1
|
Pérez-Montero S, Carbonell A, Azorín F. Germline-specific H1 variants: the "sexy" linker histones. Chromosoma 2015; 125:1-13. [PMID: 25921218 DOI: 10.1007/s00412-015-0517-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 01/07/2023]
Abstract
The eukaryotic genome is packed into chromatin, a nucleoprotein complex mainly formed by the interaction of DNA with the abundant basic histone proteins. The fundamental structural and functional subunit of chromatin is the nucleosome core particle, which is composed by 146 bp of DNA wrapped around an octameric protein complex formed by two copies of each core histone H2A, H2B, H3, and H4. In addition, although not an intrinsic component of the nucleosome core particle, linker histone H1 directly interacts with it in a monomeric form. Histone H1 binds nucleosomes near the exit/entry sites of linker DNA, determines nucleosome repeat length and stabilizes higher-order organization of nucleosomes into the ∼30 nm chromatin fiber. In comparison to core histones, histone H1 is less well conserved through evolution. Furthermore, histone H1 composition in metazoans is generally complex with most species containing multiple variants that play redundant as well as specific functions. In this regard, a characteristic feature is the presence of specific H1 variants that replace somatic H1s in the germline and during early embryogenesis. In this review, we summarize our current knowledge about their structural and functional properties.
Collapse
Affiliation(s)
- Salvador Pérez-Montero
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Albert Carbonell
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028, Barcelona, Spain. .,Institute for Research in Biomedicine, IRB Barcelona, Baldiri Reixac, 10, 08028, Barcelona, Spain.
| |
Collapse
|
2
|
Unmethylated state of 5′ upstream CpG islands may be necessary but not sufficient for the testis-enriched expression of ZNF230/Znf230. Genes Genomics 2014. [DOI: 10.1007/s13258-013-0153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
3
|
Ishida M, Okazaki E, Tsukamoto S, Kimura K, Aizawa A, Kito S, Imai H, Minami N. The promoter of the oocyte-specific gene, Oog1, functions in both male and female meiotic germ cells in transgenic mice. PLoS One 2013; 8:e68686. [PMID: 23894331 PMCID: PMC3718783 DOI: 10.1371/journal.pone.0068686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/02/2013] [Indexed: 12/05/2022] Open
Abstract
Oog1 is an oocyte-specific gene whose expression is turned on in mouse oocytes at embryonic day (E) 15.5, concomitant with the time when most of the female germ cells stop proliferating and enter meiotic prophase. Here, we characterize the Oog1 promoter, and show that transgenic GFP reporter expression driven by the 2.7 kb and 3.9 kb regions upstream of the Oog1 transcription start site recapitulates the intrinsic Oog1 expression pattern. In addition, the 3.9 kb upstream region exhibits stronger transcriptional activity than does the 2.7 kb region, suggesting that regulatory functions might be conserved in the additional 1.2 kb region found within the 3.9 kb promoter. Interestingly, the longer promoter (3.9 kb) also showed strong activity in male germ cells, from late pachytene spermatocytes to elongated spermatids. This is likely due to the aberrant demethylation of two CpG sites in the proximal promoter region. One was highly methylated in the tissues in which GFP expression was suppressed, and another was completely demethylated only in Oog1pro3.9 male and female germ cells. These results suggest that aberrant demethylation of the proximal promoter region induced ectopic expression in male germ cells under the control of 3.9 kb Oog1 promoter. This is the first report indicating that sex-dependent gene expression is altered according to the length and the methylation status of the promoter region. Additionally, our results show that individual CpG sites are differentially methylated and play different roles in regulating promoter activity and gene transcription.
