1
|
Mastromonaco G. 40 'wild' years: the current reality and future potential of assisted reproductive technologies in wildlife species. Anim Reprod 2024; 21:e20240049. [PMID: 39286364 PMCID: PMC11404876 DOI: 10.1590/1984-3143-ar2024-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/25/2024] [Indexed: 09/19/2024] Open
Abstract
Over the past 40 years, assisted reproductive technologies (ARTs) have grown significantly in scale and innovation, from the bovine embryo industry's shift from in vivo derived to in vitro produced embryos and the development of somatic cell-based approaches for embryo production. Domestic animal models have been instrumental in the development of ARTs for wildlife species in support of the One Plan Approach to species conservation that integrates in situ and ex situ population management strategies. While ARTs are not the sole solution to the biodiversity crisis, they can offer opportunities to maintain, and even improve, the genetic composition of the captive and wild gene pools over time. This review focuses on the application of sperm and embryo technologies (artificial insemination and multiple ovulation/in vitro produced embryo transfer, respectively) in wildlife species, highlighting impactful cases in which significant progress or innovation has transpired. One of the key messages following decades of efforts in this field is the importance of collaboration between researchers and practitioners from zoological, academic, governmental, and private sectors.
Collapse
|
2
|
Komatsu M, Takuma H, Imai S, Yamane M, Takahashi M, Ikegawa T, Bai H, Ogawa H, Kawahara M. Dual barrier system against xenomitochondrial contamination in mouse embryos. Sci Rep 2023; 13:23058. [PMID: 38155240 PMCID: PMC10754889 DOI: 10.1038/s41598-023-50444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023] Open
Abstract
Heteroplasmic mammalian embryos between genetically distant species fail to develop to term, preventing transmission of xenomitochondrial DNA to progeny. However, there is no direct evidence indicating the mechanisms by which species specificity of the mitochondrial genome is ensured during mammalian development. Here, we have uncovered a two-step strategy underlying the prevention of xenomitochondrial DNA transmission in mouse embryos harboring bovine mitochondria (mtB-M embryos). First, mtB-M embryos showed metabolic disorder by transient increase of reactive oxygen species at the 4-cell stage, resulting in repressed development. Second, trophoblasts of mtB-M embryos led to implantation failure. Therefore, we tested cell aggregation with tetraploid embryos to compensate for the placentation of mtB-M embryos. The 14 mtB-M embryos harboring bovine mtDNAs developed to term at embryonic day 19.5. Taken together, our results show that contamination of bovine mtDNA is prohibited by embryonic lethality due to metabolic disruption and failure of placentation, suggesting these represent xenomitochondrial elimination mechanisms in mammalian embryos.
Collapse
Affiliation(s)
- Masaya Komatsu
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
- Hokkaido Agricultural Research Center, NARO, Sapporo, Hokkaido, 062-8555, Japan
| | - Hikaru Takuma
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Shun Imai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Maiko Yamane
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Masashi Takahashi
- Graduate School of Global Food Resources/Global Center for Food, Land and Water Resources, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Takuto Ikegawa
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Hidehiko Ogawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan.
| |
Collapse
|
3
|
Swegen A, Appeltant R, Williams SA. Cloning in action: can embryo splitting, induced pluripotency and somatic cell nuclear transfer contribute to endangered species conservation? Biol Rev Camb Philos Soc 2023; 98:1225-1249. [PMID: 37016502 DOI: 10.1111/brv.12951] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 04/06/2023]
Abstract
The term 'cloning' refers to the production of genetically identical individuals but has meant different things throughout the history of science: a natural means of reproduction in bacteria, a routine procedure in horticulture, and an ever-evolving gamut of molecular technologies in vertebrates. Mammalian cloning can be achieved through embryo splitting, somatic cell nuclear transfer, and most recently, by the use of induced pluripotent stem cells. Several emerging biotechnologies also facilitate the propagation of genomes from one generation to the next whilst bypassing the conventional reproductive processes. In this review, we examine the state of the art of available cloning technologies and their progress in species other than humans and rodent models, in order to provide a critical overview of their readiness and relevance for application in endangered animal conservation.
Collapse
Affiliation(s)
- Aleona Swegen
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Priority Research Centre for Reproductive Science, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Ruth Appeltant
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Suzannah A Williams
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|
4
|
Hu G, Song M, Wang Y, Hao K, Wang J, Zhang Y. Using a modified piggyBac transposon-combined Cre/loxP system to produce selectable reporter-free transgenic bovine mammary epithelial cells for somatic cell nuclear transfer. Genesis 2023:e23510. [PMID: 36748563 DOI: 10.1002/dvg.23510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Transposon systems are widely used for genetic engineering in various model organisms. PiggyBac (PB) has recently been confirmed to have highly efficient transposition in the mouse germ line and mammalian cell lines. In this study, we used a modified PB transposon system mediated by PB transposase (PBase) mRNA carrying the human lactoferrin gene driven by bovine β-casein promoter to transfect bovine mammary epithelial cells (BMECs), and the selectable reporter in two stable transgenic BMEC clones was removed using cell-permeant Cre recombinase. These reporter-free transgenic BMECs were used as donor cells for somatic cell nuclear transfer (SCNT) and exhibited a competence of SCNT embryos similar to stable transgenic BMECs and nontransgenic BMECs. The comprehensive information from this study provided a modified approach using an altered PB transposon system mediated by PBase mRNA in vitro and combined with the Cre/loxP system to produce transgenic and selectable reporter-free donor nuclei for SCNT. Consequently, the production of safe bovine mammary bioreactors can be promoted.
Collapse
Affiliation(s)
- Guangdong Hu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Meijun Song
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yan Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Kexing Hao
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jing Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Interspecific Nuclear Transfer Blastocysts Reconstructed from Arabian Oryx Somatic Cells and Domestic Cow Ooplasm. Vet Sci 2022; 10:vetsci10010017. [PMID: 36669018 PMCID: PMC9867358 DOI: 10.3390/vetsci10010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Cloning, commonly referred to as somatic cell nuclear transfer (SCNT), is the technique of enucleating an oocyte and injecting a somatic cell into it. This study was carried out with interspecific SCNT technology to clone the Arabian Oryx utilizing the oryx's fibroblast cells and transfer it to the enucleated oocytes of a domestic cow. The recipient oocytes were extracted from the cows that had been butchered. Oryx somatic nuclei were introduced into cow oocytes to produce embryonic cells. The study was conducted on three groups, Oryx interspecific somatic cell nuclear transfer into enucleated oocytes of domestic cows, cow SCNT "the same bovine family species", used as a control group, and in vitro fertilized (IVF) cows to verify all media used in this work. The rates of different embryo developmental stages varied slightly (from 1- cell to morula stage). Additionally, the oryx interspecies Somatic cell nuclear transfer blastocyst developmental rate (9.23%) was comparable to that of cow SCNT (8.33%). While the blastula stage rate of the (IVF) cow embryos exhibited a higher cleavage rate (42%) in the embryo development stage. The results of this study enhanced domestic cow oocytes' ability to support interspecific SCNT cloned oryx, and generate a viable embryo that can advance to the blastula stage.
Collapse
|
6
|
Pluripotency transcription factor levels in sheep embryos correlate with mRNA regulatory elements. Livest Sci 2022. [DOI: 10.1016/j.livsci.2021.104778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Wang J, Liu X, Yang J, Guo H, Li J, Huo L, Zhao H, Wang X, Yan X, Li B, Sun Y. Effects of small-molecule compounds on fibroblast properties in golden snub-nosed monkey (Rhinopithecus roxellana). J Med Primatol 2021; 50:323-331. [PMID: 34664268 DOI: 10.1111/jmp.12549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Golden snub-nosed monkey (Rhinopithecus roxellana) is an endangered primate species, whose molecular material for conservation purposes has not yet been maintained. Although small-molecule compounds (SMCs) have been reported to improve induced pluripotent stem cells (iPSCs), their efficiency in the interspecies-transferred nucleus is still unknown. METHODS We thus used the fibroblasts from the golden snub-nosed monkey treated with SMC as donor cells, injected into the enucleated oocytes of goats, to test such efficiency. Gene expression profiles in the cell-constructed embryos with and without SMCs were compared by qPCR. RESULTS The results show that cell morphology undergoes remarkable changes (volume is smaller than normal cells, and many black spots in the cytoplasm were found); pluripotent genes (Oct4, Sox2, and Nanog) significantly increased with SMC treatment. CONCLUSIONS This study demonstrates that SMCs alter the properties of donor cells and promote the expression of pluripotent genes in hybrid embryos.
Collapse
Affiliation(s)
- Juanjuan Wang
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Xin Liu
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Jing Yang
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Hanxing Guo
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Jingjing Li
- The school of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lihui Huo
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Haitao Zhao
- Shaanxi Institute of Zoology, Northwest Institute of Endangered Zoology Species, Xi'an, China
| | - Xiaowei Wang
- Shaanxi Institute of Zoology, Northwest Institute of Endangered Zoology Species, Xi'an, China
| | - Xingrong Yan
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Science, Kumming, China
| | - Yu Sun
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
8
|
Hisey EA, Ross PJ, Meyers S. Genetic Manipulation of the Equine Oocyte and Embryo. J Equine Vet Sci 2021; 99:103394. [PMID: 33781418 PMCID: PMC8605602 DOI: 10.1016/j.jevs.2021.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/19/2023]
Abstract
As standard in vitro fertilization is not a viable technique in horses yet, many different techniques have been used to create equine embryos for research purposes. One such method is parthenogenesis in which an oocyte is induced to mature into an embryo-like state without the introduction of a spermatozoon, and thus they are not considered true embryos. Another method is somatic cell nuclear transfer (SCNT), in which a somatic cell nucleus from an extant horse is inserted into an enucleated oocyte, creating a genetic clone of the donor horse. Due to limited availability of equine oocytes in the United States, researchers have investigated the potential for combining equine somatic cell nuclei with oocytes from other species to make embryos for research purposes, which has not been successful to date. There has also been a rising interest in producing transgenic animals using sperm exposed to exogenous DNA. The successful creation of transgenic equine blastocysts shows the promise of sperm mediated gene transfer (SMGT), but this method is not ideal for other applications, like gene therapy, because it cannot be used to induce targeted mutations. That is why technologies like CRISPR/Cas9 are vital. In this review, we argue that parthenogenesis, SCNT, and interspecies SCNT can be considered genetic manipulation strategies as they create embryos that are genetically identical to their parent cell. Here, we describe how these methods are performed and their applications and we also describe the few methods that have been used to directly modify equine embryos: SMGT and CRISPR/Cas9.
