1
|
Cho Y, Hahm JH. The Role of Innate Immunity in Healthy Aging Through Antimicrobial Peptides. Immunology 2025; 174:375-383. [PMID: 39838571 DOI: 10.1111/imm.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/23/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
In a super-aging society, the increase in the elderly population is closely tied to a rise in infectious diseases due to factors such as weakened immune systems and decreased vaccine efficacy in older adults. Various opportunistic pathogens commonly encountered in everyday life can cause infections and diseases when an individual's immune defence is weakened due to aging. These factors underscore the importance of preventive measures against pathogenic infections and the aging of immune systems in the elderly. The immune response acts as the defence mechanism against foreign substances, including pathogens and abnormal cells. Specifically, the innate immune response is the body's first line of defence, offering a rapid and nonspecific response to pathogens. Advances in the study of innate immunity's regulatory functions in both immune and non-immune cells have broadened our understanding of innate immune responses' impact on health. This includes a focus on immune effectors like antimicrobial peptides (AMPs) and their potential implications for health and longevity. This review summarises the common principles and evolutionary adaptations of innate immunity via AMPs, in mammals and invertebrates. Especially, this review discusses the conserved mechanisms regulating AMP production and the role of AMPs in modulating aging and diseases from invertebrate to human. Therefore, it highlights the potential role of innate immunity in addressing aging through AMPs.
Collapse
Affiliation(s)
- Yejin Cho
- Aging Research Group, Korea Food Research Institute, Wanju-gun, South Korea
| | - Jeong-Hoon Hahm
- Aging Research Group, Korea Food Research Institute, Wanju-gun, South Korea
| |
Collapse
|
2
|
Zhang L, Yu J, Gao X, Yan Y, Wang X, Shi H, Fang M, Liu Y, Kim YB, Zhu H, Wu X, Huang C, Fan S. Targeting farnesoid X receptor as aging intervention therapy. Acta Pharm Sin B 2025; 15:1359-1382. [PMID: 40370561 PMCID: PMC12069902 DOI: 10.1016/j.apsb.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/21/2024] [Accepted: 11/14/2024] [Indexed: 05/16/2025] Open
Abstract
Environmental toxicants have been linked to aging and age-related diseases. The emerging evidence has shown that the enhancement of detoxification gene expression is a common transcriptome marker of long-lived mice, Drosophila melanogaster, and Caenorhabditis elegans. Meanwhile, the resistance to toxicants was increased in long-lived animals. Here, we show that farnesoid X receptor (FXR) agonist obeticholic acid (OCA), a marketed drug for the treatment of cholestasis, may extend the lifespan and healthspan both in C. elegans and chemical-induced early senescent mice. Furthermore, OCA increased the resistance of worms to toxicants and activated the expression of detoxification genes in both mice and C. elegans. The longevity effects of OCA were attenuated in Fxr -/- mice and Fxr homologous nhr-8 and daf-12 mutant C. elegans. In addition, metabolome analysis revealed that OCA increased the endogenous agonist levels of the pregnane X receptor (PXR), a major nuclear receptor for detoxification regulation, in the liver of mice. Together, our findings suggest that OCA has the potential to lengthen lifespan and healthspan by activating nuclear receptor-mediated detoxification functions, thus, targeting FXR may offer to promote longevity.
Collapse
Affiliation(s)
- Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoyan Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yingxuan Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinyi Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hang Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaojun Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
3
|
Traa A, Tamez González AA, Van Raamsdonk JM. Developmental disruption of the mitochondrial fission gene drp-1 extends the longevity of daf-2 insulin/IGF-1 receptor mutant. GeroScience 2025; 47:877-902. [PMID: 39028454 PMCID: PMC11872967 DOI: 10.1007/s11357-024-01276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
The dynamic nature of the mitochondrial network is regulated by mitochondrial fission and fusion, allowing for re-organization of mitochondria to adapt to the cell's ever-changing needs. As organisms age, mitochondrial fission and fusion become dysregulated and mitochondrial networks become increasingly fragmented. Modulation of mitochondrial dynamics has been shown to affect longevity in fungi, yeast, Drosophila and C. elegans. Disruption of the mitochondrial fission gene drp-1 drastically increases the already long lifespan of daf-2 insulin/IGF-1 signaling (IIS) mutants. In this work, we determined the conditions required for drp-1 disruption to extend daf-2 longevity and explored the molecular mechanisms involved. We found that knockdown of drp-1 during development is sufficient to extend daf-2 lifespan, while tissue-specific knockdown of drp-1 in neurons, intestine or muscle failed to increase daf-2 longevity. Disruption of other genes involved in mitochondrial fission also increased daf-2 lifespan as did treatment with RNA interference clones that decrease mitochondrial fragmentation. In exploring potential mechanisms involved, we found that deletion of drp-1 increases resistance to chronic stresses. In addition, we found that disruption of drp-1 increased mitochondrial and peroxisomal connectedness in daf-2 worms, increased oxidative phosphorylation and ATP levels, and increased mitophagy in daf-2 worms, but did not affect their ROS levels, food consumption or mitochondrial membrane potential. Disruption of mitophagy through RNA interference targeting pink-1 decreased the lifespan of daf-2;drp-1 worms suggesting that increased mitophagy contributes to their extended lifespan. Overall, this work defined the conditions under which drp-1 disruption increases daf-2 lifespan and has identified multiple changes in daf-2;drp-1 mutants that may contribute to their lifespan extension.
Collapse
Affiliation(s)
- Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Aura A Tamez González
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Veuthey T, Florman JT, Giunti S, Romussi S, De Rosa MJ, Alkema MJ, Rayes D. The neurohormone tyramine stimulates the secretion of an insulin-like peptide from the Caenorhabditis elegans intestine to modulate the systemic stress response. PLoS Biol 2025; 23:e3002997. [PMID: 39874242 PMCID: PMC11774402 DOI: 10.1371/journal.pbio.3002997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood. Here, we show that the ILP, insulin-3 (INS-3), plays a crucial role in modulating the response to various environmental stressors in C. elegans. ins-3 mutants display increased resistance to heat, oxidative stress, and starvation; however, this advantage is countered by slower reproductive development under favorable conditions. We find that ins-3 expression is downregulated in response to environmental stressors, whereas, the neurohormone tyramine, which is released during the acute flight response, increases ins-3 expression. We show that tyramine induces intestinal calcium (Ca2+) transients through the activation of the TYRA-3 receptor. Our data support a model in which tyramine negatively impacts environmental stress resistance by stimulating the release of INS-3 from the intestine via the activation of a TYRA-3-Gαq-IP3 pathway. The release of INS-3 systemically activates the DAF-2 pathway, resulting in the inhibition of cytoprotective mechanisms mediated by DAF-16/FOXO. These studies offer mechanistic insights into a brain-gut communication pathway that weighs adaptive strategies to respond to acute and long-term stressors.
Collapse
Affiliation(s)
- Tania Veuthey
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Jeremy T. Florman
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Sebastián Giunti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Stefano Romussi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Mark J. Alkema
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
5
|
Chaudhari PS, Ermolaeva MA. Too old for healthy aging? Exploring age limits of longevity treatments. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:37. [PMID: 39678297 PMCID: PMC11638076 DOI: 10.1038/s44324-024-00040-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024]
Abstract
It is well documented that aging elicits metabolic failures, while poor metabolism contributes to accelerated aging. Metabolism in general, and energy metabolism in particular are also effective entry points for interventions that extend lifespan and improve organ function during aging. In this review, we discuss common metabolic remedies for healthy aging from the angle of their potential age-specificity. We demonstrate that some well-known metabolic treatments are mostly effective in young and middle-aged organisms, while others maintain high efficacy independently of age. The mechanistic basis of presence or lack of the age limitations is laid out and discussed.
Collapse
Affiliation(s)
| | - Maria A. Ermolaeva
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| |
Collapse
|
6
|
Ganguly U, Carroll T, Nehrke K, Johnson GVW. Mitochondrial Quality Control in Alzheimer's Disease: Insights from Caenorhabditis elegans Models. Antioxidants (Basel) 2024; 13:1343. [PMID: 39594485 PMCID: PMC11590956 DOI: 10.3390/antiox13111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that is classically defined by the extracellular deposition of senile plaques rich in amyloid-beta (Aβ) protein and the intracellular accumulation of neurofibrillary tangles (NFTs) that are rich in aberrantly modified tau protein. In addition to aggregative and proteostatic abnormalities, neurons affected by AD also frequently possess dysfunctional mitochondria and disrupted mitochondrial maintenance, such as the inability to eliminate damaged mitochondria via mitophagy. Decades have been spent interrogating the etiopathogenesis of AD, and contributions from model organism research have aided in developing a more fundamental understanding of molecular dysfunction caused by Aβ and toxic tau aggregates. The soil nematode C. elegans is a genetic model organism that has been widely used for interrogating neurodegenerative mechanisms including AD. In this review, we discuss the advantages and limitations of the many C. elegans AD models, with a special focus and discussion on how mitochondrial quality control pathways (namely mitophagy) may contribute to AD development. We also summarize evidence on how targeting mitophagy has been therapeutically beneficial in AD. Lastly, we delineate possible mechanisms that can work alone or in concert to ultimately lead to mitophagy impairment in neurons and may contribute to AD etiopathology.