Collapse
Affiliation(s)
- Miya Ishida
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Eriko Okazaki
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Satoshi Tsukamoto
- Laboratory of Animal and Genome Science Section, National Institute of Radiological Sciences, Chiba, Japan
| | - Koji Kimura
- Animal Reproduction Laboratory, National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Japan
| | | | - Seiji Kito
- Laboratory of Animal and Genome Science Section, National Institute of Radiological Sciences, Chiba, Japan
| | - Hiroshi Imai
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
4
|
Kotur N, Stankovic B, Kassela K, Georgitsi M, Vicha A, Leontari I, Dokmanovic L, Janic D, Krstovski N, Klaassen K, Radmilovic M, Stojiljkovic M, Nikcevic G, Simeonidis A, Sivolapenko G, Pavlovic S, Patrinos GP, Zukic B. 6-mercaptopurine influences TPMT gene transcription in a TPMT gene promoter variable number of tandem repeats-dependent manner. Pharmacogenomics 2012; 13:283-95. [DOI: 10.2217/pgs.11.153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aim: TPMT activity is characterized by a trimodal distribution, namely low, intermediate and high methylator. TPMT gene promoter contains a variable number of GC-rich tandem repeats (VNTRs), namely A, B and C, ranging from three to nine repeats in length in an AnBmC architecture. We have previously shown that the VNTR architecture in the TPMT gene promoter affects TPMT gene transcription. Materials, methods & results: Here we demonstrate, using reporter assays, that 6-mercaptopurine (6-MP) treatment results in a VNTR architecture-dependent decrease of TPMT gene transcription, mediated by the binding of newly recruited protein complexes to the TPMT gene promoter, upon 6-MP treatment. We also show that acute lymphoblastic leukemia patients undergoing 6-MP treatment display a VNTR architecture-dependent response to 6-MP. Conclusion: These data suggest that the TPMT gene promoter VNTR architecture can be potentially used as a pharmacogenomic marker to predict toxicity due to 6-MP treatment in acute lymphoblastic leukemia patients. Original submitted 27 July 2011; Revision submitted 24 October 2011
Collapse
Affiliation(s)
- Nikola Kotur
- Institute of Molecular Genetics & Genetic Engineering, University of Belgrade, Laboratory for Molecular Hematology, Belgrade, 11010, Serbia
| | - Biljana Stankovic
- Institute of Molecular Genetics & Genetic Engineering, University of Belgrade, Laboratory for Molecular Hematology, Belgrade, 11010, Serbia
| | - Katerina Kassela
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, GR-26504, Greece
| | - Marianthi Georgitsi
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, GR-26504, Greece
| | - Anna Vicha
- Hematology Division, School of Health Sciences, Faculty of Medicine, University of Patras, Patras, GR-26504, Greece
| | - Iliana Leontari
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, GR-26504, Greece
| | - Lidija Dokmanovic
- University Children’s Hospital, School of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - Dragana Janic
- University Children’s Hospital, School of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - Nada Krstovski
- University Children’s Hospital, School of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - Kristel Klaassen
- Institute of Molecular Genetics & Genetic Engineering, University of Belgrade, Laboratory for Molecular Hematology, Belgrade, 11010, Serbia
| | - Milena Radmilovic
- Institute of Molecular Genetics & Genetic Engineering, University of Belgrade, Laboratory for Molecular Hematology, Belgrade, 11010, Serbia
| | - Maja Stojiljkovic
- Institute of Molecular Genetics & Genetic Engineering, University of Belgrade, Laboratory for Molecular Hematology, Belgrade, 11010, Serbia
| | - Gordana Nikcevic
- Institute of Molecular Genetics & Genetic Engineering, University of Belgrade, Laboratory for Molecular Hematology, Belgrade, 11010, Serbia
| | - Argiris Simeonidis
- Hematology Division, School of Health Sciences, Faculty of Medicine, University of Patras, Patras, GR-26504, Greece
| | - Gregory Sivolapenko
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, GR-26504, Greece
| | - Sonja Pavlovic
- Institute of Molecular Genetics & Genetic Engineering, University of Belgrade, Laboratory for Molecular Hematology, Belgrade, 11010, Serbia
| | - George P Patrinos
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, GR-26504, Greece
| | - Branka Zukic
- Institute of Molecular Genetics & Genetic Engineering, University of Belgrade, Laboratory for Molecular Hematology, Belgrade, 11010, Serbia
| |
Collapse
|
5
|
Abstract
The ZNF313 gene has the highest transcription level in fertile male testes and may be related to human spermatogenesis. The deletion-mutated plasmids of ZNF313 promoter were constructed and transfected into HEK293 cells. The result showed that the fragment from nt -157 to +8 has a basal transcriptional activity. A functional Sp1 binding site was identified by site-directed mutation test and mithramycin A treatment. A 447-bp based at +233 to -213 exhibits a characteristic CpG island, which overlaps with the promoter region. Our work suggests that ZNF313 is controlled at the transcriptional level, and a common mechanism controlling the basal transcription of ZNF313 gene exists.
Collapse
|
6
|
Kehoe SM, Oka M, Hankowski KE, Reichert N, Garcia S, McCarrey JR, Gaubatz S, Terada N. A conserved E2F6-binding element in murine meiosis-specific gene promoters. Biol Reprod 2008; 79:921-30. [PMID: 18667754 DOI: 10.1095/biolreprod.108.067645] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
During gametogenesis, germ cells must undergo meiosis in order to become viable haploid gametes. Successful completion of this process is dependent upon the expression of genes whose protein products function specifically in meiosis. Failure to express these genes in meiotic cells often results in infertility, whereas aberrant expression in somatic cells may lead to mitotic catastrophe. The mechanisms responsible for regulating the timely expression of meiosis-specific genes have not been fully elucidated. Here we demonstrate that E2F6, a member of the E2F family of transcription factors, is essential for the repression of the newly identified meiosis-specific gene, Slc25a31 (also known as Ant4, Aac4), in somatic cells. This discovery, along with previous studies, prompted us to investigate the role of E2F6 in the regulation of meiosis-specific genes in general. Interestingly, the core E2F6-binding element (TCCCGC) was highly conserved in the proximal promoter regions of 19 out of 24 (79.2%) meiosis-specific genes. This was significantly higher than the frequency found in the promoters of all mouse genes (15.4%). In the absence of E2F6, only a portion of these meiosis-specific genes was derepressed in somatic cells. However, endogenous E2F6 bound to the promoters of these meiosis-specific genes regardless of whether they required E2F6 for their repression in somatic cells. Further, E2F6 overexpression was capable of reducing their transcription. These findings indicate that E2F6 possesses a broad ability to bind to and regulate the meiosis-specific gene population.