Collapse
Affiliation(s)
- Erin A. Hisey
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA
| | - Pablo J. Ross
- Department of Animal Science, University of California, Davis, CA
| | - Stuart Meyers
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA,Corresponding author at: S. Meyers, 1089 Veterinary Medicine Dr. Davis CA 95616. (S. Meyers)
| |
Collapse
|
9
|
Mitochondrial metabolism assessment of lycaon-dog fetuses in interspecies somatic cell nuclear transfer. Theriogenology 2021; 165:18-27. [PMID: 33611171 DOI: 10.1016/j.theriogenology.2021.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 12/16/2022]
Abstract
Many studies have reported that interspecies somatic cell nuclear transfer (iSCNT) is considered the prominent method in preserving endangered animals. However, the development rate of iSCNT embryos is low, and there are limited studies on the molecular mechanism of the iSCNT process. This study evaluated the developmental potential of interspecies lycaon (Lycaon pictus)-dog embryos and assessed the mitochondrial content and metabolism of the produced cloned lycaon-dog fetus. Of 678 collected oocytes, 516 were subjected to nuclear transfer, and 419 reconstructed embryos with male lycaon fibroblasts were transferred into 27 surrogates. Of 720 oocytes, 568 were subjected to nuclear transfer and 469 reconstructed embryos with female lycaon fibroblasts were transferred into 31 surrogates. Two recipients who received female reconstructed embryos were identified as pregnant at 30 days. However, fetal retardation with no cardiac activity was observed at 46 days. Microsatellite analysis confirmed that the cloned lycaon-dog fetus was genetically identical to the lycaon donor cell, whereas mitochondrial sequencing analysis revealed that oocyte donor dogs transmitted their mtDNA. We assessed the oxygen consumption rate and mitochondrial content of the aborted lycaon-dog fetus to shed some light on the aborted fetus's cellular metabolism. The oxygen consumption rates in the lycaon-dog fetal fibroblasts were lower than those in adult dog, lycaon and cloned dog fetal fibroblasts. Furthermore, lycaon-dog fetal fibroblasts showed decreased proportions of live and active mitochondria compared with other groups. Overall, we hypothesized that nuclear-mitochondrial incompatibility affects pyruvate metabolism and that these processes cause intrauterine fetal death.
Collapse
|
10
|
Mrowiec P, Bugno-Poniewierska M, Młodawska W. The perspective of the incompatible of nucleus and mitochondria in interspecies somatic cell nuclear transfer for endangered species. Reprod Domest Anim 2020; 56:199-207. [PMID: 33190359 DOI: 10.1111/rda.13864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 01/02/2023]
Abstract
Taking into account the latest Red List of the International Union for Conservation of Nature in which 25% of all mammals are threatened with extinction, somatic cell nuclear transfer (SCNT) could be a beneficial tool and holds a lot of potential for aiding the conservation of endangered, exotic or even extinct animal species if somatic cells of such animals are available. In the case of shortage and sparse amount of wild animal oocytes, interspecies somatic cell nuclear transfer (iSCNT), where the recipient ooplasm and donor nucleus are derived from different species, is the alternative SCNT technique. The successful application of iSCNT, resulting in the production of live offspring, was confirmed in several combination of closely related species. When nucleus donor cells and recipient oocytes have been used in many other combinations, very often with a very distant taxonomical relation iSCNT resulted only in the very early stages of cloned embryo development. Problems encountered during iSCNT related to mitochondrial DNA (mtDNA)/genomic DNA incompatibility, mtDNA heteroplasmy, embryonic genome activation of the donor nucleus by the recipient oocyte and availability of suitable foster mothers for iSCNT embryos. Implementing assisted reproductive technologies, including iSCNT, to conservation programmes also raises concerns that the production of genetically identical populations might cause problems with inbreeding. The article aims at presenting achievements, limitations and perspectives of iSCNT in maintaining animal biodiversity.
Collapse
Affiliation(s)
- Patrycja Mrowiec
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Kraków, Poland
| | - Monika Bugno-Poniewierska
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Kraków, Poland
| | - Wiesława Młodawska
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Kraków, Poland
| |
Collapse
|
11
|
Gambini A, Duque Rodríguez M, Rodríguez MB, Briski O, Flores Bragulat AP, Demergassi N, Losinno L, Salamone DF. Horse ooplasm supports in vitro preimplantation development of zebra ICSI and SCNT embryos without compromising YAP1 and SOX2 expression pattern. PLoS One 2020; 15:e0238948. [PMID: 32915925 PMCID: PMC7485800 DOI: 10.1371/journal.pone.0238948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/25/2020] [Indexed: 11/18/2022] Open
Abstract
Several equids have gone extinct and many extant equids are currently considered vulnerable to critically endangered. This work aimed to evaluate whether domestic horse oocytes support preimplantation development of zebra embryos obtained by intracytoplasmic sperm injection (ICSI, zebroid) and cloning, and to study the Hippo signaling pathway during the lineage specification of trophectoderm cells and inner cell mass cells. We first showed that zebra and horse sperm cells induce porcine oocyte activation and recruit maternal SMARCA4 during pronuclear formation. SMARCA4 recruitment showed to be independent of the genetic background of the injected sperm. No differences were found in blastocyst rate of ICSI hybrid (zebra spermatozoon into horse egg) embryos relative to the homospecific horse control group. Interestingly, zebra cloned blastocyst rate was significantly higher at day 8. Moreover, most ICSI and cloned horse and zebra blastocysts showed a similar expression pattern of SOX2 and nuclear YAP1 with the majority of the nuclei positive for YAP1, and most SOX2+ nuclei negative for YAP1. Here we demonstrated that horse oocytes support zebra preimplantation development of both, ICSI and cloned embryos, without compromising development to blastocyst, blastocyst cell number neither the expression of SOX2 and YAP1. Our results support the use of domestic horse oocytes as a model to study in vitro zebra embryos on behalf of preservation of valuable genetic.
Collapse
Affiliation(s)
- Andrés Gambini
- Facultad de Agronomía, Cátedra de Producción Equina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- * E-mail:
| | - Matteo Duque Rodríguez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Agronomía, Cátedra de Fisiología Animal, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Belén Rodríguez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Agronomía, Cátedra de Fisiología Animal, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Olinda Briski
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Agronomía, Cátedra de Fisiología Animal, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana P. Flores Bragulat
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Agronomía y Veterinaria, Cátedra de Producción Equina, Universidad Nacional de Río Cuarto, Río IV, Córdoba, Argentina
| | | | - Luis Losinno
- Facultad de Agronomía y Veterinaria, Cátedra de Producción Equina, Universidad Nacional de Río Cuarto, Río IV, Córdoba, Argentina
| | - Daniel F. Salamone
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Agronomía, Cátedra de Fisiología Animal, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Mordhorst BR, Murphy SL, Schauflinger M, Rojas Salazar S, Ji T, Behura SK, Wells KD, Green JA, Prather RS. Porcine Fetal-Derived Fibroblasts Alter Gene Expression and Mitochondria to Compensate for Hypoxic Stress During Culture. Cell Reprogram 2019; 20:225-235. [PMID: 30089028 PMCID: PMC6088251 DOI: 10.1089/cell.2018.0008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Warburg effect is characterized by decreased mitochondrial oxidative phosphorylation and increased glycolytic flux in adequate oxygen. The preimplantation embryo has been described to have characteristics of the Warburg effect, including similar changes in gene expression and mitochondria, which are more rudimentary in appearance. We hypothesized hypoxia would facilitate anaerobic glycolysis in fibroblasts thereby promoting gene expression and media metabolite production reflecting the Warburg effect hallmarks in early embryos. Additionally, we speculated that hypoxia would induce a rudimentary small mitochondrial phenotype observed in several cell types evidenced to demonstrate the Warburg effect. While many have examined the role hypoxia plays in pathological conditions, few studies have investigated changes in primary cells which could be used in somatic cell nuclear transfer. We found that cells grown in 1.25% O2 had normal cell viability and more, but smaller mitochondria. Several hypoxia-inducible genes were identified, including seven genes for glycolytic enzymes. In conditioned media from hypoxic cells, the quantities of gluconolactone, cytosine, and uric acid were decreased indicating higher consumption than control cells. These results indicate that fibroblasts alter gene expression and mitochondria to compensate for hypoxic stress and maintain viability. Furthermore, the metabolic changes observed, making them more similar to preimplantation embryos, could be facilitating nuclear reprogramming making these cells more amendable to future use in somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Bethany R Mordhorst
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| | - Stephanie L Murphy
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| | - Martin Schauflinger
- 2 Electron Microscopy Core Facility, University of Missouri , Columbia, Missouri
| | | | - Tieming Ji
- 3 Department of Statistics, University of Missouri , Columbia, Missouri
| | - Susanta K Behura
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| | - Kevin D Wells
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| | - Jonathan A Green
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| | - Randall S Prather
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| |
Collapse
|
13
|
Mordhorst BR, Benne JA, Cecil RF, Whitworth KM, Samuel MS, Spate LD, Murphy CN, Wells KD, Green JA, Prather RS. Improvement of in vitro and early in utero porcine clone development after somatic donor cells are cultured under hypoxia. Mol Reprod Dev 2019; 86:558-565. [PMID: 30779254 PMCID: PMC6510642 DOI: 10.1002/mrd.23132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/06/2019] [Accepted: 01/28/2019] [Indexed: 12/25/2022]
Abstract
Genetically engineered pigs serve as excellent biomedical and agricultural models. To date, the most reliable way to generate genetically engineered pigs is via somatic cell nuclear transfer (SCNT), however, the efficiency of cloning in pigs is low (1-3%). Somatic cells such as fibroblasts frequently used in nuclear transfer utilize the tricarboxylic acid cycle and mitochondrial oxidative phosphorylation for efficient energy production. The metabolism of somatic cells contrasts with cells within the early embryo, which predominately use glycolysis. We hypothesized that fibroblast cells could become blastomere-like if mitochondrial oxidative phosphorylation was inhibited by hypoxia and that this would result in improved in vitro embryonic development after SCNT. In a previous study, we demonstrated that fibroblasts cultured under hypoxic conditions had changes in gene expression consistent with increased glycolytic/gluconeogenic metabolism. The goal of this pilot study was to determine if subsequent in vitro embryo development is impacted by cloning porcine embryonic fibroblasts cultured in hypoxia. Here we demonstrate that in vitro measures such as early cleavage, blastocyst development, and blastocyst cell number are improved (4.4%, 5.5%, and 17.6 cells, respectively) when donor cells are cultured in hypoxia before nuclear transfer. Survival probability was increased in clones from hypoxic cultured donors compared to controls (8.5 vs. 4.0 ± 0.2). These results suggest that the clones from donor cells cultured in hypoxia are more developmentally competent and this may be due to improved nuclear reprogramming during somatic cell nuclear transfer.
