1
|
Guahmich NL, Man L, Wang J, Arazi L, Kallinos E, Topper-Kroog A, Grullon G, Zhang K, Stewart J, Schatz-Siemers N, Jones SH, Bodine R, Zaninovic N, Schattman G, Rosenwaks Z, James D. Human theca arises from ovarian stroma and is comprised of three discrete subtypes. Commun Biol 2023; 6:7. [PMID: 36599970 DOI: 10.1038/s42003-022-04384-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
Theca cells serve multiple essential functions during the growth and maturation of ovarian follicles, providing structural, metabolic, and steroidogenic support. While the function of theca during folliculogenesis is well established, their cellular origins and the differentiation hierarchy that generates distinct theca sub-types, remain unknown. Here, we performed single cell multi-omics analysis of primary cell populations purified from human antral stage follicles (1-3 mm) to define the differentiation trajectory of theca/stroma cells. We then corroborated the temporal emergence and growth kinetics of defined theca/stroma subpopulations using human ovarian tissue samples and xenografts of cryopreserved/thawed ovarian cortex, respectively. We identified three lineage specific derivatives termed structural, androgenic, and perifollicular theca cells, as well as their putative lineage-negative progenitor. These findings provide a framework for understanding the differentiation process that occurs in each primordial follicle and identifies specific cellular/molecular phenotypes that may be relevant to either diagnosis or treatment of ovarian pathologies.
Collapse
Affiliation(s)
- Nicole Lustgarten Guahmich
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Limor Man
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jerry Wang
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Laury Arazi
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Eleni Kallinos
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ariana Topper-Kroog
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Gabriel Grullon
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kimberly Zhang
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Joshua Stewart
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Nina Schatz-Siemers
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sam H Jones
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Richard Bodine
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Nikica Zaninovic
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Glenn Schattman
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Zev Rosenwaks
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Daylon James
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
2
|
Huang J, Sun C, Teng Liu D, Zhao NN, Shavit JA, Zhu Y, Chen SX. Nuclear Progestin Receptor-mediated Linkage of Blood Coagulation and Ovulation. Endocrinology 2022; 163:bqac057. [PMID: 35511048 PMCID: PMC9653010 DOI: 10.1210/endocr/bqac057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Indexed: 01/22/2023]
Abstract
Ovulation is a dramatic remodeling process that includes rupture of blood capillaries and clotting, but coagulation is not thought to directly regulate this process. Herein, we report remarkable increases of coagulation factors V (f5, ~3145-fold) and tissue factor (f3a, ~120-fold) in zebrafish ovarian follicle cells during ovulation. This increase was mediated through the nuclear progestin receptor (Pgr), which is essential for ovulation in zebrafish, and was totally abolished in ovarian follicular cells from pgr-/- mutants. In addition, promoter activities of f5 and f3a were significantly enhanced by progestin (DHP) via Pgr. Similar regulation of human F5 promoter activity was induced via human PGRB, suggesting a conserved mechanism. Site-directed mutagenesis of the zebrafish f5 promoter further demonstrated a direct regulation of coagulation factors via progestin response elements. Moreover, a stark increase of erythrocytes occurred in capillaries meshed in wild-type preovulatory follicles but was absent in pgr-/- mutants. Interestingly, anticoagulants significantly inhibited ovulation both in vitro and in vivo, respectively. Furthermore, reduced fecundity was observed in f5+/- female zebrafish. Taken together, our study provides plausible evidence for steroid regulation of coagulation factors, and a new hypothesis for blood clotting-triggered ovulation in vertebrates.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
| | - Chao Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
| | - Dong Teng Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
| | - Nan Nan Zhao
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
| | - Jordan A Shavit
- Departments of Pediatrics and Human Genetics, University of
Michigan, Ann Arbor, Michigan 48109, USA
| | - Yong Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