Collapse
Affiliation(s)
- Sarah M Kehoe
- Department of Pathology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Xu W, Zhang S, Qiu W, He G, Liu Y, Sun Y, Ma Y, Dong J, Zhang W. Spermatogenesis-related ring finger gene ZNF230 promoter: identification and functional analysis. Mol Biol Rep 2008; 36:1187-93. [PMID: 18584306 DOI: 10.1007/s11033-008-9296-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 06/11/2008] [Indexed: 02/05/2023]
Abstract
The ZNF230 gene is a recently cloned gene which is transcribed only in fertile male testes and may be related to human spermatogenesis. To characterize the multiple stage-specific transcription elements necessary for ZNF230 expression, we cloned ZNF230 promoter and constructed chimeric luciferase reporter Plasmids. Overexpression and site-directed mutation test were used to characterize the cis-element. The results showed ZNF230 gene promoter to be GC rich and not contain a TATA box. Deletion analysis of the 5'-flanking region of ZNF230 in HEK293 cells indicated that the sequence encompassing from nt -131 to +152 has a basal transcriptional activity. Site-directed mutation test and mithramycin A treatment demonstrated that the ZNF230 promoter contained a functional Sp1 site. Overexpression of the Sox5 protein activated the promoter activity. A 312-bp fragment surrounding the transcription start site exhibits a characteristic CpG island which overlaps with the promoter region. We also provided evidence that both the human and mouse znf230 promoter consist of Sp1 binding site and GC-rich sequences, suggesting Sp1 is required for the transcription of human and mouse ZNF230 genes. In conclusion, these findings suggest that ZNF230 is tightly controlled at transcriptional level and a common mechanism controls the basal transcription of ZNF230 gene.
Collapse
Affiliation(s)
- Wenming Xu
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ma W, Horvath GC, Kistler MK, Kistler WS. Expression patterns of SP1 and SP3 during mouse spermatogenesis: SP1 down-regulation correlates with two successive promoter changes and translationally compromised transcripts. Biol Reprod 2008; 79:289-300. [PMID: 18417714 DOI: 10.1095/biolreprod.107.067082] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Because of their prominent roles in regulation of gene expression, it is important to understand how levels of Krüpple-like transcription factors SP1 and SP3 change in germ cells during spermatogenesis. Using immunological techniques, we found that both factors decreased sharply during meiosis. SP3 declined during the leptotene-to-pachytene transition, whereas SP1 fell somewhat later, as spermatocytes progressed beyond the early pachytene stage. SP3 reappeared for a period in round spermatids. For Sp1, the transition to the pachytene stage is accompanied by loss of the normal, 8.2-kb mRNA and appearance of a prevalent, 8.8-kb variant, which has not been well characterized. We have now shown that this pachytene-specific transcript contains a long, unspliced sequence from the first intron and that this sequence inhibits expression of a reporter, probably because of its many short open-reading frames. A second testis-specific Sp1 transcript in spermatids of 2.4 kb also has been reported previously. Like the 8.8-kb variant, it is compromised translationally. We have confirmed by Northern blotting that the 8.8-, 8.2-, and 2.4-kb variants account for the major testis Sp1 transcripts. Thus, the unexpected decline of SP1 protein in the face of continuing Sp1 transcription is explained, in large part, by poor translation of both novel testis transcripts. As part of this work, we also identified five additional, minor Sp1 cap sites by 5' rapid amplification of cDNA ends, including a trans-spliced RNA originating from the Glcci1 gene.