Collapse
Affiliation(s)
- Upasana Ganguly
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Trae Carroll
- Department of Pathology, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| |
Collapse
|
7
|
Kovács D, Biró JB, Ahmed S, Kovács M, Sigmond T, Hotzi B, Varga M, Vincze VV, Mohammad U, Vellai T, Barna J. Age-dependent heat shock hormesis to HSF-1 deficiency suggests a compensatory mechanism mediated by the unfolded protein response and innate immunity in young Caenorhabditis elegans. Aging Cell 2024; 23:e14246. [PMID: 38895933 PMCID: PMC11464127 DOI: 10.1111/acel.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
The transcription factor HSF-1 (heat shock factor 1) acts as a master regulator of heat shock response in eukaryotic cells to maintain cellular proteostasis. The protein has a protective role in preventing cells from undergoing ageing, and neurodegeneration, and also mediates tumorigenesis. Thus, modulating HSF-1 activity in humans has a promising therapeutic potential for treating these pathologies. Loss of HSF-1 function is usually associated with impaired stress tolerance. Contrary to this conventional knowledge, we show here that inactivation of HSF-1 in the nematode Caenorhabditis elegans results in increased thermotolerance at young adult stages, whereas HSF-1 deficiency in animals passing early adult stages indeed leads to decreased thermotolerance, as compared to wild-type. Furthermore, a gene expression analysis supports that in young adults, distinct cellular stress response and immunity-related signaling pathways become induced upon HSF-1 deficiency. We also demonstrate that increased tolerance to proteotoxic stress in HSF-1-depleted young worms requires the activity of the unfolded protein response of the endoplasmic reticulum and the SKN-1/Nrf2-mediated oxidative stress response pathway, as well as an innate immunity-related pathway, suggesting a mutual compensatory interaction between HSF-1 and these conserved stress response systems. A similar compensatory molecular network is likely to also operate in higher animal taxa, raising the possibility of an unexpected outcome when HSF-1 activity is manipulated in humans.
Collapse
Affiliation(s)
- Dániel Kovács
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | | | - Saqib Ahmed
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | - Márton Kovács
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | - Tímea Sigmond
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | - Bernadette Hotzi
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | - Máté Varga
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | | | - Umar Mohammad
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | - Tibor Vellai
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
- HUN‐REN‐ELTE Genetics Research GroupEötvös Loránd UniversityBudapestHungary
| | - János Barna
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
- HUN‐REN‐ELTE Genetics Research GroupEötvös Loránd UniversityBudapestHungary
| |
Collapse
|
8
|
Rathor L, Curry S, Park Y, McElroy T, Robles B, Sheng Y, Chen WW, Min K, Xiao R, Lee MH, Han SM. Mitochondrial stress in GABAergic neurons non-cell autonomously regulates organismal health and aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585932. [PMID: 38585797 PMCID: PMC10996468 DOI: 10.1101/2024.03.20.585932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Mitochondrial stress within the nervous system can trigger non-cell autonomous responses in peripheral tissues. However, the specific neurons involved and their impact on organismal aging and health have remained incompletely understood. Here, we demonstrate that mitochondrial stress in γ-aminobutyric acid-producing (GABAergic) neurons in Caenorhabditis elegans ( C. elegans ) is sufficient to significantly alter organismal lifespan, stress tolerance, and reproductive capabilities. This mitochondrial stress also leads to significant changes in mitochondrial mass, energy production, and levels of reactive oxygen species (ROS). DAF-16/FoxO activity is enhanced by GABAergic neuronal mitochondrial stress and mediates the induction of these non-cell-autonomous effects. Moreover, our findings indicate that GABA signaling operates within the same pathway as mitochondrial stress in GABAergic neurons, resulting in non-cell-autonomous alterations in organismal stress tolerance and longevity. In summary, these data suggest the crucial role of GABAergic neurons in detecting mitochondrial stress and orchestrating non-cell-autonomous changes throughout the organism.
Collapse
|
9
|
Veuthey T, Giunti S, De Rosa MJ, Alkema M, Rayes D. The neurohormone tyramine stimulates the secretion of an Insulin-Like Peptide from the intestine to modulate the systemic stress response in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579207. [PMID: 38370834 PMCID: PMC10871264 DOI: 10.1101/2024.02.06.579207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, lifespan, and stress resistance. In C. elegans , DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood. Here, we show that the ILP, INS-3, plays a crucial role in modulating the response to different types of stressors in C. elegans . ins-3 mutants display increased resistance to both heat and oxidative stress; however, under favorable conditions, this advantage is countered by slower reproductive development. ins-3 expression in both neurons and the intestine is downregulated in response to environmental stressors. Conversely, the neurohormone tyramine, which is released during the acute flight response, triggers an upregulation in ins-3 expression. Moreover, we found that tyramine negatively impacts environmental stress resistance by stimulating the release of INS-3 from the intestine. The subsequent release of INS-3 systemically activates the DAF-2 pathway, resulting in the inhibition of cytoprotective mechanisms mediated by DAF-16/FOXO and HSF-1. These studies offer mechanistic insights into the brain-gut communication pathway that weighs adaptive strategies to respond to acute and long-term stress scenarios.
Collapse
|
10
|
Egan BM, Pohl F, Anderson X, Williams SC, Gregory Adodo I, Hunt P, Wang Z, Chiu CH, Scharf A, Mosley M, Kumar S, Schneider DL, Fujiwara H, Hsu FF, Kornfeld K. The ACE inhibitor captopril inhibits ACN-1 to control dauer formation and aging. Development 2024; 151:dev202146. [PMID: 38284547 PMCID: PMC10911126 DOI: 10.1242/dev.202146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
The renin-angiotensin-aldosterone system (RAAS) plays a well-characterized role regulating blood pressure in mammals. Pharmacological and genetic manipulation of the RAAS has been shown to extend lifespan in Caenorhabditis elegans, Drosophila and rodents, but its mechanism is not well defined. Here, we investigate the angiotensin-converting enzyme (ACE) inhibitor drug captopril, which extends lifespan in worms and mice. To investigate the mechanism, we performed a forward genetic screen for captopril-hypersensitive mutants. We identified a missense mutation that causes a partial loss of function of the daf-2 receptor tyrosine kinase gene, a powerful regulator of aging. The homologous mutation in the human insulin receptor causes Donohue syndrome, establishing these mutant worms as an invertebrate model of this disease. Captopril functions in C. elegans by inhibiting ACN-1, the worm homolog of ACE. Reducing the activity of acn-1 via captopril or RNA interference promoted dauer larvae formation, suggesting that acn-1 is a daf gene. Captopril-mediated lifespan extension was abrogated by daf-16(lf) and daf-12(lf) mutations. Our results indicate that captopril and acn-1 influence lifespan by modulating dauer formation pathways. We speculate that this represents a conserved mechanism of lifespan control.
Collapse
Affiliation(s)
- Brian M. Egan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Franziska Pohl
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xavier Anderson
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shoshana C. Williams
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Patrick Hunt
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zuoxu Wang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chen-Hao Chiu
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrea Scharf
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Matthew Mosley
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sandeep Kumar
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel L. Schneider
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hideji Fujiwara
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
11
|
Rodriguez-Colman MJ, Dansen TB, Burgering BMT. FOXO transcription factors as mediators of stress adaptation. Nat Rev Mol Cell Biol 2024; 25:46-64. [PMID: 37710009 DOI: 10.1038/s41580-023-00649-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 09/16/2023]
Abstract
The forkhead box protein O (FOXO, consisting of FOXO1, FOXO3, FOXO4 and FOXO6) transcription factors are the mammalian orthologues of Caenorhabditis elegans DAF-16, which gained notoriety for its capability to double lifespan in the absence of daf-2 (the gene encoding the worm insulin receptor homologue). Since then, research has provided many mechanistic details on FOXO regulation and FOXO activity. Furthermore, conditional knockout experiments have provided a wealth of data as to how FOXOs control development and homeostasis at the organ and organism levels. The lifespan-extending capabilities of DAF-16/FOXO are highly correlated with their ability to induce stress response pathways. Exogenous and endogenous stress, such as cellular redox stress, are considered the main drivers of the functional decline that characterizes ageing. Functional decline often manifests as disease, and decrease in FOXO activity indeed negatively impacts on major age-related diseases such as cancer and diabetes. In this context, the main function of FOXOs is considered to preserve cellular and organismal homeostasis, through regulation of stress response pathways. Paradoxically, the same FOXO-mediated responses can also aid the survival of dysfunctional cells once these eventually emerge. This general property to control stress responses may underlie the complex and less-evident roles of FOXOs in human lifespan as opposed to model organisms such as C. elegans.