Collapse
Affiliation(s)
| | - Joshua A Benne
- Department of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Raissa F Cecil
- Department of Animal Sciences, University of Missouri, Columbia, Missouri
| | | | - Melissa S Samuel
- Department of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Lee D Spate
- Department of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Clifton N Murphy
- Department of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Kevin D Wells
- Department of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Jonathan A Green
- Department of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Randall S Prather
- Department of Animal Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
14
|
SHARIF SITIHASLINDAMOHD, AMRI ASDIANA, WAN EMBONG WANKHADIJAH, ABDULLAH RAMLIBIN. Successful cleavage of cloned goat embryos using ear fibroblast cell and fetal fibroblast cell as donor karyoplast in interspecies SCNT. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2018. [DOI: 10.56093/ijans.v88i9.83545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The efficiencies in producing cloned ruminant embryos and subsequent production of offspring are still low. The study was conducted to produce cloned goat and cattle embryos using inter- and intraspecies SCNT techniques. This study involved 3 different types of donor karyoplast using goat and cattle oocyte as a recipient cytoplast to produce cloned goat and cattle embryos. The results showed that fetal fibroblast cell (FFC) in interspecies SCNT gave significantly higher 2-cell (64.40 vs. 38.43%), 4-cell (54.24 vs. 24.60%), 8-cell (36.82 vs. 14.54%) and morula (22.10 vs. 7.90%) cloned goat embryos than ear fibroblast cell (EFC). As for intraspecies SCNT using cumulus cell (CC) as a donor karyoplast to produce cloned cattle and goat embryos, the values for cleavage rates were not significantly different which were; 53.57 vs. 57.17%, 33.17 vs. 46.40%, 22.15 vs. 27.30% and 11.90 vs. 15.59%, respectively for all embryo stages. Our results showed that cloned goat and cattle embryos could be produced using different types of donor karyoplast in intra- and interspecies SCNT. However, for goat-cattle interspecies SCNT, FFC was more efficient to produce cloned goat embryos compared to EFC.
Collapse
|
15
|
Mordhorst BR, Murphy SL, Ross RM, Benne JA, Samuel MS, Cecil RF, Redel BK, Spate LD, Murphy CN, Wells KD, Green JA, Prather RS. Pharmacologic treatment of donor cells induced to have a Warburg effect-like metabolism does not alter embryonic development in vitro or survival during early gestation when used in somatic cell nuclear transfer in pigs. Mol Reprod Dev 2018; 85:290-302. [PMID: 29392839 DOI: 10.1002/mrd.22964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/14/2018] [Accepted: 01/17/2018] [Indexed: 11/08/2022]
Abstract
Somatic cell nuclear transfer is a valuable technique for the generation of genetically engineered animals, however, the efficiency of cloning in mammalian species is low (1-3%). Differentiated somatic cells commonly used in nuclear transfer utilize the tricarboxylic acid cycle and cellular respiration for energy production. Comparatively the metabolism of somatic cells contrasts that of the cells within the early embryos which predominately use glycolysis. Early embryos (prior to implantation) are evidenced to exhibit characteristics of a Warburg Effect (WE)-like metabolism. We hypothesized that pharmacologically driven fibroblast cells can become more blastomere-like and result in improved in vitro embryonic development after SCNT. The goals were to determine if subsequent in vitro embryo development is impacted by (1) cloning pharmacologically treated donor cells pushed to have a WE-like metabolism or (2) culturing non-treated donor clones with pharmaceuticals used to push a WE-like metabolism. Additionally, we investigated early gestational survival of the donor-treated clone embryos. Here we demonstrate that in vitro development of clones is not hindered by pharmacologically treating either the donor cells or the embryos themselves with CPI, PS48, or the combination of these drugs. Furthermore, these experiments demonstrate that early embryos (or at least in vitro produced embryos) have a low proportion of mitochondria which have high membrane potential and treatment with these pharmaceuticals does not further alter the mitochondrial function in early embryos. Lastly, we show that survival in early gestation was not different between clones from pharmacologically induced WE-like donor cells and controls.
Collapse
Affiliation(s)
| | | | - Renee M Ross
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Joshua A Benne
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Melissa S Samuel
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Raissa F Cecil
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Bethany K Redel
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Lee D Spate
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Clifton N Murphy
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Jonathan A Green
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
16
|
The integration of cloning by nuclear transfer in the conservation of animal genetic resources. ACTA ACUST UNITED AC 2018. [DOI: 10.1017/s0263967x0004204x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractCloning mammals from somatic cells by nuclear transfer has the potential to assist with the preservation of genetic diversity. An increasing number of species have been successfully cloned by this approach; however, present methods are inefficient with few cloned embryos resulting in healthy offspring. In those livestock species that have already been cloned, it is clearly feasible to use cloning to preserve endangered breeds (e.g. the last surviving Enderby Island cow). The opportunity exists to recover oocytes from these cloned heifers and use frozen Enderby Island sperm from deceased bulls for in vitro fertilisation and thus, expand the genetic diversity of this breed. Where there exists an adequate understanding of the reproductive biology and embryology of the species concerned and adequate sources of females to supply both recipient oocytes and surrogates to gestate the pregnancies, intra-specific nuclear transfer and embryo transfer can be utilised. However, when these requirements cannot be met, as is common for most endangered species, cloning technology invariably involves the use of inter-species nuclear transfer and embryo transfer. Even in intra-specific cloning the source of oocyte for nuclear transfer is an important consideration. Typically, cloned animals are only genomic copies of the founder if they possess mitochondrial DNA which differs from the original animal. Different maternal lineages of oocytes both within and between breeds significantly affect cloning efficiency and livestock production characteristics. Cloning should not distract conservation efforts from encouraging the use of indigenous livestock breeds with traits of adaptation to local environments, the preservation of wildlife habitats or the use of other forms of assisted reproduction. Whilst it is often difficult to justify cloning in animal conservation at present, the appropriate cryo-preservation of tissues and cells from a wide selection of biodiversity is of paramount importance. This provides an insurance against further losses of genetic variation from dwindling populations, disease epidemics or even possible extinction. It would also complement the gene banking of gametes or embryos and can be performed more easily and cheaply. Future cloning from preserved somatic cells can reintroduce lost genes back into the breeding pool. With greater appreciation of the heritable attributes of traditional livestock breeds there is the desire to identify superior animals within these local populations and the genetic loci involved. Through clonal family performance testing, nuclear transfer can aid the selection of desirable genotypes and then the production of larger numbers of embryos or animals for natural breeding to more widely disseminate the desirable traits. With the identification of alleles conferring desirable attributes, transgenesis could be utilised to both improve traditional and industrial livestock breeds. This further emphasizes the importance of preserving global farm animal genetic resources.
Collapse
|
17
|
Wani NA, Vettical BS, Hong SB. First cloned Bactrian camel (Camelus bactrianus) calf produced by interspecies somatic cell nuclear transfer: A step towards preserving the critically endangered wild Bactrian camels. PLoS One 2017; 12:e0177800. [PMID: 28545049 PMCID: PMC5435326 DOI: 10.1371/journal.pone.0177800] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/03/2017] [Indexed: 12/04/2022] Open
Abstract
Studies were conducted to explore the possibility of employing dromedary camel (Camelus dromedarius) oocytes as recipient cytoplasts for the development of interspecies somatic cell nuclear transfer (iSCNT) embryos using skin fibroblast cells of an adult Bactrian camel (Camelus bactrianus) and Llama (Llama glama) as donor nuclei. Also, the embryos reconstructed with Bactrian cells were transferred into the uterus of synchronized dromedary camel recipients to explore the possibility of using them as surrogate mothers. Serum-starved skin fibroblast cells were injected into the perivitelline space of enucleated mature oocytes, collected from super-stimulated dromedary camels, and fused using an Eppendorf electroporator. After activation with 5μM ionomycin and 6-dimethylaminopurine, they were cultured at 38.5°C in an atmosphere of 5% CO2, 5% O2, and 90% N2 in air. In experiment 1, Day 7 blastocysts were stained with Hoechst to count their cell numbers, while in experiment 2, they were transferred to synchronized dromedary recipients. A lower number (P < 0.05) of blastocysts were obtained from reconstructs utilizing fibroblast cells from Llama when compared with those reconstructed with dromedary and Bactrian fibroblast cells. However, no difference was observed in their cell numbers. In experiment 2, a higher (P < 0.05) proportion of blastocysts were obtained from the cleaved embryos reconstructed with Bactrian fibroblast cells when compared to those reconstructed with dromedary cells. Twenty-six Day 7 blastocysts reconstructed with Bactrian cells were transferred to 23 synchronized dromedary recipients with 5 pregnancies established on Day 30, however, only one of the pregnancies developed to term and a healthy calf weighing 33 kgs was born after completing 392 days of gestation. Unfortunately, the calf died on day 7 due to acute septicemia. In conclusion, the present study reports, for the first time, birth of a cloned Bactrian calf by iSCNT using dromedary camel as a source for oocytes as well as a surrogate for carrying the pregnancy to term.
