1
|
Elsafadi S, Hankele AK, Giesbertz P, Ulbrich SE. Roe deer uterine fluid metabolome reveals elevated glycolysis, fatty acid breakdown, and spermidine synthesis upon reactivation from diapause†. Biol Reprod 2025; 112:70-85. [PMID: 39673258 PMCID: PMC11736431 DOI: 10.1093/biolre/ioae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/25/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
The blastocyst of the European roe deer (Capreolus capreolus) undergoes a period of decelerated growth and limited metabolism. During this period known as embryonic diapause, it floats freely in the uterus encircled by the histotroph. Prior to implantation, reactivation is marked by rapid embryonic growth and conceptus elongation. We hypothesized that the uterine fluid, which is known to undergo changes in its composition to support early embryonic development, contributes to controlling embryonic growth during diapause and elongation. We therefore characterized the pre-implantation uterine fluid metabolome during diapause and at elongation by mass spectrometry and particularly assessed nonpolar lipids, polar metabolites, acylcarnitines, and polyamines. Our results show that triglycerides and diglycerides levels decreased at elongation, likely serving as a source for membrane synthesis rather than for energy production. A functional analysis identified glycolysis as a key pathway during elongation, which may compensate for the energy requirements during this phase. We also observed an increase of sphingomyelin; prostaglandin precursors; and the amino acids asparagine, glutamine, and methionine upon elongation. The sphingolipid and glycerophospholipid metabolism pathways were implicated during elongation. Particularly, spermidine, and to some extent spermine but not putrescine-levels significantly increased in the uterine fluid during elongation, indicating their significance for reactivation and/or proliferation at embryo elongation. We conclude that the roe deer uterine fluid sustained dynamic compositional changes necessary to support the energy- and resource-intensive conceptus elongation. However, it remains to be determined whether these changes are the cause or a consequence of embryo elongation. Studying the metabolic changes and molecular interactions in the roe deer during diapause and elongation not only reveals insights into aspects of its reproductive strategy, but also deepens our knowledge of embryo metabolic demands and developmental velocities across species.
Collapse
Affiliation(s)
- Sara Elsafadi
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| | - Anna-Katharina Hankele
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| | - Pieter Giesbertz
- Else Kröner-Fresenius-Center of Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Susanne E Ulbrich
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| |
Collapse
|
2
|
Nasef M, Ben Turkia H, Haider Ali AM, Mahdawi E, Nair A. To What Extent Does Arginine Reduce the Risk of Developing Necrotizing Enterocolitis? Cureus 2023; 15:e45813. [PMID: 37876383 PMCID: PMC10591459 DOI: 10.7759/cureus.45813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Necrotizing enterocolitis (NEC) and neonatal sepsis are polar opposite diseases that are commonly encountered in the NICU. Concerning the frequency of these pathologies, NEC is regarded as being a much rarer condition, whereas neonatal sepsis is slightly more commonly encountered. However, neonatal sepsis can present with varying clinical presentations and, if caught late, can be detrimental to the patient. Many different modes of therapies have been studied for both conditions at different levels of pathologies, from a microscopic to a macroscopic level, leading to an assessment of treatment approaches. With the different ongoing treatment protocols being studied, one such therapy under investigation that does stand out is the use of L-arginine in both conditions. The L-arginine, being an essential amino acid, has many basic biological roles in developing neonates. It mainly involves the production of nitric oxide (NO), a potent vasodilator, which is particularly important in the development of vasculature in almost every organ. In premature infants, poorly developed vasculature makes them more susceptible to injury, therefore increasing the risk of diseases such as NEC and the severity of diseases such as neonatal sepsis. By assessing the uses of L-arginine and its application towards treating conditions like NEC and neonatal sepsis, we aim to identify its potential benefits as a treatment and its potential applications in clinical practice by understanding its basic functions and role in the pathophysiology of NEC and neonatal sepsis.
Collapse
Affiliation(s)
- Minoosh Nasef
- Neonatology, King Hamad University Hospital, Muharraq, BHR
| | | | | | - Esam Mahdawi
- Obstetrics and Gynaecology, King Hamad University Hospital, Muharraq, BHR
| | - Arun Nair
- Pediatrics, Saint Peter's University Hospital, Somerset, USA
| |
Collapse
|
3
|
Liu B, Paudel S, Flowers WL, Piedrahita JA, Wang X. Uterine histotroph and conceptus development: III. Adrenomedullin stimulates proliferation, migration and adhesion of porcine trophectoderm cells via AKT-TSC2-MTOR cell signaling pathway. Amino Acids 2023:10.1007/s00726-023-03265-6. [PMID: 37036518 DOI: 10.1007/s00726-023-03265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
Adrenomedullin (ADM) as a highly conserved peptide hormone has been reported to increase significantly in the uterine lumen during the peri-implantation period of pregnancy in pigs, but its functional roles in growth and development of porcine conceptus (embryonic/fetus and its extra-embryonic membranes) as well as underlying mechanisms remain largely unknown. Therefore, we conducted in vitro experiments using our established porcine trophectoderm cell line (pTr2) isolated from Day-12 porcine conceptuses to test the hypothesis that porcine ADM stimulates cell proliferation, migration and adhesion via activation of mechanistic target of rapamycin (MTOR) cell signaling pathway in pTr2 cells. Porcine ADM at 10-7 M stimulated (P < 0.05) pTr2 cell proliferation, migration and adhesion by 1.4-, 1.5- and 1.2-folds, respectively. These ADM-induced effects were abrogated (P < 0.05) by siRNA-mediated knockdown of ADM (siADM) and its shared receptor component calcitonin-receptor-like receptor (CALCRL; siCALCRL), as well as by rapamycin, the inhibitor of MTOR. Using siRNA-mediated knockdown of CALCRL coupled with Western blot analyses, ADM signaling transduction was determined in which ADM binds to CALCRL to increase phosphorylation of MTOR, its downstream effectors (4EBP1, P70S6K, and S6), and upstream regulators (AKT and TSC2). Collectively, these results suggest that porcine ADM in histotroph acts on its receptor component CALCRL to activate AKT-TSC2-MTOR, particularly MTORC1 signaling cascade, leading to elongation, migration and attachment of conceptuses.
Collapse
Affiliation(s)
- Bangmin Liu
- Department of Animal Science, North Carolina State University, NC, 27695, Raleigh, USA
| | - Sudikshya Paudel
- Department of Animal Science, North Carolina State University, NC, 27695, Raleigh, USA
| | - William L Flowers
- Department of Animal Science, North Carolina State University, NC, 27695, Raleigh, USA
| | - Jorge A Piedrahita
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xiaoqiu Wang
- Department of Animal Science, North Carolina State University, NC, 27695, Raleigh, USA.
