1
|
Zhao X, Nie J, Zhou W, Zeng X, Sun X. The metabolomics changes in epididymal lumen fluid of CABS1 deficient male mice potentially contribute to sperm deformity. Front Endocrinol (Lausanne) 2024; 15:1432612. [PMID: 39234505 PMCID: PMC11371703 DOI: 10.3389/fendo.2024.1432612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Epididymal lumen fluids provides a stable microenvironment for sperm maturation. Ca2+ binding protein CABS1 is known to maintain structural integrity of mouse sperm flagella during epididymal transit of sperm. Besides, CABS1 was reported to contain anti-inflammatory peptide sequences and be present in both human saliva and plasma. However, little is known about the role of CABS1 in regulation of the microenvironment of epididymal lumen fluids. Methods To further confirm the role of CABS1 in epididymis, we identified the expression of CABS1 in epididymal lumen fluids. Moreover, high performance liquid chromatography, coupled with tandem mass spectrometry technique was used to analyze the metabolic profiles and in vivo microperfusion of the cauda epididymis and inductively coupled plasma mass spectrometry (ICP-MS) assays was used to detect the concentration of metal ion of mouse cauda epididymal lumen fluids in CABS1 deficient and normal mice. Results The results showed that CABS1 is present in epididymal lumen fluids, and the concentration of calcium in epididymal lumen fluids is not changed in Cabs1-/- male mice. Among 34 differential metabolites identified in cauda epididymis, 21 were significantly upregulated while 13 were significantly downregulated in KO cauda epididymis. Pathway analysis identified pyrimidine metabolism, inositol phosphate metabolism, arachidonic acid metabolism, purine metabolism and histidine metabolism as relevant pathways in cauda epididymis. Discussion The perturbations of mitochondrial dysfunction and inflammation may be the crucial reason for the poor performance of Cabs1-/- sperm.
Collapse
Affiliation(s)
- Xiuling Zhao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Junyu Nie
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Wenwen Zhou
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Xiaoli Sun
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
2
|
Vashisht A, Gahlay GK. Understanding seminal plasma in male infertility: emerging markers and their implications. Andrology 2024; 12:1058-1077. [PMID: 38018348 DOI: 10.1111/andr.13563] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 11/30/2023]
Abstract
Infertility affects a significant proportion of the reproductive-aged population, with male-associated factors contributing to over half of the cases. However, current diagnostic tools have limitations, leading to an underestimation of the true prevalence of male infertility. While traditional semen parameters provide some insights, they fail to determine the true fertility potential in a substantial number of instances. Therefore, it is crucial to investigate additional molecular targets responsible for male infertility to improve understanding and identification of such cases. Seminal plasma, the main carrier of molecules derived from male reproductive glands, plays a crucial role in reproduction. Amongst its multifarious functions, it regulates processes such as sperm capacitation, sperm protection and maturation, and even interaction with the egg's zona pellucida. Seminal plasma offers a non-invasive sample for urogenital diagnostics and has shown promise in identifying biomarkers associated with male reproductive disorders. This review aims to provide an updated and comprehensive overview of seminal plasma in the diagnosis of male infertility, exploring its composition, function, methods used for analysis, and the application of emerging markers. Apart from the application, the potential challenges of seminal plasma analysis such as standardisation, marker interpretation and confounding factors have also been addressed. Moreover, we have also explored future avenues for enhancing its utility and its role in improving diagnostic strategies. Through comprehensive exploration of seminal plasma's diagnostic potential, the present analysis seeks to advance the understanding of male infertility and its effective management.
Collapse
Affiliation(s)
- Ashutosh Vashisht
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Gagandeep Kaur Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
3
|
Bai J, Zhou G, Hao S, Liu Y, Guo Y, Wang J, Liu H, Wang L, Li J, Liu A, Sun WQ, Wan P, Fu X. Integrated transcriptomics and proteomics assay identifies the role of FCGR1A in maintaining sperm fertilization capacity during semen cryopreservation in sheep. Front Cell Dev Biol 2023; 11:1177774. [PMID: 37601105 PMCID: PMC10433746 DOI: 10.3389/fcell.2023.1177774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Semen cryopreservation is a promising technology employed in preserving high-quality varieties in animal husbandry and is also widely applied in the human sperm bank. However, the compromised qualities, such as decreased sperm motility, damaged membrane structure, and reduced fertilization competency, have significantly hampered the efficient application of this technique. Therefore, it is imperative to depict various molecular changes found in cryopreserved sperm and identify the regulatory network in response to the cryopreservation stress. In this study, semen was collected from three Chinese Merino rams and divided into untreated (fresh semen, FS) and programmed freezing (programmed freezing semen, PS) groups. After measuring different quality parameters, the ultra-low RNA-seq and tandem mass tag-based (TMT) proteome were conducted in both the groups. The results indicated that the motility (82.63% ± 3.55% vs. 34.10% ± 2.90%, p < 0.05) and viability (89.46% ± 2.53% vs. 44.78% ± 2.29%, p < 0.05) of the sperm in the FS group were significantly higher compared to those in the PS group. In addition, 45 upregulated and 291 downregulated genes, as well as 30 upregulated and 48 downregulated proteins, were found in transcriptomics and proteomics data separately. Moreover, three integrated methods, namely, functional annotation and enrichment analysis, Pearson's correlation analysis, and two-way orthogonal partial least squares (O2PLS) analysis, were used for further analysis. The results suggested that various differentially expressed genes and proteins (DEGs and DEPs) were mainly enriched in leishmaniasis and hematopoietic cell lineage, and Fc gamma receptor Ia (FCGR1A) was significantly downregulated in cryopreserved sperm both at mRNA and protein levels in comparison with the fresh counterpart. In addition, top five genes (FCGR1A, HCK, SLX4, ITGA3, and BET1) and 22 proteins could form a distinct network in which genes and proteins were significantly correlated (p < 0.05). Interestingly, FCGR1A also appeared in the top 25 correlation list based on O2PLS analysis. Hence, FCGR1A was selected as the most potential differentially expressed candidate for screening by the three integrated multi-omics analysis methods. In addition, Pearson's correlation analysis indicated that the expression level of FCGR1A was positively correlated with sperm motility and viability. A subsequent experiment was conducted to identify the biological role of FCGR1A in sperm function. The results showed that both the sperm viability (fresh group: 87.65% ± 4.17% vs. 75.8% ± 1.15%, cryopreserved group: 48.15% ± 0.63% vs. 42.45% ± 2.61%, p < 0.05) and motility (fresh group: 83.27% ± 4.15% vs. 70.41% ± 1.07%, cryopreserved group: 45.31% ± 3.28% vs. 35.13% ± 2.82%, p < 0.05) were significantly reduced in fresh and frozen sperm when FCGR1A was blocked. Moreover, the cleavage rate of embryos fertilized by FCGR1A-blocked sperm was noted to be significantly lower in both fresh (95.28% ± 1.16% vs. 90.44% ± 1.56%, p < 0.05) and frozen groups (89.8% ± 1.50% vs. 82.53% ± 1.53%, p < 0.05). In conclusion, our results revealed that the downregulated membrane protein FCGR1A can potentially contribute to the reduced sperm fertility competency in the cryopreserved sheep sperm.