Collapse
|
18
|
Opiela J, Samiec M, Romanek J. In vitro development and cytological quality of inter-species (porcine→bovine) cloned embryos are affected by trichostatin A-dependent epigenomic modulation of adult mesenchymal stem cells. Theriogenology 2017; 97:27-33. [PMID: 28583605 DOI: 10.1016/j.theriogenology.2017.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 01/31/2017] [Accepted: 04/13/2017] [Indexed: 01/21/2023]
Abstract
Artificial epigenomic modulation of in vitro cultured mesenchymal stem cells (MSCs) by applying a non-selective HDAC inhibitor, termed TSA, can facilitate more epigenetic reprogramming of transcriptional activity of the somatic cell-descended nuclear genome in NT pig embryos. The results of the present investigation showed that TSA-dependent epigenomic modulation of nuclear donor MSCs highly affects both the in vitro developmental capability and the cytological quality of inter-species (porcine→bovine) cloned embryos. The developmental competences to reach the blastocyst stage among hybrid (porcine→bovine) nuclear-transferred embryos that had been reconstructed with bovine ooplasts and epigenetically modulated porcine MSCs were maintained at a relatively high level. These competences were higher than those noted in studies by other authors, but they were still decreased compared to those of intra-species (porcine) cloned embryos that had been reconstituted with porcine ooplasts and either the cell nuclei of epigenetically transformed MSCs or the cell nuclei of epigenetically non-transformed MSCs. In conclusion, MSCs undergoing TSA-dependent epigenetic transformation were used for the first time as a source of nuclear donor cells not only for inter-species somatic cell cloning in pigs but also for inter-species somatic cell cloning in other livestock species. Moreover, as a result of the current research, efficient sequential physicochemical activation of inter-species nuclear-transferred clonal cybrids derived from bovine ooplasm and porcine MSC nuclei was developed.
Collapse
Affiliation(s)
- J Opiela
- Department of Animal Reproduction Biotechnology, National Research Institute of Animal Production, Balice n., Kraków, Poland.
| | - M Samiec
- Department of Animal Reproduction Biotechnology, National Research Institute of Animal Production, Balice n., Kraków, Poland
| | - J Romanek
- Department of Animal Reproduction Biotechnology, National Research Institute of Animal Production, Balice n., Kraków, Poland
| |
Collapse
|
19
|
González-Grajales LA, Favetta LA, King WA, Mastromonaco GF. Lack of effects of ooplasm transfer on early development of interspecies somatic cell nuclear transfer bison embryos. BMC DEVELOPMENTAL BIOLOGY 2016; 16:36. [PMID: 27737629 PMCID: PMC5064788 DOI: 10.1186/s12861-016-0137-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/29/2016] [Indexed: 12/20/2022]
Abstract
Background Successful development of iSCNT (interspecies somatic cell nuclear transfer) embryos depends on complex interactions between ooplasmic and nuclear components, which can be compromised by genetic divergence. Transfer of ooplasm matching the genetic background of the somatic cell in iSCNT embryos is a valuable tool to study the degree of incompatibilities between nuclear and ooplasmic components. This study investigated the effects of ooplasm transfer (OT) on cattle (Bos taurus) and plains bison (Bison bison bison) embryos produced by iSCNT and supplemented with or without ooplasm from cattle or plains bison oocytes. Results Embryos in all groups were analysed for developmental competence that included cleavage rates, ATP content, and expression of nuclear- and mitochondrial- encoded genes at 8–16 cell stage. Interestingly, no significant differences were observed in embryo development, ATP content, and expression of nuclear respiratory factor 2 (NRF2), mitochondrial transcription factor A (TFAM) and mitochondrial subunit 2 of cytochrome c oxidase (mt-COX2) among groups. Thus, although OT did not result in any detrimental effects on the reconstructed embryos due to invasive manipulation, significant benefits of OT were not observed up to the 8–16 cell stage. Conclusions This study showed that a viable technique for OT + SCNT is possible, however, further understanding of the effects of OT on blastocyst development is necessary.
Collapse
Affiliation(s)
| | - Laura A Favetta
- Department of Biomedical Sciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G 2W1, Canada
| | - W Allan King
- Department of Biomedical Sciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G 2W1, Canada
| | - Gabriela F Mastromonaco
- Department of Biomedical Sciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G 2W1, Canada. .,Reproductive Physiology, Toronto Zoo, 361A Old Finch Avenue, Toronto, Ontario, M1B 5K7, Canada.
| |
Collapse
|
20
|
Hwang JH, Kim SE, Gupta MK, Lee H. Gnotobiotic Miniature Pig Interbreed Somatic Cell Nuclear Transfer for Xenotransplantation. Cell Reprogram 2016; 18:207-213. [PMID: 27459580 DOI: 10.1089/cell.2015.0065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transgenic animal producing technology has improved consistently over the last couple of decades. Among the available methods, somatic cell nuclear transfer (SCNT) technology was officially the most popular. However, SCNT has low efficiency and requires a highly skilled individual. Additionally, the allo-SCNT nuclear reprogramming mechanism is poorly understood in the gnotobiotic miniature pig, which is a candidate for xenotransplantation, making sampling in oocytes very difficult compared to commercial hybrid pigs. Therefore, interbreed SCNT (ibSCNT), which is a combination of miniature pig and commercial pig (Landrace based), was analyzed and was found to be similar to SCNT in terms of the rate of blastocyst formation (12.6% ± 2.9% vs. 15.5% ± 2.2%; p > 0.05). However, a significantly lower fusion rate was observed in the ibSCNT compared to normal SCNT with Landrace pig somatic cells (29.6% ± 0.8% vs. 65.0% ± 4.9%). Thus, the optimization of fusion parameters was necessary for efficient SCNT. Our results further revealed that ibSCNT by the whole-cell intracytoplasmic injection (WCICI) method had a significantly higher blastocyst forming efficiency than the electrofusion method (31.1 ± 8.5 vs. 15.5% ± 2.2%). The nuclear remodeling and the pattern of changes in acetylation at H3K9 residue were similar in both SCNT and ibSCNT embryos.
Collapse
Affiliation(s)
- Jeong Ho Hwang
- 1 Bio-Organ Research Center, Konkuk University , Seoul, Republic of Korea
- 3 Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology , Jeongeup, Republic of Korea
| | - Sang Eun Kim
- 2 Department of Animal Biotechnology, Konkuk University , Seoul, Republic of Korea
| | - Mukesh Kumar Gupta
- 4 Department of Biotechnology and Medical Engineering, National Institute of Technology , Rourkela, India
| | - HoonTaek Lee
- 1 Bio-Organ Research Center, Konkuk University , Seoul, Republic of Korea
- 2 Department of Animal Biotechnology, Konkuk University , Seoul, Republic of Korea
| |
Collapse
|
21
|
Wiltbank MC, Baez GM, Garcia-Guerra A, Toledo MZ, Monteiro PL, Melo LF, Ochoa JC, Santos JE, Sartori R. Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology 2016; 86:239-53. [DOI: 10.1016/j.theriogenology.2016.04.037] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/02/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
|
22
|
Kwon D, Koo OJ, Kim MJ, Jang G, Lee BC. Nuclear-mitochondrial incompatibility in interorder rhesus monkey-cow embryos derived from somatic cell nuclear transfer. Primates 2016; 57:471-8. [PMID: 27165688 DOI: 10.1007/s10329-016-0538-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 04/07/2016] [Indexed: 01/08/2023]
Abstract
Monkey interorder somatic cell nuclear transfer (iSCNT) using enucleated cow oocytes yielded poor blastocysts development and contradictory results among research groups. Determining the reason for this low blastocyst development is a prerequisite for optimizing iSCNT in rhesus monkeys. The aim of this study was to elucidate nuclear-mitochondrial incompatibility of rhesus monkey-cow iSCNT embryos and its relationship to low blastocyst development. Cytochrome b is a protein of complex III of the electron transport chain (ETC). According to meta-analysis of amino acid sequences, the homology of cytochrome b is 75 % between rhesus monkeys and cattle. To maintain the function of ETC after iSCNT, 4n iSCNT embryos were produced by fusion of non-enucleated cow oocytes and rhesus monkey somatic cells. The blastocyst development rate of 4n iSCNT embryos was higher than that of 2n embryos (P < 0.01). Formation of reactive oxygen species (ROS) is an indirect indicator of ETC activity of cells. The ROS levels of 4n iSCNT embryos was higher than that of 2n embryos (P < 0.01). Collectively, rhesus monkey iSCNT embryos reconstructed with cow oocytes have nuclear-mitochondrial incompatibility due to fundamental species differences between rhesus monkeys and cattle. Nuclear-mitochondrial incompatibility seems to correlate with low ETC activity and extremely low blastocyst development of rhesus monkey-cow iSCNT embryos.