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
4
|
Sah N, Stenhouse C, Halloran KM, Moses RM, Seo H, Burghardt RC, Johnson GA, Wu G, Bazer FW. Inhibition of SHMT2 mRNA translation increases embryonic mortality in sheep. Biol Reprod 2022; 107:1279-1295. [DOI: 10.1093/biolre/ioac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
The one-carbon metabolism (OCM) pathway provides purines and thymidine for synthesis of nucleic acids required for cell division, and S-adenosyl methionine for polyamine and creatine syntheses and the epigenetic regulation of gene expression. This study aimed to determine if serine hydroxymethyltransferase 2 (SHMT2), a key enzyme in the OCM pathway, is critical for ovine trophectoderm (oTr) cell function and conceptus development by inhibiting translation of SHMT2 mRNA using a morpholino antisense oligonucleotide (MAO). In vitro treatment of oTr cells with MAO-SHMT2 decreased expression of SHMT2 protein, which was accompanied by reduced proliferation (P = 0.053) and migration (P < 0.05) of those cells. Intrauterine injection of MAO-SHMT2 in ewes on Day 11 post-breeding tended to decrease the overall pregnancy rate (on Days 16 and 18) compared to MAO-control (3/10 vs 7/10, P = 0.07). The three viable conceptuses (n = 2 on Day 16 and n = 1 on Day 18) recovered from MAO-SHMT2 ewes had only partial inhibition of SHMT2 mRNA translation. Conceptuses from the three pregnant MAO-SHMT2 ewes had similar levels of expression of mRNAs and proteins involved in OCM as compared to conceptuses from MAO-control ewes. These results indicate that knockdown of SHMT2 protein reduces proliferation and migration of oTr cells (in vitro) to decrease elongation of blastocysts from spherical to elongated forms. These in vitro effects suggest that increased embryonic deaths in ewes treated with MAO-SHMT2 are the result of decreased SHMT2-mediated trophectoderm cell proliferation and migration supporting a role for the OCM pathway in survival and development of ovine conceptuses.
Collapse
Affiliation(s)
- Nirvay Sah
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | - Claire Stenhouse
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | | | - Robyn M Moses
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences , College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences , College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences , College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| |
Collapse
|
5
|
Skarzynski DJ, Bazer FW, Maldonado-Estrada JG. Editorial: Veterinary Reproductive Immunology. Front Vet Sci 2022; 8:823169. [PMID: 35083310 PMCID: PMC8784508 DOI: 10.3389/fvets.2021.823169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dariusz J. Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Science, Olsztyn, Poland
| | - Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Juan G. Maldonado-Estrada
- OHVRI Research Group, Escuela de Medicina Veterinaria, Universidad de Antioquia, Medellín, Colombia
- *Correspondence: Juan G. Maldonado-Estrada
| |
Collapse
|
6
|
Wu G, Bazer FW, Satterfield MC, Gilbreath KR, Posey EA, Sun Y. L-Arginine Nutrition and Metabolism in Ruminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:177-206. [PMID: 34807443 DOI: 10.1007/978-3-030-85686-1_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
L-Arginine (Arg) plays a central role in the nitrogen metabolism (e.g., syntheses of protein, nitric oxide, polyamines, and creatine), blood flow, nutrient utilization, and health of ruminants. This amino acid is produced by ruminal bacteria and is also synthesized from L-glutamine, L-glutamate, and L-proline via the formation of L-citrulline (Cit) in the enterocytes of young and adult ruminants. In pre-weaning ruminants, most of the Cit formed de novo by the enterocytes is used locally for Arg production. In post-weaning ruminants, the small intestine-derived Cit is converted into Arg primarily in the kidneys and, to a lesser extent, in endothelial cells, macrophages, and other cell types. Under normal feeding conditions, Arg synthesis contributes 65% and 68% of total Arg requirements for nonpregnant and late pregnany ewes fed a diet with ~12% crude protein, respectively, whereas creatine production requires 40% and 36% of Arg utilized by nonpregnant and late pregnant ewes, respectively. Arg has not traditionally been considered a limiting nutrient in diets for post-weaning, gestating, or lactating ruminants because it has been assumed that these animals can synthesize sufficient Arg to meet their nutritional and physiological needs. This lack of a full understanding of Arg nutrition and metabolism has contributed to suboptimal efficiencies for milk production, reproductive performance, and growth in ruminants. There is now considerable evidence that dietary supplementation with rumen-protected Arg (e.g., 0.25-0.5% of dietary dry matter) can improve all these production indices without adverse effects on metabolism or health. Because extracellular Cit is not degraded by microbes in the rumen due to the lack of uptake, Cit can be used without any encapsulation as an effective dietary source for the synthesis of Arg in ruminants, including dairy and beef cows, as well as sheep and goats. Thus, an adequate amount of supplemental rumen-protected Arg or unencapsulated Cit is necessary to support maximum survival, growth, lactation, reproductive performance, and feed efficiency, as well as optimum health and well-being in all ruminants.
Collapse
Affiliation(s)
- Guoyao Wu
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| | - Fuller W Bazer
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - M Carey Satterfield
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Kyler R Gilbreath
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Erin A Posey
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Yuxiang Sun
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
7
|
Elmetwally MA, Li X, Johnson GA, Burghardt RC, Herring CM, Kramer AC, Meininger CJ, Bazer FW, Wu G. Dietary supplementation with L-arginine between days 14 and 25 of gestation enhances NO and polyamine syntheses and the expression of angiogenic proteins in porcine placentae. Amino Acids 2021; 54:193-204. [PMID: 34741684 DOI: 10.1007/s00726-021-03097-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022]
Abstract
Dietary supplementation with 0.4 or 0.8% L-arginine (Arg) to gilts between days 14 and 25 of gestation enhances embryonic survival and vascular development in placentae; however, the underlying mechanisms are largely unknown. This study tested the hypothesis that Arg supplementation stimulated placental expression of mRNAs and proteins that enhance angiogenesis, including endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF), placental growth factor (PGF), GTP cyclohydrolase-I (GTP-CH1), ornithine decarboxylase (ODC1), and vascular endothelial growth factor receptors 1 and 2 (VEGFR1 and VEGFR2). Beginning on the day of breeding, gilts were fed daily 2 kg of a corn-soybean meal-based diet supplemented with 0.0 (control), 0.4, or 0.8% Arg. On day 25 of gestation, gilts were hysterectomized to obtain uteri and conceptuses for histochemical and biochemical analyses. eNOS and VEGFR1 proteins were localized to endothelial cells of maternal uterine blood vessels and to the uterine luminal epithelium, respectively. Compared with the control, dietary supplementation with 0.4 or 0.8% Arg increased (P < 0.05) the amounts of nitrite plus nitrate (NOx; oxidation products of NO) and polyamines in allantoic and amniotic fluids, concentrations of NOx, tetrahydrobiopterin (BH4, an essential cofactor for all NOS isoforms) and polyamines in placentae, as well as placental protein abundances of GTP-CH1 (the key enzyme for BH4 production) and ODC1 (the key enzyme for polyamine synthesis). Placental mRNA levels for GTP-CH1, eNOS, PGF, VEGF, and VEGFR2 increased in response to both 0.4% and 0.8% Arg supplementation. Collectively, these results indicate that dietary Arg supplementation to gilts between days 14 and 25 of pregnancy promotes placental angiogenesis by increasing the expression of mRNAs and proteins for angiogenic factors as well as NO and polyamine syntheses.
