1
|
Bowers JM, Li CY, Parker CG, Westbrook ME, Juntti SA. Pheromone Perception in Fish: Mechanisms and Modulation by Internal Status. Integr Comp Biol 2023; 63:407-427. [PMID: 37263784 PMCID: PMC10445421 DOI: 10.1093/icb/icad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023] Open
Abstract
Pheromones are chemical signals that facilitate communication between animals, and most animals use pheromones for reproduction and other forms of social behavior. The identification of key ligands and olfactory receptors used for pheromonal communication provides insight into the sensory processing of these important cues. An individual's responses to pheromones can be plastic, as physiological status modulates behavioral outputs. In this review, we outline the mechanisms for pheromone sensation and highlight physiological mechanisms that modify pheromone-guided behavior. We focus on hormones, which regulate pheromonal communication across vertebrates including fish, amphibians, and rodents. This regulation may occur in peripheral olfactory organs and the brain, but the mechanisms remain unclear. While this review centers on research in fish, we will discuss other systems to provide insight into how hormonal mechanisms function across taxa.
Collapse
Affiliation(s)
- Jessica M Bowers
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| | - Cheng-Yu Li
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| | - Coltan G Parker
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| | - Molly E Westbrook
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| | - Scott A Juntti
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| |
Collapse
|
2
|
Chen HP, Cui XF, Wang YR, Li ZY, Tian CX, Jiang DN, Zhu CH, Zhang Y, Li SS, Li GL. Identification, functional characterization, and estrogen regulation on gonadotropin-releasing hormone in the spotted scat, Scatophagus argus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1743-1757. [PMID: 32514853 DOI: 10.1007/s10695-020-00825-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is a key neuropeptide of the reproductive system. However, little is known about the role of GnRH in the spotted scat (Scatophagus argus). Here, three GnRH subtypes (cGnRH-II, sGnRH, and sbGnRH) were identified in the spotted scat. cGnRH-II and sGnRH were only expressed in the brains and gonads of both male and female fish, exhibiting a tissue-specific expression pattern, while sbGnRH was expressed at different transcription levels in all examined tissues. During ovarian maturation, hypothalamus-associated sbGnRH was upregulated, while the expression of sGnRH was variable and cGnRH-II first increased and then decreased. In vivo experiments showed that sbGnRH significantly promoted the expression of fsh and lh genes in a dose-dependent manner and exhibited a desensitization effect on lh expression at high concentrations. For sGnRH and cGnRH-II, only high concentrations could induce fsh and lh expression. Furthermore, treatment with highly concentrated sbGnRH peptide also induced fsh and lh expression, whereas the sGnRH and cGnRH-II peptides only induced fsh expression in vitro. 17β-Estradiol (E2) significantly inhibited the expression of sbGnRH mRNA in a dose-dependent manner and did not impact sGnRH and cGnRH-II mRNA levels in vivo or in vitro. The inhibitory effect of E2 on sbGnRH expression was attenuated by the estrogen receptor (ER) broad-spectrum antagonist (fulvestrant) and the ERα-specific antagonist (methyl-piperidinopyrazole), respectively, implying that the feedback regulation on sbGnRH is mediated via ERα. This study provides a theoretical basis for the reproductive endocrinology of the spotted scat by studying GnRH.
Collapse
Affiliation(s)
- Hua-Pu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Xue-Fan Cui
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yao-Rong Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Zhi-Yuan Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Chang-Xu Tian
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Dong-Neng Jiang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Chun-Hua Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Shui-Sheng Li
- State Key Laboratory of Biocontrol, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China.
| | - Guang-Li Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
3
|
De novo transcriptome assembly of four organs of Collichthys lucidus and identification of genes involved in sex determination and reproduction. PLoS One 2020; 15:e0230580. [PMID: 32218589 PMCID: PMC7100973 DOI: 10.1371/journal.pone.0230580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/03/2020] [Indexed: 01/04/2023] Open
Abstract
The spinyhead croaker (Collichthys lucidus) is a commercially important fish species, which is mainly distributed in the coastal regions of China. However, little is known about the molecular regulatory mechanism underlying reproduction in C. lucidus. A de novo transcriptome assembly in brain, liver, ovary and testis tissues of C. lucidus was performed. Illumina sequencing generated 60,322,004, 57,044,284, 60,867,978 and 57,087,688 clean reads from brain, liver, ovary and testis tissues of C. lucidus, respectively. Totally, 131,168 unigenes with an average length of 644 bp and an N50 value of 1033 bp were assembled. In addition, 1288 genes were differentially expressed between ovary and testis, including 442 up-regulated and 846 down-regulated in ovary. Functional analysis revealed that the differentially expressed genes between ovary and testis were mainly involved in the function of sexual reproduction, sex differentiation, development of primary male sexual characteristics, female gamete generation, and male sex differentiation. A number of genes which might be involved in the regulation of reproduction and sex determination were found, including HYAL and SYCP3 and BMP15. Furthermore, 35,476 simple sequence repeats (SSRs) were identified in this transcriptome dataset, which would contribute to further genetic and mechanism researches. De novo transcriptome sequencing analysis of four organs of C. lucidus provides rich resources for understanding the mechanism of reproductive development of C. lucidus and further investigation of the molecular regulation of sex determination and reproduction of C. lucidus.