Collapse
Affiliation(s)
- Daekee Kwon
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea
| | - Ok-Jae Koo
- Laboratory Animal Research Center, Samsung Biomedical Research Institute, Suwon, 440-746, Korea
| | - Min-Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea
| | - Goo Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea.,Emergency Center for Personalized Food-Medicine Therapy System, Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 443-270, Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea. .,Institute of Green Bio Science Technology, Seoul National University, Pyeongchang, 232-916, Korea.
| |
Collapse
|
23
|
Yelisetti UM, Komjeti S, Katari VC, Sisinthy S, Brahmasani SR. Interspecies nuclear transfer using fibroblasts from leopard, tiger, and lion ear piece collected postmortem as donor cells and rabbit oocytes as recipients. In Vitro Cell Dev Biol Anim 2016; 52:632-45. [DOI: 10.1007/s11626-016-0014-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/25/2016] [Indexed: 12/14/2022]
|
24
|
Embryo aggregation does not improve the development of interspecies somatic cell nuclear transfer embryos in the horse. Theriogenology 2016; 86:1081-1091. [PMID: 27157390 DOI: 10.1016/j.theriogenology.2016.03.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/03/2016] [Accepted: 03/28/2016] [Indexed: 11/22/2022]
Abstract
The low efficiency of interspecies somatic cell nuclear transfer (iSCNT) makes it necessary to investigate new strategies to improve embryonic developmental competence. Embryo aggregation has been successfully applied to improve cloning efficiency in mammals, but it remains unclear whether it could also be beneficial for iSCNT. In this study, we first compared the effect of embryo aggregation over in vitro development and blastocyst quality of porcine, bovine, and feline zona-free (ZF) parthenogenetic (PA) embryos to test the effects of embryo aggregation on species that were later used as enucleated oocytes donors in our iSCNT study. We then assessed whether embryo aggregation could improve the in vitro development of ZF equine iSCNT embryos after reconstruction with porcine, bovine, and feline ooplasm. Bovine- and porcine-aggregated PA blastocysts had significantly larger diameters compared with nonaggregated embryos. On the other hand, feline- and bovine-aggregated PA embryos had higher blastocyst cell number. Embryo aggregation of equine-equine SCNT was found to be beneficial for embryo development as we have previously reported, but the aggregation of three ZF reconstructed embryos did not improve embryo developmental rates on iSCNT. In vitro embryo development of nonaggregated iSCNT was predominantly arrested around the stage when transcriptional activation of the embryonic genome is reported to start on the embryo of the donor species. Nevertheless, independent of embryo aggregation, equine blastocyst-like structures could be obtained in our study using domestic feline-enucleated oocytes. Taken together, these results reported that embryo aggregation enhance in vitro PA embryo development and embryo quality but effects vary depending on the species. Embryo aggregation also improves, as expected, the in vitro embryo development of equine-equine SCNT embryos; however, we did not observe positive effects on equine iSCNT embryo development. Among oocytes from domestic animals tested in our study, the feline ooplasm might be the most appropriate recipient to partially allow preimplantation embryo development of iSCNT equine embryos.
Collapse
|
25
|
Saini M, Selokar N, Raja A, Sahare A, Singla S, Chauhan M, Manik R, Palta P. Effect of donor cell type on developmental competence, quality, gene expression, and epigenetic status of interspecies cloned embryos produced using cells from wild buffalo and oocytes from domestic buffalo. Theriogenology 2015; 84:101-8.e1. [DOI: 10.1016/j.theriogenology.2015.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
|
26
|
González-Grajales LA, Favetta LA, King WA, Mastromonaco GF. Developmental competence of 8?16-cell stage bison embryos produced by interspecies somatic cell nuclear transfer. Reprod Fertil Dev 2015; 28:RD14376. [PMID: 25763855 DOI: 10.1071/rd14376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/15/2015] [Indexed: 12/18/2022] Open
Abstract
Altered communication between nuclear and cytoplasmic components has been linked to impaired development in interspecies somatic cell nuclear transfer (iSCNT) embryos as a result of genetic divergence between the two species. This study investigated the developmental potential and mitochondrial function of cattle (Bos taurus), plains bison (Bison bison bison) and wood bison (Bison bison athabascae) embryos produced by iSCNT using domestic cattle oocytes as cytoplasts. Embryos in all groups were analysed for development, accumulation of ATP, apoptosis and gene expression of nuclear- and mitochondrial-encoded genes at the 8-16-cell stage. The results of this study showed no significant differences in the proportion of developed embryos at the 2-, 4- and 8-16-cell stages between groups. However, significantly higher ATP levels were observed in cattle SCNT embryos compared with bison iSCNT embryos. Significantly more condensed and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL)-positive nuclei were found in plains bison iSCNT embryos. No significant differences in the expression levels of nuclear respiratory factor 2 (NRF2) or mitochondrial subunit 2 of cytochrome c oxidase (mt-COX2) were found in any of the groups. However, mitochondrial transcription factor A (TFAM) expression significantly differed between groups. The results of this study provide insights into the potential causes that might lead to embryonic arrest in bison iSCNT embryos, including mitochondrial dysfunction, increased apoptosis and abnormal gene expression.
Collapse
|
27
|
Pan X, Zhang Y, Guo Z, Wang F. Development of interspecies nuclear transfer embryos reconstructed with argali (Ovis ammon) somatic cells and sheep ooplasm. Cell Biol Int 2015; 38:211-8. [PMID: 24123771 DOI: 10.1002/cbin.10191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/16/2013] [Accepted: 09/17/2013] [Indexed: 11/09/2022]
Abstract
Interspecies nuclear transfer has already achieved success in several species, which shows great potential in recovery and conservation of endangered animals. The study was conducted to establish an efficient system for in vitro argali (Ovis ammon)-sheep embryo reconstruction via interspecies somatic cell nuclear transfer (iSCNT). The competence of domestic sheep cytoplasts to reprogram the adult argali fibroblast nuclei was evaluated, and the effects of enucleation methods and donor cell passage and cell state on the in vitro development of argali-sheep cloned embryos were also examined. Sheep oocytes could support argali and sheep fibroblast cell nuclei transfer and develop to blastocysts in vitro. Oocytes matured for 21–23 h and enucleated by chemically assisted enucleation (CAE) had a higher enucleation rate than blind enucleation (BE), but the development rate of iSCNTembryos was the same (P>0.05). Moreover, passage numbers of fibroblast cells <10, as well as the cell cycle stages did not affect the development rate of iSCNT reconstructed embryos. Thus sheep cytoplasm successfully supports argali nucleus development to blastocyst stage after optimising the nuclear transfer procedure, which indicates that iSCNT can be used to conserve endangered argali in the near future.
Collapse
|
28
|
Effect of epigenetic modification with trichostatin A and S-adenosylhomocysteine on developmental competence and POU5F1-EGFP expression of interspecies cloned embryos in dog. ZYGOTE 2014; 23:758-70. [PMID: 25314965 DOI: 10.1017/s0967199414000410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Adult canine fibroblasts stably transfected with either cytomegalovirus (CMV) or POU5F1 promoter-driven enhanced green fluorescent protein (EGFP) were used to investigate if pre-treatment of these donor cells with two epigenetic drugs [trichostatin A (TSA), or S-adenosylhomocysteine (SAH)] can improve the efficiency of interspecies somatic cell nuclear transfer (iSCNT). Fluorescence-activated cell sorting (FACS), analyses revealed that TSA, but not SAH, treatment of both transgenic and non-transgenic fibroblasts significantly increased acetylation levels compared with untreated relatives. The expression levels of Bcl2 and P53 were significantly affected in TSA-treated cells compared with untreated cells, whereas SAH treatment had no significant effect on cell apoptosis. Irrespective of epigenetic modification, dog/bovine iSCNT embryos had overall similar rates of cleavage and development to 8-16-cell and morula stages in non-transgenic groups. For transgenic reconstructed embryos, however, TSA and SAH could significantly improve development to 8-16-cell and morula stages compared with control. Even though, irrespective of cell transgenesis and epigenetic modification, none of the iSCNT embryos developed to the blastocyst stage. The iSCNT embryos carrying CMV-EGFP expressed EGFP at all developmental stages (2-cell, 4-cell, 8-16-cell, and morula) without mosaicism, while no POU5F1-EGFP signal was observed in any stage of developing iSCNT embryos irrespective of TSA/SAH epigenetic modifications. These results indicated that bovine oocytes partially remodel canine fibroblasts and that TSA and SAH have marginal beneficial effects on this process.
Collapse
|
29
|
Wittayarat M, Fujiwara A, Chatdarong K, Techakumphu M, Sato Y, Tanihara F, Morita Y, Taniguchi M, Otoi T. Cell cycle analysis and interspecies nuclear transfer of cat cells treated with chemical inhibitors. Acta Vet Hung 2014; 62:233-42. [PMID: 24334073 DOI: 10.1556/avet.2013.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study investigated the effect of chemical inhibitors on the cell-cycle synchronisation in cat fibroblast cells and evaluated the development of interspecies embryos reconstructed from cat donor cells and enucleated bovine oocytes. Cat fibroblast cells were treated with 15 μg/mL roscovitine or 0.05 μg/mL deme-colcine prior to cell cycle analysis and nuclear transfer. The percentage of cat fibroblast cells arrested at the G0/G1 phase in the roscovitine group was similar to that in the control group without any treatment. The percentage of cells arrested at the G2/M phase was significantly higher in the demecolcine group than in the control group. The fusion rate of interspecies couplets was significantly greater in the roscovitine group than in the control group. Most embryos stopped the development at the 2- or 4-cell stage, and none developed into blastocysts. Chemical inhibitor-induced donor cell cycle synchronisation did not overcome developmental arrest in interspecies cloned embryos.
Collapse
Affiliation(s)
| | - Akira Fujiwara
- 1 Yamaguchi University The United Graduate School of Veterinary Science Yamaguchi 753-8515 Japan
| | - Kaywalee Chatdarong
- 2 Chulalongkorn University Faculty of Veterinary Sciences Bangkok 10330 Thailand
| | - Mongkol Techakumphu
- 2 Chulalongkorn University Faculty of Veterinary Sciences Bangkok 10330 Thailand
| | - Yoko Sato
- 1 Yamaguchi University The United Graduate School of Veterinary Science Yamaguchi 753-8515 Japan
| | - Fuminori Tanihara
- 1 Yamaguchi University The United Graduate School of Veterinary Science Yamaguchi 753-8515 Japan
| | - Yasuhiro Morita
- 1 Yamaguchi University The United Graduate School of Veterinary Science Yamaguchi 753-8515 Japan
| | - Masayasu Taniguchi
- 1 Yamaguchi University The United Graduate School of Veterinary Science Yamaguchi 753-8515 Japan
| | - Takeshige Otoi
- 1 Yamaguchi University The United Graduate School of Veterinary Science Yamaguchi 753-8515 Japan
| |
Collapse
|
30
|
Yu G, Tian J, Yin J, Li Q, Zhao X. Incompatibility of nucleus and mitochondria causes xenomitochondrial cybrid unviable across human, mouse, and pig cells. Anim Biotechnol 2014; 25:139-49. [PMID: 24555799 DOI: 10.1080/10495398.2013.841709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The nucleus and mitochondria are on correlative dependence; they interact in the process of protein transportation and energy metabolism. The compatibility of nucleus and mitochondria is essential for interspecies somatic cell nuclear transfer (iSCNT) and xenomitochondrial cybrid. In order to test the compatibility of nucleus and mitochondria among human, mouse, and pig cells, we compared the performances of cybrids that fused inter- and intra-species. The ρ0 cells from human and pig cell lines were created as nucleus donors which were transfected with GFP-neo for cell selective system in advance, and mitochondria donor cells were labeled by Mitochondria-RFP. Human and mouse platelets were also used as a mitochondrial donor. Results indicated that all interspecies cybrids declined to die in 2-4 d after the cell fusion in the selection medium, while intraspecies cybrid cells survived and formed stable clones. As a conclusion, the incompatibility between nucleus and mitochondria is the critical factor for the formation of interspecies cybrids.