Collapse
Affiliation(s)
- Mohammed A Elmetwally
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Xilong Li
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Gregory A Johnson
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Robert C Burghardt
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Cassandra M Herring
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Avery C Kramer
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | | | - Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
8
|
Luo Z, Yao J, Xu J. Reactive oxygen and nitrogen species regulate porcine embryo development during pre-implantation period: A mini-review. ACTA ACUST UNITED AC 2021; 7:823-828. [PMID: 34466686 PMCID: PMC8384778 DOI: 10.1016/j.aninu.2021.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 01/22/2023]
Abstract
Significant porcine embryonic loss occurs during conceptus morphological elongation and attachment from d 10 to 20 of pregnancy, which directly decreases the reproductive efficiency of sows. A successful establishment of pregnancy mainly depends on the endometrium receptivity, embryo quality, and utero-placental microenvironment, which requires complex cross-talk between the conceptus and uterus. The understanding of the molecular mechanism regulating the uterine-conceptus communication during porcine conceptus elongation and attachment has developed in the past decades. Reactive oxygen and nitrogen species, which are intracellular reactive metabolites that regulate cell fate decisions and alter their biological functions, have recently reportedly been involved in porcine conceptus elongation and attachment. This mini-review will mainly focus on the recent researches about the role of reactive oxygen and nitrogen species in regulating porcine embryo development during the pre-implantation period.
Collapse
Affiliation(s)
- Zhen Luo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Jianxiong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| |
Collapse
|
9
|
Paudel S, Liu B, Cummings MJ, Quinn KE, Bazer FW, Caron KM, Wang X. Temporal and spatial expression of adrenomedullin and its receptors in the porcine uterus and peri-implantation conceptuses. Biol Reprod 2021; 105:876-891. [PMID: 34104954 DOI: 10.1093/biolre/ioab110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 01/17/2023] Open
Abstract
Adrenomedullin (ADM) is an evolutionarily conserved multi-functional peptide hormone that regulates implantation, embryo spacing and placentation in humans and rodents. However, the potential roles of ADM in implantation and placentation in pigs, as a litter-bearing species, are not known. This study determined abundances of ADM in uterine luminal fluid, and the patterns of expression of ADM and its receptor components (CALCRL, RAMP2, RAMP3, and ACKR3) in uteri from cyclic and pregnant gilts, as well as conceptuses (embryonic/fetus and its extra-embryonic membranes) during the peri-implantation period of pregnancy. Total recoverable ADM was greater in the uterine fluid of pregnant compared with cyclic gilts between Days 10 and 16 post-estrus, and was from uterine luminal epithelial (LE) and conceptus trophectoderm (Tr) cells. Uterine expression of CALCRL, RAMP2, and ACKR3 were affected by day (P < 0.05), pregnant status (P < 0.01) and/or day x status (P < 0.05). Within porcine conceptuses, expression of CALCRL, RAMP2 and ACKR3 increased between Days 10 and 16 of pregnancy. Using an established porcine trophectoderm (pTr1) cell line, it was determined that 10-7 M ADM stimulated proliferation of pTr1 cells (P < 0.05) at 48 h, and increased phosphorylated mechanistic target of rapamycin (p-MTOR) and 4E binding protein 1 (p-4EBP1) by 6.1- and 4.9-fold (P < 0.0001), respectively. These novel results indicate a significant role for ADM in uterine receptivity for implantation and conceptus growth and development in pigs. They also provide a framework for future studies of ADM signaling to affect proliferation and migration of Tr cells, spacing of blastocysts, implantation and placentation in pigs.
Collapse
Affiliation(s)
- Sudikshya Paudel
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| | - Bangmin Liu
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| | - Magdalina J Cummings
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| | - Kelsey E Quinn
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station TX, 77843, USA
| | - Kathleen M Caron
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Xiaoqiu Wang
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| |
Collapse
|
10
|
Sandoval C, Askelson K, Lambo CA, Dunlap KA, Satterfield MC. Effect of maternal nutrient restriction on expression of glucose transporters (SLC2A4 and SLC2A1) and insulin signaling in skeletal muscle of SGA and Non-SGA sheep fetuses. Domest Anim Endocrinol 2021; 74:106556. [PMID: 33120168 DOI: 10.1016/j.domaniend.2020.106556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023]
Abstract
Maternal nutrient restriction (NR) causes small for gestational age (SGA) offspring, which are at higher risk for accelerated postnatal growth and developing insulin resistance in adulthood. Skeletal muscle is essential for whole-body glucose metabolism, as 80% of insulin-mediated glucose uptake occurs in this tissue. Maternal NR can alter fetal skeletal muscle mass, expression of glucose transporters, insulin signaling, and myofiber type composition. It also leads to accumulation of intramuscular triglycerides (IMTG), which correlates to insulin resistance. Using a 50% NR treatment from gestational day (GD) 35 to GD 135 in sheep, we routinely observe a spectral phenotype of fetal weights within the NR group. Thus, we classified those fetuses into NR(Non-SGA; n = 11) and NR(SGA; n = 11). The control group (n = 12) received 100% of nutrient requirements throughout pregnancy. At GD 135, fetal plasma and gastrocnemius and soleus muscles were collected. In fetal plasma, total insulin was lower in NR(SGA) fetuses compared NR(Non-SGA) and control fetuses (P < 0.01), whereas total IGF-1 was lower in NR(SGA) fetuses compared with control fetuses (P < 0.05). Within gastrocnemius, protein expression of insulin receptor (INSRB; P < 0.05) and the glucose transporters, solute carrier family 2 member 1 and solute carrier family 2 member 4, was higher (P < 0.05) in NR(SGA) fetuses compared with NR(Non-SGA) fetuses; IGF-1 receptor protein was increased (P < 0.01) in NR(SGA) fetuses compared with control fetuses, and a lower (P < 0.01) proportion of type I myofibers (insulin sensitive and oxidative) was observed in SGA fetuses. For gastrocnemius muscle, the expression of lipoprotein lipase (LPL) messenger RNA (mRNA) was upregulated (P < 0.05) in both NR(SGA) and NR(Non-SGA) fetuses compared with control fetuses, whereas carnitine palmitoyltransferase 1B (CPT1B) mRNA was higher (P < 0.05) in NR(Non-SGA) fetuses compared with control fetuses, but there were no differences (P > 0.05) for protein levels of LPL or CPT1B. Within soleus, there were no differences (P > 0.05) for any characteristic except for the proportion of type I myofibers, which was lower (P < 0.05) in NR(SGA) fetuses compared with control fetuses. Accumulation of IMTG did not differ (P > 0.05) in gastrocnemius or soleus muscles. Collectively, the results indicate molecular differences between SGA and Non-SGA fetuses for most characteristics, suggesting that maternal NR induces a spectral phenotype for the metabolic programming of those fetuses.