Collapse
Affiliation(s)
| | - Tobias B Dansen
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
12
|
Elsana H, Bruck‐Haimson R, Zhu H, Siddiqui AA, Zaretsky A, Cohen I, Boocholez H, Roitenberg N, Moll L, Plaschkes I, Naor D, Cohen E. A short peptide protects from age-onset proteotoxicity. Aging Cell 2023; 22:e14013. [PMID: 37897137 PMCID: PMC10726816 DOI: 10.1111/acel.14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Aberrant protein aggregation jeopardizes cellular functionality and underlies the development of a myriad of late-onset maladies including Alzheimer's disease (AD) and Huntington's disease (HD). Accordingly, molecules that mitigate the toxicity of hazardous protein aggregates are of great interest as potential future therapeutics. Here we asked whether a small peptide, composed of five amino acids (5MER peptide) that was derived from the human pro-inflammatory CD44 protein, could protect model nematodes from the toxicity of aggregative proteins that underlie the development of neurodegenerative disorders in humans. We found that the 5MER peptide mitigates the toxicity that stems from both; the AD-causing Aβ peptide and a stretch of poly-glutamine that is accountable for the development of several disorders including HD, while minimally affecting lifespan. This protection was dependent on the activity of aging-regulating transcription factors and associated with enhanced Aβ and polyQ35-YFP aggregation. A transcriptomic analysis unveiled that the peptide modifies signaling pathways, thereby modulating the expression of various genes, including these, which are known as protein homeostasis (proteostasis) regulators such as txt-13 and modifiers of proteasome activity. The knockdown of txt-13 protects worms from proteotoxicity to the same extent as the 5MER peptide, suggesting that the peptide activates the transcellular chaperone signaling to promote proteostasis. Together, our results propose that the 5MER peptide should be considered as a component of future therapeutic cocktails for the treatment of neurodegenerative maladies.
Collapse
Affiliation(s)
- Hassan Elsana
- The Lautenberg Center of Immunology and Cancer ResearchThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Reut Bruck‐Haimson
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Huadong Zhu
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Atif Ahmed Siddiqui
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Adam Zaretsky
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Irit Cohen
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Hana Boocholez
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Noa Roitenberg
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Lorna Moll
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Inbar Plaschkes
- Info‐COREBioinformatics Unit of the I‐CORE, The Hebrew UniversityJerusalemIsrael
| | - David Naor
- The Lautenberg Center of Immunology and Cancer ResearchThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Ehud Cohen
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| |
Collapse
|
13
|
Yasuda K, Miyazawa M, Ishii T, Ishii N. The role of nutrition and oxidative stress as aging factors in Caenorhabditis elegans. J Clin Biochem Nutr 2023; 73:173-177. [PMID: 37970544 PMCID: PMC10636583 DOI: 10.3164/jcbn.23-44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 11/17/2023] Open
Abstract
The molecular mechanism of aging, which has been a "black box" for many years, has been elucidated in recent years, and the nematode C. elegans, which is a model animal for aging research, has played a major role in its elucidation. From the analysis of C. elegans longevity-related mutant genes, many signal transduction systems, with the insulin/insulin-like growth factor signal transduction system at the core, have emerged. It has become clear that this signal transduction system is greatly affected by external nutrients and is involved in the downstream regulation of oxidative stress, which is considered to be one of the main causes of aging.
Collapse
Affiliation(s)
- Kayo Yasuda
- Department of Health Management, Undergraduate School of Health Studies, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Masaki Miyazawa
- Department of Health Management, Undergraduate School of Health Studies, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Takamasa Ishii
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Naoaki Ishii
- Office of Professor Emeritus, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| |
Collapse
|
14
|
Srivastava V, Gross E. Mitophagy-promoting agents and their ability to promote healthy-aging. Biochem Soc Trans 2023; 51:1811-1846. [PMID: 37650304 PMCID: PMC10657188 DOI: 10.1042/bst20221363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
The removal of damaged mitochondrial components through a process called mitochondrial autophagy (mitophagy) is essential for the proper function of the mitochondrial network. Hence, mitophagy is vital for the health of all aerobic animals, including humans. Unfortunately, mitophagy declines with age. Many age-associated diseases, including Alzheimer's and Parkinson's, are characterized by the accumulation of damaged mitochondria and oxidative damage. Therefore, activating the mitophagy process with small molecules is an emerging strategy for treating multiple aging diseases. Recent studies have identified natural and synthetic compounds that promote mitophagy and lifespan. This article aims to summarize the existing knowledge about these substances. For readers' convenience, the knowledge is presented in a table that indicates the chemical data of each substance and its effect on lifespan. The impact on healthspan and the molecular mechanism is reported if known. The article explores the potential of utilizing a combination of mitophagy-inducing drugs within a therapeutic framework and addresses the associated challenges of this strategy. Finally, we discuss the process that balances mitophagy, i.e. mitochondrial biogenesis. In this process, new mitochondrial components are generated to replace the ones cleared by mitophagy. Furthermore, some mitophagy-inducing substances activate biogenesis (e.g. resveratrol and metformin). Finally, we discuss the possibility of combining mitophagy and biogenesis enhancers for future treatment. In conclusion, this article provides an up-to-date source of information about natural and synthetic substances that activate mitophagy and, hopefully, stimulates new hypotheses and studies that promote healthy human aging worldwide.
Collapse
Affiliation(s)
- Vijigisha Srivastava
- Faculty of Medicine, IMRIC Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, PO Box 12271, Jerusalem, Israel
| | - Einav Gross
- Faculty of Medicine, IMRIC Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, PO Box 12271, Jerusalem, Israel
| |
Collapse
|
15
|
Mirza Z, Walhout AJM, Ambros V. A bacterial pathogen induces developmental slowing by high reactive oxygen species and mitochondrial dysfunction in Caenorhabditis elegans. Cell Rep 2023; 42:113189. [PMID: 37801396 PMCID: PMC10929622 DOI: 10.1016/j.celrep.2023.113189] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/19/2023] [Accepted: 09/14/2023] [Indexed: 10/08/2023] Open
Abstract
Host-pathogen interactions are complex by nature, and the host developmental stage increases this complexity. By utilizing Caenorhabditis elegans larvae as the host and the bacterium Pseudomonas aeruginosa as the pathogen, we investigated how a developing organism copes with pathogenic stress. By screening 36 P. aeruginosa isolates, we found that the CF18 strain causes a severe but reversible developmental delay via induction of reactive oxygen species (ROS) and mitochondrial dysfunction. While the larvae upregulate mitophagy, antimicrobial, and detoxification genes, mitochondrial unfolded protein response (UPRmt) genes are repressed. Either antioxidant or iron supplementation rescues the phenotypes. We examined the virulence factors of CF18 via transposon mutagenesis and RNA sequencing (RNA-seq). We found that non-phenazine toxins that are regulated by quorum sensing (QS) and the GacA/S system are responsible for developmental slowing. This study highlights the importance of ROS levels and mitochondrial health as determinants of developmental rate and how pathogens can attack these important features.