Collapse
Affiliation(s)
- Guanghui Yu
- a National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | | | | | | | | |
Collapse
|
31
|
Zhu HY, Kang JD, Li S, Jin JX, Hong Y, Jin L, Guo Q, Gao QS, Yan CG, Yin XJ. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer. Biochem Biophys Res Commun 2014; 444:638-43. [PMID: 24491539 DOI: 10.1016/j.bbrc.2014.01.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 01/25/2014] [Indexed: 10/25/2022]
Abstract
Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P>0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P<0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2mM valproic acid for 24h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.
Collapse
Affiliation(s)
- Hai-Ying Zhu
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Jin-Dan Kang
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Suo Li
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Jun-Xue Jin
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Yu Hong
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Long Jin
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Qing Guo
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Qing-Shan Gao
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Chang-Guo Yan
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China
| | - Xi-Jun Yin
- Department of Animal Science, Agricultural College of Yanbian University, Yanji 133002, PR China.
| |
Collapse
|
32
|
Priya D, Selokar NL, Raja AK, Saini M, Sahare AA, Nala N, Palta P, Chauhan MS, Manik RS, Singla SK. Production of wild buffalo (Bubalus arnee) embryos by interspecies somatic cell nuclear transfer using domestic buffalo (Bubalus bubalis) oocytes. Reprod Domest Anim 2014; 49:343-51. [PMID: 24494649 DOI: 10.1111/rda.12284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/30/2013] [Indexed: 11/29/2022]
Abstract
The objective of this study was to explore the possibility of producing wild buffalo embryos by interspecies somatic cell nuclear transfer (iSCNT) through handmade cloning using wild buffalo somatic cells and domestic buffalo (Bubalus bubalis) oocytes. Somatic cells derived from the ear skin of wild buffalo were found to express vimentin but not keratin and cytokeratin-18, indicating that they were of fibroblast origin. The population doubling time of skin fibroblasts from wild buffalo was significantly (p < 0.05) higher, and the cell proliferation rate was significantly (p < 0.05) lower compared with that of skin fibroblasts from domestic buffalo. Neither the cleavage (92.6 ± 2.0% vs 92.8 ± 2.0%) nor the blastocyst rate (42.4 ± 2.4% vs 38.7 ± 2.8%) was significantly different between the intraspecies cloned embryos produced using skin fibroblasts from domestic buffalo and interspecies cloned embryos produced using skin fibroblasts from wild buffalo. However, the total cell number (TCN) was significantly (p < 0.05) lower (192.0 ± 25.6 vs 345.7 ± 42.2), and the apoptotic index was significantly (p < 0.05) higher (15.1 ± 3.1 vs 8.0 ± 1.4) for interspecies than that for intraspecies cloned embryos. Following vitrification in open-pulled straws (OPS) and warming, although the cryosurvival rate of both types of cloned embryos, as indicated by their re-expansion rate, was not significantly different (34.8 ± 1.5% vs 47.8 ± 7.8), the apoptotic index was significantly (p < 0.05) higher for vitrified-warmed interspecies than that for corresponding intraspecies cloned embryos (48.9 ± 7.2 vs 23.9 ± 2.8). The global level of H3K18ac was significantly (p < 0.05) lower in interspecies cloned embryos than that in intraspecies cloned embryos. The expression level of HDAC1, DNMT3a and CASPASE3 was significantly (p < 0.05) higher, that of P53 was significantly (p < 0.05) lower in interspecies than in intraspecies embryos, whereas that of DNMT1 was similar between the two types of embryos. In conclusion, these results demonstrate that wild buffalo embryos can be produced by iSCNT.
Collapse
Affiliation(s)
- D Priya
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mastromonaco GF, González-Grajales LA, Filice M, Comizzoli P. Somatic cells, stem cells, and induced pluripotent stem cells: how do they now contribute to conservation? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 753:385-427. [PMID: 25091918 DOI: 10.1007/978-1-4939-0820-2_16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
More than a decade has now passed since the birth of the first endangered species produced from an adult somatic cell reprogrammed by somatic cell nuclear transfer. At that time, advances made in domestic and laboratory animal species provided the necessary foundation for attempting cutting-edge technologies on threatened and endangered species. In addition to nuclear transfer, spermatogonial stem cell transplantation and induction of pluripotent stem cells have also been explored. Although many basic scientific questions have been answered and more than 30 wild species have been investigated, very few successes have been reported. The majority of studies document numerous obstacles that still need to be overcome to produce viable gametes or embryos for healthy offspring production. This chapter provides an overview of somatic cell and stem cell technologies in different taxa (mammals, fishes, birds, reptiles and amphibians) and evaluates the potential and impact of these approaches for animal species conservation.
Collapse
|
34
|
Lagutina I, Fulka H, Lazzari G, Galli C. Interspecies somatic cell nuclear transfer: advancements and problems. Cell Reprogram 2013; 15:374-84. [PMID: 24033141 DOI: 10.1089/cell.2013.0036] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Embryologists working with livestock species were the pioneers in the field of reprogramming by somatic cell nuclear transfer (SCNT). Without the "Dolly experiment," the field of cellular reprogramming would have been slow and induced plutipotent cells (iPSCs) would not have been conceived. The major drive of the work in mammalian cloning was the interest of the breeding industry to propagate superior genotypes. Soon it was realized that the properties of oocytes could be used also to clone endangered mammalian species or to reprogram the genomes of unrelated species through what is known as interspecies (i) SCNT, using easily available oocytes of livestock species. iSCNT for cloning animals works only for species that can interbreed, and experiments with taxonomically distant species have not been successful in obtaining live births or deriving embryonic stem cell (ESC) lines to be used for regenerative medicine. There are controversial reports in the literature, but in most cases these experiments have underlined some of the cellular and molecular mechanisms that are incomplete during cell nucleus reprogramming, including the failure to organize nucleoli, silence somatic cell genes, activate the embryonic genome, and resume mitochondrial replication and function, thus indicating nucleus-cytoplasmic incompatibility.
Collapse
Affiliation(s)
- Irina Lagutina
- 1 Avantea, Laboratorio di Tecnologie della Riproduzione , Cremona, 26100, Italy
| | | | | | | |
Collapse
|
35
|
Wang H, Zheng R, Xu Y, Lian L, An L, Chen D. Embryonic stem cell as nuclear donor could promote in vitro development of the heterogeneous reconstructed embryo. Sci Bull (Beijing) 2013. [DOI: 10.1007/bf03183848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Wittayarat M, Sato Y, Do LTK, Morita Y, Chatdarong K, Techakumphu M, Taniguchi M, Otoi T. Histone deacetylase inhibitor improves the development and acetylation levels of cat-cow interspecies cloned embryos. Cell Reprogram 2013; 15:301-8. [PMID: 23790014 DOI: 10.1089/cell.2012.0094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abnormal epigenetic reprogramming, such as histone acetylation, might cause low efficiency of interspecies somatic cell nuclear transfer (iSCNT). This study was conducted to evaluate the effects of trichostatin A (TSA) on the developmental competence and histone acetylation of iSCNT embryos reconstructed from cat somatic cells and bovine cytoplasm. The iSCNT cat and parthenogenetic bovine embryos were treated with various concentrations of TSA (0, 25, 50, or 100 nM) for 24 h, respectively, following fusion and activation. Treatment with 50 nM TSA produced significantly higher rates of cleavage and blastocyst formation (84.3% and 4.6%, respectively) of iSCNT embryos than the rates of non-TSA-treated iSCNT embryos (63.8% and 0%, respectively). Similarly, the treatment of 50 nM TSA increased the blastocyst formation rate of parthenogenetic bovine embryos. The acetylation levels of histone H3 lysine 9 (H3K9) in the iSCNT embryos with the treatment of 50 nM TSA were similar to those of in vitro-fertilized embryos and significantly higher (p<0.05) than those of non-TSA-treated iSCNT embryos (control), irrespective of the embryonic development stage (two-cell, four-cell, and eight-cell stages). These results indicated that the treatment of 50 nM TSA postfusion was beneficial for development to the blastocyst stage of iSCNT cat embryos and correlated with the increasing levels of acetylation at H3K9.