Collapse
|
4
|
Honji RM, Caneppele D, Pandolfi M, Lo Nostro FL, Moreira RG. Characterization of the gonadotropin-releasing hormone system in the Neotropical teleost, Steindachneridion parahybae during the annual reproductive cycle in captivity. Gen Comp Endocrinol 2019; 273:73-85. [PMID: 29775567 DOI: 10.1016/j.ygcen.2018.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/21/2018] [Accepted: 05/06/2018] [Indexed: 02/05/2023]
Abstract
This study evaluated by immunohistochemical and Western blot methods, the distribution of two distinct gonadotropin-releasing hormones (GnRHs), corresponding to catfish GnRH (cfGnRH or GnRH1) and chicken-II GnRH (cGnRH-II or GnRH2), in Steindachneridion parahybae females in captivity, focusing these analyses on the reproductive cycle by semi-quantification of optical density (OD). Further, we found that the GnRH neuronal systems co-localized with their respective GnRH-associated peptides (GAPs). A group of neurons immunoreactive (ir) to GnRH1 were identified along the ventral region of the olfactory bulb (vOB) in the telencephalon (vTel) and in the main areas of the diencephalon (especially the medial basal hypothalamus, HBM), including fibers extending into the pituitary gland. In contrast, GnRH2 neurons were confined to the midbrain tegmentum, close to the ventricular surface, without projections to the pituitary gland. Moreover, a cfGAP (GnRH1)-specific band (9 kDa) was identified in the brain and pituitary gland, while a cGAP-II (GnRH2)-specific band (26 kDa) was observed only in the brain extract. During the reproductive cycle, GnRH1-ir presented greater OD values at the vitellogenic and regression stages than at the previtellogenic stage and after artificially induced to spawn. Larger GnRH2-ir neurons were observed during the reproductive cycle, but a higher OD was identified only in the regression stage compared with the other maturation stages. Finally, GnRH1 axons were found to be directed towards the pituitary, and this GnRH type, which is probably the hypophysiotropic form, can contribute to the reproductive dysfunction that occurs in S. parahybae females in captivity, whereas GnRH2 may act as a neuromodulator and/or neurotransmitter.
Collapse
Affiliation(s)
- Renato Massaaki Honji
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, 321, 05508-090 São Paulo, SP, Brazil; Centro de Aquicultura, Universidade Estadual Paulista (UNESP), Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, S/N, 14884-900, Jaboticabal, São Paulo, Brazil.
| | - Danilo Caneppele
- Companhia Energética de São Paulo (CESP), Unidade de Hidrobiologia e Aquicultura, Rodovia dos Tamoios, km 38. 12260-000, Brazil
| | - Matias Pandolfi
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & IBBEA, CONICET-UBA, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina
| | - Fabiana Laura Lo Nostro
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & IBBEA, CONICET-UBA, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina
| | - Renata Guimarães Moreira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, 321, 05508-090 São Paulo, SP, Brazil
| |
Collapse
|
5
|
Ryu YW, Hur SW, Hur SP, Lee CH, Lim BS, Lee YD. Characterization of Pubertal Development Phases in Female Longtooth Grouper, Epinephelus bruneus via Classification of Bodyweight. Dev Reprod 2013; 17:55-62. [PMID: 25949121 PMCID: PMC4282214 DOI: 10.12717/dr.2013.17.1.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 03/04/2013] [Accepted: 03/12/2013] [Indexed: 11/21/2022]
Abstract
Puberty is the developmental period which animals obtain the ability of reproducing sexually for the first time in life. In commercially important aquaculture fish species, the onset of puberty is a matter of major interest due to controlling of sexual maturation to improve broodstock management. To investigate pubertal characteristics of female longtooth grouper (Epinephelus bruneus), specimens were classified into three groups by the bodyweight, including 1, 2, and 3 kg group. Thereafter, we focused on ovarian development and level changes of endocrine regulation factors (GnRH, GTHs, steroid hormone). In the non-breeding season (April), the levels of endocrine regulation factors showed increasing trends in accordance with bodyweight gaining; nevertheless, the oocytes were growth phase belongs to almost peri-nucleous stages in all groups. In the breeding season (June), the levels of endocrine regulation factors were fluctuated that decreases in levels of sbGnRH and FSHβ mRNA expressions along with serum E2 concentrations in 3 kg of group. However, LHβ mRNA expression levels sustained increasing trends by the bodyweight. Moreover, the oocytes developed that 2 kg and 3 kg groups obtained plentiful vitellogenic oocytes while 1 kg group was still composed with greater part of pre-vitellogenic oocytes. Especially, the oocytes of 3 kg group reached over 450 μm of diameters that indicating possibility to enter the final maturations. These results suggest that the progress of pubertal development in female E. bruneus could be classify into three phases via bodyweight, including pre-puberty (1 kg), early-puberty (2 kg) and puberty (3 kg).
Collapse
Affiliation(s)
- Yong-Woon Ryu
- Marine and Environmental Research Institute, Jeju National University, Jeju 695-965, Korea
| | - Sang-Woo Hur
- Marine and Environmental Research Institute, Jeju National University, Jeju 695-965, Korea
| | - Sung-Pyo Hur
- Marine and Environmental Research Institute, Jeju National University, Jeju 695-965, Korea
| | - Chi-Hoon Lee
- Marine and Environmental Research Institute, Jeju National University, Jeju 695-965, Korea
| | - Bong-Soo Lim
- Marine and Environmental Research Institute, Jeju National University, Jeju 695-965, Korea
| | - Young-Don Lee
- Marine and Environmental Research Institute, Jeju National University, Jeju 695-965, Korea
| |
Collapse
|
6
|
Migaud H, Ismail R, Cowan M, Davie A. Kisspeptin and seasonal control of reproduction in male European sea bass (Dicentrarchus labrax). Gen Comp Endocrinol 2012; 179:384-99. [PMID: 23036731 DOI: 10.1016/j.ygcen.2012.07.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/04/2012] [Accepted: 07/23/2012] [Indexed: 01/12/2023]
Abstract
In the present study, we developed and validated real-time quantitative RT-PCR assays for a suite of genes involved in the brain-pituitary gonadal axis in fish including kisspeptin genes and its receptor (Kiss1, kiss2, kissr4) and gonadotropin-releasing hormone genes (sbGnRH, sGnRH, cGnRHII) in the brain, and gonadotropin genes (fshβ and lhβ) in the pituitary. Sex steroid profiles (T and 11-KT) and gonadal development were also studied over a full annual reproductive cycle in adult male sea bass. The cDNA partial sequence of sea bass kissr4 encoding 185 amino acids showed a high degree of conservation with other fish kissr4 subtype. Results clearly showed a seasonal profile for Kiss1, kiss2 and kissr4 mRNAs. Kissr4, fshβ and lhβ levels increased gradually and peaked during spermatogenesis (January) while Kiss1, kiss2, cGnRH-II as well as steroids showed peaks during early spawning (March). No significant seasonal changes were observed for sbGnRH and sGnRH expression. These results support the possible involvement of the kiss genes and their receptor (kissr4) in the seasonal control sea bass reproduction. However, a lack of correlation between kiss genes and sbGnRH expression and the mismatch between kisspeptin and the onset of gonadotropin surge contrast with previous findings.