- Department of Biology, East Carolina University,
Greenville, North Carolina 27858, USA
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and
Technology, Xiamen University, Xiamen, Fujian
361102, China
| |
Collapse
|
3
|
Nosratpour S, Ndiaye K. Ankyrin-repeat and SOCS box-containing protein 9 (ASB9) regulates ovarian granulosa cells function and MAPK signaling. Mol Reprod Dev 2021; 88:830-843. [PMID: 34476862 DOI: 10.1002/mrd.23532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/03/2021] [Accepted: 08/24/2021] [Indexed: 11/05/2022]
Abstract
Ankyrin-repeat and SOCS box-containing proteins (ASB) interact with the elongin B-C adapter via their SOCS box domain and with the cullin and ring box proteins to form E3 ubiquitin ligase complexes within the protein ubiquitination pathway. ASB9 in particular is a differentially expressed gene in ovulatory follicles (OFs) induced by the luteinizing hormone (LH) surge or hCG injection in ovarian granulosa cells (GC) while downregulated in growing dominant follicles. Although ASB9 has been involved in biological processes such as protein modification, the signaling network associated with ASB9 in GC is yet to be fully defined. We previously identified and reported ASB9 interactions and binding partners in GC including PAR1, TAOK1, and TNFAIP6/TSG6. Here, we further investigate ASB9 effects on target binding partners regulation and signaling in GC. CRISPR/Cas9-induced inhibition of ASB9 revealed that ASB9 regulates PAR1, TAOK1, TNFAIP6 as well as genes associated with proliferation and cell cycle progression such as PCNA, CCND2, and CCNE2 while CCNA2 was not affected. Inhibition of ASB9 was also associated with increased GC number and decreased caspase3/7 activity, CASP3 expression, and BAX/BCL2 ratio. Furthermore, ASB9 induction in OF in vivo 24 h post-hCG is concomitant with a significant decrease in phosphorylation levels of MAPK3/1 while pMAPK3/1 levels increased following ASB9 inhibition in GC in vitro. Together, these results provide strong evidence for ASB9 as a regulator of GC activity and function by modulating MAPK signaling likely through specific binding partners such as PAR1, therefore controlling GC proliferation and contributing to GC differentiation into luteal cells.
Collapse
Affiliation(s)
- Soma Nosratpour
- Centre de Recherche en Reproduction et Fertilité (CRRF), Veterinary Biomedicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Kalidou Ndiaye
- Centre de Recherche en Reproduction et Fertilité (CRRF), Veterinary Biomedicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
4
|
Jang YJ, Kim HK, Choi BC, Song SJ, Park JI, Chun SY, Cho MK. Expression of tissue factor and tissue factor pathway inhibitors during ovulation in rats: a relevance to the ovarian hyperstimulation syndrome. Reprod Biol Endocrinol 2021; 19:52. [PMID: 33794911 PMCID: PMC8017805 DOI: 10.1186/s12958-021-00708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 02/11/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Blood coagulation has been associated with ovulation and female infertility. In this study, the expression of the tissue factor system was examined during ovulation in immature rats; the correlation between tissue factor and ovarian hyperstimulation syndrome (OHSS) was evaluated both in rats and human follicular fluids. METHODS Ovaries were obtained at various times after human chorionic gonadotropin (hCG) injection to investigate the expression of tissue factor system. Expression levels of ovarian tissue factor, tissue factor pathway inhibitor (Tfpi)-1 and Tfpi-2 genes and proteins were determined by real-time quantitative polymerase chain reaction (qPCR), and Western blot and immunofluorescence analyses, respectively. Expression levels of tissue factor system were also investigated in ovaries of OHSS-induced rats and in follicular fluid of infertile women. RESULTS The expression of tissue factor in the preovulatory follicles was stimulated by hCG, reaching a maximum at 6 h. Tissue factor was expressed in the oocytes and the preovulatory follicles. Tfpi-2 mRNA levels were mainly increased by hCG in the granulosa cells whereas the mRNA levels of Tfpi-1 were decreased by hCG. Human CG-stimulated tissue factor expression was inhibited by the progesterone receptor antagonist. The increase in Tfpi-2 expression by hCG was decreased by the proliferator-activated receptor γ (PPARγ) antagonist. Decreased expression of the tissue factor was detected in OHSS-induced rats. Interestingly, the tissue factor concentrations in the follicular fluids of women undergoing in vitro fertilization were correlated with pregnancy but not with OHSS. CONCLUSIONS Collectively, the results indicate that tissue factor and Tfpi-2 expression is stimulated during the ovulatory process in rats; moreover, a correlation exists between the levels of tissue factor and OHSS in rats but not in humans.