Collapse
Affiliation(s)
- Manita Wittayarat
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Yang CX, Liu Z, Fleurot R, Adenot P, Duranthon V, Vignon X, Zhou Q, Renard JP, Beaujean N. Heterochromatin reprogramming in rabbit embryos after fertilization, intra-, and inter-species SCNT correlates with preimplantation development. Reproduction 2013; 145:149-59. [PMID: 23221012 DOI: 10.1530/rep-11-0421] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To investigate the embryonic genome organization upon fertilization and somatic cell nuclear transfer (SCNT), we tracked HP1β and CENP, two well-characterized protein markers of pericentric and centromeric compartments respectively, in four types of embryos produced by rabbit in vivo fertilization, rabbit parthenogenesis, rabbit-to-rabbit, and bovine-to-rabbit SCNT. In the interphase nuclei of rabbit cultured fibroblasts, centromeres and associated pericentric heterochromatin are usually isolated. Clustering into higher-order chromatin structures, such as the chromocenters seen in mouse and bovine somatic cells, could not be observed in rabbit fibroblasts. After fertilization, centromeres and associated pericentric heterochromatin are quite dispersed in rabbit embryos. The somatic-like organization is progressively established and completed only by the 8/16-cell stage, a stage that corresponds to major embryonic genome activation in this species. In SCNT embryos, pericentric heterochromatin distribution typical for rabbit and bovine somatic cells was incompletely reverted into the 1-cell embryonic form with remnants of heterochromatin clusters in 100% of bovine-to-rabbit embryos. Subsequently, the donor cell nuclear organization was rapidly re-established by the 4-cell stage. Remarkably, the incomplete remodeling of bovine-to-rabbit 1-cell embryos was associated with delayed transcriptional activation compared with rabbit-to-rabbit embryos. Together, the results confirm that pericentric heterochromatin spatio-temporal reorganization is an important step of embryonic genome reprogramming. It also appears that genome reorganization in SCNT embryos is mainly dependent on the nuclear characteristics of the donor cells, not on the recipient cytoplasm.
Collapse
Affiliation(s)
- Cai-Xia Yang
- INRA, UMR 1198 Biologie du Developpement et Reproduction, F-78350 Jouy en Josas, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Canel N, Bevacqua R, Hiriart MI, Salamone D. Replication of somatic micronuclei in bovine enucleated oocytes. Cell Div 2012; 7:23. [PMID: 23173571 PMCID: PMC3564703 DOI: 10.1186/1747-1028-7-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/15/2012] [Indexed: 11/24/2022] Open
Abstract
Background Microcell-mediated chromosome transfer (MMCT) was developed to introduce a low number of chromosomes into a host cell. We have designed a novel technique combining part of MMCT with somatic cell nuclear transfer, which consists of injecting a somatic micronucleus into an enucleated oocyte, and inducing its cellular machinery to replicate such micronucleus. It would allow the isolation and manipulation of a single or a low number of somatic chromosomes. Methods Micronuclei from adult bovine fibroblasts were produced by incubation in 0.05 μg/ml demecolcine for 46 h followed by 2 mg/ml mitomycin for 2 h. Cells were finally treated with 10 μg/ml cytochalasin B for 1 h. In vitro matured bovine oocytes were mechanically enucleated and intracytoplasmatically injected with one somatic micronucleus, which had been previously exposed [Micronucleus- injected (+)] or not [Micronucleus- injected (−)] to a transgene (50 ng/μl pCX-EGFP) during 5 min. Enucleated oocytes [Enucleated (+)] and parthenogenetic [Parthenogenetic (+)] controls were injected into the cytoplasm with less than 10 pl of PVP containing 50 ng/μl pCX-EGFP. A non-injected parthenogenetic control [Parthenogenetic (−)] was also included. Two hours after injection, oocytes and reconstituted embryos were activated by incubation in 5 μM ionomycin for 4 min + 1.9 mM 6-DMAP for 3 h. Cleavage stage and egfp expression were evaluated. DNA replication was confirmed by DAPI staining. On day 2, Micronucleus- injected (−), Parthenogenetic (−) and in vitro fertilized (IVF) embryos were karyotyped. Differences among treatments were determined by Fisher′s exact test (p≤0.05). Results All the experimental groups underwent the first cell divisions. Interestingly, a low number of Micronucleus-injected embryos showed egfp expression. DAPI staining confirmed replication of micronuclei in most of the evaluated embryos. Karyotype analysis revealed that all Micronucleus-injected embryos had fewer than 15 chromosomes per blastomere (from 1 to 13), while none of the IVF and Parthenogenetic controls showed less than 30 chromosomes per spread. Conclusions We have developed a new method to replicate somatic micronuclei, by using the replication machinery of the oocyte. This could be a useful tool for making chromosome transfer, which could be previously targeted for transgenesis.
Collapse
Affiliation(s)
- Natalia Canel
- Laboratorio Biotecnología Animal, Departamento de Producción Animal, Facultad Agronomía, Universidad de Buenos Aires, Av, San Martín 4453, C1417DSE, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
39
|
Increasing glucose in KSOMaa basal medium on culture Day 2 improves in vitro development of cloned caprine blastocysts produced via intraspecies and interspecies somatic cell nuclear transfer. Theriogenology 2012; 78:921-9. [DOI: 10.1016/j.theriogenology.2012.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 04/13/2012] [Accepted: 04/17/2012] [Indexed: 11/20/2022]
|
40
|
Epigenetic reprogramming of Yak iSCNT embryos after donor cell pre-treatment with oocyte extracts. Anim Reprod Sci 2012; 133:229-36. [DOI: 10.1016/j.anireprosci.2012.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 12/21/2022]
|
41
|
Imsoonthornruksa S, Srirattana K, Phewsoi W, Tunwattana W, Parnpai R, Ketudat-Cairns M. Segregation of donor cell mitochondrial DNA in gaur-bovine interspecies somatic cell nuclear transfer embryos, fetuses and an offspring. Mitochondrion 2012; 12:506-13. [PMID: 22824460 DOI: 10.1016/j.mito.2012.07.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/05/2012] [Accepted: 07/13/2012] [Indexed: 12/15/2022]
Abstract
The fate of foreign mitochondrial DNA (mtDNA) following somatic cell nuclear transfer (SCNT) is still controversial. In this study, we examined the transmission of the heteroplasmic mtDNA of gaur donor cells and recipient bovine oocytes to an offspring and aborted and mummified fetuses at various levels during the development of gaur-bovine interspecies SCNT (iSCNT) embryos. High levels of the donor cell mtDNA were found in various tissue samples but they did not have any beneficial effect to the survival of iSCNT offspring. However, the factors on mtDNA inheritance are unique for each iSCNT experiment and depend on the recipient oocyte and donor cell used, which might play an important role in the efficiency of iSCNT.
Collapse
Affiliation(s)
- Sumeth Imsoonthornruksa
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | | | | | | | | | | |
Collapse
|
42
|
Sub-zonal versus intracytoplasmic injection produces a higher rate of cloned caprine-bovine interspecies blastocysts. Small Rumin Res 2012. [DOI: 10.1016/j.smallrumres.2012.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Miranda MDS, Bressan FF, De Bem THC, Merighe GKF, Ohashi OM, King WA, Meirelles FV. Nuclear Transfer with Apoptotic Bovine Fibroblasts: Can Programmed Cell Death Be Reprogrammed? Cell Reprogram 2012; 14:217-24. [DOI: 10.1089/cell.2011.0080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
| | - Fabiana Fernandes Bressan
- Faculdade de Zootechnia e Engenharia de Alimentos, Universidade de São Paulo (USP), Pirassununga, São Paulo, Brazil
| | - Tiago Henrique Camara De Bem
- Faculdade de Zootechnia e Engenharia de Alimentos, Universidade de São Paulo (USP), Pirassununga, São Paulo, Brazil
| | | | - Otávio Mitio Ohashi
- Faculdade de Biologia, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - William Alan King
- Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Flavio Viera Meirelles
- Faculdade de Zootechnia e Engenharia de Alimentos, Universidade de São Paulo (USP), Pirassununga, São Paulo, Brazil
| |
Collapse
|
44
|
Development of interspecies cloned embryos reconstructed with rabbit (Oryctolagus cuniculus) oocytes and cynomolgus monkey (Macaca fascicularis) fibroblast cell nuclei. ZYGOTE 2012; 21:358-66. [PMID: 22475527 DOI: 10.1017/s0967199412000019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Interspecies somatic cell nuclear transfer (ISCNT) has been proposed as a technique to produce cloned offspring of endangered species as well as to investigate nucleus-cytoplasm interactions in mammalian embryo. However, it is still not known which embryo culture medium is optimal for ISCNT embryos for the nuclear donor or the oocyte recipient. We assessed the effects of the culture medium on the developmental competence of the ISCNT embryos by introducing cynomolgus monkey (Macaca fascicularis) fibroblast nuclei into enucleated rabbit (Oryctolagus cuniculus) oocytes (monkey-rabbit embryo). The monkey-rabbit ISCNT embryos that were cultured in mCMRL-1066 developed to the blastocyst stage, although all monkey-rabbit ISCNT embryos cultured in M199 were arrested by the 4-cell stage. When monkey-rabbit ISCNT and rabbit-rabbit somatic cell nuclear transfer (SCNT) embryos were cultured in mCMRL-1066, the blastocyst cell numbers of the monkey-rabbit ISCNT embryos corresponded to the cell numbers of the control rabbit-rabbit SCNT embryos, which were produced from a rabbit fibroblast nucleus and an enucleated rabbit oocyte. In addition, the presence of mitochondria, which were introduced with monkey fibroblasts into rabbit recipient cytoplasm, was confirmed up to the blastocyst stage by polymerase chain reaction (PCR). This study demonstrated that: (1) rabbit oocytes can reprogramme cynomolgus monkey somatic cell nuclei, and support preimplantation development; (2) monkey-rabbit ISCNT embryos developed well in monkey culture medium at early embryonic developmental stages; (3) the cell number of monkey-rabbit ISCNT embryos is similar to that of rabbit-rabbit SCNT embryos; and (4) the mitochondrial fate of monkey-rabbit ISCNT embryos is heteroplasmic from the time just after injection to the blastocyst stage that has roots in both rabbit oocytes and monkey fibroblasts.