Collapse
Affiliation(s)
- Zeynep Mirza
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Albertha J M Walhout
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Victor Ambros
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
16
|
Bar-Ziv R, Dutta N, Hruby A, Sukarto E, Averbukh M, Alcala A, Henderson HR, Durieux J, Tronnes SU, Ahmad Q, Bolas T, Perez J, Dishart JG, Vega M, Garcia G, Higuchi-Sanabria R, Dillin A. Glial-derived mitochondrial signals affect neuronal proteostasis and aging. SCIENCE ADVANCES 2023; 9:eadi1411. [PMID: 37831769 PMCID: PMC10575585 DOI: 10.1126/sciadv.adi1411] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
The nervous system plays a critical role in maintaining whole-organism homeostasis; neurons experiencing mitochondrial stress can coordinate the induction of protective cellular pathways, such as the mitochondrial unfolded protein response (UPRMT), between tissues. However, these studies largely ignored nonneuronal cells of the nervous system. Here, we found that UPRMT activation in four astrocyte-like glial cells in the nematode, Caenorhabditis elegans, can promote protein homeostasis by alleviating protein aggregation in neurons. Unexpectedly, we find that glial cells use small clear vesicles (SCVs) to signal to neurons, which then relay the signal to the periphery using dense-core vesicles (DCVs). This work underlines the importance of glia in establishing and regulating protein homeostasis within the nervous system, which can then affect neuron-mediated effects in organismal homeostasis and longevity.
Collapse
Affiliation(s)
- Raz Bar-Ziv
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Naibedya Dutta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Adam Hruby
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Edward Sukarto
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Maxim Averbukh
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Athena Alcala
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Hope R. Henderson
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jenni Durieux
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah U. Tronnes
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Qazi Ahmad
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Theodore Bolas
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joel Perez
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Julian G. Dishart
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Matthew Vega
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew Dillin
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
17
|
Sarkar GC, Rautela U, Goyala A, Datta S, Anand N, Singh A, Singh P, Chamoli M, Mukhopadhyay A. DNA damage signals from somatic uterine tissue arrest oogenesis through activated DAF-16. Development 2023; 150:dev201472. [PMID: 37577954 DOI: 10.1242/dev.201472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/21/2023] [Indexed: 08/15/2023]
Abstract
Germ line integrity is crucial for progeny fitness. Organisms deploy the DNA damage response (DDR) signaling to protect the germ line from genotoxic stress, facilitating the cell-cycle arrest of germ cells and DNA repair or their apoptosis. Cell-autonomous regulation of germ line quality in response to DNA damage is well studied; however, how quality is enforced cell non-autonomously on sensing somatic DNA damage is less known. Using Caenorhabditis elegans, we show that DDR disruption, only in the uterus, when insulin/IGF-1 signaling (IIS) is low, arrests oogenesis in the pachytene stage of meiosis I, in a FOXO/DAF-16 transcription factor-dependent manner. Without FOXO/DAF-16, germ cells of the IIS mutant escape the arrest to produce poor-quality oocytes, showing that the transcription factor imposes strict quality control during low IIS. Activated FOXO/DAF-16 senses DDR perturbations during low IIS to lower ERK/MPK-1 signaling below a threshold to promote germ line arrest. Altogether, we elucidate a new surveillance role for activated FOXO/DAF-16 that ensures optimal germ cell quality and progeny fitness in response to somatic DNA damage.
Collapse
Affiliation(s)
- Gautam Chandra Sarkar
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Umanshi Rautela
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anita Goyala
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sudeshna Datta
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nikhita Anand
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anupama Singh
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prachi Singh
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manish Chamoli
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Arnab Mukhopadhyay
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
18
|
Daskalaki I, Markaki M, Gkikas I, Tavernarakis N. Local coordination of mRNA storage and degradation near mitochondria modulates C. elegans ageing. EMBO J 2023; 42:e112446. [PMID: 37427543 PMCID: PMC10425844 DOI: 10.15252/embj.2022112446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 06/10/2023] [Accepted: 06/17/2023] [Indexed: 07/11/2023] Open
Abstract
Mitochondria are central regulators of healthspan and lifespan, yet the intricate choreography of multiple, tightly controlled steps regulating mitochondrial biogenesis remains poorly understood. Here, we uncover a pivotal role for specific elements of the 5'-3' mRNA degradation pathway in the regulation of mitochondrial abundance and function. We find that the mRNA degradation and the poly-A tail deadenylase CCR4-NOT complexes form distinct foci in somatic Caenorhabditis elegans cells that physically and functionally associate with mitochondria. Components of these two multi-subunit complexes bind transcripts of nuclear-encoded mitochondria-targeted proteins to regulate mitochondrial biogenesis during ageing in an opposite manner. In addition, we show that balanced degradation and storage of mitochondria-targeted protein mRNAs are critical for mitochondrial homeostasis, stress resistance and longevity. Our findings reveal a multifaceted role of mRNA metabolism in mitochondrial biogenesis and show that fine-tuning of mRNA turnover and local translation control mitochondrial abundance and promote longevity in response to stress and during ageing.
Collapse
Affiliation(s)
- Ioanna Daskalaki
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
- Department of Biology, School of Sciences and EngineeringUniversity of CreteHeraklionGreece
| | - Maria Markaki
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
| | - Ilias Gkikas
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
- Division of Basic Sciences, School of MedicineUniversity of CreteHeraklionGreece
| |
Collapse
|
19
|
Martinez BA, Gill MS. The C. elegans truncated insulin receptor DAF-2B regulates survival of L1 arrested larvae. PLoS One 2023; 18:e0288764. [PMID: 37471418 PMCID: PMC10358897 DOI: 10.1371/journal.pone.0288764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023] Open
Abstract
We have previously characterized a truncated isoform of the C. elegans insulin-like receptor, DAF-2B, which retains the ligand binding domain but cannot transduce a signal due to the absence of the intracellular signaling domain. DAF-2B modifies insulin / insulin-like growth factor signaling-dependent processes, such as dauer formation and lifespan, by sequestering insulin-like peptides (ILP) and preventing signaling through full length DAF-2 receptors. Here we show that DAF-2B is also important for starvation resistance, as genetic loss of daf-2b reduces survival in arrested first stage larvae (L1). Under fed conditions, we observe daf-2b splicing capacity in both the intestine and the hypodermis, but in starved L1s this becomes predominantly hypodermal. Using a novel splicing reporter system, we observe an increase in the ratio of truncated to full length insulin receptor splicing capacity in starved L1 larvae compared with fed, that may indicate a decrease in whole body insulin responsiveness. Consistent with this, overexpression of DAF-2B from the hypodermis, but not the intestine, confers increased survival to L1 animals under starvation conditions. Our findings demonstrate that the truncated insulin receptor DAF-2B is involved in the response to L1 starvation and promotes survival when expressed from the hypodermis.
Collapse
Affiliation(s)
- Bryan A. Martinez
- Institute on the Biology of Aging and Metabolism and the Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States of America
| | - Matthew S. Gill
- Institute on the Biology of Aging and Metabolism and the Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
20
|
Egan BM, Pohl F, Anderson X, Williams SC, Adodo IG, Hunt P, Wang Z, Chiu CH, Scharf A, Mosley M, Kumar S, Schneider DL, Fujiwara H, Hsu FF, Kornfeld K. The ACE-inhibitor drug captopril inhibits ACN-1 to control dauer formation and aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549402. [PMID: 37502959 PMCID: PMC10370070 DOI: 10.1101/2023.07.17.549402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The renin-angiotensin-aldosterone system (RAAS) plays a well-characterized role regulating blood pressure in mammals. Pharmacological and genetic manipulation of the RAAS has been shown to extend lifespan in C. elegans , Drosophila , and rodents, but its mechanism is not well defined. Here we investigate the angiotensin-converting enzyme (ACE) inhibitor drug captopril, which extends lifespan in worms and mice. To investigate the mechanism, we performed a forward genetic screen for captopril hypersensitive mutants. We identified a missense mutation that causes a partial loss-of-function of the daf-2 receptor tyrosine kinase gene, a powerful regulator of aging. The homologous mutation in the human insulin receptor causes Donohue syndrome, establishing these mutant worms as an invertebrate model of this disease. Captopril functions in C. elegans by inhibiting ACN-1, the worm homolog of ACE. Reducing the activity of acn-1 via captopril or RNAi promoted dauer larvae formation, suggesting acn-1 is a daf gene. Captopril-mediated lifespan extension xwas abrogated by daf-16(lf) and daf-12(lf) mutations. Our results indicate that captopril and acn-1 control aging by modulating dauer formation pathways. We speculate that this represents a conserved mechanism of lifespan control. Summary Statement Captopril and acn-1 control aging. By demonstrating they regulate dauer formation and interact with daf genes, including a new DAF-2(A261V) mutant corresponding to a human disease variant, we clarified the mechanism.