Collapse
Affiliation(s)
- Jiachen Bai
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Guizhen Zhou
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shaopeng Hao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yucheng Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Yanhua Guo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jingjing Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Hongtao Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Longfei Wang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Aiju Liu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wendell Q. Sun
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| |
Collapse
|
4
|
Urade Y. Biochemical and Structural Characteristics, Gene Regulation, Physiological, Pathological and Clinical Features of Lipocalin-Type Prostaglandin D 2 Synthase as a Multifunctional Lipocalin. Front Physiol 2021; 12:718002. [PMID: 34744762 PMCID: PMC8569824 DOI: 10.3389/fphys.2021.718002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Lipocalin-type prostaglandin (PG) D2 synthase (L-PGDS) catalyzes the isomerization of PGH2, a common precursor of the two series of PGs, to produce PGD2. PGD2 stimulates three distinct types of G protein-coupled receptors: (1) D type of prostanoid (DP) receptors involved in the regulation of sleep, pain, food intake, and others; (2) chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) receptors, in myelination of peripheral nervous system, adipocyte differentiation, inhibition of hair follicle neogenesis, and others; and (3) F type of prostanoid (FP) receptors, in dexamethasone-induced cardioprotection. L-PGDS is the same protein as β-trace, a major protein in human cerebrospinal fluid (CSF). L-PGDS exists in the central nervous system and male genital organs of various mammals, and human heart; and is secreted into the CSF, seminal plasma, and plasma, respectively. L-PGDS binds retinoic acids and retinal with high affinities (Kd < 100 nM) and diverse small lipophilic substances, such as thyroids, gangliosides, bilirubin and biliverdin, heme, NAD(P)H, and PGD2, acting as an extracellular carrier of these substances. L-PGDS also binds amyloid β peptides, prevents their fibril formation, and disaggregates amyloid β fibrils, acting as a major amyloid β chaperone in human CSF. Here, I summarize the recent progress of the research on PGD2 and L-PGDS, in terms of its “molecular properties,” “cell culture studies,” “animal experiments,” and “clinical studies,” all of which should help to understand the pathophysiological role of L-PGDS and inspire the future research of this multifunctional lipocalin.
Collapse
Affiliation(s)
- Yoshihiro Urade
- Center for Supporting Pharmaceutical Education, Daiichi University of Pharmacy, Fukuoka, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Organic mineral supplementation on differential protein profile of Osmanabadi bucks (Capra hircus). Reprod Biol 2021; 21:100533. [PMID: 34280724 DOI: 10.1016/j.repbio.2021.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/14/2021] [Accepted: 07/03/2021] [Indexed: 11/20/2022]
Abstract
The present study aimed to determine the differential protein profile of seminal plasma proteins of bucks supplemented with trace minerals. Forty bucks of uniform size and body weight were assigned as ten groups (n = 4). The control group (T1) was fed with the control diet (concentration mixture and roughages) whereas the remaining groups were supplemented the control diet with Zn20 mg (T2), Zn40 mg (T3), Zn60 mg (T4), Cu12.5 mg (T5), Cu25 mg (T6), Cu37.5 mg (T7), Zn20 mg + Cu12.5 mg (T8), Zn40 mg + Cu25 mg (T9), and Zn60 mg + Cu37.5 mg (T10) for eight months. Seminal plasma proteins from each group were subjected to two-dimensional electrophoresis and fifteen differential proteins were selected based on differential expression, subjected to identification using Nano-LC-MS/MS (LTQ-Qrbitrap-MS). The identified proteins were Triacylglycerol lipase, EGF like repeats and discoidin domains 3, Lipocalin, Iodothyronine deiodinase, Transcription factor AP2-delta, 60S ribosomal protein L13, IST1 factor associated with ESCRT-III, Lysozyme, Uncharacterized protein (BRI3-binding protein), Uncharacterized protein, Histone deacetylase 11, General transcription factor IIF subunit 2, Nudix hydrolase 6, Protein kinase cAMP-activated catalytic subunit beta and Elongin C. The organic Cu supplemented group is the better than the organic Zn and organic Zn + Cu supplemented groups.
Collapse
|
6
|
Zhao W, Quansah E, Yuan M, Gou Q, Mengal K, Li P, Wu S, Xu C, Yi C, Cai X. Region-specific gene expression in the epididymis of Yak. Theriogenology 2019; 139:132-146. [DOI: 10.1016/j.theriogenology.2019.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 12/25/2022]
|
7
|
Expression of prostaglandin (PG) D synthase lipocalin and hematopoietic type and PG D receptor during restart of spermatogenesis following downregulation using a slow release GnRH agonist implant in the dog. Cell Tissue Res 2019; 378:359-370. [PMID: 31256286 DOI: 10.1007/s00441-019-03059-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 06/14/2019] [Indexed: 01/30/2023]
Abstract
Prostaglandin D and the associated prostaglandin D synthases (PGDS) and receptor (DP) are considered to be involved in spermatogenesis. However, the interplay of the PGDS-DP system in male reproduction is far from being understood. The expression of PGDS lipocalin (L) and hematopoietic (H) type and DP was studied in the GnRH agonist-downregulated canine testis (week, w 0) and during recrudescence of spermatogenesis after implant removal (w 3, 6, 9, 12). H-PGDS, L-PGDS and DP were present in the adult (CG), juvenile (JG) and downregulated canine testis at the mRNA level. PGDS immunohistochemistry revealed positive staining in the cytoplasm of Leydig cells (LCs) of all samples i.e., no difference between groups. mRNA expression (ratio) of L-, H-PGDS and DP did not differ between groups w 0-12 and CG. In contrast, significant differences were found for L-PGDS (p = 0.0388), H-PGDS (p < 0.001) and DP (p < 0.001) for the groups at downregulation (w0, suprelorin group, SG, profact group, PRG) compared with the control groups (JG, CG). L-PGDS expression was lowest in JG, whereas H-PGDS was significantly lower in CG compared with JG and at downregulation (p < 0.001 to p < 0.01). The highest ratio for H-PGDS and DP was observed in the dogs treated with buserelin acetate (PRG). Our data show that the PGDS-DP system is expressed in juvenile and adult canine testes and that downregulation of the testicular endocrine and germinative function significantly affects H-PGDS, L-PGDS and DP mRNA expression indicating a role in the regulation of spermatogenesis.
Collapse
|
8
|
Chen J, Feng W, Zhao Y, Li Y, Zhan F. Expression, Purification, and Refolding of Human Lipocalin 6 and Production of a Monoclonal Antibody Against This Protein. Monoclon Antib Immunodiagn Immunother 2017; 36:185-191. [PMID: 28806153 DOI: 10.1089/mab.2017.0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human lipocalin 6 (hLCN6) is a member of the lipocalin family, which is a group of structurally conserved hydrophobic ligand binding proteins, and widely distributed in animal, plant, and bacteria. Specific expression of hLCN6 in the epididymis and localization of this protein on the surface of spermatozoa suggest a role played by hLCN6, which may function as a transporter to carry ligands in the epididymal channel. However, the role of hLCN6 in sperm maturation has been largely unknown due to the lack of effective antibodies. In this study, we report the prokaryotic expression, purification, and refolding of recombinant hLCN6. Purified hLCN6 protein was used to generate monoclonal antibody (mAb) against this protein using conventional hybridoma techniques. The sensitivity and specificity of the anti-hLCN6 mAb were determined based on their activities in enzyme-linked immunosorbent assay and Western blotting analysis using various human tissues. The results showed that the antibody induced by recombinant hLCN6 protein had high sensitivity and specificity. Taken together, the recombinant hLCN6 protein and mAb against this protein obtained from our study provided useful tools for further exploration of the biological functions and molecular mechanism, as well as pathological significance of LCN6 in human.
