maturation of ovarian cells and follicles. Furthermore, the review highlights the challenges and ethical considerations associated with tissue engineering and stem cell-based therapies for POI and proposes potential solutions to address these issues. Overall, this paper aims to provide a comprehensive overview of the current state of research in tissue engineering and stem cell-based therapeutic strategies for POI and offers insights into future directions for improving treatment outcomes in this debilitating condition.
Collapse
Affiliation(s)
- Fatemeh Kuchakzadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Porcaro G, Laganà AS, Neri I, Aragona C. The Association of High-Molecular-Weight Hyaluronic Acid (HMWHA), Alpha Lipoic Acid (ALA), Magnesium, Vitamin B6, and Vitamin D Improves Subchorionic Hematoma Resorption in Women with Threatened Miscarriage: A Pilot Clinical Study. J Clin Med 2024; 13:706. [PMID: 38337402 PMCID: PMC10856308 DOI: 10.3390/jcm13030706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Background-We evaluated whether the oral intake of high-molecular-weight hyaluronic acid (HMWHA) in association with alpha lipoic acid (ALA), magnesium, vitamin B6, and vitamin D can improve the resorption of subchorionic hematoma in cases of threatened miscarriage. Methods-In this study, we enrolled 56 pregnant women with threatened miscarriage (i.e., subchorionic hematomas, pelvic pain/uterine contractions, and/or vaginal bleeding) between the 6th and the 13th week of gestation. They were treated with vaginal progesterone (200 mg/twice a day) (control group; n = 25) or vaginal progesterone plus oral 200 mg HMWHA, 100 mg ALA, 450 mg magnesium, 2.6 mg vitamin B6, and 50 mcg vitamin D (treatment group; n = 31; DAV®-HA, LoLi Pharma srl, Rome, Italy). An ultrasound scan was performed at the first visit (T0) and after 7 days (T1) and 14 days (T2) until hematoma resorption. Results-At the ultrasound scan, the treatment group showed faster resorption of the subchorionic hematoma compared with the control group, both at T1 (control group 140 (112-180), treated group 84 (40-112), p < 0.0031), and T2 (control group: 72 (48-112), treated group: 0 (0-0), p < 0.0001). Moreover, subjective symptoms, such as vaginal bleeding, abdominal pain, and uterine contractions, showed a faster decrease in the treatment group than in the control group. Conclusions-The association may more rapidly improve the resolution of threatened miscarriage and related symptoms compared to the standard local protocol.
Collapse
Affiliation(s)
| | - Antonio Simone Laganà
- Unit of Obstetrics and Gynecology, “Paolo Giaccone” Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Isabella Neri
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | | |
Collapse
|
4
|
Luo J, Sun Z. MicroRNAs in POI, DOR and POR. Arch Gynecol Obstet 2023; 308:1419-1430. [PMID: 36840768 DOI: 10.1007/s00404-023-06922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/09/2023] [Indexed: 02/26/2023]
Abstract
PURPOSE Premature ovarian insufficiency (POI) is a clinical syndrome defined by loss of ovarian activity before the age of 40 years. However, the etiology of approximately 90% patients remains unknown. Diminished ovarian reserve (DOR) and poor ovarian response (POR) are related to POI in clinic. The main purpose of this review was to evaluate the roles of microRNAs (miRNAs) in the pathogenesis and therapeutic potential for POI, DOR and POR. METHODS A literature search was conducted using six databases (PubMed, EMBASE, Web of Science, Cochrane Library, CNKI and Wangfang Data) to obtain relevant studies. RESULTS This review enlightens expression profiles and functional studies of miRNAs in ovarian insufficiency in animal models and humans. Functional studies emphasized the role of miRNAs in steroidogenesis, granulosa cell proliferation/apoptosis, autophagy and follicular development by regulating target genes in specific pathways, such as the PI3K/AKT/mTOR, TGFβ, MAPK and Hippo pathways. Differentially expressed circulating miRNAs provided novel biomarkers for diagnosis and prediction, such as miR-22-3p and miR-21. Moreover, exosomes derived from stem cells restored ovarian function through miRNAs in chemotherapy-induced POI models. CONCLUSION Differential miRNA expression profiles in patients and animal models uncovered the underlying mechanisms and biomarkers of ovarian insufficiency. Exosomal miRNAs can restore ovarian function against chemotherapy-induced POI, which needs further investigation to develop novel preventive and therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Jiali Luo
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Medical School, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Zhaogui Sun
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Medical School, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Park HY, Kweon DK, Kim JK. Upregulation of tight junction-related proteins by hyaluronic acid in human HaCaT keratinocytes. BIOACTIVE CARBOHYDRATES AND DIETARY FIBRE 2023; 30:100374. [DOI: 10.1016/j.bcdf.2023.100374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Parente E, Colannino G, Bilotta G, Espinola MSB, Proietti S, Oliva MM, Neri I, Aragona C, Unfer V. Effect of Oral High Molecular Weight Hyaluronic Acid (HMWHA), Alpha Lipoic Acid (ALA), Magnesium, Vitamin B6 and Vitamin D Supplementation in Pregnant Women: A Retrospective Observational Pilot Study. Clin Pract 2023; 13:1123-1129. [PMID: 37736936 PMCID: PMC10514820 DOI: 10.3390/clinpract13050100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Background-Pregnancy represents a nutritional challenge, since macro- and micronutrients intake can affect mother' health and influence negative outcomes. The aim of this retrospective pilot study is to evidence whether the oral supplementation with high molecular weight hyaluronic acid (HMWHA), in association with alpha lipoic acid (ALA), magnesium, vitamin B6 and vitamin D, in pregnant women, could reduce adverse effects, such as PTB, pelvic pain, contraction and hospitalization. Methods-Data were collected from n = 200 women treated daily with oral supplements of 200 mg HMWHA, 100 mg ALA, 450 mg magnesium, 2.6 mg vitamin B6 and 50 mcg vitamin D (treatment group) and from n = 50 women taking with oral supplements of 400 mg magnesium (control group). In both groups, supplementation started from the 7th gestational week until delivery. Results-Oral treatment with HMWHA, in association with ALA, magnesium, vitamin B6 and vitamin D in pregnant women, significantly reduced adverse events, such as PTB (p < 0.01), pelvic pain and contractions (p < 0.0001), miscarriages (p < 0.05) and admission to ER/hospitalization (p < 0.0001) compared with the control group. Conclusions-Despite HMWHA having been poorly used as a food supplement in pregnant women, our results open a reassuring scenario regarding its oral administration during pregnancy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Isabella Neri
