1
|
Timme K, Inyang I, White HE, Keating AF. Diet-induced obesity alters the ovarian chemical biotransformation and oxidative stress response proteins both basally and in response to 7,12-dimethylbenz[a]anthracene exposure. Toxicol Sci 2025; 204:9-19. [PMID: 39910959 DOI: 10.1093/toxsci/kfae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
7,12-Dimethylbenz[a]anthracene (DMBA) is a polycyclic aromatic hydrocarbon that causes female infertility via DNA damage, and the ovary has the capacity to mitigate DMBA exposure via the action of proteins including the glutathione S-transferase (GST) family. Due to previous findings of DNA damage and a reduced ovarian chemical biotransformation response to DMBA exposure in hyperphagia-induced obese mice, this study investigated the hypothesis that diet-induced obesity would hamper the ovarian biotransformative response to DMBA exposure. Six-week-old C57BL6/J mice were fed either a normal rodent diet (L) or a high fat high sucrose diet (O) until the O group was ∼30% heavier than the L. Both L and O mice were exposed to either corn oil (C) or DMBA (1 mg/kg) for 7 d. Liver weight was increased (P < 0.05) in obese mice exposed to DMBA but no effect on spleen weight, uterine weight, ovary weight, estrous cyclicity, or circulating 17β-estradiol and progesterone were observed. Primordial and preantral follicle numbers were higher (P < 0.05) in the obese mice and there was a tendency (P = 0.055) for higher antral follicles in DMBA-exposed obese mice. The ovarian proteome was identified by LC-MS/MS analysis to be altered both by diet-induced obesity and by DMBA exposure with changes observed in levels of proteins involved in oocyte development and chemical biotransformation, including GST isoform pi. Fewer proteins were affected by the combined exposure of diet and DMBA than by a single treatment, indicating that physiological status impacts the response to DMBA exposure.
Collapse
Affiliation(s)
- Kelsey Timme
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States
| | - Imaobong Inyang
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States
| | - Hunter E White
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States
| |
Collapse
|
2
|
Wołodko K, Šentjurc T, Walewska E, Laniecka E, Jura M, Galvão A. Increased susceptibility to diet-induced obesity in female mice impairs ovarian steroidogenesis: The role of elevated leptin signalling on nodal activity inhibition in theca cells. Mol Metab 2025; 91:102062. [PMID: 39536822 PMCID: PMC11646782 DOI: 10.1016/j.molmet.2024.102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVES Susceptibility to obesity in humans is driven by the intricate interplay of genetic, environmental and behavioural factors. Moreover, the mechanisms linking maternal obesity to infertility remain largely understudied. In this study, we investigated how variable susceptibility to obesity in mice affects ovarian steroidogenesis, with a particular focus on the leptin-mediated dysregulation of Nodal signalling pathway in theca cells (TC). METHODS C56BL/6J (B6) and 129S1/SvlmJ (129) mice, models of maternal obesity (MO), were fed a chow diet (CD) and a high fat diet (HFD) for 16 weeks. To investigate the contrasting effects of leptin on ovarian steroidogenesis, B6 mice pharmacologically treated with leptin for 16 days on CD were used to model hyperleptinemia, while homozygous ob/ob (-/-) mice with genetic leptin deficiency, also on a CD, were used to examine the effects of obesity in the absence of leptin. Following the characterisation of the mouse phenotype, gonadal fat (GON), whole ovaries (WO), ovarian TC and granulosa cell (GC) fractions were collected for mRNA transcription and protein expression analysis. Finally, in vitro treated ovarian explants obtained from B6 mice were used to further elucidate the effects of Nodal on steroidogenesis. RESULTS The significant gain in body weight (BW) and fat mass (FM) in HFD-fed B6 mice (p < 0.05), was associated with increased mRNA transcription of the adipose tissue expansion genes Polymerase I and transcript release factor (Cavin), Secreted frizzled-related protein 5 (Sfrp5) and Mesoderm specific transcript (Mest) in GON (p < 0.05). Furthermore, the HFD-fed B6 mice presented also impaired glucose metabolism and insulin sensitivity (p < 0.05). In contrast, the HFD-fed 129 mice exhibited no changes in BW and FM, maintaining glucose and insulin metabolism. At the ovarian level, decreased protein expression of Steroidogenic Acute Regulatory Protein (StAR) in WO obtained from HFD-fed B6 mice (p = 0.05), was followed by reduced transcription of key steroidogenic genes like Star and Cytochrome P450 17a1 (Cyp17a) in TC (p < 0.05). Furthermore, the transcription of Nodal and its receptors was downregulated (p < 0.05), whereas mRNA levels of Suppressor of cytokine signalling 3 (Socs3) and SMAD family member 7 (Smad7) were upregulated in TC obtained from HFD-fed B6 mice (p < 0.05). No changes were seen in the genes regulating steroidogenesis, Nodal signalling, or Socs3 and Smad7 activity in the ovaries of HFD-fed 129 mice. Importantly, the pharmacological treatment of lean mice with leptin, upregulated the ovarian transcription of Socs3 and Smad7, while downregulating Nodal and its receptors (p < 0.05). Finally, in vitro pharmacological inhibition of Nodal signalling pathway in ovarian explants isolated from CD-fed B6 mice decreased the transcription of Star and Cyp17a in TC (p < 0.05), whereas Nodal treatment of explants obtained from HFD-fed B6 mice restored the transcription of both genes (p < 0.05). CONCLUSIONS Increased susceptibility to obesity in MO is associated with systemic hyperleptinemia and hypoestrogenism due to compromised ovarian steroidogenesis, largely driven by the inhibitory effects of leptin-Smad7 pathway on Nodal signalling activity in the TC compartment of ovarian follicles.
Collapse
Affiliation(s)
- Karolina Wołodko
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland
| | - Tjaša Šentjurc
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland
| | - Edyta Walewska
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland
| | - Elżbieta Laniecka
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland
| | - Magdalena Jura
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland
| | - António Galvão
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland; The Royal Veterinary College, University of London, London, NW1 0TU, UK.
| |
Collapse
|
3
|
Li T, Wei Y, Jiao B, Hao R, Zhou B, Bian X, Wang P, Zhou Y, Sun X, Zhang J. Bushen Huoxue formula attenuates lipid accumulation evoking excessive autophagy in premature ovarian insufficiency rats and palmitic acid-challenged KGN cells by modulating lipid metabolism. Front Pharmacol 2024; 15:1425844. [PMID: 39351088 PMCID: PMC11439644 DOI: 10.3389/fphar.2024.1425844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Premature ovarian insufficiency (POI) has affected about 3.7% of women of reproductive age and is a major factor contributing to infertility. Bushen Huoxue formula (BHF), a traditional Chinese medicine prescription, is clinically used to treat POI in China. This study aims to investigate the potential mechanisms of BHF in combating POI using corticosterone-induced rats and palmitic acid (PA)-challenged human ovarian granulosa cells (GCs). Methods Initially, ultra performance liquid chromatography tandem mass spectrometry was employed to analyze the components of BHF. The pharmacodynamic parameters evaluated included body weight, ovaries index, and serum hormone in rats. Follicle numbers were observed using H&E staining. Additionally, PCNA and TUNEL staining were used to assess GCs proliferation and apoptosis, respectively. Lipid accumulation and ROS levels were examined using Oil Red O and ROS staining. Protein expressions were determined by western blot. To probe mechanisms, cell viability and E2 levels in BHF-treated, PA-stimulated GCs were determined using MTT and ELISA, respectively. Cell apoptosis and ROS levels were assessed using TUNEL and ROS staining. Proteins related to lipid metabolism and autophagy in PA-stimulated GCs were studied using agonists. Results Our results shown that BHF effectively normalized serum hormone levels, including follicle-stimulating hormone (FSH), anti-Müllerian hormone (AMH), estradiol (E2), and luteinizing hormone (LH). Concurrently, BHF also significantly reduced follicular atresia and promoted cell proliferation while inhibiting apoptosis in POI rats. Furthermore, BHF mitigated ovarian lipid accumulation by modulating lipid metabolism, which included reducing lipid synthesis (expression of peroxisome proliferator-activated receptor γ and CCAAT/enhancer binding protein α), increasing lipid catabolism (expression of adipose triglyceride lipase), and enhancing lipid oxidation (expression of carnitine palmitoyl transferase 1A). Mechanistically, the therapeutic effects of BHF on POI were linked with alleviation of lipid deposition-induced reactive oxygen species (ROS) accumulation and excessive autophagy, corroborating the results in PA-challenged GCs. After treatment with elesclomol (a ROS inducer) and rapamycin (an autophagy inducer) in GCs, the effects of BHF were almost counteracted under model conditions. Conclusion These findings suggest that BHF alleviates the symptoms of POI by altering lipid metabolism and reducing lipid accumulation-induced ROS and autophagy, offering evidence for BHF's efficacy in treating POI clinically.
Collapse
Affiliation(s)
- Tian Li
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
- Clinical College of Traditional Chinese Medicine Hospital in Lishui, Jiangsu Health Vocational College, Nanjing, China
| | - Yao Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Beibie Jiao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Tonglu Hospital of Traditional Chinese Medicine, Tonglu, China
| | - Rui Hao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Beibei Zhou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinlan Bian
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
- Clinical College of Traditional Chinese Medicine Hospital in Lishui, Jiangsu Health Vocational College, Nanjing, China
| | - Peijuan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yahong Zhou
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Xia Sun
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
- Clinical College of Traditional Chinese Medicine Hospital in Lishui, Jiangsu Health Vocational College, Nanjing, China
| | - Jian Zhang
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
- Clinical College of Traditional Chinese Medicine Hospital in Lishui, Jiangsu Health Vocational College, Nanjing, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Novbatova G, Fox I, Timme K, Keating AF. High fat diet-induced obesity and gestational DMBA exposure alter folliculogenesis and the proteome of the maternal ovary†. Biol Reprod 2024; 111:496-511. [PMID: 38813940 PMCID: PMC11327317 DOI: 10.1093/biolre/ioae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/29/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Obesity and ovotoxicant exposures impair female reproductive health with greater ovotoxicity reported in obese relative to lean females. The mother and developing fetus are vulnerable to both during gestation. 7,12-dimethylbenz[a]anthracene (DMBA) is released during carbon combustion including from cigarettes, coal, fossil fuels, and forest fires. This study investigated the hypothesis that diet-induced obesity would increase sensitivity of the ovaries to DMBA-induced ovotoxicity and determined impacts of both obesity and DMBA exposure during gestation on the maternal ovary. Female C57BL/6 J mice were fed a control or a High Sugar High Fat (45% kcal from fat; 20% kcal from sucrose) diet until ~30% weight gain was attained before mating with unexposed males. From gestation Day 7, mice were exposed intraperitoneally to either vehicle control (corn oil) or DMBA (1 mg/kg diluted in corn oil) for 7 d. Thus, there were four groups: lean control (LC); lean DMBA exposed; obese control; obese DMBA exposed. Gestational obesity and DMBA exposure decreased (P < 0.05) ovarian and increased liver weights relative to LC dams, but there was no treatment impact (P > 0.05) on spleen weight or progesterone. Also, obesity exacerbated the DMBA reduction (P < 0.05) in the number of primordial, secondary follicles, and corpora lutea. In lean mice, DMBA exposure altered abundance of 21 proteins; in obese dams, DMBA exposure affected 134 proteins while obesity alone altered 81 proteins in the maternal ovary. Thus, the maternal ovary is impacted by DMBA exposure and metabolic status influences the outcome.
Collapse
Affiliation(s)
- Gulnara Novbatova
- Department of Animal Science, Iowa State University, 806 Stange rd, Ames, IA 50011, United States of America
| | - Isabelle Fox
- Department of Animal Science, Iowa State University, 806 Stange rd, Ames, IA 50011, United States of America
| | - Kelsey Timme
- Department of Animal Science, Iowa State University, 806 Stange rd, Ames, IA 50011, United States of America
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, 806 Stange rd, Ames, IA 50011, United States of America
| |
Collapse
|
5
|
Rishi JK, Timme K, White HE, Kerns KC, Keating AF. Trajectory of primordial follicle depletion is accelerated in obese mice in response to 7,12-dimethylbenz[a]anthracene exposure†. Biol Reprod 2024; 111:483-495. [PMID: 38625059 PMCID: PMC11327319 DOI: 10.1093/biolre/ioae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/11/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024] Open
Abstract
Both obesity and exposure to environmental genotoxicants, such as 7,12-dimethylbenz[a]anthracene, negatively impair female reproductive health. Hyperphagic lean KK.Cg-a/a (n = 8) and obese KK.Cg-Ay/J (n = 10) mice were exposed to corn oil as vehicle control (CT) or 7,12-dimethylbenz[a]anthracene (1 mg/kg/day) for 7d intraperitoneally, followed by a recovery period. Obesity increased liver and spleen weight (P < 0.05), and 7,12-dimethylbenz[a]anthracene exposure decreased uterine weight (P < 0.05) in obese mice. Primordial follicle loss (P < 0.05) caused by 7,12-dimethylbenz[a]anthracene exposure was observed in obese mice only. Primary (lean P < 0.1; obese P < 0.05) and secondary (lean P < 0.05, obese P < 0.1) follicle loss initiated by 7,12-dimethylbenz[a]anthracene exposure continued across recovery. Reduced pre-antral follicle number in lean mice (P < 0.05), regardless of 7,12-dimethylbenz[a]anthracene exposure, was evident with no effect on antral follicles or corpora lutea number. Immunofluorescence staining of DNA damage marker, γH2AX, did not indicate ongoing DNA damage but TRP53 abundance was decreased in follicles (P < 0.05) of 7,12-dimethylbenz[a]anthracene-exposed obese mice. In contrast, increased (P < 0.05) superoxide dismutase was observed in the corpora lutea of 7,12-dimethylbenz[a]anthracene-exposed obese mice and reduced (P < 0.05) TRP53 abundance was noted in preantral and antral follicles of 7,12-dimethylbenz[a]anthracene-exposed obese mice. This study indicates that obesity influences ovotoxicity caused by a genotoxicant, potentially involving accelerated primordial follicle activation and hampering normal follicular dynamics.