Collapse
Affiliation(s)
- Wenli Ma
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | |
Collapse
|
9
|
Yoshioka H, Geyer CB, Hornecker JL, Patel KT, McCarrey JR. In vivo analysis of developmentally and evolutionarily dynamic protein-DNA interactions regulating transcription of the Pgk2 gene during mammalian spermatogenesis. Mol Cell Biol 2007; 27:7871-85. [PMID: 17875925 PMCID: PMC2169153 DOI: 10.1128/mcb.00990-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transcription of the testis-specific Pgk2 gene is selectively activated in primary spermatocytes to provide a source of phosphoglycerate kinase that is critical to normal motility and fertility of mammalian spermatozoa. We examined dynamic changes in protein-DNA interactions at the Pgk2 gene promoter during murine spermatogenesis in vivo by performing genomic footprinting and chromatin immunoprecipitation assays with enriched populations of murine spermatogenic cells at stages prior to, during, and following transcription of this gene. We found that genes encoding the testis-specific homeodomain factor PBX4 and its coactivator, PREP1, are expressed in patterns that mirror expression of the Pgk2 gene and that these factors become bound to the Pgk2 enhancer in cells in which this gene is actively expressed. We therefore suggest that these factors, along with CREM and SP3, direct stage- and cell type-specific transcription of the Pgk2 gene during spermatogenesis. We propose that binding of PBX4, plus its coactivator PREP1, is a rate-limiting step leading to the initiation of tissue-specific transcription of the Pgk2 gene. This study provides insight into the developmentally dynamic establishment of tissue-specific protein-DNA interactions in vivo. It also allows us to speculate about the events that led to tissue-specific regulation of the Pgk2 gene during mammalian evolution.
Collapse
Affiliation(s)
- Hirotaka Yoshioka
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | | | | | | | | |
Collapse
|
10
|
Wolfe SA, van Wert J, Grimes SR. Transcription factor RFX2 is abundant in rat testis and enriched in nuclei of primary spermatocytes where it appears to be required for transcription of the testis-specific histone H1t gene. J Cell Biochem 2007; 99:735-46. [PMID: 16676351 DOI: 10.1002/jcb.20959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Previous work in our laboratory revealed upregulated transcription of the testis-specific linker histone H1t gene in pachytene primary spermatocytes during spermatogenesis. Using the H1t X-box as an affinity chromatography probe, we identified Regulatory Factor X2 (RFX2), a member of the RFX family of transcription factors, as a nuclear protein that binds the probe. We also showed that RFX2 activated the H1t promoter in transient expression assays. However, other RFX family members have the same DNA-binding domain and they also may regulate H1t gene expression. Therefore, in this study we examined the distribution of RFX2 and other RFX family members in rat testis germinal cells and in several tissues. Among tissues examined, RFX2 is most abundant in testis. Testis RFX2 is most abundant in spermatocytes where transcription of the H1t gene is upregulated and the steady-state H1t mRNA level is high. RFX2 levels decrease but RFX1 levels increase in early spermatids where H1t gene transcription is downregulated. Antibodies against RFX2 generate a shifted band in electrophoretic mobility shift assays (EMSA) using H1t or testisin X-box DNA probes with nuclear proteins from spermatocytes. These data support the hypothesis that RFX2 expression is upregulated in spermatocytes where it participates in activating transcription of the H1t gene and other testis genes. These data also support the possibility that other RFX family members may bind to the H1t promoter in other testis germinal cell types and in nongerminal cells to downregulate H1t gene transcription.
Collapse
Affiliation(s)
- Steven A Wolfe
- Research Service (151), Overton Brooks Veterans Administration Medical Center, Shreveport, Louisiana 71101-4295, USA
| | | | | |
Collapse
|
11
|
Kim M, Li D, Cui Y, Mueller K, Chears WC, DeJong J. Regulatory Factor Interactions and Somatic Silencing of the Germ Cell-specific ALF Gene. J Biol Chem 2006; 281:34288-98. [PMID: 16966320 DOI: 10.1074/jbc.m607168200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Germ cell-specific genes are active in oocytes and spermatocytes but are silent in all other cell types. To understand the basis for this seemingly simple pattern of regulation, we characterized factors that recognize the promoter-proximal region of the germ cell-specific TFIIA alpha/beta-like factor (ALF) gene. Two of the protein-DNA complexes formed with liver extracts (C4 and C5) are due to the zinc finger proteins Sp1 and Sp3, respectively, whereas another complex (C6) is due to the transcription factor RFX1. Two additional complexes (C1 and C3) are due to the multivalent zinc finger protein CTCF, a factor that plays a role in gene silencing and chromatin insulation. An investigation of CTCF binding revealed a recognition site of only 17 bp that overlaps with the Sp1/Sp3 site. This site is predictive of other genomic CTCF sites and can be aligned to create a functional consensus. Studies on the activity of the ALF promoter in somatic 293 cells revealed mutations that result in increased reporter activity. In addition, RNAi-mediated down-regulation of CTCF is associated with activation of the endogenous ALF gene, and both CTCF and Sp3 repress the promoter in transient transfection assays. Overall, the results suggest a role for several factors, including the multivalent zinc finger chromatin insulator protein CTCF, in mediating somatic repression of the ALF gene. Release of such repression, perhaps in conjunction with other members of the CTCF, RFX, and Sp1 families of transcription factors, could be an important aspect of germ cell gene activation.