- Obstetrics Unit, Mother Infant Department, University Hospital Policlinico of Modena, 41124 Modena, Italy
| | | | - Vittorio Unfer
- UniCamillus-Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| |
Collapse
|
7
|
Yang X, Yang L. Current understanding of the genomic abnormities in premature ovarian failure: chance for early diagnosis and management. Front Med (Lausanne) 2023; 10:1194865. [PMID: 37332766 PMCID: PMC10274511 DOI: 10.3389/fmed.2023.1194865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Premature ovarian failure (POF) is an insidious cause of female infertility and a devastating condition for women. POF also has a strong familial and heterogeneous genetic background. Management of POF is complicated by the variable etiology and presentation, which are generally characterized by abnormal hormone levels, gene instability and ovarian dysgenesis. To date, abnormal regulation associated with POF has been found in a small number of genes, including autosomal and sex chromosomal genes in folliculogenesis, granulosa cells, and oocytes. Due to the complex genomic contributions, ascertaining the exact causative mechanisms has been challenging in POF, and many pathogenic genomic characteristics have yet to be elucidated. However, emerging research has provided new insights into genomic variation in POF as well as novel etiological factors, pathogenic mechanisms and therapeutic intervention approaches. Meanwhile, scattered studies of transcriptional regulation revealed that ovarian cell function also depends on specific biomarker gene expression, which can influence protein activities, thus causing POF. In this review, we summarized the latest research and issues related to the genomic basis for POF and focused on insights gained from their biological effects and pathogenic mechanisms in POF. The present integrated studies of genomic variants, gene expression and related protein abnormalities were structured to establish the role of etiological genes associated with POF. In addition, we describe the design of some ongoing clinical trials that may suggest safe, feasible and effective approaches to improve the diagnosis and therapy of POF, such as Filgrastim, goserelin, resveratrol, natural plant antitoxin, Kuntai capsule et al. Understanding the candidate genomic characteristics in POF is beneficial for the early diagnosis of POF and provides appropriate methods for prevention and drug treatment. Additional efforts to clarify the POF genetic background are necessary and are beneficial for researchers and clinicians regarding genetic counseling and clinical practice. Taken together, recent genomic explorations have shown great potential to elucidate POF management in women and are stepping from the bench to the bedside.
Collapse
Affiliation(s)
- Xu Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Szukiewicz D. Aberrant epigenetic regulation of estrogen and progesterone signaling at the level of endometrial/endometriotic tissue in the pathomechanism of endometriosis. VITAMINS AND HORMONES 2023; 122:193-235. [PMID: 36863794 DOI: 10.1016/bs.vh.2022.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endometriosis is a term referring to a condition whereby the endometrial tissue is found outside the uterine cavity. This progressive and debilitating condition affects up to 15% of women of reproductive age. Due to the fact that endometriosis cells may express estrogen receptors (ERα, Erβ, GPER) and progesterone (P4) receptors (PR-A, PR-B), their growth, cyclic proliferation, and breakdown are similar to the processes occurring in the endometrium. The underlying etiology and pathogenesis of endometriosis are still not fully explained. The retrograde transport of viable menstrual endometrial cells with the retained ability to attach within the pelvic cavity, proliferate, differentiate and invade into the surrounding tissue explains the most widely accepted implantation theory. Endometrial stromal cells (EnSCs) with clonogenic potential constitute the most abundant population of cells within endometrium that resemble the properties of mesenchymal stem cells (MSCs). Accordingly, formation of the endometriotic foci in endometriosis may be due to a kind of EnSCs dysfunction. Increasing evidence indicates the underestimated role of epigenetic mechanisms in the pathogenesis of endometriosis. Hormone-mediated epigenetic modifications of the genome in EnSCs or even MSCs were attributed an important role in the etiopathogenesis of endometriosis. The roles of excess estrogen exposure and P4 resistance were also found to be crucial in the development of epigenetic homeostasis failure. Therefore, the aim of this review was to consolidate the current knowledge regarding the epigenetic background of EnSCs and MSCs and the changed properties due to estrogen/P4 imbalances in the context of the etiopathogenesis of endometriosis.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
9
|
Wang J, Sun X, Yang Z, Li S, Wang Y, Ren R, Liu Z, Yu D. Epigenetic regulation in premature ovarian failure: A literature review. Front Physiol 2023; 13:998424. [PMID: 36685174 PMCID: PMC9846267 DOI: 10.3389/fphys.2022.998424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Premature ovarian failure (POF), or premature ovarian insufficiency (POI), is a multifactorial and heterogeneous disease characterized by amenorrhea, decreased estrogen levels and increased female gonadotropin levels. The incidence of POF is increasing annually, and POF has become one of the main causes of infertility in women of childbearing age. The etiology and pathogenesis of POF are complex and have not yet been clearly elucidated. In addition to genetic factors, an increasing number of studies have revealed that epigenetic changes play an important role in the occurrence and development of POF. However, we found that very few papers have summarized epigenetic variations in POF, and a systematic analysis of this topic is therefore necessary. In this article, by reviewing and analyzing the most relevant literature in this research field, we expound on the relationship between DNA methylation, histone modification and non-coding RNA expression and the development of POF. We also analyzed how environmental factors affect POF through epigenetic modulation. Additionally, we discuss potential epigenetic biomarkers and epigenetic treatment targets for POF. We anticipate that our paper may provide new therapeutic clues for improving ovarian function and maintaining fertility in POF patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Reproductive Medicine, Department of Prenatal Diagnosis, Changchun, China
| | | | | | - Sijie Li
- Department of Breast Surgery, Changchun, China