Collapse
Affiliation(s)
- C Sandoval
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA; Instituto de Investigaciones Agropecuarias, Región de Magallanes y la Antártica Chilena, Punta Arenas 6212707, Chile
| | - K Askelson
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - C A Lambo
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - K A Dunlap
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - M C Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA.
| |
Collapse
|
11
|
Amino Acids in Cell Signaling: Regulation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:17-33. [PMID: 34251636 DOI: 10.1007/978-3-030-74180-8_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amino acids are the main building blocks for life. Aside from their roles in composing proteins, functional amino acids and their metabolites play regulatory roles in key metabolic cascades, gene expressions, and cell-to-cell communication via a variety of cell signaling pathways. These metabolic networks are necessary for maintenance, growth, reproduction, and immunity in humans and animals. These amino acids include, but are not limited to, arginine, glutamine, glutamate, glycine, leucine, proline, and tryptophan. We will discuss these functional amino acids in cell signaling pathways in mammals with a particular emphasis on mTORC1, AMPK, and MAPK pathways for protein synthesis, nutrient sensing, and anti-inflammatory responses, as well as cell survival, growth, and development.
Collapse
|
12
|
Sandoval C, Lambo CA, Beason K, Dunlap KA, Satterfield MC. Effect of maternal nutrient restriction on skeletal muscle mass and associated molecular pathways in SGA and Non-SGA sheep fetuses. Domest Anim Endocrinol 2020; 72:106443. [PMID: 32222553 DOI: 10.1016/j.domaniend.2020.106443] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/25/2022]
Abstract
Maternal nutrient restriction causes small for gestational age (SGA) offspring, which exhibit a higher risk for metabolic syndrome in adulthood. Fetal skeletal muscle is particularly sensitive to maternal nutrient restriction, which impairs muscle mass and metabolism. Using a 50% nutrient restriction treatment from gestational day (GD) 35 to GD 135 in sheep, we routinely observe a spectral phenotype of fetal weights within the nutrient-restricted (NR) group. Thus, our objective was to evaluate the effect of maternal NR on muscle mass, myofiber hypertrophy, myonuclear dotation, and molecular markers for protein synthesis and degradation, while accounting for the observed fetal weight variation. Within the NR group, we classified upper-quartile fetuses into NR(Non-SGA) (n = 11) and lower-quartile fetuses into NR(SGA) (n = 11). A control group (n = 12) received 100% of nutrient requirements throughout pregnancy. At GD 135, fetal plasma and organs were collected, and gastrocnemius and soleus muscles were sampled for investigation. Results showed decreased (P < 0.05) absolute tissue/organ weights, including soleus and gastrocnemius muscles, in NR(SGA) fetuses compared to NR(Non-SGA) and control. Myofiber cross-sectional area was smaller in NR(SGA) vs control for gastrocnemius (P = 0.0092) and soleus (P = 0.0097) muscles. Within the gastrocnemius muscle, the number of myonuclei per myofiber was reduced (P = 0.0442) in NR(SGA) compared to control. Cortisol may induce protein degradation. However, there were no differences in fetal cortisol among groups. Nevertheless, for gastrocnemius muscle, cortisol receptor (NR3C1; P = 0.0124), and FOXO1 (P = 0.0131) were upregulated in NR(SGA) compared to control while NR(Non-SGA) did not differ from the other 2 groups. KLF15 was upregulated (P = 0.0002) in both NR(SGA) and NR(Non-SGA); while FBXO32, TRIM63, BCAT2 or MSTN did not differ. For soleus muscle, KLF15 mRNA was upregulated (P = 0.0145) in NR(SGA) compared to control, and expression of MSTN was increased (P = 0.0259) in NR(SGA) and NR(Non-SGA) compared to control. At the protein level, none of the mentioned molecules nor total ubiquitin-labeled proteins differed among groups (P > 0.05). Indicators of protein synthesis (total and phosphorylated MTOR, EI4EBP1, and RPS6KB1) did not differ among groups in either muscle (P > 0.05). Collectively, results highlight that maternal NR unequally affects muscle mass in NR(SGA) and NR(Non-SGA) fetuses, and alterations in myofiber cross-sectional area and myonuclei number partially explain those differences.
Collapse
Affiliation(s)
- C Sandoval
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - C A Lambo
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - K Beason
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - K A Dunlap
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - M C Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
13
|
Impact of Arginine Nutrition and Metabolism during Pregnancy on Offspring Outcomes. Nutrients 2019; 11:nu11071452. [PMID: 31252534 PMCID: PMC6682918 DOI: 10.3390/nu11071452] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
By serving as a precursor for the synthesis of nitric oxide, polyamines, and other molecules with biological importance, arginine plays a key role in pregnancy and fetal development. Arginine supplementation is a potential therapy for treating many human diseases. An impaired arginine metabolic pathway during gestation might produce long-term morphological or functional changes in the offspring, namely, developmental programming to increase vulnerability to developing a variety of non-communicable diseases (NCDs) in later life. In contrast, reprogramming is a strategy that shifts therapeutic interventions from adulthood to early-life, in order to reverse the programming processes, which might counterbalance the rising epidemic of NCDs. This review presented the role of arginine synthesis and metabolism in pregnancy. We also provided evidence for the links between an impaired arginine metabolic pathway and the pathogenesis of compromised pregnancy and fetal programming. This was followed by reprogramming strategies targeting the arginine metabolic pathway, to prevent the developmental programming of NCDs. Despite emerging evidence from experimental studies showing that targeting the arginine metabolic pathway has promise as a reprogramming strategy in pregnancy to prevent NCDs in the offspring, these results need further clinical application.