Collapse
Affiliation(s)
- Jaspreet K Rishi
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States
| | - Kelsey Timme
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States
| | - Hunter E White
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States
| | - Karl C Kerns
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States
| |
Collapse
|
6
|
Timme K, González-Alvarez ME, Keating AF. Pre-pubertal obesity compromises ovarian oxidative stress, DNA repair and chemical biotransformation. Toxicol Appl Pharmacol 2024; 489:116981. [PMID: 38838792 DOI: 10.1016/j.taap.2024.116981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/07/2024]
Abstract
Obesity in adult females impairs fertility by altering oxidative stress, DNA repair and chemical biotransformation. Whether prepubertal obesity results in similar ovarian impacts is under-explored. The objective of this study was to induce obesity in prepubertal female mice and assess puberty onset, follicle number, and abundance of oxidative stress, DNA repair and chemical biotransformation proteins basally and in response to 7,12-dimethylbenz(a)anthracene (DMBA) exposure. DMBA is a polycyclic aromatic hydrocarbon that has been shown to be ovotoxic. Lactating dams (C57BL6J) were fed either a normal rodent containing 3.5% kCal from fat (lean), or a high fat diet comprised of 60% kCal from fat, and 9% kCal from sucrose. The offspring were weaned onto the diet of their dam and exposed at postnatal day 35 to either corn oil or DMBA (1 mg/kg) for 7 d via intraperitoneal injection. Mice on the HFD had reduced (P < 0.05) age at puberty onset as measured by vaginal opening but DMBA did not impact puberty onset. Heart, spleen, kidney, uterus and ovary weight were increased (P < 0.05) by obesity and liver weight was increased (P < 0.05) by DMBA exposure in obese mice. Follicle number was largely unaffected by obesity or DMBA exposure, with the exception of primary follicle number, which were higher (P < 0.05) in lean DMBA exposed and obese control relative to lean control mice. There were also greater numbers (P < 0.05) of corpora lutea in obese relative to lean mice. In lean mice, DMBA exposure reduced (P < 0.05) the level of CYP2E1, EPHX1, GSTP1, BRCA1, and CAT but this DMBA-induced reduction was absent in obese mice. Basally, obesity reduced (P < 0.05) the abundance of CYP2E1, EPHX1, GSTP1, BRCA1, SOD1 and CAT. There was greater (P < 0.05) fibrotic staining in obese DMBA-exposed ovaries and PPP2CA was decreased (P < 0.05) in growing follicles by both obesity and DMBA exposure. Thus, prepubertal obesity alters the capacity of the ovary to respond to DNA damage, ovotoxicant exposure and oxidative stress.
Collapse
Affiliation(s)
- Kelsey Timme
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | | | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| |
Collapse
|
7
|
Zaniker EJ, Zhang M, Hughes L, La Follette L, Atazhanova T, Trofimchuk A, Babayev E, Duncan FE. Shear wave elastography to assess stiffness of the human ovary and other reproductive tissues across the reproductive lifespan in health and disease†. Biol Reprod 2024; 110:1100-1114. [PMID: 38609185 PMCID: PMC11180622 DOI: 10.1093/biolre/ioae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The ovary is one of the first organs to show overt signs of aging in the human body, and ovarian aging is associated with a loss of gamete quality and quantity. The age-dependent decline in ovarian function contributes to infertility and an altered endocrine milieu, which has ramifications for overall health. The aging ovarian microenvironment becomes fibro-inflammatory and stiff with age, and this has implications for ovarian physiology and pathology, including follicle growth, gamete quality, ovulation dynamics, and ovarian cancer. Thus, developing a non-invasive tool to measure and monitor the stiffness of the human ovary would represent a major advance for female reproductive health and longevity. Shear wave elastography is a quantitative ultrasound imaging method for evaluation of soft tissue stiffness. Shear wave elastography has been used clinically in assessment of liver fibrosis and characterization of tendinopathies and various neoplasms in thyroid, breast, prostate, and lymph nodes as a non-invasive diagnostic and prognostic tool. In this study, we review the underlying principles of shear wave elastography and its current clinical uses outside the reproductive tract as well as its successful application of shear wave elastography to reproductive tissues, including the uterus and cervix. We also describe an emerging use of this technology in evaluation of human ovarian stiffness via transvaginal ultrasound. Establishing ovarian stiffness as a clinical biomarker of ovarian aging may have implications for predicting the ovarian reserve and outcomes of Assisted Reproductive Technologies as well as for the assessment of the efficacy of emerging therapeutics to extend reproductive longevity. This parameter may also have broad relevance in other conditions where ovarian stiffness and fibrosis may be implicated, such as polycystic ovarian syndrome, late off target effects of chemotherapy and radiation, premature ovarian insufficiency, conditions of differences of sexual development, and ovarian cancer. Summary sentence: Shear Wave Elastography is a non-invasive technique to study human tissue stiffness, and here we review its clinical applications and implications for reproductive health and disease.
Collapse
Affiliation(s)
- Emily J Zaniker
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Man Zhang
- Department of Radiology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lydia Hughes
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Tomiris Atazhanova
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alexis Trofimchuk
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA
| |
Collapse
|
8
|
Rishi JK, Timme K, White HE, Kerns KC, Keating AF. Altered histone abundance as a mode of ovotoxicity during 7,12-dimethylbenz[a]anthracene exposure with additive influence of obesity†. Biol Reprod 2024; 110:419-429. [PMID: 37856498 PMCID: PMC10873273 DOI: 10.1093/biolre/ioad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/24/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Histones are slowly evolving chromatin components and chromatin remodeling can incorporate histone variants differing from canonical histones as an epigenetic modification. Several identified histone variants are involved with the environmental stress-induced DNA damage response (DDR). Mechanisms of DDR in transcriptionally inactive, prophase-arrested oocytes and epigenetic regulation are under-explored in ovarian toxicology. The study objective was to identify ovarian proteomic and histone modifications induced by DMBA exposure and an influence of obesity. Post-pubertal wildtype (KK.Cg-a/a; lean) and agouti (KK.Cg-Ay/J; obese) female mice, were exposed to either corn oil (control; CT) or DMBA (1 mg/kg) for 7d via intraperitoneal injection (n = 10/treatment). Ovarian proteome analysis (LC-MS/MS) determined that obesity altered 225 proteins (P < 0.05) with histone 3 being the second least abundant (FC = -5.98, P < 0.05). Histone 4 decreased by 3.33-fold, histone variant H3.3 decreased by 3.05-fold, and H1.2, H1.4 and H1.1(alpha) variants increased by 1.59, 1.90 and 2.01-fold, respectively (P < 0.05). DMBA exposure altered 48 proteins in lean mice with no observed alterations in histones or histone variants. In obese mice, DMBA exposure altered 120 proteins and histone 2B abundance increased by 0.30-fold (P < 0.05). In DMBA-exposed mice, obesity altered the abundance of 634 proteins. Histones 4, 3 and 2A type 1-F decreased by 4.03, 3.71, 0.43-fold, respectively, whereas histone variant H1.2 and linker histone, H15 increased by 2.72- and 3.07-fold, respectively (P < 0.05). Thus, DMBA exposure alters histones and histone variants, and responsivity is more pronounced during obesity, potentially altering ovarian transcriptional regulation.
Collapse
Affiliation(s)
- Jaspreet K Rishi
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Kelsey Timme
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Hunter E White
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Karl C Kerns
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
9
|
Kordowitzki P, Graczyk S, Haghani A, Klutstein M. Oocyte Aging: A Multifactorial Phenomenon in A Unique Cell. Aging Dis 2024; 15:5-21. [PMID: 37307833 PMCID: PMC10796106 DOI: 10.14336/ad.2023.0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
The oocyte is considered to be the largest cell in mammalian species. Women hoping to become pregnant face a ticking biological clock. This is becoming increasingly challenging as an increase in life expectancy is accompanied by the tendency to conceive at older ages. With advancing maternal age, the fertilized egg will exhibit lower quality and developmental competence, which contributes to increased chances of miscarriage due to several causes such as aneuploidy, oxidative stress, epigenetics, or metabolic disorders. In particular, heterochromatin in oocytes and with it, the DNA methylation landscape undergoes changes. Further, obesity is a well-known and ever-increasing global problem as it is associated with several metabolic disorders. More importantly, both obesity and aging negatively affect female reproduction. However, among women, there is immense variability in age-related decline of oocytes' quantity, developmental competence, or quality. Herein, the relevance of obesity and DNA-methylation will be discussed as these aspects have a tremendous effect on female fertility, and it is a topic of continuous and widespread interest that has yet to be fully addressed for the mammalian oocyte.
Collapse
Affiliation(s)
- Pawel Kordowitzki
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland.
| | - Szymon Graczyk
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland.
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Altos Labs, San Diego, CA, USA.
| | - Michael Klutstein
- Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Ramadan AG, Abdel-Rehim WM, El-Tahan RA, Elblehi SS, Kamel MA, Shaker SA. Maternal and paternal obesity differentially reprogram the ovarian mitochondrial biogenesis of F1 female rats. Sci Rep 2023; 13:15480. [PMID: 37726284 PMCID: PMC10509203 DOI: 10.1038/s41598-023-42468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023] Open
Abstract
Obesity has harmful consequences on reproductive outcomes and the rapid increase in obesity is assumed to be influenced by epigenetics and trans-generation effects. Our study aimed to explore the effect of maternal and/or paternal obesity on the ovarian tissues of the first-generation female offspring in rats. The study was conducted on 40 adult Wistar albino rats (20 males and 20 females). Obesity was induced by feeding them an obesogenic diet for 3 months. The pregnancy was induced in the females by mating with males in four combinations: healthy mother with healthy father (control parents, CP), healthy mother with obese fathers (OF), obese mothers with healthy father (OM), and obese mother with obese father (obese parents, OP). After delivery, the female offspring at two months were sacrificed, and the blood and ovarian tissues were collected to assess the studied parameters. Our result showed differential impacts of maternal and paternal obesity on the ovarian health of the female offspring. The female offspring of obese OM or OP showed early signs of obesity. These metabolic abnormalities were associated with signs of ovarian lesions, impaired folliculogenesis, and decreased oocyte quality and also showed significant alterations in mitochondrial biogenesis, redox status, inflammation, and microRNAs expression (miR-149 and miR-494). In conclusion, altered ovarian expression of microRNAs and associated impaired mitochondrial biogenesis pathways may be the root causes for the observed intergeneration transmission of the obesogenic phenotype.
Collapse
Affiliation(s)
- Amina G Ramadan
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, EL-Hadara, POB: 21561, Alexandria, Egypt.
| | - Wafaa M Abdel-Rehim
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, EL-Hadara, POB: 21561, Alexandria, Egypt
| | - Rasha A El-Tahan
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, EL-Hadara, POB: 21561, Alexandria, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, EL-Hadara, POB: 21561, Alexandria, Egypt
| | - Sara A Shaker
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, EL-Hadara, POB: 21561, Alexandria, Egypt.
| |
Collapse
|
11
|
González-Alvarez ME, Keating AF. Hepatic and ovarian effects of perfluorooctanoic acid exposure differ in lean and obese adult female mice. Toxicol Appl Pharmacol 2023; 474:116614. [PMID: 37422089 DOI: 10.1016/j.taap.2023.116614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Obesity and overweight cause poor oocyte quality, miscarriage, infertility, polycystic ovarian syndrome, and offspring birth defects and affects 40% and 20% of US women and girls, respectively. Perfluorooctanoic acid (PFOA), a per- and poly-fluoroalkyl substance (PFAS), is environmentally persistent and has negative female reproductive effects including endocrine disruption, oxidative stress, altered menstrual cyclicity, and decreased fertility in humans and animal models. PFAS exposure is associated with non-alcoholic fatty liver disease which affects ∼24-26% of the US population. This study investigated the hypothesis that PFOA exposure impacts hepatic and ovarian chemical biotransformation and alters the serum metabolome. At 7 weeks of age, female lean, wild type (KK.Cg-a/a) or obese (KK.Cg-Ay/J) mice received saline (C) or PFOA (2.5 mg/Kg) per os for 15 d. Hepatic weight was increased by PFOA exposure in both lean and obese mice (P < 0.05) and obesity also increased liver weight (P < 0.05) compared to lean mice. The serum metabolome was also altered (P < 0.05) by PFOA exposure and differed between lean and obese mice. Exposure to PFOA altered (P < 0.05) the abundance of ovarian proteins with roles in xenobiotic biotransformation (lean - 6; obese - 17), metabolism of fatty acids (lean - 3; obese - 9), cholesterol (lean - 8; obese - 11), amino acids (lean - 18; obese - 19), glucose (lean - 7; obese - 10), apoptosis (lean - 18; obese - 13), and oxidative stress (lean - 3; obese - 2). Use of qRT-PCR determined that exposure to PFOA increased (P < 0.05) hepatic Ces1 and Chst1 in lean but Ephx1 and Gstm3 in obese mice. Also, obesity basally increased (P < 0.05) Nat2, Gpi and Hsd17b2 mRNA levels. These data identify molecular changes resultant from PFOA exposure that may cause liver injury and ovotoxicity in females. In addition, differences in toxicity induced by PFOA exposure occurs in lean and obese mice.