| | - Yufeng Wang
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Ruoxue Ren
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Ziyue Liu
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Jilin, China,*Correspondence: Dehai Yu,
| |
Collapse
|
10
|
Desai N, Spangler M, Nanavaty V, Gishto A, Brown A. New hyaluronan-based biomatrix for 3-D follicle culture yields functionally competent oocytes. Reprod Biol Endocrinol 2022; 20:148. [PMID: 36217168 PMCID: PMC9549656 DOI: 10.1186/s12958-022-01019-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Encapsulation of follicles within a biomatrix is one approach to maintaining 3-D follicle architecture during culture. Hyaluronan is one component of the natural extracellular matrix (ECM) that provides support to cells in vivo. This report describes the application of a novel tyramine-linked hyaluronan for 3-D in vitro follicle culture and the production of developmentally competent metaphase II oocytes. MATERIALS AND METHODS Enzymatically isolated mouse preantral follicles or follicle clusters (FL-C) from fresh or vitrified ovaries were encapsulated in 3 mg/ml of hyaluronan gel (HA). Follicle growth, antrum formation and meiotic maturation to metaphase II oocytes was monitored. Chromatin staining was used to assess GV oocyte progression towards meiotic competence. Functional competence of in vitro matured (IVM) oocytes was evaluated by in vitro fertilization and ability to develop to blastocyst. Modifying the HA gel by inclusion of laminin (HA-LM), mouse sarcoma extracellular matrix (Matrigel;HA-MG) or placental extracellular matrix (HA-PM) was also tested to see if this might further enhance IVM outcomes. RESULTS A total of 402 preantral follicles were cultured in HA gel. After hCG trigger, 314 oocyte-cumulus complexes ovulated from the embedded follicles. Meiotic maturation rate to the metaphase II stage was 73% (228/314). After insemination 83% (188/228) of IVM oocytes fertilized with a subsequent blastulation rate of 46% (87/188). A pilot transfer study with 3 recipient mice resulted in the birth of a single pup. HA gel supported individually isolated follicles as well ovarian tissue fragments containing clusters of 6-8 preantral follicles. Meiotic maturation was lower with FL-clusters from vitrified versus fresh ovaries (34% and 55%, respectively; p < 0.007). Modification of the HA gel with ECMs or laminin affected antrum formation and follicle retention. Maturation rates to the metaphase II stage were however not significantly different: 74% for HA gel alone as compared to HA-LM (67%), HA-MG (56%) and HA-PM (58%). CONCLUSION Hyaluronan gel is an effective and versatile extracellular matrix based biomaterial for 3-D culture of ovarian follicles. This culture model allowed ovulation of functionally competent metaphase II oocytes, capable of fertilization, genomic activation and blastulation. Future testing with human follicles that require longer in vitro culture times should be considered.
Collapse
Affiliation(s)
- Nina Desai
- grid.239578.20000 0001 0675 4725Department of OB/GYN and Women’s Health Institute, Cleveland Clinic Fertility Center, Cleveland Clinic Foundation, Beachwood, OH USA
| | - Maribeth Spangler
- grid.239578.20000 0001 0675 4725Department of OB/GYN and Women’s Health Institute, Cleveland Clinic Fertility Center, Cleveland Clinic Foundation, Beachwood, OH USA
| | - Vaani Nanavaty
- grid.239578.20000 0001 0675 4725Department of OB/GYN and Women’s Health Institute, Cleveland Clinic Fertility Center, Cleveland Clinic Foundation, Beachwood, OH USA
| | - Arsela Gishto
- grid.239578.20000 0001 0675 4725Department of OB/GYN and Women’s Health Institute, Cleveland Clinic Fertility Center, Cleveland Clinic Foundation, Beachwood, OH USA
| | - Alyssa Brown
- grid.239578.20000 0001 0675 4725Department of OB/GYN and Women’s Health Institute, Cleveland Clinic Fertility Center, Cleveland Clinic Foundation, Beachwood, OH USA
| |
Collapse
|
11
|
Wang X, Chen ZJ. A decade of discovery: the stunning progress of premature ovarian insufficiency research in China. Biol Reprod 2022; 107:27-39. [PMID: 35639630 DOI: 10.1093/biolre/ioac085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/30/2022] [Accepted: 04/13/2021] [Indexed: 11/15/2022] Open
Abstract
Premature ovarian insufficiency (POI) is one of key aspects of ovarian infertility. Due to early cession of ovarian function, POI imposes great challenges on the physiological and psychological health of women, and becomes a common cause of female infertility. In the worldwide, there has been a special outpouring of concern for about four million reproductive-aged women suffering from POI in China. Driven by advances in new technologies and efforts invested by Chinses researchers, understanding about POI has constantly been progressing over the past decade. Here, we comprehensively summarize and review the landmark development and achievements from POI studies in China spanning 2011 to 2020, which aims to provide key insights from bench to bedside.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
MicroRNAs and Progesterone Receptor Signaling in Endometriosis Pathophysiology. Cells 2022; 11:cells11071096. [PMID: 35406659 PMCID: PMC8997421 DOI: 10.3390/cells11071096] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 12/21/2022] Open
Abstract
Endometriosis is a significant disease characterized by infertility and pelvic pain in which endometrial stromal and glandular tissue grow in ectopic locations. Altered responsiveness to progesterone is a contributing factor to endometriosis pathophysiology, but the precise mechanisms are poorly understood. Progesterone resistance influences both the eutopic and ectopic (endometriotic lesion) endometrium. An inability of the eutopic endometrium to properly respond to progesterone is believed to contribute to the infertility associated with the disease, while an altered responsiveness of endometriotic lesion tissue may contribute to the survival of the ectopic tissue and associated symptoms. Women with endometriosis express altered levels of several endometrial progesterone target genes which may be due to the abnormal expression and/or function of progesterone receptors and/or chaperone proteins, as well as inflammation, genetics, and epigenetics. MiRNAs are a class of epigenetic modulators proposed to play a role in endometriosis pathophysiology, including the modulation of progesterone signaling. In this paper, we summarize the role of progesterone receptors and progesterone signaling in endometriosis pathophysiology, review miRNAs, which are over-expressed in endometriosis tissues and fluids, and follow this with a discussion on the potential regulation of key progesterone signaling components by these miRNAs, concluding with suggestions for future research endeavors in this area.