Collapse
Affiliation(s)
- Jiong Chen
- 1 Department of Forensic Biology, Henan University of Science and Technology , Luoyang, China
| | - Wei Feng
- 1 Department of Forensic Biology, Henan University of Science and Technology , Luoyang, China
| | - Yue Zhao
- 2 CITIC Heavy Industries Co., Ltd. , Luoyang, China
| | - Yaqin Li
- 1 Department of Forensic Biology, Henan University of Science and Technology , Luoyang, China
| | - Fei Zhan
- 1 Department of Forensic Biology, Henan University of Science and Technology , Luoyang, China
| |
Collapse
|
9
|
Valencia J, Gómez G, López W, Mesa H, Henao FJ. Relationship between HSP90a, NPC2 and L-PGDS proteins to boar semen freezability. J Anim Sci Biotechnol 2017; 8:21. [PMID: 28270911 PMCID: PMC5335742 DOI: 10.1186/s40104-017-0151-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 02/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to determine the association of three proteins involved in sperm function on the freezability of porcine semen: the heat shock protein 90 alpha (HSP90a), the Niemann-Pick disease type C2 protein (NPC2), and lipocalin-type prostaglandin D synthase (L-PGDS). Six adult boars (each boar was ejaculated three times, 18 in total) were classified by freezability based on the percentage of functionally competent sperm. The male semen with highest freezability (MHF) and the male semen with lowest freezability (MLF) were centrifuged immediately after collection to separate seminal plasma and spermatozoa to make four possible combinations of these two components and to incubate them for 3 h, adjusting the temperature to 17 °C, to freeze them afterwards. The quantification of proteins was performed in two stages: at zero and at 3 h after incubation of the four combinations. RESULTS The spermatozoa × incubation time (IT) interaction only had effect (P < 0.01) on HSP90a levels; this protein increased in seminal plasma, after 3 h of incubation, in larger quantity (P < 0.05) in combinations with MLF spermatozoa. In relation with the NPC2 protein, two isoforms of 16 and 19 kDa were identified. The 19 kDa isoform was affected (P < 0.01) only by the seminal plasma × IT interaction, with superior values (P < 0.01) both at zero and three hours of incubation, in the combinations with MHF seminal plasma; and 16 kDa isoform was affected (P < 0.01) only by the IT with reduction after 3 h of incubation. The levels of L-PGDS was affected (P < 0.01) only by the spermatozoa × IT interaction, which reduced (P < 0.01) in combinations with MLF spermatozoa after 3 h of incubation. CONCLUSIONS It is possible to consider that the three proteins evaluated were associated with freezability of boar semen due, especially, to the fact that mixtures with MLF spermatozoa showed greater increase levels of the HSP90a protein and reduction of L-PGDS in plasma. In addition, the seminal plasma of MHF had higher concentration of the NPC2 of 19 kDa protein, which was reduced by incubating with MHF spermatozoa.
Collapse
Affiliation(s)
- Julián Valencia
- Universidad de Caldas, Faculty of Agricultural Sciences, A.A. 275, Manizales, Caldas Colombia
| | - Germán Gómez
- Universidad de Caldas, Faculty of Agricultural Sciences, A.A. 275, Manizales, Caldas Colombia
| | - Walter López
- Universidad de Caldas, Faculty of Agricultural Sciences, A.A. 275, Manizales, Caldas Colombia
| | - Henry Mesa
- Universidad de Caldas, Faculty of Agricultural Sciences, A.A. 275, Manizales, Caldas Colombia
| | - Francisco Javier Henao
- Universidad de Caldas, Faculty of Agricultural Sciences, A.A. 275, Manizales, Caldas Colombia
| |
Collapse
|
10
|
Almadaly EA, Farrag FA, Saadeldin IM, El-Magd MA, El-Razek IMA. Relationship between total protein concentration of seminal plasma and sperm characteristics of highly fertile, fertile and subfertile Barki ram semen collected by electroejaculation. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Sargent KM, McFee RM, Spuri Gomes R, Cupp AS. Vascular endothelial growth factor A: just one of multiple mechanisms for sex-specific vascular development within the testis? J Endocrinol 2015; 227:R31-50. [PMID: 26562337 PMCID: PMC4646736 DOI: 10.1530/joe-15-0342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 01/25/2023]
Abstract
Testis development from an indifferent gonad is a critical step in embryogenesis. A hallmark of testis differentiation is sex-specific vascularization that occurs as endothelial cells migrate from the adjacent mesonephros into the testis to surround Sertoli-germ cell aggregates and induce seminiferous cord formation. Many in vitro experiments have demonstrated that vascular endothelial growth factor A (VEGFA) is a critical regulator of this process. Both inhibitors to VEGFA signal transduction and excess VEGFA isoforms in testis organ cultures impaired vascular development and seminiferous cord formation. However, in vivo models using mice which selectively eliminated all VEGFA isoforms: in Sertoli and germ cells (pDmrt1-Cre;Vegfa(-/-)); Sertoli and Leydig cells (Amhr2-Cre;Vegfa(-/-)) or Sertoli cells (Amh-Cre;Vegfa(-/-) and Sry-Cre;Vegfa(-/-)) displayed testes with observably normal cords and vasculature at postnatal day 0 and onwards. Embryonic testis development may be delayed in these mice; however, the postnatal data indicate that VEGFA isoforms secreted from Sertoli, Leydig or germ cells are not required for testis morphogenesis within the mouse. A Vegfa signal transduction array was employed on postnatal testes from Sry-Cre;Vegfa(-/-) versus controls. Ptgs1 (Cox1) was the only upregulated gene (fivefold). COX1 stimulates angiogenesis and upregulates, VEGFA, Prostaglandin E2 (PGE2) and PGD2. Thus, other gene pathways may compensate for VEGFA loss, similar to multiple independent mechanisms to maintain SOX9 expression. Multiple independent mechanism that induce vascular development in the testis may contribute to and safeguard the sex-specific vasculature development responsible for inducing seminiferous cord formation, thus ensuring appropriate testis morphogenesis in the male.
Collapse
Affiliation(s)
- Kevin M Sargent
- Department of Animal ScienceUniversity of Nebraska-Lincoln, Animal Science Building, 3940 Fair Street, Lincoln, Nebraska 68583-0908, USA
| | - Renee M McFee
- Department of Animal ScienceUniversity of Nebraska-Lincoln, Animal Science Building, 3940 Fair Street, Lincoln, Nebraska 68583-0908, USA
| | - Renata Spuri Gomes
- Department of Animal ScienceUniversity of Nebraska-Lincoln, Animal Science Building, 3940 Fair Street, Lincoln, Nebraska 68583-0908, USA
| | - Andrea S Cupp
- Department of Animal ScienceUniversity of Nebraska-Lincoln, Animal Science Building, 3940 Fair Street, Lincoln, Nebraska 68583-0908, USA
| |
Collapse
|
12
|
Rossitto M, Ujjan S, Poulat F, Boizet-Bonhoure B. Multiple roles of the prostaglandin D2 signaling pathway in reproduction. Reproduction 2015; 149:R49-58. [DOI: 10.1530/rep-14-0381] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prostaglandins signaling molecules are involved in numerous physiological processes. They are produced by several enzyme-limited reactions upon fatty acids, which are catalyzed by two cyclooxygenases and prostaglandin synthases. In particular, the prostaglandins E2(PGE2), D2(PGD2), and F2(PGF2α) have been shown to be involved in female reproductive mechanisms. Furthermore, widespread expression of lipocalin- and hematopoietic-PGD2synthases in the male reproductive tract supports the purported roles of PGD2in the development of both embryonic and adult testes, sperm maturation, and spermatogenesis. In this review, we summarize the putative roles of PGD2signaling and the roles of both PGD2synthases in testicular formation and function. We review the data reporting the involvement of PGD2signaling in the differentiation of Sertoli and germ cells of the embryonic testis. Furthermore, we discuss the roles of lipocalin-PGD2synthase in steroidogenesis and spermatogenesis, in terms of lipid molecule transport and PGD2production. Finally, we discuss the hypothesis that PGD2signaling may be affected in certain reproductive diseases, such as infertility, cryptorchidism, and testicular cancer.