Collapse
|
21
|
Soo SK, Rudich ZD, Ko B, Moldakozhayev A, AlOkda A, Van Raamsdonk JM. Biological resilience and aging: Activation of stress response pathways contributes to lifespan extension. Ageing Res Rev 2023; 88:101941. [PMID: 37127095 DOI: 10.1016/j.arr.2023.101941] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/06/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
While aging was traditionally viewed as a stochastic process of damage accumulation, it is now clear that aging is strongly influenced by genetics. The identification and characterization of long-lived genetic mutants in model organisms has provided insights into the genetic pathways and molecular mechanisms involved in extending longevity. Long-lived genetic mutants exhibit activation of multiple stress response pathways leading to enhanced resistance to exogenous stressors. As a result, lifespan exhibits a significant, positive correlation with resistance to stress. Disruption of stress response pathways inhibits lifespan extension in multiple long-lived mutants representing different pathways of lifespan extension and can also reduce the lifespan of wild-type animals. Combined, this suggests that activation of stress response pathways is a key mechanism by which long-lived mutants achieve their extended longevity and that many of these pathways are also required for normal lifespan. These results highlight an important role for stress response pathways in determining the lifespan of an organism.
Collapse
Affiliation(s)
- Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Zenith D Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Bokang Ko
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Alibek Moldakozhayev
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Abdelrahman AlOkda
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
22
|
Fan S, Yan Y, Xia Y, Zhou Z, Luo L, Zhu M, Han Y, Yao D, Zhang L, Fang M, Peng L, Yu J, Liu Y, Gao X, Guan H, Li H, Wang C, Wu X, Zhu H, Cao Y, Huang C. Pregnane X receptor agonist nomilin extends lifespan and healthspan in preclinical models through detoxification functions. Nat Commun 2023; 14:3368. [PMID: 37291126 PMCID: PMC10250385 DOI: 10.1038/s41467-023-39118-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
Citrus fruit has long been considered a healthy food, but its role and detailed mechanism in lifespan extension are not clear. Here, by using the nematode C. elegans, we identified that nomilin, a bitter-taste limoloid that is enriched in citrus, significantly extended the animals' lifespan, healthspan, and toxin resistance. Further analyses indicate that this ageing inhibiting activity depended on the insulin-like pathway DAF-2/DAF-16 and nuclear hormone receptors NHR-8/DAF-12. Moreover, the human pregnane X receptor (hPXR) was identified as the mammalian counterpart of NHR-8/DAF-12 and X-ray crystallography showed that nomilin directly binds with hPXR. The hPXR mutations that prevented nomilin binding blocked the activity of nomilin both in mammalian cells and in C. elegans. Finally, dietary nomilin supplementation improved healthspan and lifespan in D-galactose- and doxorubicin-induced senescent mice as well as in male senescence accelerated mice prone 8 (SAMP8) mice, and induced a longevity gene signature similar to that of most longevity interventions in the liver of bile-duct-ligation male mice. Taken together, we identified that nomilin may extend lifespan and healthspan in animals via the activation of PXR mediated detoxification functions.
Collapse
Affiliation(s)
- Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yingxuan Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Xia
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Zhenyu Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lingling Luo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengnan Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- CAS Center for Excellence in Molecular Cell Science; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongli Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Deqiang Yao
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lina Peng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- CAS Center for Excellence in Molecular Cell Science; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoyan Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongli Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaojun Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Yu Cao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China.
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
23
|
Zhao D, Yan M, Xu H, Liang H, Zhang J, Li M, Wang C. Antioxidant and Antiaging Activity of Fermented Coix Seed Polysaccharides on Caenorhabditis elegans. Nutrients 2023; 15:2474. [PMID: 37299437 PMCID: PMC10255515 DOI: 10.3390/nu15112474] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Aging is closely related to many diseases and is a long-term challenge that humans face. The oxidative damage caused by the imbalance of free radicals is an important factor in aging. In this study, we investigate the antioxidant and antiaging activities of fermented coix seed polysaccharides (FCSPs) via in vitro and in vivo experiments. The FCSPs were extracted by fermenting coix seed with Saccharomyces cerevisiae for 48 h and utilizing water-extracted coix seed polysaccharides (WCSPs) as a control. Their antiaging activity and mechanism were evaluated based on the antiaging model organism Caenorhabditis elegans (C. elegans). The results showed that the molecular weight of the FCSPs extracted by fermentation was smaller than that of the WCSPs, making them more easily absorbed and utilized. At a concentration of 5 g/L, the FCSPs' capacity to scavenge the DPPH·, ABTS+·, OH·, and O2-· radicals was greater than the WCSPs' capacity by 10.09%, 14.40%, 49.93%, and 12.86%, respectively. Moreover, C. elegans treated with FCSPs exhibited higher antioxidant enzyme activities and a lower accumulation of malonaldehyde. By inhibiting the expression of the pro-aging genes daf-2 and age-1, and upregulating the expression of the antiaging genes daf-16, sod-3, skn-1, and gcs-1 in the insulin/insulin-like growth factor-1 (IIS) signaling pathway, the FCSPs could effectively enhance stress tolerance and delay C. elegans aging. The lifespan of C. elegans in the FCSPs group was 5.91% higher than that of the WCSPs group. In conclusion, FCSPs exert better antioxidant and antiaging effects than WCSPs, which can act as a potential functional ingredient or supplement in food.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Changtao Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (D.Z.); (M.Y.); (H.X.); (H.L.); (J.Z.); (M.L.)
| |
Collapse
|
24
|
Guo M, Qiao X, Wang Y, Li ZH, Shi C, Chen Y, Kang L, Chen C, Zhou XL. Mitochondrial translational defect extends lifespan in C. elegans by activating UPR mt. Redox Biol 2023; 63:102722. [PMID: 37167879 DOI: 10.1016/j.redox.2023.102722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are indispensable players in translation. Usually, two or three genes encode cytoplasmic and mitochondrial threonyl-tRNA synthetases (ThrRSs) in eukaryotes. Here, we reported that Caenorhabditis elegans harbors only one tars-1, generating cytoplasmic and mitochondrial ThrRSs via translational reinitiation. Mitochondrial tars-1 knockdown decreased mitochondrial tRNAThr charging and translation and caused pleotropic phenotypes of delayed development, decreased motor ability and prolonged lifespan, which could be rescued by replenishing mitochondrial tars-1. Mitochondrial tars-1 deficiency leads to compromised mitochondrial functions including the decrease in oxygen consumption rate, complex Ⅰ activity and the activation of the mitochondrial unfolded protein response (UPRmt), which contributes to longevity. Furthermore, deficiency of other eight mitochondrial aaRSs in C. elegans and five in mammal also caused activation of the UPRmt. In summary, we deciphered the mechanism of one tars-1, generating two aaRSs, and elucidated the biochemical features and physiological function of C. elegans tars-1. We further uncovered a conserved connection between mitochondrial translation deficiency and UPRmt.
Collapse
Affiliation(s)
- Miaomiao Guo
- University of Chinese Academy of Sciences, Beijing, 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanyuan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zi-Han Li
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chang Shi
- University of Chinese Academy of Sciences, Beijing, 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yun Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lu Kang
- University of Chinese Academy of Sciences, Beijing, 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chang Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiao-Long Zhou
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
25
|
Yu S, Shao Y, Qiu Q, Cheng Y, Qing R, Wang CF, Chen S, Xu C. Photo-and thermo-regulation by photonic crystals for extended longevity of C. elegans. Mech Ageing Dev 2023; 212:111819. [PMID: 37120065 DOI: 10.1016/j.mad.2023.111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/03/2023] [Accepted: 04/25/2023] [Indexed: 05/01/2023]
Abstract
Methods allowing light energy to be modulated in a controllable fashion are potentially important for finding the correlation between light-related environmental factors and aging-related lifespan. Here, we report photo- and thermo-regulation based on photonic crystals (PCs) for extended longevity of C. elegans. We show that PCs can function as a regulator of visible spectrum to tune photonic energy received by C.elegans. We provide direct evidence that lifespan depends on photonic energy, and the use of PCs reflecting blue light (440-537nm) gives 8.3% increasement in lifespan. We demonstrate that the exposure to modulated light alleviates photo-oxidative stress and unfolded-protein response. We realize reflective passive cooling temperature using PCs, and favorable low temperature could be created for worms to extend lifespan. This work offers a new path based on PCs to resist negative effects light and temperature for longevity, provides an available platform for studying the role of light in aging.