Collapse
|
13
|
Luo Y, Liang F, Wan X, Liu S, Fu L, Mo J, Meng X, Mo Z. Hyaluronic Acid Facilitates Angiogenesis of Endothelial Colony Forming Cell Combining With Mesenchymal Stem Cell via CD44/ MicroRNA-139-5p Pathway. Front Bioeng Biotechnol 2022; 10:794037. [PMID: 35350177 PMCID: PMC8957954 DOI: 10.3389/fbioe.2022.794037] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Stem cells and progenitor cells have been identified as potential new therapeutic options for severe limb ischemia to induce angiogenesis, and hyaluronic acid (HA) is commonly applied as a biomaterial in tissue engineering. However, the efficiency of HA combined with human umbilical cord blood-derived endothelial colony forming cells (ECFCs) and human umbilical-derived mesenchymal stem cells (MSCs) on angiogenesis is unclear. In the present study, we showed that HA promoted angiogenesis induced by MSCs-ECFCs in Matrigel plugs and promoted blood perfusion of murine ischemic muscles. Laser confocal microscopy revealed that human-derived cells grew into the host vasculature and formed connections, as shown by mouse-specific CD31+/human-specific CD31+ double staining. In vitro assays revealed that HA supported cell proliferation and migration, enhanced CD44 expression and reduced microRNA (miR)-139-5p expression. Further analysis revealed that miR-139-5p expression was negatively regulated by CD44 in ECFCs. Flow cytometry assays showed that HA increased CD31 positive cells proportion in MSC-ECFC and could be reversed by miR-139-5p mimics transfection. Moreover, the improvement of MSC-ECFC proliferation and migration induced by HA could be blocked by upregulation of miR-139-5p expression. In conclusion, HA facilitates angiogenesis of MSCs-ECFCs, and this positive effect be associated with activation of the CD44/miR-139-5p pathway, providing a promising strategy for improving severe limb ischemia.
Collapse
Affiliation(s)
- Yufang Luo
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Fang Liang
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Xinxing Wan
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Shengping Liu
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Lanfang Fu
- Department of Endocrinology, Haikou People’s Hospital and Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Jiake Mo
- School of Medicine, Hunan Normal University, Changsha, China
| | - Xubiao Meng
- Department of Endocrinology, Haikou People’s Hospital and Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
- *Correspondence: Xubiao Meng, ; Zhaohui Mo,
| | - Zhaohui Mo
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
- *Correspondence: Xubiao Meng, ; Zhaohui Mo,
| |
Collapse
|
14
|
Huang QY, Chen SR, Chen JM, Shi QY, Lin S. Therapeutic options for premature ovarian insufficiency: an updated review. Reprod Biol Endocrinol 2022; 20:28. [PMID: 35120535 PMCID: PMC8815154 DOI: 10.1186/s12958-022-00892-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/15/2022] [Indexed: 11/16/2022] Open
Abstract
Primary ovarian insufficiency (POI) is a rare gynecological condition. This disease causes menstrual disturbances, infertility, and various health problems. Historically, hormone replacement therapy is the first-line treatment for this disorder. Women diagnosed with POI are left with limited therapeutic options. In order to remedy this situation, a new generation of therapeutic approaches, such as in vitro activation, mitochondrial activation technique, stem cell and exosomes therapy, biomaterials strategies, and platelet-rich plasma intra-ovarian infusion, is being developed. However, these emerging therapies are yet in the experimental stage and require precise design components to accelerate their conversion into clinical treatments. Thus, each medical practitioner bears responsibility for selecting suitable therapies for individual patients. In this article, we provide a timely analysis of the therapeutic strategies that are available for POI patients and discuss the prospects of POI therapy.