Collapse
Affiliation(s)
- M Estefanía González-Alvarez
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, IA 50011, United States of America
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
12
|
González-Alvarez ME, Roach CM, Keating AF. Scrambled eggs-Negative impacts of heat stress and chemical exposures on ovarian function in swine. Mol Reprod Dev 2023; 90:503-516. [PMID: 36652419 DOI: 10.1002/mrd.23669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023]
Abstract
Exposure to environmental toxicants and hyperthermia can hamper reproduction in female mammals including swine. Phenotypic manifestations include poor quality oocytes, endocrine disruption, infertility, lengthened time to conceive, pregnancy loss, and embryonic defects. The ovary has the capacity for toxicant biotransformation, regulated in part by the phosphatidylinositol-3 kinase signaling pathway. The impacts of exposure to mycotoxins and pesticides on swine reproduction and the potential for an emerging chemical class of concern, the per- and polyfluoroalkylated substances, to hamper porcine reproduction are reviewed. The negative impairments of heat stress (HS) on swine reproductive outcomes are also described and the cumulative effect of environmental exposures, such as HS, when present in conjunction with a toxicant is considered.
Collapse
Affiliation(s)
- M Estefanía González-Alvarez
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa, USA
| | - Crystal M Roach
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa, USA
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
13
|
Chen R, Wu X, Qiu H, Yang B, Chen Y, Chen X, Li Y, Yuan S, Liu D, Xiao L, Yu Y. Obesity-induced inflammatory miR-133a mediates apoptosis of granulosa cells and causes abnormal folliculogenesis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1234-1246. [PMID: 37337633 PMCID: PMC10448043 DOI: 10.3724/abbs.2023089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/15/2023] [Indexed: 06/21/2023] Open
Abstract
Obesity has been reported to promote disordered folliculogenesis, but the exact molecular mechanisms are still not fully understood. In this study, we find that miR-133a is involved in obesity-induced follicular development disorder. After feeding with a high-fat diet (HFD) and fructose water for nine weeks, the mouse body weight is significantly increased, accompanied by an inflammatory state and increased expression of miR-133a in the adipose tissues and ovaries as well as accelerated follicle depletion. Although miR-133a is increased in the fat and ovaries of HFD mice, the increased miR-133a in the HFD ovaries is not derived from exosome transferred from obese adipose tissues but is synthesized by ovarian follicular cells in response to HFD-induced inflammation. In vivo experiments show that intrabursal injection of miR-133a agomir induces a decrease in primordial follicles and an increase in antral follicles and atretic follicles, which is similar to HFD-induced abnormal folliculogenesis. Overexpression of miR-133a modestly promotes granulosa cell apoptosis by balancing the expression of anti-apoptotic proteins such as C1QL1 and XIAP and pro-apoptotic proteins such as PTEN. Overall, this study reveals the function of miR-133a in obesity-induced ovarian folliculogenesis dysfunction and sheds light on the etiology of female reproductive disorders.
Collapse
Affiliation(s)
- Ruizhi Chen
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Xueqing Wu
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Han Qiu
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Baiming Yang
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Yao Chen
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Xiang Chen
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Yingshan Li
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Shaochun Yuan
- Guangdong Province Key Laboratory of Pharmaceutical Functional GenesCollege of Life SciencesSun Yat-Sen UniversityGuangzhou510275China
| | - Dan Liu
- Department of Women’s HealthCareAffiliated Foshan Women and Children’s HospitalSouthern Medical UniversityFoshan528000China
| | - Luanjuan Xiao
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Yanhong Yu
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| |
Collapse
|
14
|
Rakic D, Joksimovic Jovic J, Jakovljevic V, Zivkovic V, Nikolic M, Sretenovic J, Nikolic M, Jovic N, Bicanin Ilic M, Arsenijevic P, Dimitrijevic A, Vulovic T, Ristic N, Bulatovic K, Bolevich S, Stijak L, Pantovic S. High Fat Diet Exaggerate Metabolic and Reproductive PCOS Features by Promoting Oxidative Stress: An Improved EV Model in Rats. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1104. [PMID: 37374308 DOI: 10.3390/medicina59061104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: Polycystic ovary syndrome (PCOS) is a frequent multifactorial endocrinopathy affecting women in the reproductive period, often associated with infertility and metabolic disorders. The use of animal models helps to better understand etiopathogenesis, enabling the examination of the effects of certain drugs in order to discover the best possible therapeutic approach. We tried to investigate the additional effect of estradiol-valerate (EV) and high-fat diet (HFD) in female rats to explore PCOS-related alterations with special focus on oxidative stress. Materials and Methods: Animals were divided into three groups: control group (CTRL, n = 6), estradiol-valerate group (EV, n = 6), and estradiol-valerate group on HFD (EV + HFD, n = 6). PCOS was induced by single subcutaneous injection of long-acting EV in a dose of 4 mg/per rat. We tried to improve the metabolic characteristics of the PCOS animal model by adding HFD, so the CTRL and EV group had a regular diet, while the EV + HFD group had HFD during the induction period of 60 days. Results: We observed alterations of anthropometric parameters and hormonal disturbances, along with estrus cycle impairment reassembly to obese-type PCOS phenotype. Moreover, glucose metabolism was impaired after addition of HFD to EV protocol, contrary to EV administered alone. Histological analysis confirmed more numerous cystic follicles after the combination of EV and HFD protocol. The alterations of oxidative stress markers could be related to and serve as the mechanistic base for development of PCOS-related endocrine, reproductive, and metabolic properties. Conclusions: The additive effect of EV and HFD was obvious in the majority of the parameters observed. Our study strongly demonstrated metabolic as well as reproductive properties of PCOS in rats.
Collapse
Affiliation(s)
- Dejana Rakic
- Department of Gynecology and Obstetrics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia
| | - Jovana Joksimovic Jovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Maja Nikolic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
| | - Jasmina Sretenovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
| | - Marina Nikolic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
| | - Nikola Jovic
- Department of Gynecology and Obstetrics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia
| | - Marija Bicanin Ilic
- Department of Gynecology and Obstetrics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia
| | - Petar Arsenijevic
- Department of Gynecology and Obstetrics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia
| | - Aleksandra Dimitrijevic
- Department of Gynecology and Obstetrics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia
| | - Tatjana Vulovic
- University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Natasa Ristic
- Department of Cytology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Kristina Bulatovic
- Faculty of Medicine, University of Pristina in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia
| | - Sergej Bolevich
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Lazar Stijak
- Institute of Anatomy, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Suzana Pantovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
15
|
Rishi JK, Timme K, White HE, Kerns KC, Keating AF. Obesity partially potentiates dimethylbenz[a]anthracene-exposed ovotoxicity by altering the DNA damage repair response in mice†. Biol Reprod 2023; 108:694-707. [PMID: 36702632 PMCID: PMC10106840 DOI: 10.1093/biolre/ioac218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/02/2022] [Accepted: 11/30/2022] [Indexed: 01/28/2023] Open
Abstract
Obesity adversely affects reproduction, impairing oocyte quality, fecundity, conception, and implantation. The ovotoxicant, dimethylbenz[a]anthracene, is biotransformed into a genotoxic metabolite to which the ovary responds by activating the ataxia telangiectasia mutated DNA repair pathway. Basal ovarian DNA damage coupled with a blunted response to genotoxicant exposure occurs in obese females, leading to the hypothesis that obesity potentiates ovotoxicity through ineffective DNA damage repair. Female KK.Cg-a/a (lean) and KK.Cg-Ay/J (obese) mice received corn oil or dimethylbenz[a]anthracene (1 mg/kg) at 9 weeks of age for 7 days via intraperitoneal injection (n = 10/treatment). Obesity increased liver weight (P < 0.001) and reduced (P < 0.05) primary, preantral, and corpora lutea number. In lean mice, dimethylbenz[a]anthracene exposure tended (P < 0.1) to increase proestrus duration and reduced (P = 0.07) primordial follicle number. Dimethylbenz[a]anthracene exposure decreased (P < 0.05) uterine weight and increased (P < 0.05) primary follicle number in obese mice. Total ovarian abundance of BRCA1, γH2AX, H3K4me, H4K5ac, H4K12ac, and H4K16ac (P > 0.05) was unchanged by obesity or dimethylbenz[a]anthracene exposure. Immunofluorescence staining demonstrated decreased (P < 0.05) abundance of γH2AX foci in antral follicles of obese mice. In primary follicle oocytes, BRCA1 protein was reduced (P < 0.05) by dimethylbenz[a]anthracene exposure in lean mice. Obesity also decreased (P < 0.05) BRCA1 protein in primary follicle oocytes. These findings support both a follicle stage-specific ovarian response to dimethylbenz[a]anthracene exposure and an impact of obesity on this ovarian response.
Collapse
Affiliation(s)
- Jaspreet K Rishi
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Kelsey Timme
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Hunter E White
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Karl C Kerns
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA, USA
| |
Collapse
|
16
|
A Multi-Ingredient Supplement Protects against Obesity and Infertility in Western Diet-Fed Mice. Nutrients 2023; 15:nu15030611. [PMID: 36771318 PMCID: PMC9921271 DOI: 10.3390/nu15030611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The Western diet (WD) predisposes to bodyweight gain and obesity and is linked to mitochondrial dysfunction, oxidative damage, inflammation, and multisystem disease, even affecting the reproductive organs, fertility, and pregnancy outcomes. In this study, we investigated the effects of multi-ingredient supplementation (MIS) with antioxidants, phytonutrients, and vitamins ('Fertility Enhancer'; FE) on white adipose tissue (WAT) expansion, nonalcoholic fatty liver disease (NAFLD), and infertility in WD-fed C57BL/6J mice. Five-month-old male (M) and female (F) mice were fed a low-fat diet (LF) or a high fat/sucrose WD (HF) for six weeks, followed by six weeks of LF (3.64 kcal/g), HF (4.56 kcal/g), or HF combined with FE (4.50 kcal/g). A sub-set of animals were sacrificed at 12 weeks, while the remainder were harem-mated in a 1:2 male-to-female ratio, and singly housed during the gestational period. Two-way, factorial ANOVA analysis revealed a main effect of diet on bodyweight (BW), total body fat, % body fat, white adipose tissue mass, and liver lipid content (all p < 0.001), driven by the anti-obesogenic effects of the 'Fertility Enhancer'. Similarly, a main effect of diet was found on PGC1-α mRNA levels (p < 0.05) and mitochondrial protein content (p < 0.001) in perigonadal WAT, with PGC1-α induction and higher complex II and complex III expression in FE vs. HF animals. Copulatory plug counts were higher in FE vs. HE couples (30% vs. 6%), resulting in more litters (4 vs. 0) and higher copulatory success (67% vs. 0%). Although the trends of all histology outcomes were suggestive of a benefit from the FE diet, only the number of atretic follicles and testicular mass were significant. Ovarian IL-1β mRNA induction was significantly attenuated in the FE group (p < 0.05 vs. HF) with CASP1 attenuation trending lower (p = 0.09 vs. HF), which is indicative of anti-inflammatory benefits of the 'Fertility Enhancer.' We conclude that supplementation with specific phytonutrients, antioxidants, and vitamins may have utility as an adjunctive therapy for weight management, fatty liver disease, and infertility in overweight and obese couples.
Collapse
|
17
|
Vanden Brink H, Jarrett BY, Pereira N, Spandorfer SD, Hoeger KM, Lujan ME. Diagnostic Performance of Ovarian Morphology on Ultrasonography across Anovulatory Conditions-Impact of Body Mass Index. Diagnostics (Basel) 2023; 13:diagnostics13030374. [PMID: 36766481 PMCID: PMC9914229 DOI: 10.3390/diagnostics13030374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
The study objectives were to determine whether ovarian morphology can distinguish between women with regular menstrual cycles, normo-androgenic anovulation (NA-Anov), and PCOS and whether body mass index (BMI)-specific thresholds improved diagnostic potential. Women with PCOS (biochemical and/or clinical hyperandrogenism and irregular cycles; N = 66), NA-Anov (irregular cycles without clinical and/or biochemical hyperandrogenism; N = 64), or regular cycles (controls; cycles every 21-35 days in the absence of clinical or biochemical hyperandrogenism; N = 51) were evaluated. Participants underwent a reproductive history, physical exam, transvaginal ultrasound, and a fasting blood sample. Linear regression analyses were used to assess the impact of BMI on ovarian morphology across groups. The diagnostic performance of ovarian morphology for anovulatory conditions, and by BMI (lean: <25 kg/m2; overweight: ≥25 kg/m2), was tested using Receiver Operating Characteristic (ROC) curves. Follicle number per ovary (FNPO) and ovarian volume (OV), but not follicle number per cross-section (FNPS), increased across controls, NA-Anov, and PCOS. Overall, FNPO had the best diagnostic performance for PCOS versus controls (AUCROC = 0.815) and NA-Anov and controls (AUCROC = 0.704), and OV to differentiate between PCOS and NA-Anov (AUCROC = 0.698). In lean women, FNPO best differentiated between PCOS and controls (AUCROC = 0.843) and PCOS versus NA-Anov (AUCROC = 0.710). FNPS better distinguished between NA-Anov and controls (AUCROC = 0.687), although diagnostic performance was lower than when thresholds were generated using all participants. In women with overweight and obesity, OV persisted as the best diagnostic feature across all analyses (PCOS versus control, AUCROC = 0.885; PCOS versus NA-Anov, AUCROC = 0.673; NA-Anov versus controls, AUCROC = 0.754). Ovarian morphology holds diagnostic potential to distinguish between NA-Anov and PCOS, with marginal differences in diagnostic potential when participants were stratified by BMI suggesting that follicle number may provide better diagnostic performance in lean women and ovarian size in those with overweight.