Collapse
Affiliation(s)
- Shuzhen Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yating Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Qineng Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yu Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Renkun Qing
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.
| | - Chen Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
26
|
Vogt MC, Hobert O. Starvation-induced changes in somatic insulin/IGF-1R signaling drive metabolic programming across generations. SCIENCE ADVANCES 2023; 9:eade1817. [PMID: 37027477 PMCID: PMC10081852 DOI: 10.1126/sciadv.ade1817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/08/2023] [Indexed: 05/30/2023]
Abstract
Exposure to adverse nutritional and metabolic environments during critical periods of development can exert long-lasting effects on health outcomes of an individual and its descendants. Although such metabolic programming has been observed in multiple species and in response to distinct nutritional stressors, conclusive insights into signaling pathways and mechanisms responsible for initiating, mediating, and manifesting changes to metabolism and behavior across generations remain scarce. By using a starvation paradigm in Caenorhabditis elegans, we show that starvation-induced changes in dauer formation-16/forkhead box transcription factor class O (DAF-16/FoxO) activity, the main downstream target of insulin/insulin-like growth factor 1 (IGF-1) receptor signaling, are responsible for metabolic programming phenotypes. Tissue-specific depletion of DAF-16/FoxO during distinct developmental time points demonstrates that DAF-16/FoxO acts in somatic tissues, but not directly in the germline, to both initiate and manifest metabolic programming. In conclusion, our study deciphers multifaceted and critical roles of highly conserved insulin/IGF-1 receptor signaling in determining health outcomes and behavior across generations.
Collapse
|
27
|
Cheng Y, Hou BH, Xie GL, Shao YT, Yang J, Xu C. Transient inhibition of mitochondrial function by chrysin and apigenin prolong longevity via mitohormesis in C. elegans. Free Radic Biol Med 2023; 203:24-33. [PMID: 37023934 DOI: 10.1016/j.freeradbiomed.2023.03.264] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Mild inhibition of mitochondrial function leads to longevity. Genetic disruption of mitochondrial respiratory components either by mutation or RNAi greatly extends the lifespan in yeast, worms, and drosophila. This has given rise to the idea that pharmacologically inhibiting mitochondrial function would be a workable strategy for postponing aging. Toward this end, we used a transgenic worm strain that expresses the firefly luciferase enzyme widely to evaluate compounds by tracking real-time ATP levels. We identified chrysin and apigenin, which reduced ATP production and increased the lifespan of worms. Mechanistically, we discovered that chrysin and apigenin transiently inhibit mitochondrial respiration and induce an early ROS, and the lifespan-extending effect is dependent on transient ROS formation. We also show that AAK-2/AMPK, DAF-16/FOXO, and SKN-1/NRF-2 are required for chrysin or apigenin-mediated lifespan extension. Temporary increases in ROS levels trigger an adaptive response in a mitohormetic way, thereby increasing oxidative stress capacity and cellular metabolic adaptation, finally leading to longevity. Thus, chrysin and apigenin represent a class of compounds isolated from natural products that delay senescence and improve age-related diseases by inhibiting mitochondrial function and shed new light on the function of additional plant-derived polyphenols in enhancing health and delaying aging. Collectively, this work provides an avenue for pharmacological inhibition of mitochondrial function and the mechanism underlining their lifespan-extending properties.
Collapse
Affiliation(s)
- Yu Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Bing-Hao Hou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Gui-Lin Xie
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ya-Ting Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Chen Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
28
|
Zhu R, Shan S, Zhou S, Chen Z, Wu Y, Liao W, Zhao C, Chu Q. Saccharomyces cerevisiae: a patulin degradation candidate both in vitro and in vivo. Food Funct 2023; 14:3083-3091. [PMID: 36917481 DOI: 10.1039/d2fo03419k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Patulin is one of the mycotoxins that exists in abundance in fruits and derivative products and is easily exposed in daily life, leading to various toxicities such as genotoxicity, teratogenicity, immunotoxicity, and carcinogenicity in the human body, while the efficient removal or degradation measures are still in urgent demand. In this work, Saccharomyces cerevisiae, a natural yeast with both patulin degradation and intestine damage protection abilities, was first applied to prevent and decrease the hazard after patulin intake. In vitro, Saccharomyces cerevisiae KD (S. cerevisiae KD) could efficiently degrade patulin at high concentrations. In a Canenorhabditis elegans (C. elegans) model fed on S. cerevisiae KD, locomotion, oxidative stress, patulin residual, intestine damage, and gene expression were investigated after exposure to 50 μg mL-1 patulin. The results demonstrated that S. cerevisiae KD could efficiently degrade patulin, as well as weaken the oxidative stress and intestinal damage caused by patulin. Moreover, S. cerevisiae KD could regulate the gene expression levels of daf-2 and daf-16 through the IGF-1 signaling pathway to control the ROS level and glutathione (GSH) content, thus decreasing intestinal damage. In summary, this work uncovers the outstanding characteristic of an edible probiotic S. cerevisiae KD in patulin degradation and biotoxicity alleviation and provides enlightenment toward solving the hazards caused by the accumulation of patulin.
Collapse
Affiliation(s)
- Ruiyu Zhu
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuo Shan
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Su Zhou
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Zhen Chen
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yuanfeng Wu
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Wei Liao
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
29
|
Traa A, Soo SK, AlOkda A, Ko B, Rocheleau CE, Van Raamsdonk JM. Endosomal trafficking protein TBC-2 modulates stress resistance and lifespan through DAF-16-dependent and independent mechanisms. Aging Cell 2023; 22:e13762. [PMID: 36794357 PMCID: PMC10014066 DOI: 10.1111/acel.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 02/17/2023] Open
Abstract
The FOXO transcription factor, DAF-16, plays an integral role in insulin/IGF-1 signaling (IIS) and stress response. In conditions of stress or decreased IIS, DAF-16 moves to the nucleus where it activates genes that promote survival. To gain insight into the role of endosomal trafficking in resistance to stress, we disrupted tbc-2, which encodes a GTPase activating protein that inhibits RAB-5 and RAB-7. We found that tbc-2 mutants have decreased nuclear localization of DAF-16 in response to heat stress, anoxia, and bacterial pathogen stress, but increased nuclear localization of DAF-16 in response to chronic oxidative stress and osmotic stress. tbc-2 mutants also exhibit decreased upregulation of DAF-16 target genes in response to stress. To determine whether the rate of nuclear localization of DAF-16 affected stress resistance in these animals, we examined survival after exposure to multiple exogenous stressors. Disruption of tbc-2 decreased resistance to heat stress, anoxia, and bacterial pathogen stress in both wild-type worms and stress-resistant daf-2 insulin/IGF-1 receptor mutants. Similarly, deletion of tbc-2 decreases lifespan in both wild-type worms and daf-2 mutants. When DAF-16 is absent, the loss of tbc-2 is still able to decrease lifespan but has little or no impact on resistance to most stresses. Combined, this suggests that disruption of tbc-2 affects lifespan through both DAF-16-dependent and DAF-16-independent pathways, while the effect of tbc-2 deletion on resistance to stress is primarily DAF-16-dependent. Overall, this work demonstrates the importance of endosomal trafficking for the proper nuclear localization of DAF-16 during stress and that perturbation of normal endosomal trafficking is sufficient to decrease both stress resistance and lifespan.
Collapse
Affiliation(s)
- Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Abdelrahman AlOkda
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Bokang Ko
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Christian E Rocheleau
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Song X, Du Y, Liu C, Wang W, Han J, Chai X, Liu Y. H-2 increases oxidative stress resistance through DAF-16/FOXO pathways in Caenorhabditis elegans: A new approach to vitiligo treatment. Biomed Pharmacother 2023; 157:113924. [PMID: 36450213 DOI: 10.1016/j.biopha.2022.113924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
Oxidative stress disrupts the homeostasis of the redox state in cells and induces apoptosis. Prolonged oxidative stress can impair the normal function of cells, tissues, and organs and lead to the development of several diseases. H-2 was synthesized by derivatising N-Alkylamides (NAAs) from Anacyclus pyrethrum (L.) DC, which is commonly used in the treatment of vitiligo in Uyghurs. The antioxidant activity and potential molecular mechanisms of H-2 were investigated using Caenorhabditis elegans (C. elegans) and mouse melanoma cell B16-F10 models. The in vivo anti-vitiligo activity of H-2 was studied using C57BL/6 mice. The results showed that H-2 could increase the survival time of nematodes under oxidative stress, promote the nuclear localization of DAF-16, and enhance the expression of Superoxide Dismutase 3 (SOD-3) in nematodes thereby activating the antioxidant enzyme system. H-2 could affect the survival rate of age-1 and akt-1 mutants under oxidative stress. H-2 could reverse the oxidative stress damage by reducing the reactive oxygen species (ROS) content in the Hydrogen peroxide (H2O2) -induced oxidative stress damage model of mouse melanoma cells B16-F10. In addition, it was also able to increase the number of melanocytes in the hair follicles of vitiligo model mice and improve the phenomenon of skin damage in mice. In conclusion, our findings suggest that H-2 can alleviate oxidative stress damage in C. elegans and B16-F10, which may be associated with oxidative stress, suppression of antioxidant defences, and transcription factors DAF-16/FOXO, providing beneficial evidence for the application of H-2 in the vitiligo treatment.