Collapse
|
13
|
Kinoshita K, Takeda J, Matsuoka K, Takeda S, Eguchi Y, Oda H, Eguchi N, Urade Y. Expression of lipocalin-type prostaglandin D synthase in preeclampsia patients: a novel marker for preeclampsia. HYPERTENSION RESEARCH IN PREGNANCY 2014. [DOI: 10.14390/jsshp.2.72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kazunori Kinoshita
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine
| | - Jun Takeda
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine
| | - Kikumi Matsuoka
- Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine
| | - Yutaka Eguchi
- Department of Emergency and Intensive Care, Shiga University of Medical Science
| | | | - Naomi Eguchi
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute
| | - Yoshihiro Urade
- International Institute for Integrative Sleep Medicine, University of Tsukuba
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute
| |
Collapse
|
14
|
Mishra C, Palai TK, Sarangi LN, Prusty BR, Maharana BR. Candidate gene markers for sperm quality and fertility in bulls. Vet World 2013. [DOI: 10.14202/vetworld.2013.905-910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
15
|
da Silva BF, Souza GHMF, Turco EGL, Del Giudice PT, Soler TB, Spaine DM, Borrelli M, Gozzo FC, Pilau EJ, Garcia JS, Ferreira CR, Eberlin MN, Bertolla RP. Differential seminal plasma proteome according to semen retrieval in men with spinal cord injury. Fertil Steril 2013; 100:959-69. [DOI: 10.1016/j.fertnstert.2013.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 11/30/2022]
|
16
|
Li X, Zhan X, Liu S, Hu S, Zhu C, Hall SH, French FS, Liu Q, Zhang Y. Cloning and primary characterizations of rLcn9, a new member of epididymal lipocalins in rat. Acta Biochim Biophys Sin (Shanghai) 2012; 44:876-85. [PMID: 23017836 PMCID: PMC3459353 DOI: 10.1093/abbs/gms072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/03/2012] [Indexed: 01/24/2023] Open
Abstract
Lipocalins are a structurally conserved and diversely functional family of proteins that are of potential importance in epididymis functions. The rat Lcn9 gene was cloned by in silico methods and genome walking based on homology to the rhesus monkey epididymal ESC513 and its polyclonal antisera were prepared. The rat Lcn9 gene is located on chromosome 3p13 spanning 7 exons, contains 2.3 kb and encodes 179 amino acids with a 17-amino acid signal peptide. Northern blot, western blot, and immunohistochemical staining analysis revealed that rat Lcn9 was a novel epididymis-specific gene, expressed selectively in the proximal caput region, influenced by luminal fluid testicular factors. Moreover, Lcn9 protein was modified by N-glycosylation and bound on the postacrosomal domain of caput sperm. In conclusion, the rat Lcn9 exhibited tissue-, region-, and temporal-specific expression patterns and its expression was regulated by luminal testicular factors. Its potential roles in sperm maturation are discussed.
Collapse
Affiliation(s)
- Xiangqi Li
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Science, Sichuan University, Chengdu 610064, China
| | - Xiaoni Zhan
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shigui Liu
- College of Life Science, Sichuan University, Chengdu 610064, China
| | - Shuanggang Hu
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chunfang Zhu
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Susan H. Hall
- Laboratories for Reproductive Biology, University of North Carolina, Chapel Hill, NC 27599-7500, USA
| | - Frank S. French
- Laboratories for Reproductive Biology, University of North Carolina, Chapel Hill, NC 27599-7500, USA
| | - Qiang Liu
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yonglian Zhang
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| |
Collapse
|
17
|
Nynca J, Dietrich MA, Bilińska B, Kotula-Balak M, Kiełbasa T, Karol H, Ciereszko A. Isolation of lipocalin-type protein from rainbow trout seminal plasma and its localisation in the reproductive system. Reprod Fertil Dev 2011; 23:381-9. [DOI: 10.1071/rd10118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 09/01/2010] [Indexed: 11/23/2022] Open
Abstract
The lipocalin protein family is a large and diverse group of small extracellular proteins characterised by their ability to bind hydrophobic molecules. In the present study, we describe the isolation procedure for rainbow trout seminal plasma protein, characterised by a moderate migration rate during polyacrylamide gel electrophoresis, providing information regarding its basic features and immunohistochemical localisation. This protein was identified as a lipocalin-type protein (LTP). The molecular mass of LTP was found to be 18 848 Da and it was found to lack any carbohydrate components. Only a few Salmoniformes contain LTP in their seminal plasma. The abundance of LTP in the Sertoli and Leydig cells of the testes of the rainbow trout, as well as in secretory cells of the efferent duct, suggests that this protein is specific for rainbow trout milt, where it acts as a lipophilic carrier protein. Moreover, the specific localisation of LTP in the flagella of the spermatozoa suggests a role for LTP in sperm motility. Further experiments are necessary to identify the endogenous ligands for LTP in rainbow trout seminal plasma and to characterise the binding properties of this protein.
Collapse
|
18
|
Moniot B, Declosmenil F, Barrionuevo F, Scherer G, Aritake K, Malki S, Marzi L, Cohen-Solal A, Georg I, Klattig J, Englert C, Kim Y, Capel B, Eguchi N, Urade Y, Boizet-Bonhoure B, Poulat F. The PGD2 pathway, independently of FGF9, amplifies SOX9 activity in Sertoli cells during male sexual differentiation. Development 2009; 136:1813-21. [PMID: 19429785 DOI: 10.1242/dev.032631] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activation by the Y-encoded testis determining factor SRY and maintenance of expression of the Sox9 gene encoding the central transcription factor of Sertoli cell differentiation are key events in the mammalian sexual differentiation program. In the mouse XY gonad, SOX9 upregulates Fgf9, which initiates a Sox9/Fgf9 feedforward loop, and Sox9 expression is stimulated by the prostaglandin D2 (PGD2) producing lipocalin prostaglandin D synthase (L-PGDS, or PTDGS) enzyme, which accelerates commitment to the male pathway. In an attempt to decipher the genetic relationships between Sox9 and the L-Pgds/PGD2 pathway during mouse testicular organogenesis, we found that ablation of Sox9 at the onset or during the time window of expression in embryonic Sertoli cells abolished L-Pgds transcription. By contrast, L-Pgds(-/-) XY embryonic gonads displayed a reduced level of Sox9 transcript and aberrant SOX9 protein subcellular localization. In this study, we demonstrated genetically that the L-Pgds/PGD2 pathway acts as a second amplification loop of Sox9 expression. Moreover, examination of Fgf9(-/-) and L-Pgds(-/-) XY embryonic gonads demonstrated that the two Sox9 gene activity amplifying pathways work independently. These data suggest that, once activated and maintained by SOX9, production of testicular L-PGDS leads to the accumulation of PGD2, which in turn activates Sox9 transcription and nuclear translocation of SOX9. This mechanism participates together with FGF9 as an amplification system of Sox9 gene expression and activity during mammalian testicular organogenesis.