Collapse
Affiliation(s)
- You Jee Jang
- Animal Facility of Aging Science, Korea Basic Science Institute, Gwangju, 61186, Republic of Korea
| | - Hee Kyung Kim
- School of Biological Sciences and Biotechnology, Faculty of Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Bum Chae Choi
- Center for Recurrent Miscarriage and Infertility, Creation and Love Women's Hospital, Gwangju, 61917, Republic of Korea
| | - Sang Jin Song
- Center for Recurrent Miscarriage and Infertility, Creation and Love Women's Hospital, Gwangju, 61917, Republic of Korea
| | - Jae Il Park
- Animal Facility of Aging Science, Korea Basic Science Institute, Gwangju, 61186, Republic of Korea.
| | - Sang Young Chun
- School of Biological Sciences and Biotechnology, Faculty of Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Moon Kyoung Cho
- Department of Obstetrics and Gynecology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
| |
Collapse
|
5
|
Active thrombin produced by the intestinal epithelium controls mucosal biofilms. Nat Commun 2019; 10:3224. [PMID: 31324782 PMCID: PMC6642099 DOI: 10.1038/s41467-019-11140-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/25/2019] [Indexed: 01/07/2023] Open
Abstract
Proteolytic homeostasis is important at mucosal surfaces, but its actors and their precise role in physiology are poorly understood. Here we report that healthy human and mouse colon epithelia are a major source of active thrombin. We show that mucosal thrombin is directly regulated by the presence of commensal microbiota. Specific inhibition of luminal thrombin activity causes macroscopic and microscopic damage as well as transcriptomic alterations of genes involved in host-microbiota interactions. Further, luminal thrombin inhibition impairs the spatial segregation of microbiota biofilms, allowing bacteria to invade the mucus layer and to translocate across the epithelium. Thrombin cleaves the biofilm matrix of reconstituted mucosa-associated human microbiota. Our results indicate that thrombin constrains biofilms at the intestinal mucosa. Further work is needed to test whether thrombin plays similar roles in other mucosal surfaces, given that lung, bladder and skin epithelia also express thrombin. The roles played by thrombin in the human intestinal mucosa are unclear. Here, the authors show that the commensal microbiota modulates epithelial production of active thrombin, which controls biofilm growth and contributes to protection of the mucosa from bacterial invasion.
Collapse
|
6
|
Dutra GA, Ishak GM, Pechanova O, Pechan T, Peterson DG, Jacob JCF, Willard ST, Ryan PL, Gastal EL, Feugang JM. Seasonal variation in equine follicular fluid proteome. Reprod Biol Endocrinol 2019; 17:29. [PMID: 30841911 PMCID: PMC6404268 DOI: 10.1186/s12958-019-0473-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Proteomic studies of follicular fluid (FF) exist for several species, including the horse; however, the seasonal influence on FF proteome has not been explored in livestock. The application of high-throughput proteomics of FF in horse has the potential to identify seasonal variations of proteins involved in follicle and oocyte growth. METHODS This study (i) profiles the proteomes of equine FF collected from dominant growing follicles during the spring anovulatory season (SAN), and spring (SOV), summer (SUM), and fall (FOV) ovulatory seasons; and (ii) identifies season-dependent regulatory networks and associated key proteins. RESULTS Regardless of season, a total of 90 proteins were identified in FF, corresponding to 63, 72, 69, and 78 proteins detected in the SAN, SOV, SUM, and FOV seasons, respectively. Fifty-two proteins were common to all seasons, a total of 13 were unique to either season, and 25 were shared between two seasons or more. Protein-to-protein interaction (PPI) analysis indicated the likely critical roles of plasminogen in the SAN season, the prothrombin/plasminogen combination in SUM, and plasminogen/complement C3 in both SOV and FOV seasons. The apolipoprotein A1 appeared crucial in all seasons. The present findings show that FF proteome of SUM differs from other seasons, with FF having high fluidity (low viscosity). CONCLUSIONS The balance between the FF contents in prothrombin, plasminogen, and coagulation factor XII proteins favoring FF fluidity may be crucial at the peak of the ovulatory season (SUM) and may explain the reported lower incidence of hemorrhagic anovulatory follicles during the SUM season.