Collapse
|
14
|
Lenis YY, Johnson GA, Wang X, Tang WW, Dunlap KA, Satterfield MC, Wu G, Hansen TR, Bazer FW. Functional roles of ornithine decarboxylase and arginine decarboxylase during the peri-implantation period of pregnancy in sheep. J Anim Sci Biotechnol 2018; 9:10. [PMID: 29410783 PMCID: PMC5781304 DOI: 10.1186/s40104-017-0225-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/19/2017] [Indexed: 01/03/2023] Open
Abstract
Background Polyamines stimulate DNA transcription and mRNA translation for protein synthesis in trophectoderm cells, as well as proliferation and migration of cells; therefore, they are essential for development and survival of conceptuses (embryo/fetus and placenta). The ovine conceptus produces polyamines via classical and non-classical pathways. In the classical pathway, arginine (Arg) is transformed into ornithine, which is then decarboxylated by ornithine decarboxylase (ODC1) to produce putrescine which is the substrate for the production of spermidine and spermine. In the non-classical pathway, Arg is converted to agmatine (Agm) by arginine decarboxylase (ADC), and Agm is converted to putrescine by agmatinase (AGMAT). Methods Morpholino antisense oligonucleotides (MAOs) were designed and synthesized to inhibit translational initiation of the mRNAs for ODC1 and ADC, in ovine conceptuses. Results The morphologies of MAO control, MAO-ODC1, and MAO-ADC conceptuses were normal. Double knockdown of ODC1 and ADC (MAO-ODC1:ADC) resulted in two phenotypes of conceptuses; 33% of conceptuses appeared to be morphologically and functionally normal (phenotype a) and 67% of the conceptuses presented an abnormal morphology and functionality (phenotype b). Furthermore, MAO-ODC1:ADC (a) conceptuses had greater tissue concentrations of Agm, putrescine, and spermidine than MAO control conceptuses, while MAO-ODC1:ADC (b) conceptuses only had greater tissue concentrations of Agm . Uterine flushes from ewes with MAO-ODC1:ADC (a) had greater amounts of arginine, aspartate, tyrosine, citrulline, lysine, phenylalanine, isoleucine, leucine, and glutamine, while uterine flushes of ewes with MAO-ODC1:ADC (b) conceptuses had lower amount of putrescine, spermidine, spermine, alanine, aspartate, glutamine, tyrosine, phenylalanine, isoleucine, leucine, and lysine. Conclusions The double-knockdown of translation of ODC1 and ADC mRNAs was most detrimental to conceptus development and their production of interferon tau (IFNT). Agm, polyamines, amino acids, and adequate secretion of IFNT are critical for establishment and maintenance of pregnancy during the peri-implantation period of gestation in sheep. Electronic supplementary material The online version of this article (10.1186/s40104-017-0225-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasser Y Lenis
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA.,3Centauro Research Group, School of Veterinary Medicine, Faculty of Agrarian Science, Universidad de Antioquia, Calle 70 No, 52-21 Medellín, Colombia.,Faculty of Agricultural Sciences, Calle 222 No. 55-37, UDCA, Bogota, Colombia
| | - Gregory A Johnson
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - Xiaoqiu Wang
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA.,5Present address: National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 USA
| | - Wendy W Tang
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - Kathrin A Dunlap
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - M Carey Satterfield
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA
| | - Guoyao Wu
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - Thomas R Hansen
- 6Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Fuller W Bazer
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
15
|
Grazul-Bilska AT, Thammasiri J, Kraisoon A, Reyaz A, Bass CS, Kaminski SL, Navanukraw C, Redmer DA. Expression of progesterone receptor protein in the ovine uterus during the estrous cycle: Effects of nutrition, arginine and FSH. Theriogenology 2017; 108:7-15. [PMID: 29175682 DOI: 10.1016/j.theriogenology.2017.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022]
Abstract
To evaluate expression of progesterone receptor (PGR) AB in follicle stimulating hormone (FSH)-treated or non-treated sheep administered with arginine (Arg) or saline (Sal) fed a control (C), excess (O) or restricted (U) diet, uterine tissues were collected at the early, mid and/or late luteal phases. In exp. 1, ewes from each diet were randomly assigned to one of two treatments, Arg or Sal administration three times daily from day 0 of the first estrous cycle until uterine tissue collection. In exp. 2, ewes were injected twice daily with FSH on days 13-15 of the first estrous cycle. Uterine tissues were immunostained to detect PGR followed by image analysis. PGR were detected in luminal epithelium (LE), endometrial glands (EG), endometrial stroma (ES), myometrium (Myo), and endometrial and myometrial blood vessels. The percentage of PR-positive cells and/or intensity of staining were affected by phase of the estrous cycle, plane of nutrition, and/or FSH but not by Arg. In exp. 1, percentage of PGR-positive cells in LE and EG but not in ES and Myo was greater at the early and mid than late luteal phase, was not affected by plane of nutrition, and was similar in LE and EG. Intensity of staining was affected by phase of the estrous cycle and plane of nutrition in LE, EG and Myo, and was the greatest in LE, less in EG, and least in ES and Myo. In exp. 2, percentage of PGR-positive cells in LE, EG, ES and Myo was affected by phase of the estrous cycle, but not by plane of nutrition; was greater at the early than mid luteal phase; and was greatest in LE and EG, less in luminal (superficial) ES and Myo and least in deep ES. Intensity of staining was affected by phase of the estrous cycle and plane of nutrition in all compartments but ES, and was the greatest in LE and luminal EG, less in deep EG, and least in ES and Myo. Comparison of data for FSH (superovulated) and Sal-treated (non-superovulated) ewes demonstrated that FSH affected PR expression in all evaluated uterine compartments depending on plane of nutrition and phase of the estrous cycle. Thus, PGR are differentially distributed in uterine compartments, and PGR expression is affected by nutritional plane and FSH, but not Arg depending on phase of the estrous cycle. Such changes in dynamics of PGR expression indicate that diet plays a regulatory role and that FSH-treatment may alter uterine functions.