Collapse
Affiliation(s)
- Qiao-Yi Huang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Shao-Rong Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Jia-Ming Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Qi-Yang Shi
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| |
Collapse
|
15
|
Szukiewicz D, Stangret A, Ruiz-Ruiz C, Olivares EG, Soriţău O, Suşman S, Szewczyk G. Estrogen- and Progesterone (P4)-Mediated Epigenetic Modifications of Endometrial Stromal Cells (EnSCs) and/or Mesenchymal Stem/Stromal Cells (MSCs) in the Etiopathogenesis of Endometriosis. Stem Cell Rev Rep 2021; 17:1174-1193. [PMID: 33411206 PMCID: PMC8316205 DOI: 10.1007/s12015-020-10115-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Endometriosis is a common chronic inflammatory condition in which endometrial tissue appears outside the uterine cavity. Because ectopic endometriosis cells express both estrogen and progesterone (P4) receptors, they grow and undergo cyclic proliferation and breakdown similar to the endometrium. This debilitating gynecological disease affects up to 15% of reproductive aged women. Despite many years of research, the etiopathogenesis of endometrial lesions remains unclear. Retrograde transport of the viable menstrual endometrial cells with retained ability for attachment within the pelvic cavity, proliferation, differentiation and subsequent invasion into the surrounding tissue constitutes the rationale for widely accepted implantation theory. Accordingly, the most abundant cells in the endometrium are endometrial stromal cells (EnSCs). These cells constitute a particular population with clonogenic activity that resembles properties of mesenchymal stem/stromal cells (MSCs). Thus, a significant role of stem cell-based dysfunction in formation of the initial endometrial lesions is suspected. There is increasing evidence that the role of epigenetic mechanisms and processes in endometriosis have been underestimated. The importance of excess estrogen exposure and P4 resistance in epigenetic homeostasis failure in the endometrial/endometriotic tissue are crucial. Epigenetic alterations regarding transcription factors of estrogen and P4 signaling pathways in MSCs are robust in endometriotic tissue. Thus, perspectives for the future may include MSCs and EnSCs as the targets of epigenetic therapies in the prevention and treatment of endometriosis. Here, we reviewed the current known changes in the epigenetic background of EnSCs and MSCs due to estrogen/P4 imbalances in the context of etiopathogenesis of endometriosis. Graphical Abstract.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of General & Experimental Pathology with Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Pawinskiego 3C, 02-106 Warsaw, Poland
| | - Aleksandra Stangret
- Department of General & Experimental Pathology with Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Pawinskiego 3C, 02-106 Warsaw, Poland
| | - Carmen Ruiz-Ruiz
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, Avenida de la Investigación, 11, 18016 Granada, Spain
| | - Enrique G. Olivares
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, Avenida de la Investigación, 11, 18016 Granada, Spain
| | - Olga Soriţău
- Laboratory of Radiotherapy, Tumor and Radiobiology, Prof. Dr. Ion Chiricuţă Oncology Institute, 34-36 Republicii St, 400015 Cluj-Napoca, Romania
| | - Sergiu Suşman
- Department of Histology, Iuliu Hatieganu, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Grzegorz Szewczyk
- Department of General & Experimental Pathology with Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Pawinskiego 3C, 02-106 Warsaw, Poland
| |
Collapse
|
16
|
Unfer V, Tilotta M, Kaya C, Noventa M, Török P, Alkatout I, Gitas G, Bilotta G, Laganà AS. Absorption, distribution, metabolism and excretion of hyaluronic acid during pregnancy: a matter of molecular weight. Expert Opin Drug Metab Toxicol 2021; 17:823-840. [PMID: 33999749 DOI: 10.1080/17425255.2021.1931682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION For many years hyaluronic acid (HA) was mainly used for its hydrating properties. However, new applications have recently arisen, considering the biological properties of HA and its molecular weight. Clinical application of low molecular weight HA (LMW-HA) initially was supported by specific absorption data. The identification of high molecular weight HA (HMW-HA) absorption pathways and the knowledge of its physiological role allowed to evaluate its clinical application. Based on the immunomodulatory properties of HMW-HA and its physiological involvement as signaling molecule, pregnancy represents an interesting context of application. AREA COVERED This expert opinion includes in-vitro, in-vivo, ex-vivo and clinical studies on gestational models. It provides an overview of the physiological and the therapeutic role of HMW-HA in pregnancy starting from its metabolism. Indeed, HMW-HA is widely involved in several physiological processes as implantation, immune response, uterine quiescence and cervical remodeling, and therefore is an essential molecule for a successful pregnancy. EXPERT OPINION Available evidence suggests that HMW-HA administration can support physiological pregnancy, favoring blastocyst adhesion and development, preventing miscarriage and pre-term birth. For this reason, supplementation in pregnancy should be evaluated.
Collapse
Affiliation(s)
| | | | - Cihan Kaya
- Department of Obstetrics and Gynaecology, University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Marco Noventa
- Department of Women and Children's Health, Clinic of Gynecology and Obstetrics, University of Padua, Padua, Italy
| | - Péter Török
- Faculty of Medicine, Institute of Obstetrics and Gynecology, University of Debrecen, Hungary
| | - Ibrahim Alkatout
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Georgios Gitas
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Lübeck, Germany
| | | | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital,University of Insubria, Varese, Italy
| |
Collapse
|
17
|
Human Granulosa Cells-Stemness Properties, Molecular Cross-Talk and Follicular Angiogenesis. Cells 2021; 10:cells10061396. [PMID: 34198768 PMCID: PMC8229878 DOI: 10.3390/cells10061396] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
The ovarian follicle is the basic functional unit of the ovary, comprising theca cells and granulosa cells (GCs). Two different types of GCs, mural GCs and cumulus cells (CCs), serve different functions during folliculogenesis. Mural GCs produce oestrogen during the follicular phase and progesterone after ovulation, while CCs surround the oocyte tightly and form the cumulus oophurus and corona radiata inner cell layer. CCs are also engaged in bi-directional metabolite exchange with the oocyte, as they form gap-junctions, which are crucial for both the oocyte’s proper maturation and GC proliferation. However, the function of both GCs and CCs is dependent on proper follicular angiogenesis. Aside from participating in complex molecular interplay with the oocyte, the ovarian follicular cells exhibit stem-like properties, characteristic of mesenchymal stem cells (MSCs). Both GCs and CCs remain under the influence of various miRNAs, and some of them may contribute to polycystic ovary syndrome (PCOS) or premature ovarian insufficiency (POI) occurrence. Considering increasing female fertility problems worldwide, it is of interest to develop new strategies enhancing assisted reproductive techniques. Therefore, it is important to carefully consider GCs as ovarian stem cells in terms of the cellular features and molecular pathways involved in their development and interactions as well as outline their possible application in translational medicine.
Collapse
|
18
|
Zhang S, Zhu D, Mei X, Li Z, Li J, Xie M, Xie HJW, Wang S, Cheng K. Advances in biomaterials and regenerative medicine for primary ovarian insufficiency therapy. Bioact Mater 2020; 6:1957-1972. [PMID: 33426370 PMCID: PMC7773538 DOI: 10.1016/j.bioactmat.2020.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Primary ovarian insufficiency (POI) is an ovarian dysfunction that affects more than 1 % of women and is characterized by hormone imbalances that afflict women before the age of 40. The typical perimenopausal symptoms result from abnormal levels of sex hormones, especially estrogen. The most prevalent treatment is hormone replacement therapy (HRT), which can relieve symptoms and improve quality of life. However, HRT cannot restore ovarian functions, including secretion, ovulation, and fertility. Recently, as part of a developing field of regenerative medicine, stem cell therapy has been proposed for the treatment of POI. Thus, we recapitulate the literature focusing on the use of stem cells and biomaterials for POI treatment, and sum up the underlying mechanisms of action. A thorough understanding of the work already done can aid in the development of guidelines for future translational applications and clinical trials that aim to cure POI by using regenerative medicine and biomedical engineering strategies. This paper illustrates the in-vivo, in-vitro, and cell-free treatments for POI using stem cells and biomaterials. We provide basic theories and suggestions for future research and clinical therapy translation. This review can help researcher to develop guidelines on stem cells treating POI.