Collapse
Affiliation(s)
- H Migaud
- Reproduction and Genetics Group, School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, UK.
| | | | | | | |
Collapse
|
7
|
XU YONGJIANG, LIU XUEZHOU, LIAO MEIJIE, WANG HANPING, WANG QINGYIN. Molecular Cloning and Differential Expression of Three GnRH Genes during Ovarian Maturation of Spotted Halibut, Verasper variegatus. ACTA ACUST UNITED AC 2012; 317:434-46. [DOI: 10.1002/jez.1736] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/14/2012] [Accepted: 04/03/2012] [Indexed: 11/07/2022]
Affiliation(s)
| | - XUE-ZHOU LIU
- Yellow Sea Fisheries Research Institute; Chinese Academy of Fishery Sciences; Qingdao; Shandong; China
| | - MEI-JIE LIAO
- Yellow Sea Fisheries Research Institute; Chinese Academy of Fishery Sciences; Qingdao; Shandong; China
| | - HAN-PING WANG
- Aquaculture Genetics and Breeding Laboratory; The Ohio State University South Centers; Piketon; Ohio
| | - QING-YIN WANG
- Yellow Sea Fisheries Research Institute; Chinese Academy of Fishery Sciences; Qingdao; Shandong; China
| |
Collapse
|
8
|
Levy G, Degani G. Involvement of GnRH, PACAP and PRP in the reproduction of blue gourami females (Trichogaster trichopterus). J Mol Neurosci 2012; 48:603-16. [PMID: 22399226 DOI: 10.1007/s12031-012-9730-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 02/16/2012] [Indexed: 12/11/2022]
Abstract
In vertebrates, gonadotropin-releasing hormone (GnRH) and pituitary adenylate cyclase-activating polypeptide (PACAP) are key hormones regulating growth and reproduction in the brain-pituitary axis. The regulating hormonal interactions are of great interest, therefore, the aim of this study is to provide novel insights into the involvement of brain GnRH and PACAP in oogensis and spermatogenesis in a fish model, the blue gourami (Trichogaster trichopterus). cDNA cloning of two GnRH forms combined with phylogenetic analysis revealed that three paralogous GnRH forms exist in blue gourami and evolve as a result of genome duplication. GnRH1 mRNA levels are related to final oocyte maturation (FOM), and this peptide stimulated β follicle-stimulating hormone (βFSH) and growth hormone (GH) gene expression; GnRH2 stimulated β gonadotropins (GtH) gene expression and GnRH analog combined with PACAP-38 synergistically upregulate GH and βFSH gene expression. The data presented, together with previous studies in our lab, enable suggesting mechanisms explaining the physiological relevance of these peptides in the regulation of gametogenesis and steroidogenesis in blue gourami females. These findings support the biological importance of the GnRH and PACAP hormones family, enabling them to stimulate differential biological functions in the regulation of growth and reproduction.
Collapse
Affiliation(s)
- Gal Levy
- School of Science and Technology, Tel-Hai College, Upper Galilee 12210, Israel
| | | |
Collapse
|
9
|
Campos V, Collares T, Deschamps J, Seixas F, Okamoto M, Sampaio L, Marins L, Robaldo R. Clonagem e avaliação da expressão gênica do sbGnRH em machos juvenis e adultos de linguado, Paralichthys orbignyanus. ARQ BRAS MED VET ZOO 2011. [DOI: 10.1590/s0102-09352011000100034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Este estudo buscou clonar o cDNA do sbGnRH, identificar sua expressão em diferentes tecidos do linguado, bem como avaliar possíveis diferenças no RNA mensageiro (RNAm) desse gene no cérebro de linguados machos juvenis e adultos. Por meio da RT-PCR, demonstrou-se pela primeira vez, a clonagem da região codificadora do sbGnRH contendo 297 nucleotídeos do cérebro do linguado. A expressão do sbGnRH foi detectada em vários tecidos periféricos. Foram detectados níveis mais elevados de RNAm do sbGnRH no hipotálamo dos animais adultos. Estes resultados sugerem que o sbGnRH está envolvido na puberdade do linguado.
Collapse
|
10
|
Bayarri MJ, Zanuy S, Yilmaz O, Carrillo M. Effects of Continuous Light on the Reproductive System of European Sea Bass Gauged by Alterations of Circadian Variations during Their First Reproductive Cycle. Chronobiol Int 2009; 26:184-99. [DOI: 10.1080/07420520902758311] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Guilgur LG, Strüssmann CA, Somoza GM. mRNA expression of GnRH variants and receptors in the brain, pituitary and ovaries of pejerrey (Odontesthes bonariensis) in relation to the reproductive status. FISH PHYSIOLOGY AND BIOCHEMISTRY 2009; 35:157-166. [PMID: 19189242 DOI: 10.1007/s10695-008-9215-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 03/20/2008] [Indexed: 05/27/2023]
Abstract
The present study examined the differential mRNA expression levels of three forms of GnRH (sGnRH, pjGnRH and cGnRH-II) and two forms of GnRH receptor (pjGnRH-R I and pjGnRH-R II) in the brain, pituitary, and ovaries of pejerrey in relation to the reproductive status. The analysis revealed the presence of significant amounts of mRNA of the three GnRH forms while the ovaries showed only two (sGnRH and pjGnRH). The GnRH receptor II was found ubiquitously in the brain, pituitary, and ovaries while the form I was detected only in the brain. The levels of pjGnRH mRNA in the brain and pjGnRH-R II in the pituitary gland varied in correlation with the ovarian condition. However, brain sGnRH and pjGnRH-R I mRNA levels reached a maximum during early stages of ovarian development. In contrast, the brain levels of cGnRH-II mRNA showed no variation. The present study also shows a good correlation of ovarian sGnRH and pjGnRH-R II mRNA levels with the reproductive condition, suggesting that these molecules are may be involved in the regulation of pejerrey ovarian function.