Collapse
Affiliation(s)
- Anna T Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Jiratti Thammasiri
- Agricultural Biotechnology Research Center for Sustainable Economy (ABRCSE), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Aree Kraisoon
- Agricultural Biotechnology Research Center for Sustainable Economy (ABRCSE), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Arshi Reyaz
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Casie S Bass
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Samantha L Kaminski
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Chainarong Navanukraw
- Agricultural Biotechnology Research Center for Sustainable Economy (ABRCSE), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Dale A Redmer
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
16
|
Redel BK, Tessanne KJ, Spate LD, Murphy CN, Prather RS. Arginine increases development of in vitro-produced porcine embryos and affects the protein arginine methyltransferase-dimethylarginine dimethylaminohydrolase-nitric oxide axis. Reprod Fertil Dev 2017; 27:655-66. [PMID: 25765074 DOI: 10.1071/rd14293] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 02/14/2015] [Indexed: 12/15/2022] Open
Abstract
Culture systems promote development at rates lower than the in vivo environment. Here, we evaluated the embryo's transcriptome to determine what the embryo needs during development. A previous mRNA sequencing endeavour found upregulation of solute carrier family 7 (cationic amino acid transporter, y+ system), member 1 (SLC7A1), an arginine transporter, in in vitro- compared with in vivo-cultured embryos. In the present study, we added different concentrations of arginine to our culture medium to meet the needs of the porcine embryo. Increasing arginine from 0.12 to 1.69mM improved the number of embryos that developed to the blastocyst stage. These blastocysts also had more total nuclei compared with controls and, specifically, more trophectoderm nuclei. Embryos cultured in 1.69mM arginine had lower SLC7A1 levels and a higher abundance of messages involved with glycolysis (hexokinase 1, hexokinase 2 and glutamic pyruvate transaminase (alanine aminotransferase) 2) and decreased expression of genes involved with blocking the tricarboxylic acid cycle (pyruvate dehydrogenase kinase, isozyme 1) and the pentose phosphate pathway (transaldolase 1). Expression of the protein arginine methyltransferase (PRMT) genes PRMT1, PRMT3 and PRMT5 throughout development was not affected by arginine. However, the dimethylarginine dimethylaminohydrolase 1 (DDAH1) and DDAH2 message was found to be differentially regulated through development, and the DDAH2 protein was localised to the nuclei of blastocysts. Arginine has a positive effect on preimplantation development and may be affecting the nitric oxide-DDAH-PRMT axis.
Collapse
Affiliation(s)
- Bethany K Redel
- Division of Animal Science, Animal Science Research Center, 920 East Campus Drive, Columbia, MO 65211, USA
| | - Kimberly J Tessanne
- Division of Animal Science, Animal Science Research Center, 920 East Campus Drive, Columbia, MO 65211, USA
| | - Lee D Spate
- Division of Animal Science, Animal Science Research Center, 920 East Campus Drive, Columbia, MO 65211, USA
| | - Clifton N Murphy
- Division of Animal Science, Animal Science Research Center, 920 East Campus Drive, Columbia, MO 65211, USA
| | - Randall S Prather
- Division of Animal Science, Animal Science Research Center, 920 East Campus Drive, Columbia, MO 65211, USA
| |
Collapse
|
17
|
Spencer TE, Forde N, Lonergan P. Insights into conceptus elongation and establishment of pregnancy in ruminants. Reprod Fertil Dev 2017; 29:84-100. [DOI: 10.1071/rd16359] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review integrates established and new information on the factors and pathways regulating conceptus–endometrial interactions, conceptus elongation and establishment of pregnancy in sheep and cattle. Establishment of pregnancy in domestic ruminants begins at the conceptus stage (embryo or fetus and associated extra-embryonic membranes) and includes pregnancy recognition signalling, implantation and the onset of placentation. Survival and growth of the preimplantation blastocyst and elongating conceptus require embryotrophic factors (amino acids, carbohydrates, proteins, lipids and other substances) provided by the uterus. The coordinated and interactive actions of ovarian progesterone and conceptus-derived factors (interferon-τ and prostaglandins) regulate expression of elongation- and implantation-related genes in the endometrial epithelia that alter the uterine luminal milieu and affect trophectoderm proliferation, migration, attachment, differentiation and function. A comparison of sheep and cattle finds both conserved and non-conserved embryotrophic factors in the uterus; however, the overall biological pathways governing conceptus elongation and establishment of pregnancy are likely conserved. Given that most pregnancy losses in ruminants occur during the first month of pregnancy, increased knowledge is necessary to understand why and provide a basis for new strategies to improve pregnancy outcome and reproductive efficiency.
Collapse
|
18
|
Grazul-Bilska AT, Khanthusaeng V, Bass CS, Kaminski SL, Navanukraw C, Redmer DA. Lipid droplets in the ovine uterus during the estrous cycle: Effects of nutrition, arginine, and FSH. Theriogenology 2017; 87:212-220. [DOI: 10.1016/j.theriogenology.2016.08.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/14/2016] [Accepted: 08/25/2016] [Indexed: 12/20/2022]
|
19
|
Implantation and pregnancy outcome of Sprague–Dawley rats fed with low and high salt diet. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2016. [DOI: 10.1016/j.mefs.2016.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
Catabolism and safety of supplemental L-arginine in animals. Amino Acids 2016; 48:1541-52. [PMID: 27156062 DOI: 10.1007/s00726-016-2245-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022]
Abstract
L-arginine (Arg) is utilized via multiple pathways to synthesize protein and low-molecular-weight bioactive substances (e.g., nitric oxide, creatine, and polyamines) with enormous physiological importance. Furthermore, Arg regulates cell signaling pathways and gene expression to improve cardiovascular function, augment insulin sensitivity, enhance lean tissue mass, and reduce obesity in humans. Despite its versatile roles, the use of Arg as a dietary supplement is limited due to the lack of data to address concerns over its safety in humans. Data from animal studies are reviewed to assess arginine catabolism and the safety of long-term Arg supplementation. The arginase pathway was responsible for catabolism of 76-85 and 81-96 % Arg in extraintestinal tissues of pigs and rats, respectively. Dietary supplementation with Arg-HCl or the Arg base [315- and 630-mg Arg/(kg BW d) for 91 d] had no adverse effects on male or female pigs. Similarly, no safety issues were observed for male or female rats receiving supplementation with 1.8- and 3.6-g Arg/(kg BW d) for at least 91 d. Intravenous administration of Arg-HCl to gestating sheep at 81 and 180 mg Arg/(kg BW d) is safe for at least 82 and 40 d, respectively. Animals fed conventional diets can well tolerate large amounts of supplemental Arg [up to 630-mg Arg/(kg BW d) in pigs or 3.6-g Arg/(kg BW d) in rats] for 91 d, which are equivalent to 573-mg Arg/(kg BW d) for humans. Collectively, these results can help guide studies to determine the safety of long-term oral administration of Arg in humans.