Collapse
Affiliation(s)
- MinJung Kim
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75080, USA
| | | | | | | | | | | |
Collapse
|
12
|
Müllenbach E, Walter L, Dressel R. A novel discoidin domain receptor 1 (Ddr1) transcript is expressed in postmeiotic germ cells of the rat testis depending on the major histocompatibility complex haplotype. Gene 2006; 372:53-61. [PMID: 16472941 DOI: 10.1016/j.gene.2005.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 12/06/2005] [Accepted: 12/07/2005] [Indexed: 11/21/2022]
Abstract
The Ddr1 gene encoding the discoidin domain receptor 1 (DDR1), a member of a small subfamily of receptor tyrosine kinases, is known to be involved in differentiation, proliferation, and cell adhesion. The extracellular discoidin domain is responsible for the binding of the ligand collagen. As the human homologue, the rat Ddr1 gene consists of 17 exons and is located in the major histocompatibility complex, the RT1 complex in rats. A novel testis-specific Ddr1 transcript of 3.5 kb is described here which is expressed specifically in the postmeiotic germ cells of the rat testis. The exons 1 to 5 are missing in this transcript and the putative protein would lack the discoidin domain and parts of the stalk region. The expression level of both, the full-length 4.3 kb and the novel 3.5 kb Ddr1 transcript, is dependent on the RT1 haplotype. In the RT1(avl) haplotype, carried by DA and LEW.1AV1 rats, the 3.5 kb Ddr1 transcript is completely missing. This might be explained by the lack of four nucleotides GGGC in the RT1(avl) haplotype, which appear to contribute to a SP1 binding site in intron 5 of the Ddr1 gene in the presumed testis-specific alternative promoter region of the 3.5 kb Ddr1 transcript. In addition, two novel exons in the 5'-untranslated region of the Ddr1 gene were found that give rise to further alternative Ddr1 transcripts. Interestingly, the 3.5 kb Ddr1 transcript is not only expressed in a cell type-specific manner in postmeiotic germ cells but also controlled by the RT1 haplotype.
Collapse
Affiliation(s)
- Eike Müllenbach
- University of Göttingen, Department of Immunogenetics, Göttingen, Germany
| | | | | |
Collapse
|
13
|
Fedorov AV, Lukyanov DV, Podgornaya OI. Identification of the proteins specifically binding to the rat LINE1 promoter. Biochem Biophys Res Commun 2005; 340:553-9. [PMID: 16378599 DOI: 10.1016/j.bbrc.2005.12.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 12/07/2005] [Indexed: 11/25/2022]
Abstract
The initial step of LINE1 retrotransposons dissemination requires transcription from species-specific promoter located within 5'-untranslated region of LINE1. Although the 5'-untranslated region of the rat LINE1 element shows promoter activity, no promoter-binding proteins have been discovered so far. Using an EMSA and Southwestern blotting methods, we identified Sp1 and Sp3 proteins, which specifically bind to the rat LINE1 promoter in vitro. The Sp1/Sp3-binding motif within rat LINE1 promoter is located downstream of the major predicted transcription initiation site.
Collapse
Affiliation(s)
- Anton V Fedorov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, 194064 St-Petersburg, Russia.
| | | | | |
Collapse
|
14
|
Grimes SR, Prado S, Wolfe SA. Transcriptional activation of the testis-specific histone H1t gene by RFX2 may require both proximal promoter X-box elements. J Cell Biochem 2005; 94:317-26. [PMID: 15526285 DOI: 10.1002/jcb.20320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The rat testis-specific linker histone H1t gene is transcribed in pachytene primary spermatocytes during spermatogenesis. Our previous work using transgenic mice demonstrated that spermatocyte-specific transcription of the H1t gene is dependent upon a proximal promoter element designated the TE element. TE is composed of two adjacent and inverted imperfect repeat sequences designated TE1 and TE2 and both of these palindromic elements are similar in sequence to the X-box, a DNA consensus sequence that binds regulatory factor X (RFX). RFX2 is the major enriched protein derived from rat testis nuclear extracts when using the TE1 element as an affinity chromatography probe. Co-expression of RFX2 together with an H1t promoted reporter vector in transient expression assays activates the H1t promoter in the GC-2spd germinal cell line, and mutation of either X-box significantly represses activity. However, RFX2 partially reactivates the promoter when either of the X-box elements is independently mutated. In order to totally block reactivation by RFX2, it is necessary to mutate both X-boxes simultaneously. Therefore, RFX2 appears to be able to bind to either X-box independently to partially activate the promoter of the testis-specific histone H1t gene, but simultaneous binding of RFX2 to both X-box elements may be required for maximal promoter activation.