Collapse
Affiliation(s)
- G A Dutra
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA
- Department of Reproduction and Animal Evaluation, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - G M Ishak
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA
- Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - O Pechanova
- Institute for Genomics, Biocomputing and Bioinformatics, University, Mississippi State, Oxford, MS, USA
| | - T Pechan
- Institute for Genomics, Biocomputing and Bioinformatics, University, Mississippi State, Oxford, MS, USA
| | - D G Peterson
- Institute for Genomics, Biocomputing and Bioinformatics, University, Mississippi State, Oxford, MS, USA
| | - J C F Jacob
- Department of Reproduction and Animal Evaluation, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - S T Willard
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, 4025 Wise Center, PO Box 9815, Mississippi State, MS, 39762, USA
| | - P L Ryan
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, 4025 Wise Center, PO Box 9815, Mississippi State, MS, 39762, USA
| | - E L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA
| | - J M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, 4025 Wise Center, PO Box 9815, Mississippi State, MS, 39762, USA.
| |
Collapse
|
7
|
de Ridder GG, Lundblad RL, Pizzo SV. Actions of thrombin in the interstitium. J Thromb Haemost 2016; 14:40-7. [PMID: 26564405 DOI: 10.1111/jth.13191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 01/14/2023]
Abstract
Thrombin is a pleiotropic enzyme best known for its contribution to fibrin formation and platelet aggregation during vascular hemostasis. There is increasing evidence to suggest a role for thrombin in the development of interstitial fibrosis, but interstitial thrombin has not been demonstrated by the direct determination of activity. Rather its presence is inferred by products of thrombin action such as fibrin and activated fibroblasts. This review will focus on possible mechanisms of thrombin formation in the interstitial space, the possible actions of thrombin, processes regulating thrombin activity in the interstitial space, and evidence supporting a role for thrombin in fibrosis.
Collapse
Affiliation(s)
- G G de Ridder
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - R L Lundblad
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
| | - S V Pizzo
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
8
|
Hatzirodos N, Irving-Rodgers HF, Hummitzsch K, Harland ML, Morris SE, Rodgers RJ. Transcriptome profiling of granulosa cells of bovine ovarian follicles during growth from small to large antral sizes. BMC Genomics 2014; 15:24. [PMID: 24422759 PMCID: PMC3898003 DOI: 10.1186/1471-2164-15-24] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 01/02/2014] [Indexed: 12/02/2022] Open
Abstract
Background At later stages of folliculogenesis, the mammalian ovarian follicle contains layers of epithelial granulosa cells surrounding an antral cavity. During follicle development granulosa cells replicate, secrete hormones and support the growth of the oocyte. In cattle, the follicle needs to grow > 10 mm in diameter to allow an oocyte to ovulate, following which the granulosa cells cease dividing and differentiate into the specialised cells of the corpus luteum. To better understand the molecular basis of follicular growth and granulosa cell maturation, we undertook transcriptome profiling of granulosa cells from small (< 5 mm; n = 10) and large (> 10 mm, n = 4) healthy bovine follicles using Affymetrix microarrays (24,128 probe sets). Results Principal component analysis for the first two components and hierarchical clustering showed clustering into two groups, small and large, with the former being more heterogeneous. Size-frequency distributions of the coefficient of variation of the signal intensities of each probe set also revealed that small follicles were more heterogeneous than the large. IPA and GO enrichment analyses revealed that processes of axonal guidance, immune signalling and cell