Collapse
|
21
|
Yuan TL, Zhu YH, Shi M, Li TT, Li N, Wu GY, Bazer FW, Zang JJ, Wang FL, Wang JJ. Within-litter variation in birth weight: impact of nutritional status in the sow. J Zhejiang Univ Sci B 2016; 16:417-35. [PMID: 26055904 DOI: 10.1631/jzus.b1500010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Accompanying the beneficial improvement in litter size from genetic selection for high-prolificacy sows, within-litter variation in birth weight has increased with detrimental effects on post-natal growth and survival due to an increase in the proportion of piglets with low birth-weight. Causes of within-litter variation in birth weight include breed characteristics that affect uterine space, ovulation rate, degree of maturation of oocytes, duration of time required for ovulation, interval between ovulation and fertilization, uterine capacity for implantation and placentation, size and efficiency of placental transport of nutrients, communication between conceptus/fetus and maternal systems, as well as nutritional status and environmental influences during gestation. Because these factors contribute to within-litter variation in birth weight, nutritional status of the sow to improve fetal-placental development must focus on the following three important stages in the reproductive cycle: pre-mating or weaning to estrus, early gestation and late gestation. The goal is to increase the homogeneity of development of oocytes and conceptuses, decrease variations in conceptus development during implantation and placentation, and improve birth weights of newborn piglets. Though some progress has been made in nutritional regulation of within-litter variation in the birth weight of piglets, additional studies, with a focus on and insights into molecular mechanisms of reproductive physiology from the aspects of maternal growth and offspring development, as well as their regulation by nutrients provided to the sow, are urgently needed.
Collapse
Affiliation(s)
- Tao-lin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Department of Animal Science, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hue I. Determinant molecular markers for peri-gastrulating bovine embryo development. Reprod Fertil Dev 2016; 28:51-65. [DOI: 10.1071/rd15355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peri-gastrulation defines the time frame between blastocyst formation and implantation that also corresponds in cattle to elongation, pregnancy recognition and uterine secretion. Optimally, this developmental window prepares the conceptus for implantation, placenta formation and fetal development. However, this is a highly sensitive period, as evidenced by the incidence of embryo loss or early post-implantation mortality after AI, embryo transfer or somatic cell nuclear transfer. Elongation markers have often been used within this time frame to assess developmental defects or delays, originating either from the embryo, the uterus or the dam. Comparatively, gastrulation markers have not received great attention, although elongation and gastrulation are linked by reciprocal interactions at the molecular and cellular levels. To make this clearer, this peri-gastrulating period is described herein with a focus on its main developmental landmarks, and the resilience of the landmarks in the face of biotechnologies is questioned.
Collapse
|
23
|
Bazer FW, Wang X, Johnson GA, Wu G. Select nutrients and their effects on conceptus development in mammals. ACTA ACUST UNITED AC 2015; 1:85-95. [PMID: 29767122 PMCID: PMC5945975 DOI: 10.1016/j.aninu.2015.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/30/2015] [Indexed: 11/30/2022]
Abstract
The dialogue between the mammalian conceptus (embryo/fetus and associated membranes) involves signaling for pregnancy recognition and maintenance of pregnancy during the critical peri-implantation period of pregnancy when the stage is set for implantation and placentation that precedes fetal development. Uterine epithelial cells secrete and/or transport a wide range of molecules, including nutrients, collectively referred to as histotroph that are transported into the fetal-placental vascular system to support growth and development of the conceptus. The availability of uterine-derived histotroph has long-term consequences for the health and well-being of the fetus and the prevention of adult onset of metabolic diseases. Histotroph includes numerous amino acids, but arginine plays a particularly important role as a source of nitric oxide and polyamines required for fetal-placental development in rodents, swine and humans through mechanisms that remain to be fully elucidated. Mechanisms whereby arginine regulates expression of genes via the mechanistic target of rapamycin cell signaling pathways critical to conceptus development, implantation and placentation are discussed in detail in this review.
Collapse
Affiliation(s)
- Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Xiaoqiu Wang
- Departments of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Greg A Johnson
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| |
Collapse
|
24
|
Hou Y, Yin Y, Wu G. Dietary essentiality of "nutritionally non-essential amino acids" for animals and humans. Exp Biol Med (Maywood) 2015; 240:997-1007. [PMID: 26041391 DOI: 10.1177/1535370215587913] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Based on growth or nitrogen balance, amino acids (AA) had traditionally been classified as nutritionally essential (indispensable) or non-essential (dispensable) for animals and humans. Nutritionally essential AA (EAA) are defined as either those AA whose carbon skeletons cannot be synthesized de novo in animal cells or those that normally are insufficiently synthesized de novo by the animal organism relative to its needs for maintenance, growth, development, and health and which must be provided in the diet to meet requirements. In contrast, nutritionally non-essential AA (NEAA) are those AA which can be synthesized de novo in adequate amounts by the animal organism to meet requirements for maintenance, growth, development, and health and, therefore, need not be provided in the diet. Although EAA and NEAA had been described for over a century, there are no compelling data to substantiate the assumption that NEAA are synthesized sufficiently in animals and humans to meet the needs for maximal growth and optimal health. NEAA play important roles in regulating gene expression, cell signaling pathways, digestion and absorption of dietary nutrients, DNA and protein synthesis, proteolysis, metabolism of glucose and lipids, endocrine status, men and women fertility, acid-base balance, antioxidative responses, detoxification of xenobiotics and endogenous metabolites, neurotransmission, and immunity. Emerging evidence indicates dietary essentiality of "nutritionally non-essential amino acids" for animals and humans to achieve their full genetic potential for growth, development, reproduction, lactation, and resistance to metabolic and infectious diseases. This concept represents a new paradigm shift in protein nutrition to guide the feeding of mammals (including livestock), poultry, and fish.