Collapse
Affiliation(s)
- L G Guilgur
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Chascomús, Buenos Aires, Argentina
| | | | | |
Collapse
|
12
|
A. Khalil N, E. El-Gama AEH, A. Gaber S, A. Mousa M. Immunohistochemical Localization of Gonadotropin-Releasing Hormone and Somatolactin During Sexual Maturation and Spawning of Lates niloticus. ACTA ACUST UNITED AC 2007. [DOI: 10.3923/jbs.2007.1102.1111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Nocillado JN, Levavi-Sivan B, Carrick F, Elizur A. Temporal expression of G-protein-coupled receptor 54 (GPR54), gonadotropin-releasing hormones (GnRH), and dopamine receptor D2 (drd2) in pubertal female grey mullet, Mugil cephalus. Gen Comp Endocrinol 2007; 150:278-87. [PMID: 17083940 DOI: 10.1016/j.ygcen.2006.09.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 09/18/2006] [Accepted: 09/25/2006] [Indexed: 11/16/2022]
Abstract
The G-protein-coupled receptor 54 (muGPR54) cDNA was cloned from the brain of the grey mullet, and its expression level, as well as those of the gonadotropin-releasing hormones (GnRH1, GnRH2, GnRH3) and dopamine receptor D2 (drd2), in the brain, pituitary and ovary of pubertal fish (early, intermediate, advanced) were determined by real-time quantitative RT-PCR (QPCR). The muGPR54 cDNA has an open reading frame of 1140 bp with a predicted 380 amino acid peptide, containing seven putative transmembrane domains and putative N-glycosylation and protein kinase C phosphorylation sites. QPCR results showed that the early stage of puberty in grey mullet is characterized by significantly high levels of expression of GPR54, GnRH and drd2 in the brain relative to the intermediate and advanced stages, except for GnRH1 that increased at the advanced stage of puberty. In the pituitary, drd2 expression declined significantly at the advanced stage relative to levels at the intermediate stage. Ovarian expression of GPR54 significantly increased from the intermediate stage of puberty relative to the early stage while that of GnRH1 acutely increased at the advanced stage of puberty. The ovarian expression of drd2 decreased as puberty progressed, but the changes were not significant. The results suggest the possible role of GPR54 and GnRH in positively regulating pubertal development in grey mullet and the dopaminergic inhibition of reproductive function mediated by drd2.
Collapse
Affiliation(s)
- Josephine N Nocillado
- Department of Primary Industries and Fisheries, Bribie Island Aquaculture Research Centre, 144 North Street, Woorim 4507, Qld, Australia
| | | | | | | |
Collapse
|
14
|
Maruska KP, Mizobe MH, Tricas TC. Sex and seasonal co-variation of arginine vasotocin (AVT) and gonadotropin-releasing hormone (GnRH) neurons in the brain of the halfspotted goby. Comp Biochem Physiol A Mol Integr Physiol 2006; 147:129-44. [PMID: 17276115 DOI: 10.1016/j.cbpa.2006.12.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 12/04/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) and arginine vasotocin (AVT) are critical regulators of reproductive behaviors that exhibit tremendous plasticity, but co-variation in discrete GnRH and AVT neuron populations among sex and season are only partially described in fishes. We used immunocytochemistry to examine sexual and temporal variations in neuron number and size in three GnRH and AVT cell groups in relation to reproductive activities in the halfspotted goby (Asterropteryx semipunctata). GnRH-immunoreactive (-ir) somata occur in the terminal nerve, preoptic area, and midbrain tegmentum, and AVT-ir somata within parvocellular, magnocellular, and gigantocellular regions of the preoptic area. Sex differences were found among all GnRH and AVT cell groups, but were time-period dependent. Seasonal variations also occurred in all GnRH and AVT cell groups, with coincident elevations most prominent in females during the peak- and non-spawning periods. Sex and temporal variability in neuropeptide-containing neurons are correlated with the goby's seasonally-transient reproductive physiology, social interactions, territoriality and parental care. Morphological examination of GnRH and AVT neuron subgroups within a single time period provides detailed information on their activities among sexes, whereas seasonal comparisons provide a fine temporal sequence to interpret the proximate control of reproduction and the evolution of social behavior.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Zoology, University of Hawai'i at Manoa, 2538 The Mall, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
15
|
Scaggiante M, Grober MS, Lorenzi V, Rasotto MB. Variability of GnRH secretion in two goby species with socially controlled alternative male mating tactics. Horm Behav 2006; 50:107-17. [PMID: 16530763 DOI: 10.1016/j.yhbeh.2006.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2005] [Revised: 12/20/2005] [Accepted: 01/04/2006] [Indexed: 10/24/2022]
Abstract
Male reproductive phenotypic plasticity related to environmental-social conditions is common among teleost fish. In several species, males adopt different mating tactics depending on their size, monopolizing mates when larger, while parasitizing dominant male spawns when smaller. Males performing alternative mating tactics are often characterized by a strong dimorphism in both primary and secondary reproductive traits. According to studies on sex-changing species and on species where only one male morph is reproductively active, male alternative phenotypes are expected to vary also in gonadotropin-releasing hormone (GnRH) neurons in forebrain preoptic area (POA). Here, we compared the intra- and inter-sexual variations in number and size of GnRH neurons, along with gonads and male accessory structure investment, in two goby species, the grass goby, Zosterisessor ophiocephalus, and the black goby, Gobius niger, characterized by male alternative mating phenotypes. In both species, older and larger males defend nests, court and perform parental care, while younger and smaller ones try to sneak territorial male spawning. We found that grass goby and black goby have different patterns of GnRH expression. Grass goby presents a clear intra-sexual dimorphism in GnRH expression, related to the occurrence of alternative mating tactics, while in the black goby, only inter-sexual differences are observed. The inter- and intra-specific variability in the GnRH neurons in these two goby species is discussed in light of the differences in migratory behavior, nest type, and mating system.