rearrangement were most affected in large follicles. The most important networks were associated with: (A) Notch, SLIT/ROBO and PI3K signalling, and (B) ITGB5 and extracellular matrix signalling through extracellular signal related kinases (ERKs). Upstream regulator genes which were predicted to be active in large follicles included STAT and XBP1. By comparison, developmental processes such as those stimulated by KIT, IHH and MEST were most active in small follicles. MGEA5 was identified as an upstream regulator in small follicles. It encodes an enzyme that modifies the activity of many target proteins, including those involved in energy sensing, by removal of N-acetylglucosamine from serine and threonine residues. Conclusions Our data suggest that as follicles enlarge more genes and/or pathways are activated than are inactivated, and gene expression becomes more uniform. These findings could be interpreted that either the cells in large follicles are more uniform in their gene expression, or that follicles are more uniform or a combination of both and that additional factors, such as LH, are additionally controlling the granulosa cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Raymond J Rodgers
- Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, Robinson Institute, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
9
|
A methodological and functional proteomic approach of human follicular fluid en route for oocyte quality evaluation. J Proteomics 2013; 90:61-76. [DOI: 10.1016/j.jprot.2013.02.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/15/2013] [Accepted: 02/27/2013] [Indexed: 11/23/2022]
|
10
|
Abstract
In this paper we propose a Bayesian approach for inference about dependence of high throughput gene expression. Our goals are to use prior knowledge about pathways to anchor inference about dependence among genes; to account for this dependence while making inferences about differences in mean expression across phenotypes; and to explore differences in the dependence itself across phenotypes. Useful features of the proposed approach are a model-based parsimonious representation of expression as an ordinal outcome, a novel and flexible representation of prior information on the nature of dependencies, and the use of a coherent probability model over both the structure and strength of the dependencies of interest. We evaluate our approach through simulations and in the analysis of data on expression of genes in the Complement and Coagulation Cascade pathway in ovarian cancer.
Collapse
Affiliation(s)
- Donatello Telesca
- Department of Biostatistics, UCLA School of Public Health, Los Angeles, California 90095-1772, USA
| | - Peter Müller
- University of Texas, Austin Department of Mathematics, Austin, Texas 78712, USA
| | - Giovanni Parmigiani
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Ralph S Freedman
- University of Texas, M.D. Anderson Cancer Center, Department of Gynecologic Oncology, Houston, Texas 7030, USA
| |
Collapse
|
11
|
Cheng Y, Kawamura K, Deguchi M, Takae S, Mulders SM, Hsueh AJW. Intraovarian thrombin and activated protein C signaling system regulates steroidogenesis during the periovulatory period. Mol Endocrinol 2011; 26:331-40. [PMID: 22207716 DOI: 10.1210/me.2011-1187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In addition to its role in blood coagulation, thrombin directly stimulates protease-activated receptors (PAR) or interacts with thrombomodulin (THBD) to activate membrane-bound protein C which stimulates PAR1 and PAR4 receptors to promote downstream pleiotropic effects. Our DNA microarray, RT-PCR, and immunostaining analyses demonstrated ovarian expression of THBD, activated protein C (APC) receptor [endothelial protein C receptor (EPCR)], as well as PAR1 and PAR4 receptors in mice. After treatment of gonadotropin-primed immature mice with an ovulatory dose of human chorionic gonadotropin (hCG) (a LH surrogate), major increases in the expression of THBD, EPCR, PAR1, and PAR4 were detected in granulosa and cumulus