Collapse
Affiliation(s)
- Heidi Vanden Brink
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
- Department of Nutrition, Texas A&M University, College Station, TX 77840, USA
| | | | - Nigel Pereira
- Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Steven D. Spandorfer
- Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Kathy M. Hoeger
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY 14620, USA
| | - Marla E. Lujan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
- Correspondence:
| |
Collapse
|
18
|
Estefanía González-Alvarez M, Severin A, Sayadi M, Keating AF. PFOA-Induced Ovotoxicity Differs Between Lean and Obese Mice With Impacts on Ovarian Reproductive and DNA Damage Sensing and Repair Proteins. Toxicol Sci 2022; 190:173-188. [PMID: 36214631 PMCID: PMC9789752 DOI: 10.1093/toxsci/kfac104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Perfluorooctanoic acid (PFOA) is an environmentally persistent perfluoroalkyl substance that is widely used in consumer products. Exposure to PFOA is associated with reproductive and developmental effects including endocrine disruption, delayed puberty in girls, and decreased fetal growth. In the United States, obesity affects 40% of women and 20% of girls, with higher rates in minority females. Obesity causes infertility, poor oocyte quality, miscarriage, and offspring defects. This study proposed that PFOA exposure would impact estrous cyclicity, ovarian steroid hormones, and the ovarian proteome and further hypothesized that obesity would impact PFOA-induced ovotoxicity. Female wild type (KK.Cg-a/a; lean) or KK.Cg-Ay/J mice (obese) received saline (CT) or PFOA (2.5 mg/kg) per os for 15 days beginning at 7 weeks of age. There were no effects on food intake, body weight, estrous cyclicity, serum progesterone, and heart, spleen, kidney, or uterus weight (p > .05). Ovary weight was decreased (p < .05) by PFOA exposure relative to vehicle control-treated mice in lean but not obese mice. Liquid chromatography-tandem mass spectrometry was performed on isolated ovarian protein and PFOA exposure altered the ovarian abundance of proteins involved in DNA damage sensing and repair pathways and reproduction pathways (p < .05) differentially in lean and obese mice. The data suggest that PFOA exposure alters ovary weight and differentially targets ovarian proteins in lean and obese females in ways that might reduce female fecundity.
Collapse
Affiliation(s)
| | - Andrew Severin
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa 50011, USA
| | - Maryam Sayadi
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa 50011, USA
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
19
|
A Systematic Review of the Effects of High-Fat Diet Exposure on Oocyte and Follicular Quality: A Molecular Point of View. Int J Mol Sci 2022; 23:ijms23168890. [PMID: 36012154 PMCID: PMC9408717 DOI: 10.3390/ijms23168890] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 12/19/2022] Open
Abstract
Worldwide, infertility affects between 10 and 15% of reproductive-aged couples. Female infertility represents an increasing health issue, principally in developing countries, as the current inclinations of delaying pregnancy beyond 35 years of age significantly decrease fertility rates. Female infertility, commonly imputable to ovulation disorders, can be influenced by several factors, including congenital malformations, hormonal dysfunction, and individual lifestyle choices, such as smoking cigarettes, stress, drug use and physical activity. Moreover, diet-related elements play an important role in the regulation of ovulation. Modern types of diet that encourage a high fat intake exert a particularly negative effect on ovulation, affecting the safety of gametes and the implantation of a healthy embryo. Identifying and understanding the cellular and molecular mechanisms responsible for diet-associated infertility might help clarify the confounding multifaceted elements of infertility and uncover novel, potentially curative treatments. In this view, this systematic revision of literature will summarize the current body of knowledge of the potential effect of high-fat diet (HFD) exposure on oocyte and follicular quality and consequent female reproductive function, with particular reference to molecular mechanisms and pathways. Inflammation, oxidative stress, gene expression and epigenetics represent the main mechanisms associated with mammal folliculogenesis and oogenesis.
Collapse
|
20
|
Wu M, Huang Y, Zhu Q, Zhu X, Xue L, Xiong J, Chen Y, Wu C, Guo Y, Li Y, Wu M, Wang S. Adipose tissue and ovarian aging: Potential mechanism and protective strategies. Ageing Res Rev 2022; 80:101683. [PMID: 35817297 DOI: 10.1016/j.arr.2022.101683] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/29/2022] [Accepted: 07/05/2022] [Indexed: 11/01/2022]
Abstract
Ovarian aging occurs approximately 10 years prior to the natural age-associated functional decline of other organ systems. With the increase of life expectancy worldwide, ovarian aging has gradually become a key health problem among women. Therefore, understanding the causes and molecular mechanisms of ovarian aging is very essential for the inhibition of age-related diseases and the promotion of health and longevity in women. Recently, studies have revealed an association between adipose tissue (AT) and ovarian aging. Alterations in the function and quantity of AT have profound consequences on ovarian function because AT is central for follicular development, lipid metabolism, and hormonal regulation. Moreover, the interplay between AT and the ovary is bidirectional, with ovary-derived signals directly affecting AT biology. In this review, we summarize the current knowledge of the complex molecular mechanisms controlling the crosstalk between the AT and ovarian aging, and further discuss how therapeutic targeting of the AT can delay ovarian aging.
Collapse
Affiliation(s)
- Meng Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Yibao Huang
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Qingqing Zhu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Xiaoran Zhu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Liru Xue
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ying Chen
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Chuqing Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Yican Guo
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Yinuo Li
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Mingfu Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| | - Shixuan Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| |
Collapse
|
21
|
Leung ZCL, Abu Rafea B, Watson AJ, Betts DH. Free fatty acid treatment of mouse preimplantation embryos demonstrates contrasting effects of palmitic acid and oleic acid on autophagy. Am J Physiol Cell Physiol 2022; 322:C833-C848. [PMID: 35319901 PMCID: PMC9273280 DOI: 10.1152/ajpcell.00414.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Treatment of mouse preimplantation embryos with elevated palmitic acid (PA) reduces blastocyst development, while co-treatment with PA and oleic acid (OA) together rescues blastocyst development to control frequencies. To understand the mechanistic effects of PA and OA treatment on early mouse embryos, we investigated the effects of PA and OA, alone and in combination, on autophagy during preimplantation development in vitro. We hypothesized that PA would alter autophagic processes and that OA co-treatment would restore control levels of autophagy. Two-cell stage mouse embryos were placed into culture medium supplemented with 100 μM PA, 250 μM OA, 100 μM PA and 250 μM OA, or KSOMaa medium alone (control) for 18 - 48 h. The results demonstrated that OA co-treatment slowed developmental progression after 30 h of co-treatment but restored control blastocyst frequencies by 48 h. PA treatment elevated LC3-II puncta and p62 levels per cell while OA co-treatment returned to control levels of autophagy by 48 h. Autophagic mechanisms are altered by non-esterified fatty acid (NEFA) treatments during mouse preimplantation development in vitro, where PA elevates autophagosome formation and reduces autophagosome degradation levels, while co-treatment with OA reversed these PA-effects. Autophagosome-lysosome co-localization only differed between PA and OA alone treatment groups. These findings advance our understanding of the effects of free fatty acid exposure on preimplantation development, and they uncover principles that may underlie the associations between elevated fatty acid levels and overall declines in reproductive fertility.
Collapse
Affiliation(s)
- Zuleika C L Leung
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London Ontario, Canada.,The Children's Health Research Institute - Lawson Health Research Institute, London, Ontario, Canada
| | - Basim Abu Rafea
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, Canada.,The Children's Health Research Institute - Lawson Health Research Institute, London, Ontario, Canada
| | - Andrew J Watson
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London Ontario, Canada.,The Children's Health Research Institute - Lawson Health Research Institute, London, Ontario, Canada
| | - Dean H Betts
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London Ontario, Canada.,The Children's Health Research Institute - Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
22
|
Luo X, Xu J, Zhao R, Qin J, Wang X, Yan Y, Wang LJ, Wang G, Yang X. The Role of Inactivated NF-κB in Premature Ovarian Failure. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:468-483. [PMID: 34971586 DOI: 10.1016/j.ajpath.2021.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Premature ovarian failure (POF) is defined as deployment of amenorrhea due to the cessation of ovarian function in a woman younger than 40 years old. The pathologic mechanism of POF is not yet well understood, although genetic aberrations, autoimmune damage, and environmental factors have been identified. The current study demonstrated that NF-κB inactivation is closely associated with the development of POF based on the data from literature and cyclophosphamide (Cytoxan)-induced POF mouse model. In the successfully established NF-κB-inactivated mouse model, the results showed the reduced expression of nuclear p65 and the increased expression of IκBα in ovarian granulosa cells; the reduced numbers of antral follicles; the reduction of Ki-67/proliferating cell nuclear antigen-labeled cell proliferation and enhanced Fas/FasL-dependent apoptosis in granulosa cells; the reduced level of E2 and anti-Müllerian hormone; the decreased expression of follicle-stimulating hormone receptor and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) in granulosa cells, which was reversed in the context of blocking NF-κB signaling with BAY 11-7082; and the decreased expressions of glucose-regulated protein 78 (GRP78), activating transcription factor 6, protein kinase R-like endoplasmic reticulum kinase, and inositol-requiring enzyme 1 in granulosa cells. Dual-luciferase reporter assay demonstrated that p50 stimulated the transcription of GRP78, and NF-κB affected the expression of follicle-stimulating hormone receptor and promoted granulosa cell proliferation through GRP78-mediated endoplasmic reticulum stress. Taken together, these data indicate, for the first time, that the inactivation of NF-κB signaling plays an important role in POF.
Collapse
Affiliation(s)
- Xin Luo
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Junjie Xu
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Ran Zhao
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Jiajia Qin
- Gynecology, Chinese Medicine College, Jinan University, Guangzhou, China
| | - Xiaoyu Wang
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Yu Yan
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Li-Jing Wang
- Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guang Wang
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China; Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China.
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China; Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China.
| |
Collapse
|
23
|
Chen L, Ding B, Wu L, Qiu J, Li Q, Ye Z, Yang J. Transcriptome Analysis Reveals the Mechanism of Natural Ovarian Ageing. Front Endocrinol (Lausanne) 2022; 13:918212. [PMID: 35909541 PMCID: PMC9329525 DOI: 10.3389/fendo.2022.918212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The decline in the quantity and quality of oocytes due to ovarian ageing in women is now a significant threat to reproductive health today as the concept of delayed fertility becomes widespread. However, the molecular mechanisms of natural ovarian ageing have not been fully elucidated. METHOD Here, we used transcriptomic data from 180 normal ovarian tissues from GTEx V8 to analyze the expression profile of ovarian tissues from women with age segments of 20-29 (22 individuals), 30-39 (14 individuals), 40-49 (37 individuals), 50-59 (61 individuals), 60-69 (42 individuals), and 70-79 (4 individuals), respectively. XCELL was used to assess the infiltration score of 64 cell types of the ovary. WGCNA was used to characterize the co-expression network during the natural aging of the ovary. ClusterprofileR was used for functional enrichment analysis of co-expression modules. MsViper was used for master regulator analysis. RESULTS The infiltration score of endothelial cells and activated antigen-presenting cells during natural ovarian ageing increased significantly at ages 30-39, 40-49, and then decreased, whereas CD4+ Tcm increased with age. WGCNA identified six co-expression modules from ovarian tissue transcriptomic data species. The red module was significantly and positively correlated with senescence and CD4+ Tcm, and the turquoise module was significantly and positively correlated with Endothelial Cells. We further explored ovarian tissue for women aged 20-29 and 30-39 years. The GSEA results showed that the Chemokine signaling pathway was significantly activated in the 30-39-year-old group, while Oocyte meiosis was significantly inhibited. Finally, the results of msviper found that transcription factors such as KDM1A, PRDM5, ZNF726, PPARG, FOXJ2, and GLI2 were mainly activated in the 20-29 years group, while VAV1, RUNX3, ZC3H12D, MYCL, and IRF5 were mainly activated in the 30-39 years group and that these transcription factor activities were diagnostic of natural ovarian ageing (AUC: 0.65-0.71). CONCLUSION Natural ageing of the ovary is significantly correlated with immune cell infiltration and activation of inflammation-related signaling pathways, with inflammation levels reaching a maximum during early ovarian ageing (30-39, 40-49) and then gradually decreasing after that. These studies provide a research basis for exploring the mechanisms of natural ovarian ageing.