Collapse
Affiliation(s)
- Sichen Zhang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Xuan Mei
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Junlang Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Mengjie Xie
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Halle Jiang Williams Xie
- Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
| | - Shaowei Wang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
19
|
Vaitsopoulou CI, Kolibianakis EM, Bosdou JK, Neofytou E, Lymperi S, Makedos A, Savvaidou D, Chatzimeletiou K, Grimbizis GF, Lambropoulos A, Tarlatzis BC. Expression of genes that regulate follicle development and maturation during ovarian stimulation in poor responders. Reprod Biomed Online 2020; 42:248-259. [PMID: 33214084 DOI: 10.1016/j.rbmo.2020.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/12/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022]
Abstract
RESEARCH QUESTION Sex hormone-binding globulin (SHBG), androgen receptor (AR), LH beta polypeptide (LHB), progesterone receptor membrane component 1 (PGRMC1) and progesterone receptor membrane component 2 (PGRMC2) regulate follicle development and maturation. Their mRNA expression was assessed in peripheral blood mononuclear cells (PBMC) of normal and poor responders, during ovarian stimulation. DESIGN Fifty-two normal responders and 15 poor responders according to the Bologna criteria were enrolled for IVF and intracytoplasmic sperm injection and stimulated with 200 IU of follitrophin alpha and gonadotrophin-releasing hormone antagonist. HCG was administered for final oocyte maturation. On days 1, 6 and 10 of stimulation, blood samples were obtained, serum hormone levels were measured, RNA was extracted from PBMC and real-time polymerase chain reaction was carried out to identify the mRNA levels. Relative mRNA expression of each gene was calculated by the comparative 2-DDCt method. RESULTS Differences between mRNA levels of each gene on the same time point between the two groups were not significant. PGRMC1 and PGRMC2 mRNA levels were downregulated, adjusted for ovarian response and age. Positive correlations between PGRMC1 and AR (standardized beta = 0.890, P < 0.001) from day 1 to 6 and PGRMC1 and LHB (standardized beta = 0.806, P < 0.001) from day 1 to 10 were found in poor responders. PGRMC1 and PGRMC2 were positively correlated on days 6 and 10 in normal responders. CONCLUSIONS PGRMC1 and PGRMC2 mRNA are significantly decreased during ovarian stimulation, with some potential differences between normal and poor responders.
Collapse
Affiliation(s)
- Christine I Vaitsopoulou
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece.
| | - Efstratios M Kolibianakis
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Julia K Bosdou
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Eirini Neofytou
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Stefania Lymperi
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Anastasios Makedos
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Despina Savvaidou
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Katerina Chatzimeletiou
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Grigoris F Grimbizis
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Alexandros Lambropoulos
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Basil C Tarlatzis
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| |
Collapse
|
20
|
Hu Z, Guo J, Zhao M, Jiang T, Yang X. Predictive values of miR-129 and miR-139 for efficacy on patients with prostate cancer after chemotherapy and prognostic correlation. Oncol Lett 2019; 18:6187-6195. [PMID: 31788094 PMCID: PMC6865305 DOI: 10.3892/ol.2019.10950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/06/2019] [Indexed: 01/12/2023] Open
Abstract
Predictive values of miR-129 and miR-139 for efficacy on patients with prostate cancer (PC) after chemotherapy and prognostic correlation were explored. Eighty-four patients with PC undergoing chemotherapy in The Third Affiliated Hospital of Qiqihar Medical University from January 2016 to January 2017 were enrolled as the observation group treated with DP regimen, and further 100 healthy individuals undergoing physical examination were enrolled as the control group. RT-qPCR was used to detect expression of serum miR-129 and miR-139. According to the clinical efficacy after treatment, patients with complete remission (CR) and partial remission (PR) were considered as a good curative effect group, whereas those with stable disease (SD) and progressive disease (PD) were considered as a poor curative effect group. In the observation group, miR-129 and miR-139 expression after treatment was significantly lower and higher, respectively, than that before treatment (P<0.05). After treatment, there were 15 patients with CR, 30 with PR, 26 with SD, and 13 with PD in the observation group. Before treatment, compared with the poor curative effect group, patients in the good curative effect group had significantly higher miR-129 expression but significantly lower miR-139 expression (P<0.05). The overall survival rate (OSR) of patients was 64.29%. The survival of patients in the miR-129 high expression group was significantly better than that in the miR-129 low expression group (P=0.001), whereas the survival in the miR-139 low expression group was significantly better than that in the miR-139 high expression group (P=0.012). According to multivariate Cox regression analysis, Gleason score, prostate specific antigen (PSA), bone metastasis, TNM staging, miR-129, and miR-139 were independent prognostic factors affecting patients. In conclusion, miR-129 and miR-139 are expected to be potential indicators for the diagnosis, prognosis, and efficacy prediction of PC.