Collapse
Affiliation(s)
- Xingzhuo Song
- School of Chinese Materia medica, Beijing University of Chinese medicine, Beijing, China
| | - Yu Du
- School of Chinese Materia medica, Beijing University of Chinese medicine, Beijing, China
| | - Cen Liu
- School of Chinese Materia medica, Beijing University of Chinese medicine, Beijing, China
| | - Wei Wang
- Beijing Institute of traditional Chinese medicine, Beijing University of Chinese medicine, Beijing, China.
| | - Jing Han
- Beijing Institute of traditional Chinese medicine, Beijing University of Chinese medicine, Beijing, China.
| | - Xinlou Chai
- School of traditional Chinese medicine, Beijing University of Chinese medicine, Beijing, China.
| | - Yonggang Liu
- School of Chinese Materia medica, Beijing University of Chinese medicine, Beijing, China.
| |
Collapse
|
31
|
Soo SK, Traa A, Rudich ZD, Moldakozhayev A, Mistry M, Van Raamsdonk JM. Genetic basis of enhanced stress resistance in long-lived mutants highlights key role of innate immunity in determining longevity. Aging Cell 2022; 22:e13740. [PMID: 36514863 PMCID: PMC9924947 DOI: 10.1111/acel.13740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/07/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Mutations that extend lifespan are associated with enhanced resistance to stress. To better understand the molecular mechanisms underlying this relationship, we directly compared lifespan extension, resistance to external stressors, and gene expression in a panel of nine long-lived Caenorhabditis elegans mutants from different pathways of lifespan extension. All of the examined long-lived mutants exhibited increased resistance to one or more types of stress. Resistance to each of the examined types of stress had a significant, positive correlation with lifespan, with bacterial pathogen resistance showing the strongest relationship. Analysis of transcriptional changes indicated that all of the examined long-lived mutants showed a significant upregulation of multiple stress response pathways. Interestingly, there was a very significant overlap between genes highly correlated with stress resistance and genes highly correlated with longevity, suggesting that the same genetic pathways drive both phenotypes. This was especially true for genes correlated with bacterial pathogen resistance, which showed an 84% overlap with genes correlated with lifespan. To further explore the relationship between innate immunity and longevity, we disrupted the p38-mediated innate immune signaling pathway in each of the long-lived mutants and found that this pathway is required for lifespan extension in eight of nine mutants. Overall, our results demonstrate a strong correlation between stress resistance and longevity that results from the high degree of overlap in genes contributing to each phenotype. Moreover, these findings demonstrate the importance of the innate immune system in lifespan determination and indicate that the same underlying genes drive both immunity and longevity.
Collapse
Affiliation(s)
- Sonja K. Soo
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Annika Traa
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Zenith D. Rudich
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Alibek Moldakozhayev
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Meeta Mistry
- Bioinformatics Core, Harvard School of Public HealthHarvard Medical SchoolBostonMassachusettsUSA
| | - Jeremy M. Van Raamsdonk
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada,Division of Experimental Medicine, Department of MedicineMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
32
|
Gui T, Burgering BMT. FOXOs: masters of the equilibrium. FEBS J 2022; 289:7918-7939. [PMID: 34610198 PMCID: PMC10078705 DOI: 10.1111/febs.16221] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023]
Abstract
Forkhead box O (FOXO) transcription factors (TFs) are a subclass of the larger family of forkhead TFs. Mammalians express four members FOXO1, FOXO3, FOXO4, and FOXO6. The interest in FOXO function stems mostly from their observed role in determining lifespan, where in model organisms, increased FOXO activity results in extended lifespan. FOXOs act as downstream of several signaling pathway and are extensively regulated through post-translational modifications. The transcriptional program activated by FOXOs in various cell types, organisms, and under various conditions has been described and has shed some light on what the critical transcriptional targets are in mediating FOXO function. At the cellular level, these studies have revealed a role for FOXOs in cell metabolism, cellular redox, cell proliferation, DNA repair, autophagy, and many more. The general picture that emerges hereof is that FOXOs act to preserve equilibrium, and they are important for cellular homeostasis. Here, we will first briefly summarize the general knowledge of FOXO regulation and possible functions. We will use genomic stability to illustrate how FOXOs ensure homeostasis. Genomic stability is critical for maintaining genetic integrity, and therefore preventing disease. However, genomic mutations need to occur during lifetime to enable evolution, yet their accumulation is believed to be causative to aging. Therefore, the role of FOXO in genomic stability may underlie its role in lifespan and aging. Finally, we will come up with questions on some of the unknowns in FOXO function, the answer(s) to which we believe will further our understanding of FOXO function and ultimately may help to understand lifespan and its consequences.
Collapse
Affiliation(s)
- Tianshu Gui
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht and the Oncode Institute, The Netherlands
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht and the Oncode Institute, The Netherlands
| |
Collapse
|
33
|
Tabibzadeh S. Resolving Geroplasticity to the Balance of Rejuvenins and Geriatrins. Aging Dis 2022; 13:1664-1714. [PMID: 36465174 PMCID: PMC9662275 DOI: 10.14336/ad.2022.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 09/29/2024] Open
Abstract
According to the cell centric hypotheses, the deficits that drive aging occur within cells by age dependent progressive damage to organelles, telomeres, biologic signaling pathways, bioinformational molecules, and by exhaustion of stem cells. Here, we amend these hypotheses and propose an eco-centric model for geroplasticity (aging plasticity including aging reversal). According to this model, youth and aging are plastic and require constant maintenance, and, respectively, engage a host of endogenous rejuvenating (rejuvenins) and gero-inducing [geriatrin] factors. Aging in this model is akin to atrophy that occurs as a result of damage or withdrawal of trophic factors. Rejuvenins maintain and geriatrins adversely impact cellular homeostasis, cell fitness, and proliferation, stem cell pools, damage response and repair. Rejuvenins reduce and geriatrins increase the age-related disorders, inflammatory signaling, and senescence and adjust the epigenetic clock. When viewed through this perspective, aging can be successfully reversed by supplementation with rejuvenins and by reducing the levels of geriatrins.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA 92618, USA
| |
Collapse
|
34
|
Arneaud SLB, McClendon J, Tatge L, Watterson A, Zuurbier KR, Madhu B, Gumienny TL, Douglas PM. Reduced bone morphogenic protein signaling along the gut-neuron axis by heat shock factor promotes longevity. Aging Cell 2022; 21:e13693. [PMID: 35977034 PMCID: PMC9470895 DOI: 10.1111/acel.13693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
Aging is a complex and highly regulated process of interwoven signaling mechanisms. As an ancient transcriptional regulator of thermal adaptation and protein homeostasis, the Heat Shock Factor, HSF-1, has evolved functions within the nervous system to control age progression; however, the molecular details and signaling dynamics by which HSF-1 modulates age across tissues remain unclear. Herein, we report a nonautonomous mode of age regulation by HSF-1 in the Caenorhabditis elegans nervous system that works through the bone morphogenic protein, BMP, signaling pathway to modulate membrane trafficking in peripheral tissues. In particular, HSF-1 represses the expression of the neuron-specific BMP ligand, DBL-1, and initiates a complementary negative feedback loop within the intestine. By reducing receipt of DBL-1 in the periphery, the SMAD transcriptional coactivator, SMA-3, represses the expression of critical membrane trafficking regulators including Rab GTPases involved in early (RAB-5), late (RAB-7), and recycling (RAB-11.1) endosomal dynamics and the BMP receptor binding protein, SMA-10. This reduces cell surface residency and steady-state levels of the type I BMP receptor, SMA-6, in the intestine and further dampens signal transmission to the periphery. Thus, the ability of HSF-1 to coordinate BMP signaling along the gut-brain axis is an important determinate in age progression.