Collapse
Affiliation(s)
- Lili Chen
- Anhui University of Traditional Chinese Medicine Affiliated Chuzhou Hospital of Integrated Chinese and Western Medicine, Chuzhou, China
| | - Bo Ding
- Southeast University Affiliated Zhongda Hospital, Nanjing, China
| | - Liju Wu
- Anhui University of Traditional Chinese Medicine Affiliated Chuzhou Hospital of Integrated Chinese and Western Medicine, Chuzhou, China
| | - Jialing Qiu
- Anhui University of Traditional Chinese Medicine Affiliated Chuzhou Hospital of Integrated Chinese and Western Medicine, Chuzhou, China
| | - Qiong Li
- Anhui University of Traditional Chinese Medicine Affiliated Chuzhou Hospital of Integrated Chinese and Western Medicine, Chuzhou, China
| | - Zheng Ye
- Southeast University Affiliated Zhongda Hospital, Nanjing, China
| | - Jinmei Yang
- Anhui University of Traditional Chinese Medicine Affiliated Chuzhou Hospital of Integrated Chinese and Western Medicine, Chuzhou, China
- *Correspondence: Jinmei Yang,
| |
Collapse
|
24
|
Gonzalez MB, Robker RL, Rose RD. Obesity and oocyte quality: Significant implications for ART and Emerging mechanistic insights. Biol Reprod 2021; 106:338-350. [PMID: 34918035 DOI: 10.1093/biolre/ioab228] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 11/14/2022] Open
Abstract
The prevalence of obesity in adults worldwide, and specifically in women of reproductive age, is concerning given the risks to fertility posed by the increased risk of type 2 diabetes, metabolic syndrome and other non-communicable diseases. Obesity has a multi-systemic impact in female physiology that is characterized by the presence of oxidative stress, lipotoxicity, and the activation of pro-inflammatory pathways, inducing tissue-specific insulin resistance and ultimately conducive to abnormal ovarian function. A higher body mass is linked to Polycystic Ovary Syndrome, dysregulated menstrual cycles, anovulation, and longer time to pregnancy, even in ovulatory women. In the context of ART, compared to women of normal BMI, obese women have worse outcomes in every step of their journey, resulting in reduced success measured as live birth rate. Even after pregnancy is achieved, obese women have a higher chance of miscarriage, gestational diabetes, pregnancy complications, birth defects, and most worryingly, a higher risk of stillbirth and neonatal death. The potential for compounding effects of ART on pregnancy complications and infant morbidities in obese women has not been studied. There is still much debate in the field on whether these poorer outcomes are mainly driven by defects in oocyte quality, abnormal embryo development or an unaccommodating uterine environment, however the clinical evidence to date suggests a combination of all three are responsible. Animal models of maternal obesity shed light on the mechanisms underlaying the effects of obesity on the peri-conception environment, with recent findings pointing to lipotoxicity in the ovarian environment as a key driver of defects in oocytes that have not only reduced developmental competence but long-lasting effects in offspring health.
Collapse
Affiliation(s)
- Macarena B Gonzalez
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Rebecca L Robker
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Ryan D Rose
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia.,Fertility SA, St. Andrews Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
25
|
Baraskar K, Thakur P, Shrivastava R, Shrivastava VK. Female obesity: Association with endocrine disruption and reproductive dysfunction. OBESITY MEDICINE 2021; 28:100375. [DOI: 10.1016/j.obmed.2021.100375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Adamowski M, Wołodko K, Oliveira J, Castillo-Fernandez J, Murta D, Kelsey G, Galvão AM. Leptin Signaling in the Ovary of Diet-Induced Obese Mice Regulates Activation of NOD-Like Receptor Protein 3 Inflammasome. Front Cell Dev Biol 2021; 9:738731. [PMID: 34805147 PMCID: PMC8595835 DOI: 10.3389/fcell.2021.738731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
Obesity leads to ovarian dysfunction and the establishment of local leptin resistance. The aim of our study was to characterize the levels of NOD-like receptor protein 3 (NLRP3) inflammasome activation in ovaries and liver of mice during obesity progression. Furthermore, we tested the putative role of leptin on NLRP3 regulation in those organs. C57BL/6J female mice were treated with equine chorionic gonadotropin (eCG) or human chorionic gonadotropin (hCG) for estrous cycle synchronization and ovary collection. In diet-induced obesity (DIO) protocol, mice were fed chow diet (CD) or high-fat diet (HFD) for 4 or 16 weeks, whereas in the hyperleptinemic model (LEPT), mice were injected with leptin for 16 days (16 L) or saline (16 C). Finally, the genetic obese leptin-deficient ob/ob (+/? and −/−) mice were fed CD for 4 week. Either ovaries and liver were collected, as well as cumulus cells (CCs) after superovulation from DIO and LEPT. The estrus cycle synchronization protocol showed increased protein levels of NLRP3 and interleukin (IL)-18 in diestrus, with this stage used for further sample collections. In DIO, protein expression of NLRP3 inflammasome components was increased in 4 week HFD, but decreased in 16 week HFD. Moreover, NLRP3 and IL-1β were upregulated in 16 L and downregulated in ob/ob. Transcriptome analysis of CC showed common genes between LEPT and 4 week HFD modulating NLRP3 inflammasome. Liver analysis showed NLRP3 protein upregulation after 16 week HFD in DIO, but also its downregulation in ob/ob−/−. We showed the link between leptin signaling and NLRP3 inflammasome activation in the ovary throughout obesity progression in mice, elucidating the molecular mechanisms underpinning ovarian failure in maternal obesity.
Collapse
Affiliation(s)
- Marek Adamowski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Karolina Wołodko
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Joana Oliveira
- Centro de Investigação em Ciências Veterinárias, Lusófona University, Lisbon, Portugal
| | | | - Daniel Murta
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Escola Superior de Saúde Egas Moniz, Campus Universitário, Monte de Caparica, Portugal.,Centro de Investigação Interdisciplinar em Sanidade Animal (C.I.I.S.A.), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom.,Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - António M Galvão
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland.,Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom.,Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
27
|
Eapen A, Hayes ET, McQueen DB, Beestrum M, Eyck PT, Boots C. Mean differences in maternal body mass index and recurrent pregnancy loss: a systematic review and meta-analysis of observational studies. Fertil Steril 2021; 116:1341-1348. [PMID: 34412893 DOI: 10.1016/j.fertnstert.2021.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the association of maternal body mass index (BMI) and recurrent pregnancy loss (RPL). DESIGN Systematic review and meta-analysis. SETTING Not applicable. PATIENT(S) A total of 3,833 women with RPL and 4,083 women as controls. INTERVENTION(S) Studies were identified through a search of PubMed, Embase, Scopus, and Cochrane. MAIN OUTCOME MEASURE(S) The primary outcome of interest was RPL using the mean differences in maternal BMI as the predictor variable. The results of the meta-analysis were reported as the mean difference with a 95% confidence interval. RESULT(S) In total, 892 studies were reviewed. Pooled data from 25 studies suggested that the maternal BMI of women with a history of recurrent pregnancy loss was significantly higher than the BMI of controls, mean difference 0.7 kg/m2 [95% confidence interval 0.2-1.3]. CONCLUSION(S) These findings supported an association between maternal BMI and RPL. Large prospective studies are needed to evaluate the influence of maternal BMI on pregnancy outcomes in women with RPL.
Collapse
Affiliation(s)
- Abey Eapen
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Carver College of Medicine, University of Iowa, Iowa City, Iowa.
| | - Emily T Hayes
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dana B McQueen
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Northwestern University, Chicago, Illinois
| | - Molly Beestrum
- Galter Health Sciences Library, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Patrick Ten Eyck
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, Iowa
| | - Christina Boots
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Northwestern University, Chicago, Illinois
| |
Collapse
|
28
|
Oldfield AL, Kazemi M, Lujan ME. Impact of Obesity on Anti-Mullerian Hormone (AMH) Levels in Women of Reproductive Age. J Clin Med 2021; 10:3192. [PMID: 34300357 PMCID: PMC8306853 DOI: 10.3390/jcm10143192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/18/2021] [Indexed: 12/30/2022] Open
Abstract
Obesity negatively impacts reproductive health, including ovarian function. Obesity has been posited to alter Anti-Müllerian hormone (AMH) production. Understanding biological factors that could impact AMH levels is necessary given the increasing use of AMH for predicting reproductive health outcomes in response to controlled ovarian stimulation, diagnosing ovulatory disorders, onset of menopause, and natural conception. In this narrative review, we evaluated the impact of obesity on AMH levels in healthy, regularly cycling reproductive-age women (18-48 years). Thirteen studies (n = 1214 women; (811, non-obese (body mass index; BMI < 30 kg/m2); 403, obese (BMI > 30 kg/m2))) were included, of which five reported decreased AMH levels with obesity, whereas eight showed comparable AMH levels between groups. Inclusion of women with higher obesity classes (Class 3 versus Class 1) may have been a factor in studies reporting lower AMH levels. Together, studies reporting AMH levels in otherwise healthy women remain limited by small sample sizes, cross-sectional designs, and lack of representation across the entire adiposity spectrum. Ultimately, the degree to which obesity may negatively impact AMH levels, and possibly ovarian reserve, in otherwise healthy women with regular menstrual cycles should be deemed uncertain at this time. This conclusion is prudent considering that the biological basis for an impact of obesity on AMH production is unknown.
Collapse
Affiliation(s)
- Alexis L. Oldfield
- Biomedical and Biological Sciences, Cornell University, Ithaca, NY 14853, USA;
| | - Maryam Kazemi
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA;
| | - Marla E. Lujan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
29
|
González-Alvarez ME, McGuire BC, Keating AF. Obesity alters the ovarian proteomic response to zearalenone exposure†. Biol Reprod 2021; 105:278-289. [PMID: 33855340 PMCID: PMC8256104 DOI: 10.1093/biolre/ioab069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
Zearalenone (ZEN), a nonsteroidal estrogenic mycotoxin, is detrimental to female reproduction. Altered chemical biotransformation, depleted primordial follicles and a blunted genotoxicant response have been discovered in obese female ovaries, thus, this study investigated the hypothesis that obesity would enhance ovarian sensitivity to ZEN exposure. Seven-week-old female wild-type nonagouti KK.Cg-a/a mice (lean) and agouti lethal yellow KK.Cg-Ay/J mice (obese) received food and water ad libitum, and either saline or ZEN (40 μg/kg) per os for 15 days. Body and organ weights, and estrous cyclicity were recorded, and ovaries collected posteuthanasia for protein analysis. Body and liver weights were increased (P < 0.05) in the obese mice, but obesity did not affect (P > 0.05) heart, kidney, spleen, uterus, or ovary weight and there was no impact (P > 0.05) of ZEN exposure on body or organ weight in lean or obese mice. Obese mice had shorter proestrus (P < 0.05) and a tendency (P = 0.055) for longer metestrus/diestrus. ZEN exposure in obese mice increased estrus but shortened metestrus/diestrus length. Neither obesity nor ZEN exposure impacted (P > 0.05) circulating progesterone, or ovarian abundance of EPHX1, GSTP1, CYP2E1, ATM, BRCA1, DNMT1, HDAC1, H4K16ac, or H3K9me3. Lean mice exposed to ZEN had a minor increase in γH2AX abundance (P < 0.05). In lean and obese mice, LC-MS/MS identified alterations to proteins involved in chemical metabolism, DNA repair and reproduction. These data identify ZEN-induced adverse ovarian modes of action and suggest that obesity is additive to ZEN-induced ovotoxicity.
Collapse
Affiliation(s)
- M Estefanía González-Alvarez
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames IA, USA
| | - Bailey C McGuire
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames IA, USA
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames IA, USA
| |
Collapse
|
30
|
Bries AE, Webb JL, Vogel B, Carrillo C, Keating AF, Pritchard SK, Roslan G, Miller JW, Schalinske KL. Letrozole-Induced Polycystic Ovary Syndrome Attenuates Cystathionine-β Synthase mRNA and Protein Abundance in the Ovaries of Female Sprague Dawley Rats. J Nutr 2021; 151:1407-1415. [PMID: 33758914 PMCID: PMC8169814 DOI: 10.1093/jn/nxab038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/20/2021] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrine disorder that affects 10% of reproductive-aged women and leads to hyperandrogenism, anovulation, and infertility. PCOS has been associated with elevated serum homocysteine as well as altered methylation status; however, characterization of one-carbon metabolism (OCM) in PCOS remains incomplete. OBJECTIVES The aim of our research was to assess OCM in a letrozole-induced Sprague Dawley rat model of PCOS. METHODS Five-week-old female rats (n = 36) were randomly assigned to letrozole [0.9 mg/kg body weight (BW)] treatment or vehicle (carboxymethylcellulose) control that was administered via subcutaneously implanted slow-release pellets every 30 d. For both treatment groups, 12 rats were randomly assigned to be euthanized during proestrus at one of the following time points: 8, 16, or 24 wk of age. Daily BW was measured and estrous cyclicity was monitored during the last 30 d of the experimental period. Ovaries were collected to assess mRNA and protein abundance of OCM enzymes. RESULTS Letrozole-induced rats exhibited 1.9-fold higher cumulative BW gain compared with control rats across all age groups (P < 0.0001). Letrozole reduced the time spent at proestrus (P = 0.0001) and increased time in metestrus (P < 0.0001) of the estrous cycle. Cystathionine β-synthase (Cbs) mRNA abundance was reduced in the letrozole-induced rats at 16 (59%; P < 0.05) and 24 (77%; P < 0.01) wk of age. In addition, CBS protein abundance was 32% lower in 8-wk-old letrozole-induced rats (P = 0.02). Interestingly, betaine-homocysteine S-methyltransferase mRNA abundance increased as a function of age in letrozole-induced rats (P = 0.03). CONCLUSION These data demonstrate that letrozole-induced PCOS Sprague Dawley rats temporally decrease the ovarian abundance of Cbs mRNA and protein in the early stages of PCOS.