cells of preovulatory follicles. Immunoassay analyses demonstrated sustained increases in ovarian prothrombin and APC levels after hCG stimulation. We obtained luteinizing granulosa cells from mice treated sequentially with equine CG and hCG. Treatment of these cells with thrombin or agonists for PAR1 or PAR4 decreased basal and forskolin-induced cAMP biosynthesis and suppressed hCG-stimulated progesterone production. In cultured preovulatory follicles, treatment with hirudin (a thrombin antagonist) and SCH79797 (a PAR1 antagonist) augmented hCG-stimulated progesterone biosynthesis, suggesting a suppressive role of endogenous thrombin in steroidogenesis. Furthermore, intrabursal injection with hirudin or SCH79797 led to ipsilateral increases in ovarian progesterone content. Our findings demonstrated increased ovarian expression of key components of the thrombin-APC-PAR1/4 signaling system after LH/hCG stimulation, and this signaling pathway may allow optimal luteinization of preovulatory follicles. In addition to assessing the role of thrombin and associated genes in progesterone production by the periovulatory ovary, these findings provide a model with which to study molecular mechanisms underlying thrombin-APC-PAR1/4 signaling.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94305-5317, USA
| | | | | | | | | | | |
Collapse
|
12
|
Hayashi KG, Ushizawa K, Hosoe M, Takahashi T. Differential gene expression of serine protease inhibitors in bovine ovarian follicle: possible involvement in follicular growth and atresia. Reprod Biol Endocrinol 2011; 9:72. [PMID: 21619581 PMCID: PMC3117774 DOI: 10.1186/1477-7827-9-72] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 05/27/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND SERPINs (serine protease inhibitors) regulate proteases involving fibrinolysis, coagulation, inflammation, cell mobility, cellular differentiation and apoptosis. This study aimed to investigate differentially expressed genes of members of the SERPIN superfamily between healthy and atretic follicles using a combination of microarray and quantitative real-time PCR (QPCR) analysis. In addition, we further determined mRNA and protein localization of identified SERPINs in estradiol (E2)-active and E2-inactive follicles by in situ hybridization and immunohistochemistry. METHODS We performed microarray analysis of healthy (10.7 +/- 0.7 mm) and atretic (7.8 +/- 0.2 mm) follicles using a custom-made bovine oligonucleotide microarray to screen differentially expressed genes encoding SERPIN superfamily members between groups. The expression profiles of six identified SERPIN genes were further confirmed by QPCR analysis. In addition, mRNA and protein localization of four SERPINs was investigated in E2-active and E2-inactive follicles using in situ hybridization and immunohistochemistry. RESULTS We have identified 11 SERPIN genes expressed in healthy and atretic follicles by microarray analysis. QPCR analysis confirmed that mRNA expression of four SERPINs (SERPINA5, SERPINB6, SERPINE2 and SERPINF2) was greater in healthy than in atretic follicles, while two SERPINs (SERPINE1 and SERPING1) had greater expression in atretic than in healthy follicles. In situ hybridization showed that SERPINA5, SERPINB6 and SERPINF2 mRNA were localized in GCs of E2-active follicles and weakly expressed in GCs of E2-inactive follicles. SERPING1 mRNA was localized in both GCs and the theca layer (TL) of E2-inactive follicles and a weak hybridization signal was also detected in both GCs and TL of E2-active follicles. Immunohistochemistry showed that SERPINA5, SERPINB6 and SERPINF2 were detected in GCs of E2-active and E2-inactive follicles. SERPING1 protein was localized in both GCs and the TL of E2-active and E2-inactive follicles. CONCLUSIONS Our results demonstrate a characteristic expression of SERPIN superfamily member genes in bovine healthy and atretic follicles. The cell-type-and stage-specific expression of SERPINs may be associated with bovine follicular growth and atresia.