Collapse
Affiliation(s)
- Brigitte Moniot
- Department of Genetics and Development, Institut de Génétique Humaine CNRS UPR1142, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zayed N, Li X, Chabane N, Benderdour M, Martel-Pelletier J, Pelletier JP, Duval N, Fahmi H. Increased expression of lipocalin-type prostaglandin D2 synthase in osteoarthritic cartilage. Arthritis Res Ther 2008; 10:R146. [PMID: 19094210 PMCID: PMC2656251 DOI: 10.1186/ar2581] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/02/2008] [Accepted: 12/18/2008] [Indexed: 02/06/2023] Open
Abstract
Introduction Prostaglandin D synthase (PGDS) is responsible for the biosynthesis of PGD and J series, which have been shown to exhibit anti-inflammatory and anticatabolic effects. Two isoforms have been identified: hematopoietic- and lipocalin-type PGDS (H-PGDS and L-PGDS, respectively). The aims of this study were to investigate the expressions of H-PGDS and L-PGDS in cartilage from healthy donors and from patients with osteoarthritis (OA) and to characterize their regulation by interleukin-1-beta (IL-1β) in cultured OA chondrocytes. Methods The expressions of H-PGDS and L-PGDS mRNA and protein in cartilage were analyzed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry, respectively. Chondrocytes were stimulated with IL-1β, and the expression of L-PGDS was evaluated by real-time RT-PCR and Western blotting. The roles of de novo protein synthesis and of the signalling pathways mitogen-activated protein kinases (MAPKs), nuclear factor-kappa-B (NF-κB), and Notch were evaluated using specific pharmacological inhibitors. Results L-PGDS and H-PGDS mRNAs were present in both healthy and OA cartilage, with higher levels of L-PGDS than H-PGDS (> 20-fold). The levels of L-PGDS mRNA and protein were increased in OA compared with healthy cartilage. Treatment of chondrocytes with IL-1β upregulated L-PGDS mRNA and protein expressions as well as PGD2 production in a dose- and time-dependent manner. The upregulation of L-PGDS by IL-1β was blocked by the translational inhibitor cycloheximide, indicating that this effect is indirect, requiring de novo protein synthesis. Specific inhibitors of the MAPK p38 (SB 203580) and c-jun N-terminal kinase (JNK) (SP600125) and of the NF-κB (SN-50) and Notch (DAPT) signalling pathways suppressed IL-1β-induced upregulation of L-PGDS expression. In contrast, an inhibitor of the extracellular signal-regulated kinase (ERK/MAPK) (PD98059) demonstrated no significant influence. We also found that PGD2 prevented IL-1β-induced upregulation of L-PGDS expression. Conclusions This is the first report demonstrating increased levels of L-PGDS in OA cartilage. IL-1β may be responsible for this upregulation through activation of the JNK and p38 MAPK and NF-κB signalling pathways. These data suggest that L-PGDS might have an important role in the pathophysiology of OA.
Collapse
Affiliation(s)
- Nadia Zayed
- Osteoarthritis Research Unit, Research Centre of the University of Montreal Hospital Center, Notre-Dame Hospital, Montreal, QC, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Chen DY, Liu LM, Liu SJ, Zhu MY, Xu L, Huang TH. Single-chain antibody against human lipocalin-type prostaglandin D synthase: construction, expression, purification, and activity assay. BIOCHEMISTRY. BIOKHIMIIA 2008; 73:702-10. [PMID: 18620537 DOI: 10.1134/s0006297908060114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An active form of single-chain antibody (ScFv) from murine monoclonal antibody 4A7, which is specific for lipocalin-type prostaglandin D synthase (L-PGDS), was produced in Escherichia coli. The complementary DNA fragments encoding the variable regions of heavy chain (VH) and light chain (VL), which amplified from hybridoma 4A7 producing a monoclonal antibody (IgG1) against L-PGDS, were connected by a (Gly4Ser)3 linker using an assembly polymerase chain reaction. The resultant ScFv were cloned into the vector pGEM and expressed in E. coli as inclusion bodies. The expressed ScFv fusion proteins were purified by Ni2+-nitrilotriacetic acid chromatography. The purity and activity of purified ScFv were confirmed by SDS-PAGE and ELISA. The result revealed that 4A7 ScFv conserved the same characteristics of specific recognition and binding to sperm as the parental 4A7 monoclonal antibody.
Collapse
Affiliation(s)
- De-Yu Chen
- Research Center for Reproductive Medicine, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | | | | | | | | | | |
Collapse
|
21
|
Chen DY, Liu SJ, Zhu MY, Li WY, Cui YD, Huang YF. Different expression of lipocalin-type prostaglandin D synthase in rat epididymidis. Anim Reprod Sci 2007; 98:302-10. [PMID: 16730417 DOI: 10.1016/j.anireprosci.2006.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Revised: 02/18/2006] [Accepted: 03/07/2006] [Indexed: 11/26/2022]
Abstract
This study was designed to explore the different expression of L-PGDS (lipocalin-type prostaglandin D synthase) in rat epididymidis and to gain further insight into the potential function of L-PGDS in male reproduction. The expression of L-PGDS in rat epididymidis was assessed using real-time quantitative PCR and immunoblotting. The distribution of L-PGDS in rat epididymidis was explored by immunohistochemical methods. The result of immunohistochemistry displayed that L-PGDS was mainly distributed in epididymidis and localized within the cytoplasm and the cilia of the epithelial cells. Real-time quantitative PCR and immunoblotting showed that L-PGDS was strikingly expressed in the caput epididymidis, while a moderate to weak expression was observed in the corpus and cauda epididymidis, the level of mRNA was 0.52+/-0.02 in the caput, 0.48+/-0.03 in the corpus and 0.32+/-0.01 in the cauda epididymidis, the level of protein expression in caput, corpus and the cauda groups was 1, 0.89+/-0.03 and 0.62+/-0.01, which suggested that L-PGDS may play certain kind of role during the process of the spermatozoa maturation.
Collapse
Affiliation(s)
- De-Yu Chen
- Department of Biology, Fuyang Normal College, Fuyang 230632, China
| | | | | | | | | | | |
Collapse
|
22
|
Chen DY, Zhu MY, Cui YD, Huang TH. Relationship between contents of lipocalin-type prostaglandin D synthase on the surface of infertility sperm and in seminal plasma. BIOCHEMISTRY. BIOKHIMIIA 2007; 72:215-8. [PMID: 17367300 DOI: 10.1134/s0006297907020125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lipocalin-type prostaglandin D synthase (L-PGDS) is localized in Leydig cells, sperm, and epithelial cells of the epididymis. The present study was to determine the correlation between content of this enzyme in seminal plasma and on the surface of sperm. We analyzed 90 semen samples. L-PGDS in seminal plasma was analyzed by an ELISA procedure. L-PGDS on sperm was analyzed by flow cytometry. The semen donors were categorized in three groups: normal, oligospermic, and azoospermic. According to results obtained, L-PGDS may have the ability to improve progressive motility of sperm, and L-PGDS in seminal plasma and on sperm surface may impact male fertility in the female reproductive tract.
Collapse
Affiliation(s)
- De-Yu Chen
- Research Center for Reproductive Medicine, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China
| | | | | | | |
Collapse
|
23
|
Schlatterer JC, Baeker R, Schlatterer B, Klose J, Kehler W, Schlatterer K. Purification of prostaglandin D synthase by ceramic- and size exclusion chromatography. Prostaglandins Other Lipid Mediat 2006; 81:80-9. [PMID: 16997134 DOI: 10.1016/j.prostaglandins.2006.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/13/2006] [Accepted: 08/14/2006] [Indexed: 11/26/2022]
Abstract
Prostaglandin D synthase (L-PGDS) is a major glycosylated polypeptide in cerebrospinal fluid (CSF). The overexpression of L-PGDS in inflamed bovine mammary glands indicates its role as biomarker. No diagnostic tool for the quantitative detection of L-PGDS in cows has been reported. Immunometric ELISA tests might help to identify inflamed bovine tissue. The isolation of pure bovine L-PGDS, which is required for the generation of monoclonal antibodies, is an important prerequisite for a diagnostic ELISA test. Our goal was to identify a suitable technique to generate pure L-PGDS from bovine substrates. In the present study a two-step method for the purification of bovine CSF using ceramic hydroxyapatite chromatography followed by size exclusion chromatography is described. Subsequently, the identification of bovine L-PGDS was demonstrated by Western blot analysis and the high grade of the pure product was shown by 2-D PAGE. The yield of purified L-PGDS was 6.8 mg/l bovine CSF. L-PGDS from bovine CSF is shown to consist of multiple isoforms identical in molecular mass and pI values to those in previously described secretions of inflamed bovine mammary glands. In addition, the method was successfully applied to the purification of L-PGDS from human CSF.