Collapse
Affiliation(s)
- Amanda E Bries
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, USA
| | - Joseph L Webb
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, USA
| | - Brooke Vogel
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Claudia Carrillo
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | | | - Gina Roslan
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Joshua W Miller
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Kevin L Schalinske
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, USA
| |
Collapse
|
31
|
Park S, Yoon TW, Kang DR, Chung C. [Prevalence of Menstrual Disorders according to Body Mass Index and Lifestyle Factors: The National Health Insurance Service-National Health Screening Cohort in Korea, 2009~2016]. J Korean Acad Nurs 2021; 50:401-410. [PMID: 32632073 DOI: 10.4040/jkan.20054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 11/09/2022]
Abstract
PURPOSE This study was performed to identify the prevalence of menstrual disorders in Korean women based on body mass index (BMI) and lifestyle factors, by utilizing the Korean National Health Insurance Database. METHODS A retrospective observational study design was used for the secondary data analysis. Data of women aged 15 to 49 years who were diagnosed with menstrual disorders were extracted from The National Health Insurance Service-National Health Screening Cohort in Korea from 2009 to 2016. The age-standardized prevalence rate of menstrual disorders was calculated using SAS version 9.4, and a Chi-square test and Cochran-Armitage test were performed. RESULTS In total, 2,219,445 cases were extracted from the database. The prevalence of menstrual disorders significantly increased from 8.6% to 11.6% (Z=135.16, p for trend <.001) over the past eight years. In particular, it was higher in underweight women than in women with normal weight across all years (Z=-4.18~-14.72, p<.001). Moreover, statistically significant differences in the prevalence of menstrual disorders were found to be associated with drinking and smoking in all years and with physical activity levels in part (p<.05~.001). CONCLUSION These findings present compelling evidence on the prevalence of menstrual disorders based on a national database. Since the prevalence of menstrual disorders has steadily increased and differs based on BMI and lifestyle factors, educational and clinical interventions are necessary to promote risk awareness and appropriate behavioral changes among Korean women.
Collapse
Affiliation(s)
- SoMi Park
- Department of Nursing, Wonju College of Medicine, Yonsei University, Wonju, Korea
| | - Tae Woong Yoon
- Department of Biostatistics, Wonju College of Medicine, Yonsei University, Wonju, Korea
| | - Dae Ryong Kang
- Department of Precision Medicine, Wonju College of Medicine, Yonsei University, Wonju, Korea
| | - ChaeWeon Chung
- College of Nursing · Research Institute of Nursing Science, Seoul National University, Seoul, Korea.
| |
Collapse
|
32
|
Yang PK, Chou CH, Huang CC, Wen WF, Chen HF, Shun CT, Ho HN, Chen MJ. Obesity alters ovarian folliculogenesis through disrupted angiogenesis from increased IL-10 production. Mol Metab 2021; 49:101189. [PMID: 33592337 PMCID: PMC7933796 DOI: 10.1016/j.molmet.2021.101189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022] Open
Abstract
Objective Obesity has been reported to have a modulatory effect on the ovulatory functions of patients with polycystic ovary syndrome. The role of adipokines in this obesity-associated ovulatory disturbance has not been extensively explored. In this study, the relationships between obesity, adipokine production from visceral fat, and ovarian folliculogenesis were explored in a mice model of induced obesity. Methods Obesity was induced in female C57BL/6 mice fed ad libitum with high-fat feed and fructose water for 4 weeks. Follicular developments in the ovaries were assessed by histopathology in these diet-induced obese mice. Changes in adipokine expression in the peri-ovarian adipose tissues were screened with an adipokine array. The adipokine with the most significant increase over time was identified. The functions of the adipokine in angiogenic processes were evaluated in a cell model of endothelial proliferation. The in vivo effects of neutralizing this adipokine using specific antibodies were assessed in the same obesity model. Results A high-fat and fructose diet induced an accumulation of early ovarian follicles and a reduction in mature follicles and corpus lutea. The number of microvessels in the early follicles also decreased. The adipokine protein array of the peri-ovarian adipose tissues identified a progressive increase in IL-10 expression with the duration of the obesogenic diet. In vitro experiments in the endothelial cell model confirmed IL-10 as a disrupter of VEGF-induced angiogenesis. Administration of anti-IL-10 antibodies prevented the histopathological changes induced by the obesogenic diet and further highlighted the role of IL-10 in disrupting folliculogenesis. Conclusions Obesity may disrupt normal folliculogenesis through increased production of IL-10 in visceral fats. This relationship may help clarify the reported association between obesity and ovulatory dysfunction, which has been found in patients with polycystic ovary syndrome. However, the duration of this study was short, which limited conclusions on the long-term reproductive outcomes. Obesity increases IL-10 expression in visceral adipose. IL-10 disrupts VEGF-induced angiogenesis in an endothelial cell model. Disrupted angiogenesis is associated with disturbed folliculogenesis. Anti-IL-10 antibody prevents the altered folliculogenesis induced by obesity. Abnormal production of IL-10 may be a cause of dysovulation in obese individuals.
Collapse
Affiliation(s)
- Po-Kai Yang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chu-Chun Huang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Fen Wen
- Department of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Fu Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Forensic Medicine and Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hong-Nerng Ho
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan; College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mei-Jou Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan; Livia Shang Yu Wan Chair Professor of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
33
|
Fu H, Lin Y, Deng X, Wu L. Correlation between anti-Mullerian hormone levels and antral follicle counts in polycystic ovary and metabolic syndromes. Syst Biol Reprod Med 2021; 67:112-120. [PMID: 33406916 DOI: 10.1080/19396368.2020.1860155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Anti-Mullerian hormone (AMH) is expressed by the granulosa cells of the pre-antral and small antral follicles in the ovary. AMH serum levels are significantly higher in women with polycystic ovary syndrome (PCOS) due to an increased antral follicle counts (AFC) and a higher production of AMH per antral follicle. This research is a cohort study design with a sample size of 60 female patients with (n = 30) and without PCOS (n = 30) in which the relationship between AMH serum level and other hormonal markers was explored. The following measurements were taken from the patients on the fifth day of the menstrual cycle: AMH, glucose, index of insulin resistance (HOMA/IR), body mass index (BMI), testosterone and cholesterol, lipoproteins, and triglycerides. The study proposes diagnostic criteria for PCOS. A twofold increase in the AMH serum levels was observed in the PCOS group when compared to the control group. The following incremental increases were seen in AMH serum levels: testosterone (18.4%); fasting blood glucose (18%); fasting insulin (83.86%); HOMA/IR (64.23%); mean cholesterol (30%); mean triglycerides (17%); and BMI (26.75%). All differences were considered significant at p ˂ 0.005. The results from the study concluded that monitoring the level of AMH allows for the prediction of ovarian hyperstimulation syndrome (OHSS) during ovulation induction and assisted reproductive technology cycles. Monitoring of anti-Mullerian hormone levels may provide an additional marker for determining treatment strategies when presented with additional risks associated with overweight, hirsutism, type II diabetes, infertility, and cardiovascular disease.
Collapse
Affiliation(s)
- Huo Fu
- Laboratory of the First Affiliated Hospital of Hainan Medical College, Haikou City, Hainan Province, China
| | - Youshi Lin
- Laboratory of the First Affiliated Hospital of Hainan Medical College, Haikou City, Hainan Province, China
| | - Xueqing Deng
- Laboratory of the First Affiliated Hospital of Hainan Medical College, Haikou City, Hainan Province, China
| | - Lin Wu
- School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou City, Hainan Province, China.,Faculty of Biotechnology and Biotechnics, National Technical University of Ukraine "Kyiv Polytechnic Institute", Kyiv, Ukraine.,Key Laboratory of Tropical Translational Medicine, Ministry of Education, Hainan Medical University, Haikou City, Hainan Province, China
| |
Collapse
|
34
|
Meng F, Goldsammler M, Wantman E, Buyuk E, Jindal SK. Live birth rate from euploid blastocysts is not associated with infertility etiology or oocyte source following frozen-thawed embryo transfer (FET): analysis of 4148 cycles reported to SART CORS. J Assist Reprod Genet 2021; 38:185-192. [PMID: 33155088 PMCID: PMC7822968 DOI: 10.1007/s10815-020-01996-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To investigate whether live birth rates from euploid blastocyst frozen-thawed embryo transfer (FET) cycles are associated with infertility diagnosis or oocyte source. DESIGN Retrospective analysis of FET cycles reported to SART CORS in 2014. METHODS Data from fresh IVF cycles with preimplantation genetic testing for aneuploidy (PGT-A), linked to the first FET cycles, were collected from the 2014 SART CORS database for autologous and donor oocyte cycles. Inclusion criteria were patients undergoing FET with euploid embryos (n = 4148). Demographic data including age, BMI, prior fertility, and etiology of infertility were collected from the retrieval cycle and analyzed. Patients with uterine anomalies, preimplantation genetic testing-mutation (PGT-M) for genetic diseases, gender selection, HLA determination, or systemic and immunologic disorders were excluded. The primary outcome measure was live birth (LB) rate. Potential confounders such as age, prior fertility, and maximum baseline FSH values were analyzed with regression models as indicated. RESULTS Though age, maximum baseline FSH, and infertility diagnosis were significantly different, LB was similar between patients undergoing autologous or donor oocyte FET cycles. Etiology of infertility was not significantly associated with LB in autologous cycles (p = 0.95). Potential confounders such as maternal age, prior fertility, and maximum baseline FSH were not associated with outcomes; however, maternal BMI was inversely related to LB in autologous cycles, with an odds ratio of 0.97 (95% CI: 0.96-0.98 (rho = - 0.08, p < 0.01)). CONCLUSIONS After controlling for confounding variables, a euploid embryo derived from a donor or autologous oocyte results in similar LB in women with different infertility diagnoses.
Collapse
Affiliation(s)
- F Meng
- OC Fertility Center, Newport Beach, CA, 92604, USA
| | - M Goldsammler
- Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA.
- Montefiore's Institute for Reproductive Medicine and Health, 141 S. Central Ave, Hartsdale, NY, 10530, USA.
| | - E Wantman
- Redshift Technologies, New York, NY, USA
| | - E Buyuk
- Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Reproductive Medicine Associates of New York, Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S K Jindal
- Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore's Institute for Reproductive Medicine and Health, 141 S. Central Ave, Hartsdale, NY, 10530, USA
| |
Collapse
|
35
|
Fu XP, Xu L, Fu BB, Wei KN, Liu Y, Liao BQ, He SW, Wang YL, Chen MH, Lin YH, Li FP, Hong ZW, Huang XH, Xu CL, Wang HL. Pachymic acid protects oocyte by improving the ovarian microenvironment in polycystic ovary syndrome mice†. Biol Reprod 2020; 103:1085-1098. [PMID: 32776126 DOI: 10.1093/biolre/ioaa141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/18/2020] [Accepted: 08/07/2020] [Indexed: 11/13/2022] Open
Abstract
Women with polycystic ovary syndrome (PCOS) are characterized by endocrine disorders accompanied by a decline in oocyte quality. In this study, we generated a PCOS mice model by hypodermic injection of dehydroepiandrosterone, and metformin was used as a positive control drug to study the effect of pachymic acid (PA) on endocrine and oocyte quality in PCOS mice. Compared with the model group, the mice treated with PA showed the following changes (slower weight gain, improved abnormal metabolism; increased development potential of GV oocytes, reduced number of abnormal MII oocytes, and damaged embryos; lower expression of ovarian-related genes in ovarian tissue and pro-inflammatory cytokines in adipose tissue). All these aspects show similar effects on metformin. Most notably, PA is superior to metformin in improving inflammation of adipose tissue and mitochondrial abnormalities. It is suggested that PA has the similar effect with metformin, which can improve the endocrine environment and oocyte quality of PCOS mice. These findings suggest that PA has the similar effect with metformin, which can improve the endocrine environment and oocyte quality of PCOS mice.