Collapse
Affiliation(s)
- Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yulong Yin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Guoyao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
25
|
Bazer FW, Ying W, Wang X, Dunlap KA, Zhou B, Johnson GA, Wu G. The many faces of interferon tau. Amino Acids 2015; 47:449-460. [PMID: 25557050 DOI: 10.1007/s00726-014-1905-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 12/15/2014] [Indexed: 01/05/2023]
Abstract
Interferon tau (IFNT) was discovered as the pregnancy recognition signal in ruminants, but is now known to have a plethora of physiological functions in the mammalian uterus. The mammalian uterus includes, from the outer surface to the lumen, the serosa, myometrium and endometrium. The endometrium consists of the luminal, superficial glandular, and glandular epithelia, each with a unique phenotype, stromal cells, vascular elements, nerves and immune cells. The uterine epithelia secrete or selectively transport molecules into the uterine lumen that are collectively known as histotroph. Histotroph is required for growth and development of the conceptus (embryo and its associated extra-embryonic membranes) and includes nutrients such as amino acids and glucose, enzymes, growth factors, cytokines, lymphokines, transport proteins for vitamins and minerals and extracellular matrix molecules. Interferon tau and progesterone stimulate transport of amino acids in histotroph, particularly arginine. Arginine stimulates the mechanistic target of rapamycin pathway to induce proliferation, migration and protein synthesis by cells of the conceptus, and arginine is the substrate for synthesis of nitric oxide and polyamines required for growth and development of the conceptus. In ruminants, IFNT also acts in concert with progesterone from the corpus luteum to increase expression of genes for transport of nutrients into the uterine lumen, as well as proteases, protease inhibitors, growth factors for hematopoiesis and angiogenesis and other molecules critical for implantation and placentation. Collectively, the pleiotropic effects of IFNT contribute to survival, growth and development of the ruminant conceptus.
Collapse
Affiliation(s)
- Fuller W Bazer
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX, 77843-2471, USA,
| | | | | | | | | | | | | |
Collapse
|
26
|
Wang X, Burghardt RC, Romero JJ, Hansen TR, Wu G, Bazer FW. Functional roles of arginine during the peri-implantation period of pregnancy. III. Arginine stimulates proliferation and interferon tau production by ovine trophectoderm cells via nitric oxide and polyamine-TSC2-MTOR signaling pathways. Biol Reprod 2015; 92:75. [PMID: 25653279 DOI: 10.1095/biolreprod.114.125989] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In mammal species, arginine is a multifunctional amino acid required for survival, growth, and development of conceptuses (embryo/fetus and associated extraembryonic membranes) during the peri-implantation period of pregnancy. However, functional roles of arginine with respect to it being a substrate for production of nitric oxide (NO) and polyamines on trophectoderm cell proliferation and function remain largely unknown. To systematically assess roles of arginine in conceptus development and its effect on interferon tau (IFNT) production for pregnancy recognition signaling in ruminants, an established ovine trophectoderm (oTr1) cell line isolated from Day-15 ovine conceptuses were used to determine their response to arginine, putrescine, and NO donors, as well as their associated inhibitors. Arginine at physiological concentration (0.2 mM) stimulated maximum oTr cell proliferation (increased 2.0-fold at 48 h and 2.6-fold at 96 h; P < 0.05), stimulated IFNT production (IFNT/cell increased 3.1-fold; P < 0.05), and increased total protein per cell by more than 1.5-fold (P < 0.05). It also increased phosphorylated tuberous sclerosis protein (p-TSC2) and phosphorylated mechanistic target of rapamycin (MTOR) abundance by more than 2.7- and 4.3-fold (P < 0.0001) after long-term incubation, respectively. When Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME; NO synthase inhibitor), DL-α-difluoromethylornithine hydrochloride hydrate (DFMO; ornithine decarboxylase inhibitor), and the combination (L-NAME + DFMO) were added, the effects of arginine on cell proliferation was reduced by 10.7%, 16.1%, and 22.3% (P < 0.05) at 48 h, and 15.3%, 27.2%, and 39.1% (P < 0.05) at 96 h of incubation, respectively, but values remained 1.5-fold higher (P < 0.05) than for the arginine-free control, which suggests that arginine, per se, serves as a growth factor. Both putrescine and NO stimulate cell proliferation via activation of the TSC2-MTOR signaling cascade, whereas only putrescine increased IFNT production. Collectively, our results indicate that arginine is essential for oTr1 cell proliferation and IFNT production via the NO/polyamine-TSC2-MTOR signaling pathways, particularly the pathway involving polyamine biosynthesis.
Collapse
Affiliation(s)
- Xiaoqiu Wang
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas Department of Animal Science, Texas A&M University, College Station, Texas
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Jared J Romero
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Thomas R Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Guoyao Wu
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas Department of Animal Science, Texas A&M University, College Station, Texas
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas Department of Animal Science, Texas A&M University, College Station, Texas
| |
Collapse
|
27
|
Dai Z, Wu Z, Hang S, Zhu W, Wu G. Amino acid metabolism in intestinal bacteria and its potential implications for mammalian reproduction. Mol Hum Reprod 2015; 21:389-409. [PMID: 25609213 DOI: 10.1093/molehr/gav003] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/15/2015] [Indexed: 12/13/2022] Open
Abstract
Reproduction is vital for producing offspring and preserving genetic resources. However, incidences of many reproductive disorders (e.g. miscarriage, intrauterine growth restriction, premature delivery and lower sperm quality) have either increased dramatically or remained at high rates over the last decades. Mounting evidence shows a strong correlation between enteral protein nutrition and reproduction. Besides serving as major nutrients in the diet, amino acids (AA) are signaling molecules in the regulation of diverse physiological processes, ranging from spermatogenesis to oocyte fertilization and to embryo implantation. Notably, the numbers of bacteria in the intestine exceed the numbers of host cells by 10 times. Microbes in the small-intestinal lumen actively metabolize large amounts of dietary AA and, therefore, affect the entry of AA into the portal circulation for whole-body utilization. Changes in the composition and abundance of AA-metabolizing bacteria in the gut during pregnancy, as well as their translocation to the uterus, may alter uterine function and epigenetic modifications of maternal physiology and metabolism, which are crucial for pregnancy recognition and fetal development. Thus, the presence of the maternal gut microbiota and AA metabolites in the intrauterine environments (e.g. endometrium and placenta) and breast milk is likely a unique signature for the programming of the whole-body microbiome and metabolism in both the fetus and infant. Dietary intervention with functional AA, probiotics and prebiotics to alter the abundance and activity of intestinal bacteria may ameliorate or prevent the development of metabolic syndrome, while improving reproductive performance in both males and females as well as their offspring.
Collapse
Affiliation(s)
- Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Suqin Hang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|