Collapse
Affiliation(s)
- Ken-Go Hayashi
- Reproductive Biology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Koichi Ushizawa
- Reproductive Biology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Misa Hosoe
- Reproductive Biology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Toru Takahashi
- Reproductive Biology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| |
Collapse
|
13
|
O'Mullan P, Craft D, Yi J, Gelfand CA. Thrombin induces broad spectrum proteolysis in human serum samples. Clin Chem Lab Med 2009; 47:685-93. [DOI: 10.1515/cclm.2009.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
de Agostini AI, Dong JC, de Vantéry Arrighi C, Ramus MA, Dentand-Quadri I, Thalmann S, Ventura P, Ibecheole V, Monge F, Fischer AM, HajMohammadi S, Shworak NW, Zhang L, Zhang Z, Linhardt RJ. Human follicular fluid heparan sulfate contains abundant 3-O-sulfated chains with anticoagulant activity. J Biol Chem 2008; 283:28115-24. [PMID: 18669628 DOI: 10.1074/jbc.m805338200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anticoagulant heparan sulfate proteoglycans bind and activate antithrombin by virtue of a specific 3-O-sulfated pentasaccharide. They not only occur in the vascular wall but also in extravascular tissues, such as the ovary, where their functions remain unknown. The rupture of the ovarian follicle at ovulation is one of the most striking examples of tissue remodeling in adult mammals. It involves tightly controlled inflammation, proteolysis, and fibrin deposition. We hypothesized that ovarian heparan sulfates may modulate these processes through interactions with effector proteins. Our previous work has shown that anticoagulant heparan sulfates are synthesized by rodent ovarian granulosa cells, and we now have set out to characterize heparan sulfates from human follicular fluid. Here we report the first anticoagulant heparan sulfate purified from a natural human extravascular source. Heparan sulfate chains were fractionated according to their affinity for antithrombin, and their structure was analyzed by 1H NMR and MS/MS. We find that human follicular fluid is a rich source of anticoagulant heparan sulfate, comprising 50.4% of total heparan sulfate. These antithrombin-binding chains contain more than 6% 3-O-sulfated glucosamine residues, convey an anticoagulant activity of 2.5 IU/ml to human follicular fluid, and have an anti-Factor Xa specific activity of 167 IU/mg. The heparan sulfate chains that do not bind antithrombin surprisingly exhibit an extremely high content in 3-O-sulfated glucosamine residues, which suggest that they may exhibit biological activities through interactions with other proteins.
Collapse
Affiliation(s)
- Ariane I de Agostini
- Department of Gynaecology and Obstetrics, Geneva University Hospitals and University of Geneva, Geneva 14, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Modelling the effect of amplification pathway factors on thrombin generation: A comparison of hemophilias. Transfus Apher Sci 2008; 38:41-7. [DOI: 10.1016/j.transci.2007.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Osuga Y, Hirota Y, Taketani Y. Basic and Translational Research on Proteinase-Activated Receptors: Proteinase-Activated Receptors in Female Reproductive Tissues and Endometriosis. J Pharmacol Sci 2008; 108:422-5. [DOI: 10.1254/jphs.08r13fm] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
17
|
Bungay SD, Gentry PA, Gentry RD. Modelling thrombin generation in human ovarian follicular fluid. Bull Math Biol 2006; 68:2283-302. [PMID: 16838084 DOI: 10.1007/s11538-006-9115-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 03/02/2006] [Indexed: 12/01/2022]
Abstract
A mathematical model is constructed to study thrombin production in human ovarian follicular fluid. The model results show that the amount of thrombin that can be produced in ovarian follicular fluid is much lower than that in blood plasma, failing to reach the level required for fibrin formation, and thereby supporting the hypothesis that in follicular fluid thrombin functions to initiate cellular activities via intracellular signalling receptors. It is also concluded that the absence of the amplification pathway to thrombin production in follicular fluid is a major factor in restricting the amount of thrombin that can be produced. Titration of the initial concentrations of the various reactants in the model lead to predictions for the amount of tissue factor and phospholipid that is required to maintain thrombin production in the follicle, as well as to the conclusion that tissue factor pathway inhibitor has little effect on the time that thrombin generation is sustained. Numerical experiments to determine the effect of factor V, which is at a much reduced level in follicular fluid compared to plasma, and thrombomodulin, illustrate the importance for further experimental work to determine values for several parameters that have yet to be reported in the literature.