Collapse
Affiliation(s)
- J C Schlatterer
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Roncoletta M, Morani EDSC, Esper CR, Barnabe VH, Franceschini PH. Fertility-associated proteins in Nelore bull sperm membranes. Anim Reprod Sci 2006; 91:77-87. [PMID: 16310099 DOI: 10.1016/j.anireprosci.2005.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 03/14/2005] [Indexed: 11/17/2022]
Abstract
The present study was undertaken to evaluate the protein composition of the sperm membranes (SM) of Nelore bulls, assessing protein markers associated with bull fertility, and whether these markers can be used for predicting bull fertility. Samples were obtained of 20 Nelore bulls, with fertility ranked and divided into three groups (greater, normal and least). To rank the bull's fertility weighted classification was used (according to the number of pregnant cows, number of AI cows and number of herds, considering three different breeding seasons), using the PROC GENMOD as a statistical model, with 99% significance. A total of 7897 Nelore cows, randomly distributed among 28 different farms, were considered in the statistical analyses. The bulls were divided into three fertility groups (pregnancy rates): greater (%F > 80), normal (79 < %F > 71) and least (< 68%F) with 3, 13 and 4 bulls, respectively. Two-dimensional gel electrophoresis (2DE) of sperm membranes indicated in 27 spots (SM40, SM53, SM69, SM93, SM102, SM111, SM137, SM138, SM189, SM196, SM201, SM202, SM204, SM225, SM236, SM237, SM239, SM241, SM246, SM247, SM275, SM283, SM342, SM346, SM355, SM372, SM391) was prevalent in the higher fertility group, and just one spot (SM244) was prevalent in the lower fertility group. Spots SM244 and SM239 had their identification defined by PMF/MALDI-MS, as BSP-A3 and aSFP, respectively. Both these proteins showed a great potential for predicting bull's fertility. The amount of aSFP was 8.5 times greater in the sperm membrane protein profile of the higher fertility groups of Nelore bulls. Besides that, the BSP-A3 was 2.5 times greater in the lower fertility group. For the other spots potentially associated with fertility not yet identified, additional tests will be necessary, but it is clear that the 2D electrophoresis of the sperm membrane can be used for a new approach to predict Nelore bull fertility.
Collapse
Affiliation(s)
- Marcelo Roncoletta
- Lagoa da Serra Ltda. Rod. Carlos Tonani, Km 335, CP 60, Sertãozinho/SP 14174-000, Brazil.
| | | | | | | | | |
Collapse
|
25
|
Fujimori K, Kadoyama K, Urade Y. Protein Kinase C Activates Human Lipocalin-type Prostaglandin D Synthase Gene Expression through De-repression of Notch-HES Signaling and Enhancement of AP-2β Function in Brain-derived TE671 Cells. J Biol Chem 2005; 280:18452-61. [PMID: 15743775 DOI: 10.1074/jbc.m411755200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we investigated the regulatory mechanism of lipocalin-type prostaglandin D synthase (L-PGDS) gene expression in human TE671 (medulloblastoma of cerebellum) cells. Reporter analysis of the promoter region from -730 to +75 of the human L-PGDS gene demonstrated that deletion or mutation of the N-box at -337 increased the promoter activity 220-300%. The N-box was bound by Hes-1, a mammalian homologue of Drosophila Hairy and enhancer of split, as examined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Functional expression of the Notch intracellular domain significantly increased Hes-1 expression and decreased L-PGDS expression level in TE671 cells. Moreover, knock-down of Hes-1 mRNA by RNA interference significantly enhanced the L-PGDS mRNA level, indicating that the L-PGDS gene expression is repressed by the Notch-Hes signaling. When the AP-2 element at -98 of the promoter region was deleted or mutated, the promoter activity was drastically decreased to approximately 10% of normal. The AP-2 element was bound by AP-2beta dominantly expressed in TE671 cells, according to the results of electrophoretic mobility shift assay and chromatin immunoprecipitation assay. L-PGDS expression was induced by 12-O-tetradecanoylphorbol-13-acetate in TE671 cells, and this induction was inhibited by a protein kinase C inhibitor. Stimulation of TE671 cells with 12-O-tetradecanoylphorbol-13-acetate or transfection with protein kinase Calpha expression vector induced phosphorylation of Hes-1, inhibition of DNA binding of Hes-1 to the N-box, and activation of the AP-2beta function to up-regulate L-PGDS gene expression. These results reveal a novel transcriptional regulatory mechanism responsible for the high level expression of the human L-PGDS gene in TE671 cells.
Collapse
Affiliation(s)
- Ko Fujimori
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | |
Collapse
|
26
|
Zhu H, Ma H, Ni H, Ma XH, Mills N, Yang ZM. Expression and Regulation of Lipocalin-Type Prostaglandin D Synthase in Rat Testis and Epididymis1. Biol Reprod 2004; 70:1088-95. [PMID: 14668211 DOI: 10.1095/biolreprod.103.022079] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lipocalin-type prostaglandin D synthase (L-PGDS), a bifunctional protein, is expressed in the male reproductive organs of many species. However, the expression and regulation of L-PGDS in rat are still uncertain. The present study investigated the regionalization and regulation of L-PGDS expression in rat testis and epididymis by in situ hybridization and immunohistochemistry under the conditions of sexual maturation, castration, and ethylene dimethane sulfonate (EDS) treatments. In sexually mature rats, L-PGDS mRNA was weakly expressed only in the testicular peritubular cells, whereas L-PGDS immunostaining was highly detected in the Leydig cells by Day 70 postpartum. During sexual maturation, L-PGDS mRNA expression was highly detected in the caput, corpus, and cauda of the epididymis 70 days after birth. Compared with normal L-PGDS expression in adult epididymis, both L-PGDS mRNA expression and protein immunostaining were significantly reduced in the caput, corpus, and cauda epididymis after castration. Testosterone propionate treatment induced a significant increase of L-PGDS expression in the epididymis of castrated rats. Compared with adult rat epididymis, L-PGDS mRNA and protein expression was down-regulated after EDS treatment. Testosterone propionate treatment could induce an increase of L-PGDS mRNA and protein expression in the epididymis of EDS-treated rats. In conclusion, both castration and EDS treatments caused a significant decrease of L-PGDS expression in the epididymis, whereas testosterone propionate treatment could induce an increase of L-PGDS expression in the epididymis of both castrated and EDS-treated rats, indicating that L-PGDS expression in the rat epididymis can be up-regulated by testosterone.