Collapse
Affiliation(s)
- Marta Scaggiante
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | | | | | | |
Collapse
|
16
|
Leder EH, Danzmann RG, Ferguson MM. The candidate gene, Clock, localizes to a strong spawning time quantitative trait locus region in rainbow trout. ACTA ACUST UNITED AC 2006; 97:74-80. [PMID: 16407529 DOI: 10.1093/jhered/esj004] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We applied a candidate gene mapping approach to an existing quantitative trait loci (QTL) data set for spawning date in rainbow trout (Oncorynchus mykiss) to ascertain whether these genes could potentially account for any observed QTL effects. Several genes were chosen for their known or suspected roles in reproduction, circadian, or circannual timing, including salmon-type gonadotropin-releasing hormone 3A and 3B (GnRH3A and GnRH3B), Clock, Period1, and arylalkylamine N-acetlytransferase-1 and -2 (AANAT-1 and AANAT-2). Genes were sequenced, and polymorphisms were identified in parents of two rainbow trout mapping families, one of which was used previously to detect spawn timing QTL. Interval mapping was used to identify associations between genetic markers and spawning date effects. Using a genetic map that was updated with 574 genetic markers (775 total), we found evidence for 11 significant or suggestive QTL regions. Most QTL were only localized within one of the parents; however, a strong QTL region was identified in both female and male parents on linkage group RT-8 that explained 20% and 50% of trait variance, respectively. The Clock gene mapped to this region. Period1 mapped to a region in the female parent associated with a marginal effect (P = .056) on spawn timing. Other candidate genes were not associated with significant QTL effects.
Collapse
Affiliation(s)
- E H Leder
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | | | |
Collapse
|
17
|
Pandolfi M, Muñoz Cueto JA, Lo Nostro FL, Downs JL, Paz DA, Maggese MC, Urbanski HF. GnRH systems of Cichlasoma dimerus (Perciformes, Cichlidae) revisited: a localization study with antibodies and riboprobes to GnRH-associated peptides. Cell Tissue Res 2005; 321:219-32. [PMID: 15947973 DOI: 10.1007/s00441-004-1055-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 11/16/2004] [Indexed: 10/25/2022]
Abstract
The distribution of cells that express three prepro-gonadotropin-releasing hormones (GnRH), corresponding to salmon GnRH, sea bream GnRH (sbGnRH), and chicken II GnRH, was studied in the brain and pituitary of the South American cichlid fish, Cichlasoma dimerus. Although the ontogeny and distribution of GnRH neuronal systems have previously been examined immunohistochemically with antibodies and antisera against the various GnRH decapeptides, we have used antisera against various perciform GnRH-associated peptides (GAPs) and riboprobes to various perciform GnRH+GAPs. The results demonstrate that: (1) the GnRH neuronal populations in the forebrain (salmon and sea bream GAPs; sGAP and sbGAP, respectively) show an overlapping pattern along the olfactory bulbs, nucleus olfacto-retinalis, ventral telencephalon, and preoptic area; (2) projections with sGAP are mainly located in the forebrain and contribute to the pituitary innervation, with projections containing chicken GAP II being mainly distributed along the mid and hindbrain and not contributing to pituitary innervation, whereas sbGAP projections are restricted to the ventral forebrain, being the most important molecular form in relation to pituitary innervation; (3) sbGnRH (GnRH I) neurons have an olfactory origin; (4) GAP antibodies and GAP riboprobes are valuable tools for the study of various GnRH systems, by avoiding the cross-reactivity problems that occur when using GnRH antibodies and GnRH riboprobes alone.
Collapse
Affiliation(s)
- Matías Pandolfi
- Laboratorio de Embriología Animal, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Argentina
| | | | | | | | | | | | | |
Collapse
|
18
|
Amano M, Okubo K, Yamanome T, Yamada H, Aida K, Yamamori K. Changes in brain GnRH mRNA and pituitary GnRH peptide during testicular maturation in barfin flounder. Comp Biochem Physiol B Biochem Mol Biol 2005; 138:435-43. [PMID: 15325345 DOI: 10.1016/j.cbpc.2004.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Revised: 04/18/2004] [Accepted: 05/31/2004] [Indexed: 10/26/2022]
Abstract
The pleuronectid barfin flounder (Verasper moseri) expresses three forms of gonadotropin-releasing hormone (GnRH) in the brain. To clarify the physiological roles of the respective forms during testicular maturation, changes in brain GnRH mRNA levels and pituitary GnRH peptide levels were examined by real-time quantitative PCR and time-resolved fluoroimmunoassay, respectively. Fish hatched in April 2000. The gonadosomatic index remained low until October 2001 and then rapidly increased in January 2002. Fish continued to grow from hatching through testicular maturation. Fish spermiated in March 2002. The amount of seabream GnRH (sbGnRH) mRNA per brain significantly increased in January 2002 and remained at high levels in March 2002. The amounts of salmon GnRH (sGnRH) and chicken GnRH-II (cGnRH-II) mRNA per brain did not show significant changes during the experimental periods. Pituitary sbGnRH peptide content significantly increased in March 2002. Pituitary sGnRH peptide and cGnRH-II peptide contents were extremely low compared to sbGnRH peptide levels and showed no significant changes during the experiment. These results indicate that sbGnRH is involved in the testicular maturation of barfin flounder.