Collapse
Affiliation(s)
- Sharene D Bungay
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| | | | | |
Collapse
|
18
|
Abstract
Blood coagulation is a basic physiological defense mechanism that occurs in all vertebrates to prevent blood loss following vascular injury. In all species the basic mechanism of clot formation is similar; when endothelium is damaged a complex sequence of enzymatic reactions occurs that is localized to the site of trauma and involves both activated cells and plasma proteins. The reaction sequence is initiated by the expression of tissue factor on the surface of activated cells and results in the generation of thrombin, the most important enzyme in blood clot formation. Thrombin converts soluble fibrinogen, via soluble fibrin monomers, into the insoluble fibrin that forms the matrix of a blood clot as well as exerting positive-feedback regulation that effectively promotes additional thrombin generation that facilitates the rapid development of a thrombus. Both spontaneous and trauma-induced haemorrhagic episodes can develop in all mammals with inherited or acquired abnormalities in one or more of the coagulant proteins. Experimental studies with plasma from a wide range of species have led to the conclusion that there are extensive differences in the rates of thrombin generation and fibrin formation among species. However, current evidence suggests that at least some of these quantitative differences are likely due to the use of non-species specific laboratory reagents. Although the individual proteins involved in the procoagulant pathways exhibit similar functions in all animals, differences in amino acid sequence cause incomplete homology and varying degrees of immunological cross-reactivity for the same protein across species.
Collapse
Affiliation(s)
- Patricia A Gentry
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1E 3X1.
| |
Collapse
|
19
|
Bédard J, Brûlé S, Price CA, Silversides DW, Lussier JG. Serine protease inhibitor-E2 (SERPINE2) is differentially expressed in granulosa cells of dominant follicle in cattle. Mol Reprod Dev 2003; 64:152-65. [PMID: 12506347 DOI: 10.1002/mrd.10239] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The objective was to analyze gene expression in bovine granulosa cells of the dominant follicle by mRNA differential display. Total RNA was extracted from granulosa cells of <or=4 mm follicles, day 5 (D5) dominant follicles, and hCG-induced preovulatory follicles. A differentially expressed cDNA observed in the dominant follicle group was used to screen a granulosa cell cDNA library, which resulted in the cloning of a 2,096 bp cDNA. Amino acid comparison showed identity level of 91.4, 83.9, and 83.1% when compared to human, rat, and mouse serine protease inhibitor E2, SERPINE2, also called Glia-derived nexin or protease Nexin-1. A single transcript of 2.4 kb was shown to be differentially expressed in different bovine tissues. Immunoblotting with a specific antibody raised against a fragment of SERPINE2 (S(12)-R(196)) showed that SERPINE2 migrated at 47.5 kDa in support of glycosylation. Primordial, primary, and secondary pre-antral follicles showed immunostaining associated with granulosa cells and oocytes, and strong labeling in large antral follicles was located with granulosa cells and follicular fluid. Heterogeneity of SERPINE2 labeling was observed in CL. Semi-quantitative real-time fluorescent RT-PCR showed a six-fold increase (P = 0.0002) in mRNA level of SERPINE2 in granulosa cells of D5 dominant follicle compared to granulosa cells collected from the <or=4 mm or preovulatory hCG-induced follicles. This report demonstrates that SERPINE2 mRNA is regulated in a spatio-temporal pattern with highest levels in granulosa cells of growing dominant bovine follicles, and support the hypothesis that a high expression of SERPINE2 may contribute to follicular growth whereas a decrease following hCG injection may contribute to ovulation.
Collapse
Affiliation(s)
- Julie Bédard
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | | | | | | | | |
Collapse
|