Collapse
Affiliation(s)
- Sidney R Grimes
- Research Service (151), Overton Brooks Veterans Administration Medical Center, Shreveport, Louisiana 71101-4295, USA.
| | | | | |
Collapse
|
15
|
Okada T, Bhalla PL, Singh MB. Transcriptional Activity of Male Gamete-specific Histone gcH3 Promoter in Sperm Cells of Lilium longiflorum. ACTA ACUST UNITED AC 2005; 46:797-802. [PMID: 15755744 DOI: 10.1093/pcp/pci075] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Histones are essential for packaging of eukaryotic genomic DNA in nucleosomes, and histone gene expression is normally coupled with DNA synthesis. Some of the flowering plant histone genes show strictly male gamete-specific expression. However, mechanisms underlying their male gamete-specific expression have not been elucidated so far. Here we report the isolation of the male gamete-specific histone gcH3 promoter from Lilium longiflorum and its activity in the male gametic cell of the flowering plant. The OCT motif, which is well conserved in plant histone promoters regulating S phase-specific expression, is not conserved in the gcH3 promoter. Instead sequence motifs identical to GC box 1 and GC box 2, the transcriptional activator and suppressor for mammalian testis-specific histone H1t, are present in the gcH3 promoter, suggesting that plants and animals share the mechanism which governs the specificity of gene expression in male gametic cells. Male gamete-specific activation of the gcH3 promoter has been confirmed by microprojectile bombardment in lily pollen. The sperm cell carrying gold particles showed reporter gene expression, while green fluorescent protein (GFP) was absent in the other sperm cell which had no particles, confirming that the gcH3 promoter is activated in the male gametic cell, and sperm cells have transcriptional and translational machinery that is independent of the vegetative cell of pollen.
Collapse
Affiliation(s)
- Takashi Okada
- Plant Molecular Biology and Biotechnology Laboratory, ARC Centre of Excellence for Integrative Legume Research, Institute of Land and Food Resources, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
16
|
Thomas K, Sung DY, Yang J, Johnson K, Thompson W, Millette C, McCarrey J, Breitberg A, Gibbs R, Walker W. Identification, Characterization, and Functional Analysis of Sp1 Transcript Variants Expressed in Germ Cells During Mouse Spermatogenesis1. Biol Reprod 2005; 72:898-907. [PMID: 15601926 DOI: 10.1095/biolreprod.104.030528] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The SP family of zinc-finger transcription factors are important mediators of selective gene activation during embryonic development and cellular differentiation. SP-binding GC-box domains are common cis-regulatory elements present in the promoters of several genes expressed in a developmentally specific manner in differentiating mouse germ cells. Four Sp1 cDNAs were isolated from a mouse pachytene spermatocyte cDNA library and characterized by DNA sequence analysis. Northern blot studies revealed that these cDNAs corresponded to 3 full-length Sp1 transcripts (4.1, 3.7, and 3.2 kilobases [kb]) and an additional 1.4-kb 5'-truncated Sp1 transcript that are temporally expressed during spermatogenesis. Quantitative real-time polymerase chain reaction studies verified that the highest levels of Sp1 transcript expression of 4.1, 3.7, and 3.2 kb occur in the primary spermatocytes. The spatial and temporal expression patterns of these Sp1 transcripts and their encoded 60-kDa and 90-kDa SP1 proteins were demonstrated using in situ hybridization and immunohistochemical analyses. To assess the transcriptional properties of these SP1 transcription factors, SP-deficient Drosophila SL2 cells were stably transfected with the respective Sp1 cDNA expression vectors and cotransfected with either Ldh2, Ldh3, or Creb promoter/luciferase reporter constructs. The levels of SP-mediated luciferase expression observed depended on the structure of the glutamine-rich transactivation domains and the number of GC-box elements present in the respective promoters. The alterations observed in germ cells in the patterns of expression of the Sp1 transcripts encoding the 60-kDa and 90-kDa SP1 isoforms suggest that these SP1 factors may be involved in mediating stage-specific and cell type-specific gene expression during mouse spermatogenesis.
Collapse
Affiliation(s)
- Kelwyn Thomas
- Department of Anatomy and Neurobiology, Morehouse School of Medicine, Atlanta, Georgia 30310-1495, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Grimes SR. Testis-specific transcriptional control. Gene 2004; 343:11-22. [PMID: 15563828 DOI: 10.1016/j.gene.2004.08.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 08/06/2004] [Accepted: 08/19/2004] [Indexed: 01/19/2023]
Abstract
In the testis, tissue-specific transcription is essential for proper expression of the genes that are required for the reproduction of the organism. Many testis-specific genes are required for mitotic proliferation of spermatogonia, spermatocytes undergoing genetic recombination and meiotic divisions, and differentiation of haploid spermatids. In this article we describe some of the genes that are transcribed in male germinal cells and in non-germinal testis cells. Because significant progress has been made in examination of promoter elements and their cognate transcription factors that are involved in controlling transcription of the testis-specific linker histone H1t gene in primary spermatocytes, this work will be reviewed in greater detail. The gene is transcriptionally active in spermatocytes and repressed in all other germinal and non-germinal cell types and, therefore, it serves as a model for study of regulatory mechanisms involved in testis-specific transcription.