Collapse
Affiliation(s)
- Masafumi Amano
- School of Fisheries Sciences, Kitasato University, Sanriku, Ofunato, Iwate 022-0101, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Weltzien FA, Andersson E, Andersen Ø, Shalchian-Tabrizi K, Norberg B. The brain–pituitary–gonad axis in male teleosts, with special emphasis on flatfish (Pleuronectiformes). Comp Biochem Physiol A Mol Integr Physiol 2004; 137:447-77. [PMID: 15123185 DOI: 10.1016/j.cbpb.2003.11.007] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 11/05/2003] [Accepted: 11/06/2003] [Indexed: 02/03/2023]
Abstract
The key component regulating vertebrate puberty and sexual maturation is the endocrine system primarily effectuated along the brain-pituitary-gonad (BPG) axis. By far most investigations on the teleost BPG axis have been performed on salmonids, carps, catfish and eels. Accordingly, earlier reviews on the BPG axis in teleosts have focused on these species, and mainly on females (e.g. 'Fish Physiology, vol. IXA. Reproduction (1983) pp. 97'; 'Proceedings of the Fourth International Symposium on the Reproductive Physiology of Fish. FishSymp91, Sheffield, UK, 1991, pp. 2'; 'Curr. Top. Dev. Biol. 30 (1995) pp. 103'; 'Rev. Fish Biol. Fish. 7 (1997) pp. 173'; 'Proceedings of the Sixth International Symposium on the Reproductive Physiology of Fish. John Grieg A/S, Bergen, Norway, 2000, pp. 211'). However, in recent years new data have emerged on the BPG axis in flatfish, especially at the level of the brain and pituitary. The evolutionarily advanced flatfishes are important model species both from an evolutionary point of view and also because many are candidates for aquaculture. The scope of this paper is to review the present status on the male teleost BPG axis, with an emphasis on flatfish. In doing so, we will first discuss the present understanding of the individual constituents of the axis in the best studied teleost models, and thereafter discuss available data on flatfish. Of the three constituents of the BPG axis, we will focus especially on the pituitary and gonadotropins. In addition to reviewing recent information on flatfish, we present some entirely new information on the phylogeny and molecular structure of teleost gonadotropins.
Collapse
Affiliation(s)
- Finn-Arne Weltzien
- Institute of Marine Research, Austevoll Aquaculture Research Station, 5392 Storebø, Norway.
| | | | | | | | | |
Collapse
|
20
|
Biju KC, Singru PS, Schreibman MP, Subhedar N. Reproduction phase-related expression of GnRH-like immunoreactivity in the olfactory receptor neurons, their projections to the olfactory bulb and in the nervus terminalis in the female Indian major carp Cirrhinus mrigala (Ham.). Gen Comp Endocrinol 2003; 133:358-67. [PMID: 12957480 DOI: 10.1016/s0016-6480(03)00190-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The reproductive biology of the Indian major carp Cirrhinus mrigala is tightly synchronized with the seasonal changes in the environment. While the ovaries show growth from February through June, the fish spawn in July-August to coincide with the monsoon; thereafter the fish pass into the postspawning and resting phases. We investigated the pattern of GnRH immunoreactivity in the olfactory system at regular intervals extending over a period of 35 months. Although no signal was detected in the olfactory organ of fish collected from April through February following year, distinct GnRH-like immunoreactivity appeared in the fish collected in March. Intense immunoreactivity was noticed in several olfactory receptor neurons (ORNs) and their axonal fibers as they extend over the olfactory nerve, spread in the periphery of the olfactory bulb (OB), and terminate in the glomerular layer. Strong immunoreactivity was seen in some fascicles of the medial olfactory tracts extending from the OB to the telencephalon. Some neurons of the ganglion cells of nervus terminalis showed GnRH immunostaining during March; no immunoreactivity was detected at other times of the year. Plexus of GnRH immunoreactive fibers extending throughout the bulb represented a different component of the olfactory system; the fiber density showed a seasonal pattern that could be related to the status of gonadal maturity. While it was highest in the prespawning phase, significant reduction in the fiber density was noticed in the fish of spawning and the following regressive phases. Taken together the data suggest that the GnRH in the olfactory system of C. mrigala may play a major role in translation of the environmental cues and influence the downstream signals leading to the stimulation of the brain-pituitary-ovary axis.
Collapse
Affiliation(s)
- K C Biju
- Department of Pharmaceutical Sciences, Nagpur University Campus, Nagpur 440 033, India
| | | | | | | |
Collapse
|
21
|
Okuzawa K, Gen K, Bruysters M, Bogerd J, Gothilf Y, Zohar Y, Kagawa H. Seasonal variation of the three native gonadotropin-releasing hormone messenger ribonucleic acids levels in the brain of female red seabream. Gen Comp Endocrinol 2003; 130:324-32. [PMID: 12606275 DOI: 10.1016/s0016-6480(02)00629-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We studied the seasonal variation of the expression of genes encoding the three native gonadotropin-releasing hormones (GnRHs), namely salmon(s) GnRH, chicken(c) GnRH-II, and seabream(sb) GnRH in red seabream, Pagrus (Chrysophrys) major, in order to better understand the regulatory mechanisms of GnRH gene expression by environmental and endocrine factors. Female red seabream, reared under natural conditions, were collected monthly or bimonthly from October to June, and the levels of the three distinct GnRH messenger ribonucleic acids (mRNAs) in the brains of those fish (n = 4-6) were determined by ribonuclease (RNase) protection analysis. The levels of sbGnRH mRNA correlated well with the observed ovarian histology; the levels of sbGnRH mRNA of immature fish in October and December were low, and increased in February and March in conjunction with active vitellogenesis. The sbGnRH mRNA levels reached a maximum level in April (spawning season), after which they rapidly decreased together with the observed ovarian regression in June. In contrast, the levels of sGnRH mRNA showed no variation, while those of cGnRH-II mRNA were elevated only slightly in March and April. The increase in sbGnRH mRNA levels correlates with the increase in day length, water temperature and serum steroids levels, suggesting that these factors are candidates for regulators of sbGnRH synthesis.