Collapse
Affiliation(s)
- Xian-Pei Fu
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, China.,Clinical Pharmacy Office, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Lin Xu
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, China
| | - Bin-Bin Fu
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, China
| | - Kang-Na Wei
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, China.,Department of Gynaecology and Obstetrics, Affiliated Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yu Liu
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, China.,Medical College, Guangxi University, Nanning, China
| | - Bao-Qiong Liao
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, China
| | - Shu-Wen He
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, China
| | - Ya-Long Wang
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, China.,Reproductive Medicine Center, The Maternal and Child Health Care Hospital, Xiangtan, China
| | - Ming-Huang Chen
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, China
| | - Yan-Hong Lin
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, China.,Department of Gynaecology, Affiliated Hospital of Putian University, Putian University, Putian, China
| | - Fei-Ping Li
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, China.,Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, China
| | - Zi-Wei Hong
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao-Hua Huang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Chang-Long Xu
- The Reproductive Medical Center Nanning Second People's Hospital, Nanning, China
| | - Hai-Long Wang
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, China.,Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
36
|
Rao A, Satheesh A, Nayak G, Poojary PS, Kumari S, Kalthur SG, Mutalik S, Adiga SK, Kalthur G. High-fat diet leads to elevated lipid accumulation and endoplasmic reticulum stress in oocytes, causing poor embryo development. Reprod Fertil Dev 2020; 32:1169-1179. [PMID: 32998795 DOI: 10.1071/rd20112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/28/2020] [Indexed: 11/23/2022] Open
Abstract
The present study was designed to investigate the effect of diet-induced obesity on endoplasmic reticulum (ER) stress in oocytes. Swiss albino mice (3 weeks old) were fed with a high-fat diet (HFD) for 8 weeks. Oocytes were assessed for lipid droplet accumulation, oxidative stress, ER stress and their developmental potential invitro. High lipid accumulation (P<0.01) and elevated intracellular levels of reactive oxygen species were observed in both germinal vesicle and MII oocytes of HFD-fed mice (P<0.05 and P<0.01 respectively compared with control). Further, expression of the ER stress markers X-box binding protein 1 (XBP1), glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4) and activating transcription factor 6 (ATF6) was significantly (P<0.001) higher in oocytes of the HFD than control group. Oocytes from HFD-fed mice exhibited poor fertilisation and blastocyst rates, a decrease in total cell number and high levels of DNA damage (P<0.01) compared with controls. In conclusion, diet-induced obesity resulted in elevated lipid levels and higher oxidative and ER stress in oocytes, which contributed to the compromised developmental potential of embryos.
Collapse
Affiliation(s)
- Arpitha Rao
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576 104, Karnataka State, India
| | - Aparna Satheesh
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576 104, Karnataka State, India
| | - Guruprasad Nayak
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576 104, Karnataka State, India
| | - Pooja Suresh Poojary
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576 104, Karnataka State, India
| | - Sandhya Kumari
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576 104, Karnataka State, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576 104, Karnataka State, India
| | - Srinivas Mutalik
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Karnataka State, India
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576 104, Karnataka State, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576 104, Karnataka State, India; and Corresponding author.
| |
Collapse
|
37
|
Clark KL, Talton OO, Ganesan S, Schulz LC, Keating AF. Developmental origins of ovarian disorder: impact of maternal lean gestational diabetes on the offspring ovarian proteome in mice†. Biol Reprod 2020; 101:771-781. [PMID: 31290541 DOI: 10.1093/biolre/ioz116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 01/06/2019] [Accepted: 07/04/2019] [Indexed: 12/13/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is an obstetric disorder affecting approximately 10% of pregnancies. The four high-fat, high-sucrose (HFHS) mouse model emulates GDM in lean women. Dams are fed a HFHS diet 1 week prior to mating and throughout gestation resulting in inadequate insulin response to glucose in mid-late pregnancy. The offspring of HFHS dams have increased adiposity, thus, we hypothesized that maternal metabolic alterations during lean GDM would compromise ovarian function in offspring both basally and in response to a control or HFHS diet in adulthood. Briefly, DLPL were lean dams and control diet pups; DLPH were lean dams and HFHS pups; DHPL were HFHS dams and control diet pups; and DHPH were HFHS dams and HFHS pups. A HFHS challenge in the absence of maternal GDM (DLPL vs. DLPH) increased 3 and decreased 30 ovarian proteins. Maternal GDM in the absence of a dietary stress (DLPL vs. DHPL) increased abundance of 4 proteins and decreased abundance of 85 proteins in the offspring ovary. Finally, 87 proteins increased, and 4 proteins decreased in offspring ovaries due to dietary challenge and exposure to maternal GDM in utero (DLPL vs. DHPH). Canopy FGF signaling regulator 2, deleted in azoospermia-associated protein 1, septin 7, and serine/arginine-rich splicing factor 2 were altered across multiple offspring groups. Together, these findings suggest a possible impact on fertility and oocyte quality in relation to GDM exposure in utero as well as in response to a western diet in later life.
Collapse
Affiliation(s)
- Kendra L Clark
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Omonseigho O Talton
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Shanthi Ganesan
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Laura C Schulz
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
38
|
Calcaterra V, Regalbuto C, Porri D, Pelizzo G, Mazzon E, Vinci F, Zuccotti G, Fabiano V, Cena H. Inflammation in Obesity-Related Complications in Children: The Protective Effect of Diet and Its Potential Role as a Therapeutic Agent. Biomolecules 2020; 10:E1324. [PMID: 32947869 PMCID: PMC7564478 DOI: 10.3390/biom10091324] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity is a growing health problem in both children and adults, impairing physical and mental state and impacting health care system costs in both developed and developing countries. It is well-known that individuals with excessive weight gain frequently develop obesity-related complications, which are mainly known as Non-Communicable Diseases (NCDs), including cardiovascular disease, type 2 diabetes mellitus, metabolic syndrome, non-alcoholic fatty liver disease, hypertension, hyperlipidemia and many other risk factors proven to be associated with chronic inflammation, causing disability and reduced life expectancy. This review aims to present and discuss complications related to inflammation in pediatric obesity, the critical role of nutrition and diet in obesity-comorbidity prevention and treatment, and the impact of lifestyle. Appropriate early dietary intervention for the management of pediatric overweight and obesity is recommended for overall healthy growth and prevention of comorbidities in adulthood.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
- Pediatric Unit, “V. Buzzi” Children’s Hospital, 20153 Milan, Italy; (G.Z.); (V.F.)
| | - Corrado Regalbuto
- Pediatric Unit, Fond. IRCCS Policlinico S. Matteo and University of Pavia, 27100 Pavia, Italy; (C.R.); (F.V.)
| | - Debora Porri
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (D.P.); (H.C.)
| | - Gloria Pelizzo
- “L. Sacco” Department of Biomedical and Clinical Science, University of Milan, 20153 Milan, Italy;
- Pediatric Surgery Unit, “V. Buzzi” Children’s Hospital, 20153 Milan, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy;
| | - Federica Vinci
- Pediatric Unit, Fond. IRCCS Policlinico S. Matteo and University of Pavia, 27100 Pavia, Italy; (C.R.); (F.V.)
| | - Gianvincenzo Zuccotti
- Pediatric Unit, “V. Buzzi” Children’s Hospital, 20153 Milan, Italy; (G.Z.); (V.F.)
- “L. Sacco” Department of Biomedical and Clinical Science, University of Milan, 20153 Milan, Italy;
| | - Valentina Fabiano
- Pediatric Unit, “V. Buzzi” Children’s Hospital, 20153 Milan, Italy; (G.Z.); (V.F.)
- “L. Sacco” Department of Biomedical and Clinical Science, University of Milan, 20153 Milan, Italy;
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (D.P.); (H.C.)
- Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
39
|
A Comparative Analysis of Oocyte Development in Mammals. Cells 2020; 9:cells9041002. [PMID: 32316494 PMCID: PMC7226043 DOI: 10.3390/cells9041002] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Sexual reproduction requires the fertilization of a female gamete after it has undergone optimal development. Various aspects of oocyte development and many molecular actors in this process are shared among mammals, but phylogeny and experimental data reveal species specificities. In this chapter, we will present these common and distinctive features with a focus on three points: the shaping of the oocyte transcriptome from evolutionarily conserved and rapidly evolving genes, the control of folliculogenesis and ovulation rate by oocyte-secreted Growth and Differentiation Factor 9 and Bone Morphogenetic Protein 15, and the importance of lipid metabolism.
Collapse
|
40
|
Bidne KL, Kvidera SS, Ross JW, Baumgard LH, Keating AF. Impact of repeated lipopolysaccharide administration on ovarian signaling during the follicular phase of the estrous cycle in post-pubertal pigs. J Anim Sci 2020; 96:3622-3634. [PMID: 29982469 DOI: 10.1093/jas/sky226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/26/2018] [Indexed: 12/18/2022] Open
Abstract
Increased circulating lipopolysaccharide (LPS) results from heat stress (HS) and bacterial infection, both of which are associated with reduced female fertility. Specific effects of low-level, repeated LPS exposure on the ovary are unclear, as many studies utilize a bolus model and/or high dosage paradigm. To better understand the effects of chronic LPS exposure on ovarian signaling and function, post-pubertal gilts (n = 20) were orally administered altrenogest for 14 d to synchronize the beginning of the follicular phase of the ovarian cycle. For 5 d after synchronization, gilts (163 ± 3 kg) received IV administration of LPS (0.1 µg/kg BW, n = 10) or saline (CT, n = 10) 4× daily. Blood samples were obtained on days 1, 3, and 5 of LPS treatment. Follicular fluid was aspirated from dominant follicles on day 5, and whole ovarian homogenate was used for transcript and protein abundance analysis via quantitative real-time PCR and western blotting, respectively. There were no treatment differences detected in rectal temperature on any day (P ≥ 0.5). Administering LPS increased plasma insulin (P < 0.01), LPS-binding protein (LBP; P < 0.01), and glucose (P = 0.08) on day 1, but no treatment differences thereafter were observed (P = 0.66). There were no treatment differences in follicular fluid concentration of LBP or 17β-estradiol (P = 0.42). Gilts treated with LPS had increased abundance of ovarian TLR4 protein (P = 0.01), but protein kinase B (AKT) and phosphorylated AKT (pAKT) were unchanged and no effect of LPS on components of the phosphatidylinositol 3 kinase (PI3K) pathway were observed. There was no impact of LPS on ovarian abundance of STAR or CYP19A1, nor ESR1, LDLR, CYP19A1, CYP17A1, or 3BHSD. In conclusion, repeated, low-level LPS administration alters inflammatory but not steroidogenic or PI3K signaling in follicular phase gilt ovaries.
Collapse
Affiliation(s)
- Katie L Bidne
- Department of Animal Science, Iowa State University, Ames, IA
| | - Sara S Kvidera
- Department of Animal Science, Iowa State University, Ames, IA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | |
Collapse
|
41
|
Zhang Z, Schlamp F, Huang L, Clark H, Brayboy L. Inflammaging is associated with shifted macrophage ontogeny and polarization in the aging mouse ovary. Reproduction 2020; 159:325-337. [PMID: 31940276 PMCID: PMC7066623 DOI: 10.1530/rep-19-0330] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022]
Abstract
The fertility of women declines sharply after age 35 and is essentially lost upon menopause at age 51. The ovary plays an important part in aging-associated changes in women's physiology since it is an essential component of both the reproductive and endocrine systems. Several previous studies in mice have shown that the ovarian tissue goes through drastic changes over the course of aging and exhibits signs of aging-associated chronic inflammation (inflammaging), which may contribute to the marked decline of oocyte quality in aged individuals. To further examine aging-associated gene expression changes in the ovary and to characterize the development of inflammaging, we performed detailed transcriptomic analysis of whole ovaries from mice of six different age groups over the mouse reproductive lifespan and identified more than 5000 genes with significant expression change over the course of aging. Intriguingly, we found aging-associated changes in the expression of several markers that indicate alterations in the composition of ovarian macrophages, which are known to be central players of inflammaging. Using flow cytometry, we analyzed and compared macrophage populations and polarization in young and old ovaries and found a significant increase in monocyte recruitment and macrophage alternative activation (M2) in the old ovaries compared to those in young. Our results are consistent with previous findings of aging-associated increase of fibrosis in the ovarian stromal extracellular matrix, and they provide new clues about the development of inflammaging in the mammalian ovary.
Collapse
Affiliation(s)
- Zijing Zhang
- Department of Obstetrics and Gynecology, Division of Research, Women & Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905, USA
| | - Florencia Schlamp
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| | - Lu Huang
- Department of Microbiology and immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Haley Clark
- Department of Obstetrics and Gynecology, Division of Research, Women & Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905, USA
| | - Lynae Brayboy
- Department of Obstetrics and Gynecology, Division of Research, Women & Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905, USA
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Women & Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905, USA
- Alpert Medical School of Brown University, 222 Richmond Street Providence, RI 02903, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University 185 Meeting Street, Providence, RI 02912, USA
| |
Collapse
|
42
|
Lipotoxicity Impairs Granulosa Cell Function Through Activated Endoplasmic Reticulum Stress Pathway. Reprod Sci 2020; 27:119-131. [PMID: 32046379 DOI: 10.1007/s43032-019-00014-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
Obesity is closely related to reproductive disorders, which may eventually lead to infertility in both males and females. Ovarian granulosa cells play a critical role during the maintenance of oocyte development through the generation of sex steroids (mainly estradiol and progesterone) and different kinds of growth factors. However, the molecular mechanism of obesity-induced granulosa cell dysfunction remains poorly investigated. In our current study, we observed that high-fat diet feeding significantly increased the level of glucose-regulated protein 78 kDa (GRP78) protein expression in mouse granulosa cells; testosterone-induced estradiol generation was impaired accordingly. To further evaluate the precise mechanism of lipotoxicity-induced granulosa cell dysfunction, mouse primary granulosa cells were treated with palmitate, and the expression levels of ER stress markers were evaluated by real-time PCR and western blot. Lipotoxicity significantly increased ER stress but impaired the mRNA expression of granulosa cell function-related makers, including androgen receptor (Ar), cytochrome P450 family 19 subfamily A member 1 (Cyp19a1), hydroxysteroid 17-beta dehydrogenase 1 (Hsd17b1), and insulin receptor substrate 1 (Irs1). Impaired testosterone-induced estradiol generation was also observed in cultured mouse granulosa cells after palmitate treatment. Insulin augmented testosterone induced estradiol generation through activation of the AKT pathway. However, palmitate treatment abolished insulin-promoted aromatase expression and estradiol generation by the stimulation of ER stress. Overexpression of IRS1 significantly ameliorated palmitate- or tunicamycin-induced impairment of aromatase expression and estradiol generation. Taken together, our current study demonstrated that lipotoxicity impaired insulin-stimulated estradiol generation through activated ER stress and inhibited IRS1 pathway.