Collapse
Affiliation(s)
- Hui Zhu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | |
Collapse
|
27
|
Urade Y, Eguchi N, Aritake K, Hayaishi O. [Functional analyses of lipocalin-type and hematopoietic prostaglandin D synthases]. Nihon Yakurigaku Zasshi 2004; 123:5-13. [PMID: 14695453 DOI: 10.1254/fpj.123.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Prostaglandin (PG) D synthase (PGDS) catalyzes the isomerization of PGH(2) to PGD(2), which acts as an endogenous somnogen and an allergic mediator. There are two distinct types of PGDS: one is lipocalin-type PGDS (L-PGDS) localized in the central nervous system, male genitals, and heart; and the other is hematopoietic PGDS (H-PGDS) in mast cells and Th2 lymphocytes. L-PGDS is the same as beta-trace, a major protein in human cerebrospinal fluid, and is also secreted into the seminal plasma and plasma. The L-PGDS concentration in various body fluids is useful as a marker for various diseases such as renal failure and coronary atherosclerosis. H-PGDS is a cytosolic enzyme and is a member of the Sigma class of glutathione S-transferase. We determined the X-ray crystallographic structures of H-PGDS and L-PGDS. We also generated the gene-knockout (KO) mice and the human enzyme-overexpressing transgenic mice for each PGDS. L-PGDS-KO mice lacked PGE(2)-induced tactile allodynia and rebound of non-rapid eye movement sleep after sleep deprivation. Human L-PGDS-overexpressing transgenic mice showed an increase in non-rapid eye movement sleep due to accumulation of PGD(2) in the brain after tail clipping. H-PGDS-KO mice showed an allergic reaction weaker than that of the wild-type mice.
Collapse
Affiliation(s)
- Yoshihiro Urade
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Suita, Osaka, Japan
| | | | | | | |
Collapse
|
28
|
Hamil KG, Liu Q, Sivashanmugam P, Anbalagan M, Yenugu S, Soundararajan R, Grossman G, Rao AJ, Birse CE, Ruben SM, Richardson RT, Zhang YL, O'Rand MG, Petrusz P, French FS, Hall SH. LCN6, a novel human epididymal lipocalin. Reprod Biol Endocrinol 2003; 1:112. [PMID: 14617364 PMCID: PMC293424 DOI: 10.1186/1477-7827-1-112] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Accepted: 11/14/2003] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The lipocalin (LCN) family of structurally conserved hydrophobic ligand binding proteins is represented in all major taxonomic groups from prokaryotes to primates. The importance of lipocalins in reproduction and the similarity to known epididymal lipocalins prompted us to characterize the novel human epididymal LCN6. METHODS AND RESULTS LCN6 cDNA was identified by database analysis in a comprehensive human library sequencing program. Macaca mulatta (rhesus monkey) cDNA was obtained from an epididymis cDNA library and is 93% homologous to the human. The gene is located on chromosome 9q34 adjacent LCN8 and LCN5. LCN6 amino acid sequence is most closely related to LCN5, but the LCN6 beta-barrel structure is best modeled on mouse major urinary protein 1, a pheromone binding protein. Northern blot analysis of RNAs isolated from 25 human tissues revealed predominant expression of a 1.0 kb mRNA in the epididymis. No other transcript was detected except for weak expression of a larger hybridizing mRNA in urinary bladder. Northern hybridization analysis of LCN6 mRNA expression in sham-operated, castrated and testosterone replaced rhesus monkeys suggests mRNA levels are little affected 6 days after castration. Immunohistochemical staining revealed that LCN6 protein is abundant in the caput epithelium and lumen. Immunofluorescent staining of human spermatozoa shows LCN6 located on the head and tail of spermatozoa with the highest concentration of LCN6 on the post-acrosomal region of the head, where it appeared aggregated into large patches. CONCLUSIONS LCN6 is a novel lipocalin closely related to Lcn5 and Lcn8 and these three genes are likely products of gene duplication events that predate rodent-primate divergence. Predominant expression in the epididymis and location on sperm surface are consistent with a role for LCN6 in male fertility.
Collapse
Affiliation(s)
- Katherine G Hamil
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Qiang Liu
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Present address: State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - P Sivashanmugam
- Department of Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Present address: Department of Urology, Duke University, Durham, North Carolina 27708, USA
| | - M Anbalagan
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Present address: Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Suresh Yenugu
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Rama Soundararajan
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Present address: Department of Medicine, University of California, San Francisco 94143, USA
| | - Gail Grossman
- Department of Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - AJ Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Stephen M Ruben
- Human Genome Sciences, Inc, Rockville, Maryland 20850, USA
- Present address: Celera Genomics, Rockville, Maryland 20850, USA
| | - Richard T Richardson
- Department of Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Yong-Lian Zhang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Michael G O'Rand
- Department of Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Peter Petrusz
- Department of Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Frank S French
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Susan H Hall
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
29
|
Urade Y, Eguchi N. Lipocalin-type and hematopoietic prostaglandin D synthases as a novel example of functional convergence. Prostaglandins Other Lipid Mediat 2002; 68-69:375-82. [PMID: 12432930 DOI: 10.1016/s0090-6980(02)00042-4] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prostaglandin (PG) D2 is a major PG produced in the central nervous system and is involved in the regulation of sleep and pain responses through DP receptors. It is also actively produced by mast cells, basophils, and Th2 cells, acting as an allergic mediator through DP and CRTH2 receptors. PGD2 is further dehydrated to produce PGJ2, delta12-PGJ2, and 15-deoxy-delta(12,14)-PGJ2, the last being a ligand for the nuclear receptor PPARgamma. PGD synthase (PGDS) catalyzes the isomerization of PGH2 to PGD2 in the presence of sulfhydryl compounds. Two distinct types of PGDS have been identified: one is the lipocalin-type PGDS (L-PGDS); and the other, the hematopoietic PGDS (H-PGDS). We isolated the human and mouse cDNAs and genes for L-PGDS and H-PGDS, determined their X-ray crystallographic structures, examined their tissue distribution profiles and cellular localization, and generated gene-knockout mice and human enzyme-overexpressing transgenic mice. L-PGDS and H-PGDS are quite different from each other, in terms of their amino acid sequence, tertiary structure, evolutional origin, chromosomal and cellular localization, tissue distribution, and also functional relevance. Therefore, L-PGDS and H-PGDS are considered to be a novel example of functional convergence.
Collapse
Affiliation(s)
- Yoshihiro Urade
- Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Suita City, Osaka
| | | |
Collapse
|
30
|
Abstract
This review highlights recent studies investigating the role of prostaglandin (PG)D2 in reproduction. PGD2 induces sleep, allergic responses, inhibition of platelet aggregation, and relaxation of vascular and non-vascular smooth muscle, and has some roles in reproduction. Two types of PGD2 synthase are known. Lipocalin-type PGD synthase is present in cerebrospinal fluid, seminal plasma and may play an important role in male reproduction. Another PGD synthase, hematopoietic PGD synthase is present in the spleen, fallopian tube, endometrial gland cells, extravillous trophoblasts and villous trophoblasts, and perhaps plays an important role in female reproduction. Recent studies demonstrate that PGD2 is probably involved in multiple aspects of inflammation through its dual receptor systems, DP and CRTH2. CRTH2 but not DP is a chemo-attractant receptor for PGD2. Interestingly, CRTH2 is a most reliable marker for the detection of human T helper type 2 (Th2) and T cytotoxic type 2 (Tc2) cells, and the percentages of CRTH expressing CD4+-T cells and CD8+-T cells were significantly higher in the decidua especially at the implantation site, suggesting that Th2 and Tc2 cells recruit into the materno-fetal interface, in a PGD2-mediated manner. PGD2 has a very unique effect to inhibit antigen presentation by inhibition of dendritic cell (DC) migration through DP but not CRTH2. PGD2 might appear to contribute to the maintenance of pregnancy by controlling the Th1/Th2 balance and antigen presentation by DCs through its dual receptor systems, CRTH2 and DP.
Collapse
Affiliation(s)
- Shigeru Saito
- Department of Obstetrics and Gynecology, Toyama Medical and Pharmaceutical University, Toyama-shi, Japan.
| | | | | |
Collapse
|
31
|
Abstract
Lipocalin type prostaglandin-D-synthase (L-PGDS), also called beta-trace, is an extracellular protein very abundant in compartments beyond blood-tissue barriers, such as the cerebrospinal fluid, the aqueous humor, the amniotic fluid and the seminal fluid. In the latter fluid the major function of L-PGDS does not seem to be the synthesis of prostaglandin D(2) (PGD(2)) from its precursor PGH(2), which is very unstable in aqueous solution. Instead, seminal L-PGDS, an important carrier of bile pigments, retinoids, thyroid hormones and essential fatty acids, would contribute to providing, beyond the blood-testis barrier, thyroid hormones and retinoids to the developing germ cells in the seminiferous tubules and the maturing spermatozoa in the epididymis.