Collapse
Affiliation(s)
- S R Grimes
- Research Service (151), Overton Brooks Veterans Administration Medical Center, Shreveport, LA 71101-4295, USA.
| |
Collapse
|
18
|
Wolfe SA, Wilkerson DC, Prado S, Grimes SR. Regulatory factor X2 (RFX2) binds to the H1t/TE1 promoter element and activates transcription of the testis-specific histone H1t gene. J Cell Biochem 2004; 91:375-83. [PMID: 14743396 DOI: 10.1002/jcb.10748] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Transcription of the mammalian testis-specific linker histone H1t gene occurs only in pachytene primary spermatocytes during spermatogenesis. Studies of the wild type (Wt) and mutant H1t promoters in transgenic mice show that transcription of the H1t gene is dependent upon the TE promoter element. We purified an 85 kDa protein from rat testis nuclear extracts using the TE1 subelement as an affinity chromatography probe and analysis revealed that the protein was RFX2. The TE1 element is essentially an X-box DNA consensus element and regulatory factor X (RFX) binds specifically to this element. Polyclonal antibodies directed against RFX2 supershift the low mobility testis nuclear protein complex formed in electrophoretic mobility shift assays (EMSA). RFX2 derived from primary spermatocytes, where the transcription factor is relatively abundant, binds with high affinity to the TE1 element. Coexpression of RFX2 together with an H1t promoter/reporter vector activates the H1t promoter in a cultured GC-2spd germinal cell line, but mutation of either the TE1 subelement or the TE2 subelements represses activity. These observations lead us to conclude that the TE1 and TE2 subelements of the testis-specific histone H1t promoter are targets of the transcription factor RFX2 and that this factor plays a key role in activating transcription of the H1t gene in primary spermatocytes. Published 2003 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Steven A Wolfe
- Research Service (151), Overton Brooks Veterans Administration Medical Center, Shreveport, Louisiana 71101-4295, USA
| | | | | | | |
Collapse
|
19
|
Horvath GC, Kistler WS, Kistler MK. RFX2 is a potential transcriptional regulatory factor for histone H1t and other genes expressed during the meiotic phase of spermatogenesis. Biol Reprod 2004; 71:1551-9. [PMID: 15229132 DOI: 10.1095/biolreprod.104.032268] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
H1t is a novel linker histone variant synthesized in mid- to late pachytene spermatocytes. Its regulatory region is of interest because developmentally specific expression has been impressed on an otherwise ubiquitously expressed promoter. Using competitive band-shift assays and specific antisera, we have now shown that the H1t-60 CCTAGG palindrome motif region binds members of the RFX family of transcriptional regulators. The testis-specific binding complex contains RFX2, probably as a homodimer. Other DNA-protein complexes obtained from testis as well as somatic organs contain RFX1, primarily as a heterodimer. Western blots confirmed that RFX2 expression is greatly enhanced in adult testis and that RFX2 is equally prominent in highly enriched populations of late pachytene spermatocytes and round spermatids. Immunohistochemistry carried out on mouse testis showed that RFX2 is strongly expressed in pachytene spermatocytes, remains high in early round spermatids, and declines only in advance of nuclear condensation. Maximum expression correlates well with the appearance of H1t. In contrast, RFX1 immunoreactivity in germ cells was only detected in late round spermatids. RFX-specific band complexes were also identified for both the mouse lamin C2 and Sgy promoters, using either testis nuclear extracts or in vitro-synthesized RFX2. These results call attention to RFX2 as a transcription factor with obvious potential for the regulation of gene expression during meiosis and the early development of spermatids.
Collapse
Affiliation(s)
- Gary C Horvath
- Department of Chemistry and Biochemistry and The School of Medicine, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | | | | |
Collapse
|
20
|
Santti H, Mikkonen L, Hirvonen-Santti S, Toppari J, Jänne OA, Palvimo JJ. Identification of a short PIASx gene promoter that directs male germ cell-specific transcription in vivo. Biochem Biophys Res Commun 2003; 308:139-47. [PMID: 12890492 DOI: 10.1016/s0006-291x(03)01339-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PIASx gene encodes two SUMO E3 ligases that are highly expressed in the testis. We have isolated and analyzed the promoter of the murine PIASx gene. Electrophoretic mobility shift assays with testicular nuclear extracts showed that the proximal promoter forms a major DNA-protein complex containing Sp1, Sp2, and Sp3 transcription factors. Reporter gene assays in cultured cells indicated that a fragment comprising nucleotides from -168 to +76 relative to transcription start site is sufficient for basal promoter activity in cultured cells, but these in vitro assays failed to reveal clear differences in promoter activity between testis- and non-testis-derived cell lines. Interestingly, however, the proximal promoter encompasses the elements necessary for a testis-specific transcription in vivo, as it directed beta-galactosidase expression exclusively to male germ cells in transgenic mice. In conclusion, we have characterized the minimal PIASx promoter that can be used for highly specific targeting of transgene expression to male germ cells.