Collapse
|
45
|
Hosseini SM, Hajian M, Forouzanfar M, Moulavi F, Abedi P, Asgari V, Tanhaei S, Abbasi H, Jafarpour F, Ostadhosseini S, Karamali F, Karbaliaie K, Baharvand H, Nasr-Esfahani MH. Enucleated ovine oocyte supports human somatic cells reprogramming back to the embryonic stage. Cell Reprogram 2012; 14:155-63. [PMID: 22384929 DOI: 10.1089/cell.2011.0061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Increased possibility of universality of ooplasmic reprogramming factors resulted in a parallel increased interest to use interspecies somatic cell nuclear transfer (iSCNT) to address basic questions of developmental biology and to improve the feasibility of cell therapy. In this study, the interactions between human somatic cells and ovine oocytes were investigated. Nuclear remodeling events were first observed 3 h post-iSCNT as nuclear swelling, chromosome condensation, and spindle formation. A time-dependent decrease in maturation promoting activity of inactivated reconstructs coincided with increased aberrations in chromosome and spindle organization of the newly developed embryos. The sequence and duration of nuclear remodeling events were irrespective of donor cell type used. Although the majority of the reconstituted embryos arrested before embryonic genome activation (8-16-cell) stage, less than 5% of them could progress beyond transcription-requiring developmental stage and formed blastocyst-like structures with distinct inner cell mass and trophectoderm at days 7 and 8 post-SCNT. Importantly, real-time assessment of three developmentally important genes (Oct4, Sox2, and Nanog) indicated their upregulation in iSCNT blastocysts. Blastocyst-derived outgrowths had alkaline phosphatase activity that was lost upon passage. Collectively, this study introduced ovine oocyte as a credible cytoplast for remodeling and reprogramming of human somatic cells back to the embryonic stage and provided a platform for further studies to unravel possible differences exist between reprogramming ability of oocytes of different mammalian species.
Collapse
Affiliation(s)
- S Morteza Hosseini
- Department of Reproduction and Development, Reproductive Biomedicine Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Østrup O, Strejcek F, Petrovicova I, Lucas-Hahn A, Morovic M, Lemme E, Petersen B, Laurincikova N, Niemann H, Laurincik J, Hyttel P. Role of ooplasm in nuclear and nucleolar remodeling of intergeneric somatic cell nuclear transfer embryos during the first cell cycle. Cell Reprogram 2011; 13:145-55. [PMID: 21473691 DOI: 10.1089/cell.2010.0061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Initially, development of the zygote is under control of the oocyte ooplasm. However, it is presently unknown if and to what extent is the ooplasm able to interact with a transferred somatic cell from another species in the context of interspecies somatic cell nuclear transfer (SCNT). Here, one-cell stage embryos were processed at different points in time post activation (2 hpa, 4 hpa, 8 hpa, and 12 hpa) for detailed nuclear and nucleolar analysis by TEM, and immunofluorescence for visualization of nucleolar proteins related to transcription (UBF) and processing (fibrillarin). Bovine and porcine intergeneric SCNT embryos were compared to their parthenogenetic counterparts to assess the effects of the introduced somatic cell. Despite the absence of morphological remodeling (premature chromatin condensation, nuclear envelope breakdown), reconstructed embryos showed nuclear and nucleolar precursor body (NPB) morphology similar to the host ooplasm, which, together with detected posttranslational activity of somatic cell introduced into the bovine ooplasm, suggests a universal function of ooplasmic factors. However, the lack of distinct UBF localization in intergeneric embryos indicates failures in sequence-specific interactions between the ooplasm and chromatin of another genus. In conclusion, the results demonstrate a possible reason why the intergeneric SCNT embryos never reached the full term.
Collapse
Affiliation(s)
- Olga Østrup
- Department of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Groennegaardsvej 7, Frederiksberg C, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang K, Otu HH, Chen Y, Lee Y, Latham K, Cibelli JB. Reprogrammed transcriptome in rhesus-bovine interspecies somatic cell nuclear transfer embryos. PLoS One 2011; 6:e22197. [PMID: 21799794 PMCID: PMC3143123 DOI: 10.1371/journal.pone.0022197] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/20/2011] [Indexed: 01/08/2023] Open
Abstract
Background Global activation of the embryonic genome (EGA), one of the most critical steps in early mammalian embryo development, is recognized as the time when interspecies somatic cell nuclear transfer (iSCNT) embryos fail to thrive. Methodology/Principal Findings In this study, we analyzed the EGA-related transcriptome of rhesus-bovine iSCNT 8- to 16-cell embryos and dissected the reprogramming process in terms of embryonic gene activation, somatic gene silencing, and maternal RNA degradation. Compared with fibroblast donor cells, two thousand and seven genes were activated in iSCNT embryos, one quarter of them reaching expression levels comparable to those found in in vitro fertilized (IVF) rhesus embryos. This suggested that EGA in iSCNT embryos had partially recapitulated rhesus embryonic development. Eight hundred and sixty somatic genes were not silenced properly and continued to be expressed in iSCNT embryos, which indicated incomplete nuclear reprogramming. We compared maternal RNA degradation in bovine oocytes between bovine-bovine SCNT and iSCNT embryos. While maternal RNA degradation occurred in both SCNT and iSCNT embryos, we saw more limited overall degradation of maternal RNA in iSCNT embryos than in SCNT embryos. Several important maternal RNAs, like GPF9, were not properly processed in SCNT embryos. Conclusions/Significance Our data suggested that iSCNT embryos are capable of triggering EGA, while a portion of somatic cell-associated genes maintain their expression. Maternal RNA degradation seems to be impaired in iSCNT embryos. Further understanding of the biological roles of these genes, networks, and pathways revealed by iSCNT may expand our knowledge about cell reprogramming, pluripotency, and differentiation.
Collapse
Affiliation(s)
- Kai Wang
- Michigan State University, East Lansing, Michigan, United States of America
| | - Hasan H. Otu
- BIDMC Genomics Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Bioengineering, Istanbul Bilgi University, Istanbul, Turkey
| | - Ying Chen
- Michigan State University, East Lansing, Michigan, United States of America
| | - Young Lee
- Temple University, Philadelphia, Pennsylvania, United States of America
| | - Keith Latham
- Temple University, Philadelphia, Pennsylvania, United States of America
| | - Jose B. Cibelli
- Michigan State University, East Lansing, Michigan, United States of America
- Programa Andaluz de Terapia Celular, Andalucia, Spain
- * E-mail:
| |
Collapse
|
48
|
Abdullah R, Khadijah WW, Kwong P. Comparison of intra- and interspecies nuclear transfer techniques in the production of cloned caprine embryos. Small Rumin Res 2011. [DOI: 10.1016/j.smallrumres.2011.03.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Amarnath D, Choi I, Moawad AR, Wakayama T, Campbell KHS. Nuclear-cytoplasmic incompatibility and inefficient development of pig-mouse cytoplasmic hybrid embryos. Reproduction 2011; 142:295-307. [PMID: 21555359 DOI: 10.1530/rep-11-0044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inter-species somatic cell nuclear transfer (iSCNT) embryos usually fail to develop to the blastocyst stage and beyond due to incomplete reprogramming of donor cell. We evaluated whether using a karyoplast that would require less extensive reprogramming such as an embryonic blastomere or the meiotic spindle from metaphase II oocytes would provide additional insight into the development of iSCNT embryos. Our results showed that karyoplasts of embryonic or oocyte origin are no different from somatic cells; all iSCNT embryos, irrespective of karyoplast origin, were arrested during early development. We hypothesized that nuclear-cytoplasmic incompatibility could be another reason for failure of embryonic development from iSCNT. We used pig-mouse cytoplasmic hybrids as a model to address nuclear-cytoplasmic incompatibility in iSCNT embryos. Fertilized murine zygotes were reconstructed by fusing with porcine cytoplasts of varying cytoplasmic volumes (1/10 (small) and 1/5 (large) total volume of mouse zygote). The presence of pig cytoplasm significantly reduced the development of mouse zygotes to the blastocyst stage compared with control embryos at 120 h post-human chorionic gondotropin (41 vs 6 vs 94%, P<0.05; 1/10, 1/5, control respectively). While mitochondrial DNA copy numbers remained relatively unchanged, expression of several important genes namely Tfam, Polg, Polg2, Mfn2, Slc2a3 (Glut3), Slc2a1 (Glut1), Bcl2, Hspb1, Pou5f1 (Oct4), Nanog, Cdx2, Gata3, Tcfap2c, mt-Cox1 and mt-Cox2 was significantly reduced in cytoplasmic hybrids compared with control embryos. These results demonstrate that the presence of even a small amount of porcine cytoplasm is detrimental to murine embryo development and suggest that a range of factors are likely to contribute to the failure of inter-species nuclear transfer embryos.
Collapse
Affiliation(s)
- Dasari Amarnath
- Animal Development and Biotechnology Group, School of Biosciences, The University of Nottingham, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
| | | | | | | | | |
Collapse
|
50
|
Blastocysts derived from adult fibroblasts of a rhesus monkey ( Macaca mulatta) using interspecies somatic cell nuclear transfer. ZYGOTE 2011; 19:199-204. [PMID: 21554770 DOI: 10.1017/s0967199411000232] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In non-human primates, it is difficult to collect sufficient numbers of oocytes for producing identical embryos by somatic cell nuclear transfer (SCNT). Because of this factor, inter-species SCNT (iSCNT) using heterospecific oocytes is an attractive alternative approach. The objective of this study was to produce iSCNT-derived blastocysts using enucleated cow (Bos taurus) metaphase II oocytes and adult rhesus monkey (Macaca mulatta) fibroblasts. Ear skin tissue from a 6-year-old male rhesus monkey was collected by biopsy and fibroblasts were isolated. Immature cumulus-oocyte complexes from cow ovaries were collected and matured in vitro in Medium 199. The enucleated oocytes were reconstructed with rhesus monkey fibroblasts and iSCNT embryos were cultured in modified synthetic oviduct fluid in an atmosphere of 5-5.5% CO2 under various conditions (37-39 °C and 5-20% O2) to examine the effects of in vitro culture conditions. Most embryos were arrested at the 8- or 16-cell stage and only three blastocysts were derived in this way using iSCNT from a total of 1153 cultured activated embryos (0.26% production rate). Two of the three blastocysts were used for counting nuclear numbers using bisbenzimide staining, which were 51 and 24. The other iSCNT-derived blastocyst was used to analyse mitochondrial DNA (mtDNA) by PCR, and both rhesus monkey and cow mtDNA were detected. Although the development rate was extremely low, this study established that iSCNT using two phylogenetically distant species, including a primate, could produce blastocysts. With improvements in the development rate, it may be possible to produce rhesus monkey iSCNT-derived embryonic stem cell lines for studies on primate nucleus and cow mitochondria interaction mechanisms.
Collapse
|