Collapse
Affiliation(s)
- Zhongchun Hu
- Department of Urological Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Junjie Guo
- Department of Urological Surgery, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Ming Zhao
- Department of Urological Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Tao Jiang
- Department of Urological Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Xiaofeng Yang
- Department of Urological Surgery, School of Pathology, Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| |
Collapse
|
21
|
Tu J, Cheung AHH, Chan CLK, Chan WY. The Role of microRNAs in Ovarian Granulosa Cells in Health and Disease. Front Endocrinol (Lausanne) 2019; 10:174. [PMID: 30949134 PMCID: PMC6437095 DOI: 10.3389/fendo.2019.00174] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/01/2019] [Indexed: 02/02/2023] Open
Abstract
The granulosa cell (GC) is a critical somatic component of the ovary. It is essential for follicle development by supporting the developing oocyte, proliferating and producing sex steroids and disparate growth factors. Knowledge of the GC's function in normal ovarian development and function, and reproductive disorders, such as polycystic ovary syndrome (PCOS) and premature ovarian failure (POF), is largely acquired through clinical studies and preclinical animal models. Recently, microRNAs have been recognized to play important regulatory roles in GC pathophysiology. Here, we examine the recent findings on the role of miRNAs in the GC, including four related signaling pathways (Transforming growth factor-β pathway, Follicle-stimulating hormones pathway, hormone-related miRNAs, Apoptosis-related pathways) and relevant diseases. Therefore, miRNAs appear to be important regulators of GC function in both physiological and pathological conditions. We suggest that targeting specific microRNAs is a potential therapeutic option for treating ovary-related diseases, such as PCOS, POF, and GCT.
Collapse
Affiliation(s)
- Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Anhui, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Albert Hoi-Hung Cheung
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | | | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- *Correspondence: Wai-Yee Chan
| |
Collapse
|
22
|
Huang LL, Huang LW, Wang L, Tong BD, Wei Q, Ding XS. Potential role of miR-139-5p in cancer diagnosis, prognosis and therapy. Oncol Lett 2017; 14:1215-1222. [PMID: 28789336 PMCID: PMC5529864 DOI: 10.3892/ol.2017.6351] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/09/2017] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate the expression of protein-coding genes by partially binding to specific target sites of mRNAs. miRNAs perform important functions in complicated cellular biological processes and their abnormal expression is involved in various disorders, including cancer. Among the miRNAs, differential expression of miR-139-5p serves a significant role in tumorigenesis, metastasis and recurrence, thus suggesting that it may potentially be used as a promising biomarker for cancer diagnosis, prognosis and therapy. miR-139-5p is expected to serve as a biomarker to eventually be implemented in a clinical setting. In the present review, we focus on the importance of miR-139-5p in cancer, summarize the association between miR-139-5p expression level and diagnosis and prognosis, and discuss the potential therapeutic implications for the future.
Collapse
Affiliation(s)
- Ling-Li Huang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Ling-Wei Huang
- Key Laboratory for Space Biosciences and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi 710072, P.R. China
| | - Lei Wang
- Department of Pharmacy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Ben-Ding Tong
- Department of Pharmacy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Qing Wei
- Department of Pharmacy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Xuan-Sheng Ding
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
23
|
Pan JY, Zhang F, Sun CC, Li SJ, Li G, Gong FY, Bo T, He J, Hua RX, Hu WD, Yuan ZP, Wang X, He QQ, Li DJ. miR-134: A Human Cancer Suppressor? MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 6:140-149. [PMID: 28325280 PMCID: PMC5363400 DOI: 10.1016/j.omtn.2016.11.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs approximately 20-25 nt in length, which play crucial roles through directly binding to corresponding 3' UTR of targeted mRNAs. It has been reported that miRNAs are involved in numerous of diseases, including cancers. Recently, miR-134 has been identified to dysregulate in handles of human cancers, such as lung cancer, glioma, breast cancer, colorectal cancer, and so on. Increasing evidence indicates that miR-134 is essential for human carcinoma and participates in tumor cell proliferation, apoptosis, invasion and metastasis, drug resistance, as well as cancer diagnosis, treatment, and prognosis. Nevertheless, its roles in human cancer are still ambiguous, and its mechanisms are sophisticated as well, referring to a variety of targets and signal pathways, such as STAT5B, KRAS, MAPK/ERK signal pathway, Notch pathway, etc. Herein, we review the crucial roles of miR-134 in scores of human cancers via analyzing latest investigations, which might provide evidence for cancer diagnose, treatment, prognosis, or further investigations.
Collapse
Affiliation(s)
- Jing-Yu Pan
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, 430071 Wuhan, Hubei, P. R. China
| | - Feng Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, 430071 Wuhan, Hubei, P. R. China
| | - Cheng-Cao Sun
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, 430071 Wuhan, Hubei, P. R. China.
| | - Shu-Jun Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, 430071 Wuhan, Hubei, P. R. China; Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, 430015 Wuhan, Hubei, P. R. China
| | - Guang Li
- Department of Oncology, Wuhan Pu-Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430034 Wuhan, Hubei, P. R. China
| | - Feng-Yun Gong
- Department of Infectious Diseases, Wuhan Medical Treatment Center, 430023 Wuhan, Hubei, P. R. China
| | - Tao Bo
- Department of Infectious Diseases, Wuhan Medical Treatment Center, 430023 Wuhan, Hubei, P. R. China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, Guangdong, P. R. China
| | - Rui-Xi Hua
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, Guangdong, P. R. China
| | - Wei-Dong Hu
- Department of Oncology, ZhongNan Hospital of Wuhan University, 430071 Wuhan, Hubei, P. R. China
| | - Zhan-Peng Yuan
- Department of Toxicology, School of Public Health, Wuhan University, 430071 Wuhan, P. R. China
| | - Xin Wang
- Department of Social Science and Public Health, School of Basic Medical Science, Jiujiang University, Jiujiang 332000, China
| | - Qi-Qiang He
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, 430071 Wuhan, Hubei, P. R. China
| | - De-Jia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, 430071 Wuhan, Hubei, P. R. China.