Collapse
Affiliation(s)
- Henrikki Santti
- Biomedicum Helsinki, Institute of Biomedicine, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
21
|
Wolfe SA, Grimes SR. Specific binding of nuclear proteins to a bifunctional promoter element upstream of the H1/AC box of the testis-specific histone H1t gene. Biol Reprod 2003; 68:2267-73. [PMID: 12606375 DOI: 10.1095/biolreprod.102.014084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The testis-specific histone H1t gene is transcribed exclusively in primary spermatocytes during spermatogenesis. Studies with transgenic mice show that 141 base pairs (bp) of the H1t proximal promoter accompanied with 800 bp of downstream sequence are sufficient for tissue-specific transcription. Nuclear proteins from testis and pachytene spermatocytes produce footprints spanning the region covering the repressor element (RE) from 100 to 125 nucleotides upstream of the H1t transcriptional initiation site. Only testis nuclear proteins bind to the 5'-end of the element and produce a unique, low-mobility complex in electrophoretic mobility shift assays. This testis complex is distinct from the complex formed by a repressor protein derived from several cell lines that binds to the 3'-end of the element. The testis complex band is formed when using nuclear proteins from primary spermatocytes, where the H1t gene is transcribed, and band intensity drops 70%-80% when using nuclear proteins from early spermatids, where H1t gene transcription ceases. Protein-DNA cross-linking experiments using testis nuclear proteins produce electrophoretic bands of 59, 52, and 50 kDa on SDS/PAGE gels.
Collapse
Affiliation(s)
- Steven A Wolfe
- Research Service (151), Overton Brooks Veterans Administration Medical Center, Shreveport, Louisiana 71101-4295, USA
| | | |
Collapse
|
22
|
Wilkerson DC, Wolfe SA, Grimes SR. TE2 and TE1 sub-elements of the testis-specific histone H1t promoter are functionally different. J Cell Biochem 2003; 88:1177-87. [PMID: 12647300 DOI: 10.1002/jcb.10468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The testis-specific linker histone H1t gene is transcribed exclusively in pachytene primary spermatocytes. Tissue specific expression of the gene is mediated in part by transcriptional factors that bind elements located within the proximal and distal promoter. A 40 bp promoter element, designated H1t/TE, that is located within the proximal promoter between the CCAAT-box and AC-box, is known to be essential for H1t gene transcription in transgenic animals. In the present study, we show by SDS-PAGE analysis of UV crosslinked protein and DNA and by electrophoretic mobility shift assays (EMSA) of testis nuclear proteins separated on a non-denaturing glycerol gradient that the TE1 sub-element is bound by a protein complex. Mutation of TE1 leads to a drop in H1t promoter activity in germinal GC-2spd cells as well as in nongerminal Leydig, NIH3T3, and C127I cell lines. Although TE1 and TE2 sub-elements have similar sequences, mutation of the TE2 sub-element causes an increase in promoter activity in C127I and Leydig cells. The rat TE1 but not TE2 contains a CpG dinucleotide and this cytosine is methylated in liver but not in primary spermatocytes. Methylation of the cytosine at this site almost eliminates nuclear protein binding. Thus, there are significant functional differences in the TE2 and TE1 sub-elements of the H1t promoter with TE1 serving as a transcriptional activator binding site and TE2 serving as a repressor binding site in some cell lines.
Collapse
Affiliation(s)
- Donald C Wilkerson
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | |
Collapse
|
23
|
Wolfe SA, Grimes SR. Transcriptional repression of the testis-specific histone H1t gene mediated by an element upstream of the H1/AC box. Gene 2003; 308:129-38. [PMID: 12711397 DOI: 10.1016/s0378-1119(03)00490-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The testis-specific histone H1t gene is transcribed exclusively in primary spermatocytes and may be important for chromatin structure, transcription, and DNA repair during this stage of spermatogenesis. Transcriptional repression of the gene in other cell types is mediated in part by specific proximal and distal promoter elements and in some cell types by methylation of CpG dinucleotides within the promoter. Our laboratory identified a distal promoter element located between 948 and 780 bp upstream from the transcription initiation site and another laboratory identified a GC-rich region between the TATA box and transcription initiation site that contribute to repression. In this article we address transcriptional repression of the histone H1t gene by an element within the proximal promoter. We report discovery of an element designated H1t promoter repressor element (RE) located between -130 and -106 bp that contributes to repression. The findings support the hypothesis that multiple mechanisms are involved in transcriptional repression of the H1t gene. Transcriptional repression mediated by the RE element in NIH 3T3 cells appears to differ significantly from the mechanism mediated by the GC-rich region. Furthermore, binding proteins that form the RE complex are not present in rat testis where the gene is actively transcribed. Our findings provide a molecular basis for histone H1t gene repression.
Collapse
Affiliation(s)
- Steven A Wolfe
- Overton Brooks Veterans Administration Medical Center, Medical Research Service (151), 510 East Stoner Avenue, Shreveport, LA 71101-4295, USA
| | | |
Collapse
|