Collapse
Affiliation(s)
- Koichi Okuzawa
- Inland Station, National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki, Watarai, Mie 519-0423, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Okuzawa K, Kumakura N, Mori A, Gen K, Yamaguchi S, Kagawa H. Regulation of GnRH and its receptor in a teleost, red seabream. PROGRESS IN BRAIN RESEARCH 2003; 141:95-110. [PMID: 12508564 DOI: 10.1016/s0079-6123(02)41087-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Koichi Okuzawa
- Inland Station, National Research Institute of Aquaculture, Fisheries Research Agency, 224-1, Hiruta, Tamaki, Watarai, Mie 519-0423, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Somoza GM, Miranda LA, Strobl-Mazzulla P, Guilgur LG. Gonadotropin-releasing hormone (GnRH): from fish to mammalian brains. Cell Mol Neurobiol 2002; 22:589-609. [PMID: 12838906 PMCID: PMC11533815 DOI: 10.1023/a:1021888420271] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This work deals with a family of neuropeptides, gonadotropin-releasing hormone (GnRH), that play a key role in the development and maintenance of reproductive function in vertebrates. 2. Until now, a total of 16 GnRH structural variants have been isolated and characterized from vertebrate and protochordate nervous tissue. All vertebrate species already investigated have at least two GnRH forms coexisting in the central nervous system. However, it is now well accepted that three forms of GnRH in early and late evolved bony fishes are present. 3. In these cases, cGnRH-II is expressed by midbrain neurons, a species-specific GnRH is present mainly in the preoptic area and the hypothalamus, and sGnRH is localized in the terminal nerve ganglion (TNG). In this context it is possible to think that three GnRH forms and three GnRH receptor (GnRH-R) subtypes are expressed in the central nervous system of a given species. 4. Then it is possible to propose three different GnRH lineages expressed by distinct brain areas in vertebrates: (1) the conserved cGnRH-II or mesencephalic lineage; or (2) the hypothalamic or "releasing" lineage whose primary structure has diverged by point mutations (mGnRH and its orthologous forms: hrGnRH, wfGnRH, cfGnRH, sbGnRH, and pjGnRH); and (3) the telencephalic sGnRH form. Also different GnRH nomenclatures are discussed.
Collapse
Affiliation(s)
- Gustavo M Somoza
- Laboratorio de Ictiofisiología, Instituto Tecnológico, Universidad Nacional de General San Martín, Chascomús, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
24
|
Somoza GM, Lescheid DW, Miranda LA, Lo Nostro FL, Magliulo-Cepriano L, Montaner AD, Schreibman MP, Rivier JE, Sherwood NM. Expression of pejerrey gonadotropin-releasing hormone in three orders of fish. Biol Reprod 2002; 67:1864-71. [PMID: 12444064 DOI: 10.1095/biolreprod.102.004572] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Molecular variants of GnRH were characterized by reverse-phase, high-performance liquid chromatography from brain extracts of fish in three different orders: Synbranchiformes (swamp eel [Synbranchus marmoratus]), Cyprinidontiformes (platyfish [Xiphophorus maculatus] and green swordtail [X. helleri]), and Atheriniformes (Patagonia pejerrey [Odontesthes hatchery]). Also, pituitary gland extracts from the pejerrey O. bonariensis (Atheriniformes) were characterized. Eluted fractions were tested in radioimmunoassays with antisera specific to GnRH, including both antisera that detected only one form of GnRH and those that detected several forms. The results show that brain extracts obtained from all species contained the same three molecular forms of GnRH, which were immunologically and chromatographically undistinguishable from chicken GnRH-II, pejerrey GnRH (pjGnRH), and salmon GnRH. This study supports the hypothesis that expression of these three forms is common in different fish orders and that pjGnRH is the main regulator of pituitary function in these fish.
Collapse
Affiliation(s)
- G M Somoza
- Instituto Tecnológico de Chascomús (IIB-INTECH, CONICET-Universidad de San Martín), Camino de Circunvalación Laguna, Km 6. CC 164 (B7130IWA) Chascomús, Provincia de Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gray SL, Adams BA, Warby CM, Von Schalburg KR, Sherwood NM. Transcription and translation of the salmon gonadotropin-releasing hormone genes in brain and gonads of sexually maturing rainbow trout (Oncorhynchus mykiss). Biol Reprod 2002; 67:1621-7. [PMID: 12390896 DOI: 10.1095/biolreprod.102.004788] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Rainbow trout sexually mature at the end of Year 3. The form of GnRH that controls gonadotropin release in trout is salmon GnRH (sGnRH). In the tetraploid rainbow trout, two genes encode an identical sGnRH peptide. The sGnRH gene-1 produces one mRNA, whereas sGnRH gene-2 can produce more than one. This study asks whether the transcripts and their protein products are expressed in the brain and gonads and whether the pattern correlates with sexual maturity over the final year leading to first spawning. Brain sGnRH mRNA and protein were continuously present throughout the third year. We show for the first time that the long sGnRH-2 mRNA transcript is expressed in neural tissue and not exclusively in gonadal tissue. Expression of the long sGnRH-2 mRNA in the brain coincides with high levels of sGnRH peptide in the brain during a time of increased gonadal growth. Thus, the long sGnRH-2 mRNA in the brain may act to regulate sGnRH production in a stage-specific rather than a tissue-specific manner. In gonads, local sGnRH is thought to play an autocrine/paracrine role in regulating gonadal maturation and spawning. In the maturing gonads, sGnRH gene-1 and -2 are expressed intermittently. Strikingly, sGnRH peptide was not detected in the gonads at any time during Year 3. These results suggest that either the sGnRH transcripts in the gonads are not translated into protein or, if translated, the protein is rapidly released, resulting in gonadal content below 1 fM per fish.
Collapse
Affiliation(s)
- Sarah L Gray
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5
| | | | | | | | | |
Collapse
|
26
|
Abstract
SUMMARY
Behavioral interactions among social animals can regulate both reproductive behavior and fertility. A prime example of socially regulated reproduction occurs in the cichlid fish Haplochromis burtoni, in which interactions between males dynamically regulate gonadal function throughout life. This plasticity is mediated by the brain, where neurons that contain the key reproductive regulatory peptide gonadotropin-releasing hormone (GnRH)change size reversibly depending on male social status. To understand how behavior controls the brain, we manipulated the social system of these fish,quantified their behavior and then assessed neural and physiological changes in the reproductive and stress axes. GnRH gene expression was assessed using molecular probes specific for the three GnRH forms in the brain of H. burtoni. We found that perception of social opportunity to increase status by a male leads to heightened aggressiveness, to increased expression of only one of the three GnRH forms and to increases in size of GnRH-containing neurons and of the gonads. The biological changes characteristic of social ascent happen faster than changes following social descent. Interestingly, behavioral changes show the reverse pattern:aggressive behaviors emerge more slowly in ascending animals than they disappear in descending animals. Although the gonads and GnRH neurons undergo similar changes in female H. burtoni, regulation occurs viaendogenous rather than exogenous social signals. Our data show that recognition of social signals by males alters stress levels, which may contribute to the alteration in GnRH gene expression in particular neurons essential for the animal to perform in its new social status.