Collapse
Affiliation(s)
- Maria Grazia Leone
- Department of Pharmacology of Natural Substances and General Physiology, University of Rome La Sapienza, Italy
| | | | | |
Collapse
|
32
|
Baeker R, Haebel S, Schlatterer K, Schlatterer B. Lipocalin-type prostaglandin D synthase in milk: a new biomarker for bovine mastitis. Prostaglandins Other Lipid Mediat 2002; 67:75-88. [PMID: 11789899 DOI: 10.1016/s0090-6980(01)00175-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The whey protein pattern of milk from animals affected by mastitic inflammation was resolved by two-dimensional gel electrophoresis (2D-PAGE) and compared to milk from unaffected cows. Inflammation caused the appearance of four spots aligned at a molecular weight level of 26 kDa and over a pH-region of 5.0 to 6.4. The spots excised from 2D gels were treated with chymotrypsin and the resulting peptides analyzed by MALDI-TOF mass spectrometry and RP-HPLC. All four spots yielded highly similar chymotryptic peptide mass fingerprints as well as chromatographic peak patterns. A database search could identify the four spots as isoforms of the bovine prostaglandin D synthase (PGD-S). In one of the isoforms a defined cysteine residue was shown to be oxidized to a sulfonic acid.
Collapse
Affiliation(s)
- R Baeker
- Brandenburg State Laboratory of Veterinary Diagnostics and Food Analysis, Potsdam, Germany
| | | | | | | |
Collapse
|
33
|
McCauley TC, Zhang HM, Bellin ME, Ax RL. Identification of a heparin-binding protein in bovine seminal fluid as tissue inhibitor of metalloproteinases-2. Mol Reprod Dev 2001; 58:336-41. [PMID: 11170275 DOI: 10.1002/1098-2795(200103)58:3<336::aid-mrd12>3.0.co;2-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Presence or absence of three distinct bovine seminal heparin-binding proteins (21-31 kDa) recognized in sperm extracts by a monoclonal antibody, M1, is a diagnostic indicator of fertility differences among bulls producing normal semen. We recently identified a 31 kDa fertility-associated antigenin bovine seminal fluid as a unique DNase I-like protein. We now report purification and identification of a 24 kDa seminal heparin-binding protein (HBP-24) recognized by M1. N-terminal microsequence analysis of HBP-24 purified from seminal fluid yielded 20 amino acid residues that displayed 90% identity to the N-terminus of a bovine metalloproteinase inhibitor identified as tissue inhibitor of metalloproteinases-2 (TIMP-2). A single immunoreactive band migrating at 24 kDa was detected in Western blots of cauda epididymal sperm extracts following incubation with purified seminal heparin-binding proteins and subsequent washing in vitro, indicating TIMP-2 bound to sperm membranes. Expression of TIMP-2 mRNA was detected by RT-PCR in bovine bulbourethral gland, prostate, and seminal vesicles. Mobility of the 24 kDa heparin-binding protein increased under nonreducing SDS-PAGE to approximately 21 kDa, characteristic of the reported molecular mass of TIMP-2. To our knowledge, this is the first report of TIMP-2 binding to spermatozoa and of TIMP-2 mRNA expression in bovine accessory sex glands. These results corroborate previous reports regarding the site of production of heparin-binding proteins that are related to bull fertility, and suggest that TIMP-2 influences fertility of bulls, either through inhibition of metalloprotease activity in semen or via undefined activities independent of matrix metalloproteinase (MMP) inhibition.
Collapse
Affiliation(s)
- T C McCauley
- Department of Animal Sciences, University of Arizona, Tucson, Arizona 85721-0038, USA
| | | | | | | |
Collapse
|
34
|
Larson JL, Miller DJ. Can relative spermatozoal galactosyltransferase activity be predictive of dairy bull fertility? J Dairy Sci 2000; 83:2473-9. [PMID: 11104266 DOI: 10.3168/jds.s0022-0302(00)75139-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The best and poorest bovine semen samples used commercially for artificial insemination in dairy cattle typically differ in pregnancy rates by 20 to 25% but are within a range that pregnancy rates cannot be predicted consistently by commonly used laboratory assays. Sperm motility and morphology are the characteristics most often evaluated. Laboratory assays that measure other functional traits of sperm may be useful as supplemental assays to increase the reliability of predicting fertility. One such functional trait is the ability of sperm to bind to the zona pellucida, a process mediated by complementary receptors on each gamete. On mouse sperm, beta1,4-galactosyltransferase acts as a receptor for the zona pellucida. Beta1,4-galactosyltransferase is expressed on sperm from many mammals, including bovine sperm, and is a candidate for a zona pellucida receptor. The ability of sperm to bind to the zona pellucida may be related to the amount of beta1,4-galactosyltransferase present on sperm. The aim of this work was to determine if bull sperm beta1,4-galactosyltransferase activity was related to fertility. Beta1,4-galactosyltransferase enzyme assays were performed on sperm from 24 bulls whose fertility was estimated by nonreturn rate and on sperm from a second group of seven bulls whose fertility was ranked by in vivo competitive fertilization. Beta1,4-galactosyltransferase activity varied between individual bulls but was not correlated to fertility as estimated by nonreturn rate or by competitive fertilization. These results demonstrate that beta1,4-galactosyltransferase activity on sperm varies between animals, but that beta1,4-galactosyltransferase activity alone is not an accurate indicator of fertility in dairy bulls.
Collapse
Affiliation(s)
- J L Larson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana 61801, USA
| | | |
Collapse
|
35
|
Urade Y, Hayaishi O. Biochemical, structural, genetic, physiological, and pathophysiological features of lipocalin-type prostaglandin D synthase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1482:259-71. [PMID: 11058767 DOI: 10.1016/s0167-4838(00)00161-8] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lipocalin-type prostaglandin (PG) D synthase (PGDS) catalyzes the isomerization of PGH(2), a common precursor of various prostanoids, to produce PGD(2), a potent endogenous somnogen and nociceptive modulator, in the presence of sulfhydryl compounds. PGDS is an N-glycosylated monomeric protein with an M(r) of 20000-31000 depending on the size of the glycosyl moiety. PGDS is localized in the central nervous system and male genital organs of various mammals and in the human heart and is secreted into the cerebrospinal fluid, seminal plasma, and plasma, respectively, as beta-trace. The PGDS concentrations in these body fluids are useful for the diagnosis of several neurological disorders, dysfunction of sperm formation, and cardiovascular and renal diseases. The cDNA and gene for PGDS have been isolated from several animal species, and the tissue distribution and cellular localization have also been determined. This enzyme is considered to be a dual functional protein; i.e. it acts as a PGD(2)-producing enzyme and also as a lipophilic ligand-binding protein, because the enzyme binds biliverdin, bilirubin (K(d)=30 nM), retinaldehyde, retinoic acid (K(d)=80 nM) with high affinities. X-ray crystallographic analyses revealed that PGDS possesses a beta-barrel structure with a hydrophobic pocket in which an active thiol, Cys(65), the active center for the catalytic reaction, was located facing to the inside of the pocket. Gene-knockout and transgenic mice for PGDS were generated and found to have abnormalities in the regulation of nociception and sleep.
Collapse
Affiliation(s)
- Y Urade
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan.
| | | |
Collapse
|