| |
Collapse
|
24
|
MiR-139-5p as a novel serum biomarker for recurrence and metastasis in colorectal cancer. Sci Rep 2017; 7:43393. [PMID: 28262692 PMCID: PMC5338356 DOI: 10.1038/srep43393] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/20/2017] [Indexed: 12/21/2022] Open
Abstract
Approximately 30-50% of colorectal cancer (CRC) patients who undergo curative resection subsequently experience tumor recurrence or metastasis. Although microRNAs (miRNAs) are a class of small noncoding RNAs frequently deregulated in various human malignancies, it remains unknown if these can help predict recurrence and metastasis in CRC patients. MiRNAs were initially screened using miRNA-microarray and miRNA-seq datasets with or without recurrence. Candidate miRNAs were then tested in two independent cohorts of 111 stage II/III and 139 stage I-III CRC patients, as well as serum samples and matched primary and metastatic liver tissues. An animal model of peritoneal dissemination was used to assess the oncogenic role of the target miRNA. Four candidate miRNAs were identified during the initial screening, and we subsequently validated upregulation of miR-139-5p in two independent clinical cohorts, wherein it associated with poor recurrence-free survival. Moreover, miR-139-5p were also upregulated in the serum of recurrence-positive CRC patients and yielded significantly shorter recurrence-free survival. Intriguingly, miR-139-5p was upregulated in metastatic liver tissues and negatively correlated with genes associated with epithelial-mesenchymal transition. Lastly, we showed that miR-139-5p overexpression enhanced peritoneal dissemination in a mouse model. In conclusion, we identified miR-139-5p as a novel biomarker for tumor recurrence and metastasis in CRC.
Collapse
|
25
|
Liu W, Wang S, Zhou S, Yang F, Jiang W, Zhang Q, Wang L. A systems biology approach to identify microRNAs contributing to cisplatin resistance in human ovarian cancer cells. MOLECULAR BIOSYSTEMS 2017; 13:2268-2276. [DOI: 10.1039/c7mb00362e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The dysregulated microRNAs contribute to cisplatin resistance in ovarian cancer cells.
Collapse
Affiliation(s)
- Weisha Liu
- Institute of Cancer Prevention and Treatment
- Harbin Medical University
- Harbin 150081
- China
- Institute of Cancer Prevention and Treatment
| | - Shuyuan Wang
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin 150081
- China
| | - Shunheng Zhou
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin 150081
- China
| | - Feng Yang
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin 150081
- China
| | - Wei Jiang
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin 150081
- China
| | - Qingyuan Zhang
- Institute of Cancer Prevention and Treatment
- Harbin Medical University
- Harbin 150081
- China
- Institute of Cancer Prevention and Treatment
| | - Lihong Wang
- Institute of Cancer Prevention and Treatment
- Harbin Medical University
- Harbin 150081
- China
- Institute of Cancer Prevention and Treatment
| |
Collapse
|
26
|
Liu J, Tu F, Yao W, Li X, Xie Z, Liu H, Li Q, Pan Z. Conserved miR-26b enhances ovarian granulosa cell apoptosis through HAS2-HA-CD44-Caspase-3 pathway by targeting HAS2. Sci Rep 2016; 6:21197. [PMID: 26887530 PMCID: PMC4758074 DOI: 10.1038/srep21197] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/19/2016] [Indexed: 12/17/2022] Open
Abstract
The hyaluronan synthase 2 (HAS2)-hyaluronic acid (HA)-CD44-Caspase-3 pathway is involved in ovarian granulosa cell (GC) functions in mammals. HAS2 is a key enzyme required for HA synthesis and is the key factor in this pathway. However, the regulation of HAS2 and the HAS2-mediated pathway by microRNAs in GCs is poorly understood. Here, we report that miR-26b regulates porcine GC (pGC) apoptosis through the HAS2-HA-CD44-Caspase-3 pathway by binding directly to the 3′- untranslated region of HAS2 mRNA. Knockdown of miR-26b reduced pGC apoptosis. Luciferase reporter assays demonstrated that HAS2 is a direct target of miR-26b in pGCs. Knockdown and overexpression of miR-26b increased and decreased, respectively, HA content, and HAS2 and CD44 expression in pGCs. At the same time, inhibition and overexpression of miR-26b decreased and increased the expression of Caspase-3, a downstream factor in the HAS2-HA-CD44 pathway. Moreover, knockdown of HAS2 enhanced pGC apoptosis, reduced the inhibitory effects of a miR-26b inhibitor on pGC apoptosis, repressed HA content and CD44 expression, and promoted Caspase-3 expression. In addition, overexpression of HAS2 has a opposite effect. Collectively, miR-26b positively regulates pGC apoptosis via a novel HAS2-HA-CD44-Caspase-3 pathway by targeting the HAS2 gene.
Collapse
Affiliation(s)
- Jiying Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Fei Tu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xinyu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhuang Xie
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
27
|
Zhang HD, Jiang LH, Sun DW, Li J, Tang JH. MiR-139-5p: promising biomarker for cancer. Tumour Biol 2015; 36:1355-65. [DOI: 10.1007/s13277-015-3199-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/30/2015] [Indexed: 12/22/2022] Open
|
28
|
Schubert C. Polymer Protects Against Preterm Birth. Biol Reprod 2015. [DOI: 10.1095/biolreprod.114.127001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
29
|
Hyaluronic acid prevents immunosuppressive drug-induced ovarian damage via up-regulating PGRMC1 expression. Sci Rep 2015; 5:7647. [PMID: 25558795 PMCID: PMC4284510 DOI: 10.1038/srep07647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/04/2014] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy treatment in women can frequently cause damage to the ovaries, which may lead to primary ovarian insufficiency (POI). In this study, we assessed the preventative effects of hyaluronic acid (HA) in immunosuppressive drug-induced POI-like rat models and investigated the possible mechanisms. We found that HA, which was reduced in primary and immunosuppressant-induced POI patients, could protect the immunosuppressant-induced damage to granulosa cells (GCs) in vitro. Then we found that HA blocked the tripterygium glycosides (TG) induced POI-like presentations in rats, including delayed or irregular estrous cycles, reduced 17 beta-estradiol(E2) concentration, decreased number of follicles, destruction of follicle structure, and damage of reproductive ability. Furthermore, we investigated the mechanisms of HA prevention effects on POI, which was associated with promotion of GC proliferation and PGRMC1 expression. In conclusion, HA prevents chemotherapy-induced ovarian damage by promoting PGRMC1 in GCs. This study may provide a new strategy for prevention and treatment of POI.
Collapse
|