Collapse
Affiliation(s)
- Stephanie A White
- Program in Neuroscience, Stanford University, Stanford, CA 94305-2130, USA.
| | | | | |
Collapse
|
27
|
Mathews S, Khan IA, Thomas P. Effects of the maturation-inducing steroid on LH secretion and the GnRH system at different stages of the gonadal cycle in Atlantic croaker. Gen Comp Endocrinol 2002; 126:287-97. [PMID: 12093116 DOI: 10.1016/s0016-6480(02)00004-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effects of treatment with the maturation-inducing steroid 17,20beta,21-trihydroxy-4-pregnen-3-one (20beta-S) on luteinizing hormone-releasing hormone analog (LHRHa)-induced LH secretion were examined during several phases of the gonadal cycle in Atlantic croaker, Micropogonias undulatus. 20beta-S (1 and 5 microg/g of body wt) was administered by intraperitoneal (ip) injection, 24 h prior to injection with LHRHa (10-50 ng/g of body wt) and fish were bled 1 h after LHRHa injection. Treatment with both doses of 20beta-S resulted in plasma concentrations of the steroid within the normal physiological range for this species during final oocyte maturation and ovulation. The 20beta-S treatments altered the LH response to LHRHa throughout the reproductive cycle in both sexes, but the direction and magnitude of the response varied. 20beta-S treatment decreased the LH response to LHRHa in fish with recrudescing and fully recrudesced gonads and in females with regressed gonads. On the other hand, 20beta-S treatment significantly increased the LH response to LHRHa in males with regressing or regressed gonads. 20beta-S treatment also altered preoptic anterior hypothalamic (POAH) and pituitary seabream gonadotropin-releasing hormone (sbGnRH) contents, and the patterns of these changes were similar to those observed in LH secretion. The finding that moderate increases in plasma 20beta-S concentrations, similar to those occurring during final oocyte maturation, significantly inhibit the LH response to LHRHa at the end of the reproductive cycle suggests that this action of 20beta-S is of physiological importance during the periovulatory period. Moreover, the fact that concurrent changes occur in POAH and pituitary sbGnRH contents suggests that the actions of 20beta-S on LH secretion are at least partly mediated via the GnRH system.
Collapse
Affiliation(s)
- Sonya Mathews
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | | | | |
Collapse
|
28
|
Amano M, Takahashi A, Yamanome T, Okubo K, Aida K, Yamamori K. Molecular cloning of three cDNAs encoding different GnRHs in the brain of barfin flounder. Gen Comp Endocrinol 2002; 126:325-33. [PMID: 12093120 DOI: 10.1016/s0016-6480(02)00008-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To examine the reproductive endocrinology of a large pleuronectiform fish, barfin flounder, Verasper moseri, a promising candidate for aquaculture and resource enhancement in northern Japan due to its high commercial value, three gonadotropin-releasing hormones (GnRHs) in the brain was identified by isolation of their cDNAs. This species had three molecular forms of GnRH; salmon GnRH (sGnRH), chicken GnRH-II (cGnRH-II), and seabream GnRH (sbGnRH). Each GnRH cDNA encoded a signal peptide (SP), GnRH, and a GnRH-associated peptide (GAP), which was connected to GnRH by a Gly-Lys-Arg sequence. The sGnRH cDNA encoded an SP composed of 23 amino acids and a GAP composed of 54 amino acids. The cGnRH-II cDNA encoded an SP of 23 amino acids and a GAP of 49 amino acids. The sbGnRH cDNA encoded an SP of 26 amino acids and a GAP of 57 amino acids. In situ hybridization showed that the genes for sGnRH, cGnRH-II, and sbGnRH are expressed in the ventromedial olfactory bulbs and the terminal nerve ganglion, the midbrain tegmentum, and the preoptic area, respectively. These results indicate that sbGnRH neurons in the preoptic area are involved in gonadotropin secretion in barfin flounder.
Collapse
Affiliation(s)
- Masafumi Amano
- School of Fisheries Sciences, Kitasato University, Sanriku Ofunato, Iwate 022-0101, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Yamada H, Amano M, Okuzawa K, Chiba H, Iwata M. Maturational changes in brain contents of salmon GnRH in rainbow trout as measured by a newly developed time-resolved fluoroimmunoassay. Gen Comp Endocrinol 2002; 126:136-43. [PMID: 12030769 DOI: 10.1006/gcen.2002.7791] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A newly developed time-resolved fluoroimmunoassay (TR-FIA) for salmon gonadotropin-releasing hormone (sGnRH) was applied to investigate changes in sGnRH content in discrete brain areas at three different gonadal stages in the rainbow trout, Oncorhynchus mykiss. The sensitivity (6.8 pg/well), specificity, intraassay coefficients of variation (<7.4%), and interassay coefficients of variation (<10.3%) of the assay system were almost the same as those for the radioimmunoassay. Displacement curves of serially diluted brain extracts of nine teleost fish (freshwater fish and seawater fish) including rainbow trout paralleled that of the sGnRH standard, indicating that the sGnRH TR-FIA is widely applicable to the measurement of the brain sGnRH contents of various fishes. The sGnRH content in female hypothalamus decreased during final gonad maturation, whereas the sGnRH levels in pituitary were highest at the time of spermiating in males or ovulating in females, decreasing significantly thereafter. In contrast, there were no changes in the sGnRH contents of olfactory bulbs, telencephalon, optic tectum + thalamus, and cerebellum + medulla oblongata during final maturation, except for olfactory bulbs of males. Changes in sGnRH contents in the hypothalamus and the pituitary indicate that sGnRH is involved in final maturation (ovulation or spermiation) in the rainbow trout.
Collapse
Affiliation(s)
- Hideaki Yamada
- School of Fisheries Sciences, Kitasato University, Sanriku, Ofunato, Iwate 022-0101, Japan
| | | | | | | | | |
Collapse
|