Collapse
|
43
|
Kannan S, Bhaskaran RS. Sustained obesity reduces litter size by decreasing proteins regulating folliculogenesis and ovulation in rats - A cafeteria diet model. Biochem Biophys Res Commun 2019; 519:475-480. [DOI: 10.1016/j.bbrc.2019.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/08/2019] [Indexed: 12/13/2022]
|
44
|
Impact of toxicant exposures on ovarian gap junctions. Reprod Toxicol 2018; 81:140-146. [DOI: 10.1016/j.reprotox.2018.07.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 02/02/2023]
|
45
|
Gonzalez MB, Lane M, Knight EJ, Robker RL. Inflammatory markers in human follicular fluid correlate with lipid levels and Body Mass Index. J Reprod Immunol 2018; 130:25-29. [PMID: 30174020 DOI: 10.1016/j.jri.2018.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/15/2018] [Accepted: 08/20/2018] [Indexed: 12/29/2022]
Abstract
The detrimental consequences of obesity on female fertility are well known, but the functional changes that occur in the ovary in response to elevated BMI are not clear. Obesity induces multiple components of a systemic inflammatory state that is a key pathway by which it initiates tissue dysfunction in adipose, liver and muscle; however whether obesity induces similar inflammatory changes in the ovary has not been fully investigated. This is important to understand because it is increasingly clear that obesity at conception impacts not only pregnancy rates but also influences pre-implantation embryo development. To further understand the characteristics of inflammation in the ovaries of obese women we analysed a panel of cytokines (IL6, IL10 and TNFα), adipokines (adiponectin, leptin and monocyte chemotactic factor 1 (MCP-1)) and acute phase proteins (C-Reactive Protein (CRP) and sICAM-1) in the ovarian follicular fluid obtained at oocyte aspiration from women (n = 48) who were lean, overweight or obese. We hypothesised that adipokines and pro-inflammatory cytokines would be correlated with and/or dysregulated by increasing Body Mass Index (BMI). Surprisingly however, the majority were not related to BMI but instead were positively correlated with lipid levels in follicular fluid, namely triglycerides and free fatty acids. Further, as is typical of metabolic inflammation, the inflammatory markers that were associated with intra-follicular lipids included both pro-inflammatory (CRP, IL6, TNFα) and anti-inflammatory (adiponectin, IL10) mediators. The direct consequences of an ovarian microenvironment containing high levels of lipids and inflammatory mediators are not known but could impact luteinisation, ovulation and/or oocyte developmental competence.
Collapse
Affiliation(s)
- Macarena B Gonzalez
- Robinson Research Institute, School of Medicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Michelle Lane
- Robinson Research Institute, School of Medicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Emma J Knight
- Robinson Research Institute, School of Public Health, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Rebecca L Robker
- Robinson Research Institute, School of Medicine, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
46
|
Ganesan S, Nteeba J, Madden JA, Keating AF. Obesity alters phosphoramide mustard-induced ovarian DNA repair in mice. Biol Reprod 2018; 96:491-501. [PMID: 28203708 DOI: 10.1095/biolreprod.116.143800] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/19/2016] [Accepted: 12/26/2016] [Indexed: 12/11/2022] Open
Abstract
Phosphoramide mustard (PM) destroys rapidly dividing cells and activates the DNA double strand break marker, γH2AX, and DNA repair in rat granulosa cells and neonatal ovaries. The effects of PM exposure on DNA damage and activation of DNA damage repair in lean and obese female mice were investigated. Wild type (lean) non agouti (a/a) and KK.Cg-Ay/J heterozygote (obese) mice received sesame oil or PM (95%; 25 mg/kg; intraperitoneal injection). Obesity increased (P < 0.05) hepatic and spleen but decreased (P < 0.05) uterine weight. PM exposure reduced (P < 0.05) spleen weight regardless of body composition, however, decreased (P < 0.05) ovarian and hepatic weight were observed in the obese PM-exposed females. PM decreased (P < 0.05) primordial and primary follicle number in lean females. Obesity and PM increased (P < 0.05) γH2AX protein. DNA damage repair genes Prkdc, Parp1, and Rad51 mRNA were unaltered by obesity, however, Atm and Xrcc6 mRNA were increased (P < 0.05) while Brca1 was reduced (P < 0.05). Obesity reduced (P < 0.05) PRKDC, XRCC6 and but increased (P < 0.05) ATM protein. ATM, BRCA1 and RAD51 protein levels were increased (P < 0.05) by PM exposure in both lean and obese mice, while PM-induced increased (P < 0.05) XRCC6 and PARP1 were observed only in lean mice. Thus, PM induces ovarian DNA damage in vivo; obesity alters DNA repair response gene mRNA and protein level; the ovary activates DNA repair proteins in response to PM; but obesity compromises the ovarian PM response.
Collapse
Affiliation(s)
- Shanthi Ganesan
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Jackson Nteeba
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Jill A Madden
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA, USA
| |
Collapse
|
47
|
Nteeba J, Ganesan S, Madden JA, Dickson MJ, Keating AF. Progressive obesity alters ovarian insulin, phosphatidylinositol-3 kinase, and chemical metabolism signaling pathways and potentiates ovotoxicity induced by phosphoramide mustard in mice. Biol Reprod 2018; 96:478-490. [PMID: 28203716 DOI: 10.1095/biolreprod.116.143818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/02/2016] [Accepted: 12/21/2016] [Indexed: 01/01/2023] Open
Abstract
Mechanisms underlying obesity-associated reproductive impairment are ill defined. Hyperinsulinemia is a metabolic perturbation often observed in obese subjects. Insulin activates phosphatidylinositol 3-kinase (PI3K) signaling, which regulates ovarian folliculogenesis, steroidogenesis, and xenobiotic metabolism. The impact of progressive obesity on ovarian genes encoding mRNA involved in insulin-mediated PI3K signaling and xenobiotic biotransformation [insulin receptor (Insr), insulin receptor substrate 1 (Irs1), 2 (Irs2), and 3 (Irs3); kit ligand (Kitlg), stem cell growth factor receptor (Kit), protein kinase B (AKT) alpha (Akt1), beta (Akt2), forkhead transcription factor (FOXO) subfamily 1 (Foxo1), and subfamily 3 (Foxo3a), microsomal epoxide hydrolase (Ephx1), cytochrome P450 family 2, subfamily E, polypeptide 1 (Cyp2e1), glutathione S-transferase (GST) class Pi (Gstp1) and class mu 1 (Gstm1)] was determined in normal wild-type nonagouti (a/a; lean) and lethal yellow mice (KK.CG-Ay/J; obese) at 6, 12, 18, or 24 weeks of age. At 6 weeks, ovaries from obese mice had increased (P < 0.05) Insr and Irs3 but decreased (P < 0.05) Kitlg, Foxo1, and Cyp2e1 mRNA levels. Interestingly, at 12 weeks, an increase (P < 0.05) in Kitlg and Kit mRNA, pIRS1Ser302, pAKTThr308, EPHX1, and GSTP1 protein level was observed due to obesity, while Cyp2e1 mRNA and protein were reduced. A phosphoramide mustard (PM) challenge increased (P < 0.05) ovarian EPHX1 protein abundance in lean but not obese females. In addition, lung tissue from PM-exposed animals had increased (P < 0.05) EPHX1 protein with no impact of obesity thereon. Taken together, progressive obesity affected ovarian signaling pathways potentially involved in obesity-associated reproductive disorders.
Collapse
Affiliation(s)
- Jackson Nteeba
- Department of Animal Science, 2356 Kildee Hall, Iowa State University, Ames, IA, USA
| | - Shanthi Ganesan
- Department of Animal Science, 2356 Kildee Hall, Iowa State University, Ames, IA, USA
| | - Jill A Madden
- Department of Animal Science, 2356 Kildee Hall, Iowa State University, Ames, IA, USA
| | - Mackenzie J Dickson
- Department of Animal Science, 2356 Kildee Hall, Iowa State University, Ames, IA, USA
| | - Aileen F Keating
- Department of Animal Science, 2356 Kildee Hall, Iowa State University, Ames, IA, USA
| |
Collapse
|
48
|
Huang BB, Liu XC, Qin XY, Chen J, Ren PG, Deng WF, Zhang J. Effect of High-Fat Diet on Immature Female Mice and Messenger and Noncoding RNA Expression Profiling in Ovary and White Adipose Tissue. Reprod Sci 2018; 26:1360-1372. [DOI: 10.1177/1933719118765966] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Obesity is a chronic multifactorial disease prevalent in many areas of the world and is a major cause of morbidity and mortality. In women, obesity increases the risks of both metabolic and reproductive diseases, such as diabetes and infertility. The mechanisms underlying these effects, especially in young women, are largely unknown. To explore these mechanisms, we established a high-fat diet (HFD) model of obesity in immature female mice. Microarray analysis of gene expression in ovaries and white adipose tissue identified a large number of differentially expressed genes (>1.3-fold change) in both tissues. In ovaries of the HFD group, there were 208 differentially expressed messenger RNAs (mRNAs), including 98 upregulated and 110 downregulated, and 295 differentially expressed lncRNAs (long non coding RNAs), including 63 upregulated and 232 downregulated. In white adipose tissue, there were 625 differentially expressed mRNAs, including 220 upregulated and 605 downregulated in the HFD group, and 1595 differentially expressed lncRNAs, including 1320 and 275 downregulated in the HFD group. Our results reveal significant differences between the transcriptomes of the HFD and control groups in both ovaries and white adipose tissue that provide clues to the molecular mechanisms of diet-induced female reproductive dysfunction and metabolic disorders, as well as biomarkers of risk for these disorders.
Collapse
Affiliation(s)
- Bin-bin Huang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | | | - Xiao-yun Qin
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jie Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pei-gen Ren
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei-Fen Deng
- Shenzhen IVF Gynaecologic Hospital, Shenzhen, China
| | - Jian Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
49
|
Ghosh R, Banerjee B, Das T, Jana K, Choudhury SM. Antigonadal and endocrine-disrupting activities of lambda cyhalothrin in female rats and its attenuation by taurine. Toxicol Ind Health 2018; 34:146-157. [PMID: 29506456 DOI: 10.1177/0748233717742291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lambda cyhalothrin (LCT) is a type II pyrethroid with a wide range of agricultural, industrial, and household uses. Taurine is a nonprotein sulfur containing amino acid as well as a well-known antioxidant and has valuable clinical applications in the detoxification of xenobiotics. The present study evaluated the effect of LCT on the reproductive and endocrine systems of female rats and determined whether taurine might alter these effects. Sexually mature female rats were administered LCT at two different dosages (6.3 mg/kg BW and 11.33 mg/kg BW) once daily by oral gavage for 14 consecutive days with the pretreatment of taurine (50 mg kg-1 BW). LCT treatment resulted in diminished adrenal cholesterol, ovarian 3β- and 17β-hydroxysteroid dehydrogenase (HSD) activity with increased ovarian cholesterol, adrenal 3β- and 17β-HSD activity. Furthermore, protein and mRNA expressions of ovarian 17β-HSD and steroidogenic acute regulatory protein were also decreased. Hormonal imbalance was evident by concurrent reduction in the gonadotropic hormone, estradiol, and progesterone levels in LCT-treated rats. These rats also demonstrated the histopathological evidence of degenerative changes in the ovaries. Pretreatment of taurine attenuated the LCT-induced changes.
Collapse
Affiliation(s)
- Rini Ghosh
- 1 Department of Human Physiology with Community Health, Vidyasagar University, Midnapore, West Bengal, India
| | | | - Tuhina Das
- 1 Department of Human Physiology with Community Health, Vidyasagar University, Midnapore, West Bengal, India
| | - Kuladip Jana
- 2 Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Sujata Maiti Choudhury
- 1 Department of Human Physiology with Community Health, Vidyasagar University, Midnapore, West Bengal, India
| |
Collapse
|
50
|
Characterization of the ovarian preantral follicle populations and its correlation with age and nutritional status in Brazilian Northeastern donkeys (Equus assinus). Anim Reprod Sci 2017; 187:193-202. [DOI: 10.1016/j.anireprosci.2017.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 10/23/2017] [Accepted: 11/06/2017] [Indexed: 11/20/2022]
|