Collapse
Affiliation(s)
| | - Jacob McClendon
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA
| | - Lexus Tatge
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA
| | - Abigail Watterson
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA
| | - Kielen R. Zuurbier
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA
| | - Bhoomi Madhu
- Department of BiologyTexas Woman's UniversityDentonTexasUSA
| | | | - Peter M. Douglas
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA,Hamon Center for Regenerative Science and MedicineUT Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
35
|
Cao SQ, Aman Y, Fang EF, Tencomnao T. P. edulis Extract Protects Against Amyloid-β Toxicity in Alzheimer's Disease Models Through Maintenance of Mitochondrial Homeostasis via the FOXO3/DAF-16 Pathway. Mol Neurobiol 2022; 59:5612-5629. [PMID: 35739408 DOI: 10.1007/s12035-022-02904-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/26/2022] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a common and devastating disease characterized by pathological aggregations of beta-amyloid (Aβ) plaques extracellularly, and Tau tangles intracellularly. While our understandings of the aetiologies of AD have greatly expanded over the decades, there is no drug available to stop disease progression. Here, we demonstrate the potential of Passiflora edulis (P. edulis) pericarp extract in protecting against Aβ-mediated neurotoxicity in mammalian cells and Caenorhabditis elegans (C. elegans) models of AD. We show P. edulis pericarp protects against memory deficit and neuronal loss, and promotes longevity in the Aβ model of AD via stimulation of mitophagy, a selective cellular clearance of damaged and dysfunctional mitochondria. P. edulis pericarp also restores memory and increases neuronal resilience in a C. elegans Tau model of AD. While defective mitophagy-induced accumulation of damaged mitochondria contributes to AD progression, P. edulis pericarp improves mitochondrial quality and homeostasis through BNIP3/DCT1-dependent mitophagy and SOD-3-dependent mitochondrial resilience, both via increased nuclear translocation of the upstream transcriptional regulator FOXO3/DAF-16. Further studies to identify active molecules in P. edulis pericarp that could maintain neuronal mitochondrial homeostasis may enable the development of potential drug candidates for AD.
Collapse
Affiliation(s)
- Shu-Qin Cao
- Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Yahyah Aman
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway.
- The Norwegian Centre On Healthy Ageing (NO-Age), Oslo, Norway.
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
36
|
Chen W, Chen Z, Shan S, Wu A, Zhao C, Ye X, Zheng X, Zhu R. Cyanidin-3-O-glucoside promotes stress tolerance and lifespan extension of Caenorhabditis elegans exposed to polystyrene via DAF-16 pathway. Mech Ageing Dev 2022; 207:111723. [PMID: 35988813 DOI: 10.1016/j.mad.2022.111723] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
Abstract
Microplastic pollution has attracted growing attention due to its prevalent and persistent exposure to general population through the food chain, but few reports have focused on the toxicological prevention of polystyrene (PS). Using the wild-type and mutant strains, this study explored the impacts of PS and cyanidin-3-O-glucoside (C3G) on stress tolerance and lifespan of Caenorhabditis elegans (C. elegans). In N2 nematodes, PS exposure initiated the oxidative stress and subsequent lifespan reduction, while these adverse impacts could be positively improved by C3G treatment. Considering the pivotal role of DAF-16 pathway in stress tolerance and lifespan regulation, the expression of the daf-16 gene and its downstream antioxidant genes (clt-2, hsp-16.1, sod-3, sod-5) were examined, and found to be significantly enhanced by C3G. Since the sod-3 gene was up-regulated the most fold by C3G, the activity of SOD enzyme that encoded by the sod-3 was examined, and could be obviously enhanced upon C3G treatment. This explained the improved oxidative stress and delayed oxidation-associated aging after C3G intervention. Nevertheless, these positive effects of C3G were weakened in daf-16(-) mutant strain (with deleted DAF-16 gene), for which the beneficial effects of C3G in promoting stress resistance and lifespan extension were inhibited. These findings suggested that the DAF-16 gene and its downstream antioxidant genes, have participated in C3G's regulations on redox balance and lifespan that impacted by nano-polystyrene particles. This study highlighted the link between dietary components and environmentally driven disturbance.
Collapse
Affiliation(s)
- Wen Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Zhen Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shuo Shan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fujian 350002, China
| | - Xiang Ye
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Ruiyu Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
37
|
Meraş İ, Chotard L, Liontis T, Ratemi Z, Wiles B, Seo JH, Van Raamsdonk JM, Rocheleau CE. The Rab GTPase activating protein TBC-2 regulates endosomal localization of DAF-16 FOXO and lifespan. PLoS Genet 2022; 18:e1010328. [PMID: 35913999 PMCID: PMC9371356 DOI: 10.1371/journal.pgen.1010328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/11/2022] [Accepted: 07/06/2022] [Indexed: 12/02/2022] Open
Abstract
FOXO transcription factors have been shown to regulate longevity in model organisms and are associated with longevity in humans. To gain insight into how FOXO functions to increase lifespan, we examined the subcellular localization of DAF-16 in C. elegans. We show that DAF-16 is localized to endosomes and that this endosomal localization is increased by the insulin-IGF signaling (IIS) pathway. Endosomal localization of DAF-16 is modulated by endosomal trafficking proteins. Disruption of the Rab GTPase activating protein TBC-2 increases endosomal localization of DAF-16, while inhibition of TBC-2 targets, RAB-5 or RAB-7 GTPases, decreases endosomal localization of DAF-16. Importantly, the amount of DAF-16 that is localized to endosomes has functional consequences as increasing endosomal localization through mutations in tbc-2 reduced the lifespan of long-lived daf-2 IGFR mutants, depleted their fat stores, and DAF-16 target gene expression. Overall, this work identifies endosomal localization as a mechanism regulating DAF-16 FOXO, which is important for its functions in metabolism and aging. FOXO transcription factors have been shown to modulate lifespan in multiple model organisms and to be associated with longevity in humans. Here we describe a new localization of the C. elegans FOXO transcription factor, called DAF-16. We report that DAF-16 localizes to endosomes, membrane compartments internalized from the plasma membrane at the cell surface. We demonstrate that expansion of these endosome compartments by disruption of an endosomal regulator called TBC-2 results in increased localization of DAF-16 on endosomes at the expense of nuclear localization in the intestinal cells. This results in altered expression of DAF-16 target genes, reduced fat storage and decreased lifespan. These results demonstrate the importance of endosomal trafficking for proper localization of DAF-16 and suggest that the endosome is an important site of FOXO regulation. An intriguing possibility based on our results is that storage of FOXO on endosomes facilitates the mobilization of FOXO as a rapid response to environmental stress.
Collapse
Affiliation(s)
- İçten Meraş
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Canada
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Laëtitia Chotard
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada
| | - Thomas Liontis
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Brain Repair and Integrative Neuroscience Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Zakaria Ratemi
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Benjamin Wiles
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Jung Hwa Seo
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Jeremy M. Van Raamsdonk
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Brain Repair and Integrative Neuroscience Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Christian E. Rocheleau
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Canada
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
38
|
Kern CC, Gems D. Semelparous Death as one Element of Iteroparous Aging Gone Large. Front Genet 2022; 13:880343. [PMID: 35754809 PMCID: PMC9218716 DOI: 10.3389/fgene.2022.880343] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The aging process in semelparous and iteroparous species is different, but how different? Death in semelparous organisms (e.g., Pacific salmon) results from suicidal reproductive effort (reproductive death). Aging (senescence) in iteroparous organisms such as humans is often viewed as a quite different process. Recent findings suggest that the nematode Caenorhabditis elegans, widely used to study aging, undergoes reproductive death. In post-reproductive C. elegans hermaphrodites, intestinal biomass is repurposed to produce yolk which when vented serves as a milk to support larval growth. This apparent benefit of lactation comes at the cost of intestinal atrophy in the mother. Germline removal and inhibition of insulin/IGF-1 signaling (IIS) suppress C. elegans reproductive pathology and greatly increase lifespan. Blocking sexual maturity, e.g., by gonadectomy, suppresses reproductive death thereby strongly increasing lifespan in semelparous organisms, but typically has little effect on lifespan in iteroparous ones. Similarly, reduced IIS causes relatively modest increases in lifespan in iteroparous organisms. We argue that the more regulated and plastic mechanisms of senescence in semelparous organisms, involving costly resource reallocation under endocrine control, exist as one extreme of an etiological continuum with mechanisms operative in iteroparous organisms. We suggest that reproductive death evolved by exaggeration of mechanisms operative in iteroparous species, where other mechanisms also promote senescence. Thus, knowledge of C. elegans senescence can guide understanding of mechanisms contributing to human aging.
Collapse
Affiliation(s)
- Carina C Kern
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - David Gems
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
39
|
Exogenous oxidative stressors elicit differing age and sex effects in Tigriopus californicus. Exp Gerontol 2022; 166:111871. [PMID: 35750273 DOI: 10.1016/j.exger.2022.111871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 11/24/2022]
Abstract
As organisms age, cellular function declines in a time-dependent manner. Oxidative stress induced by reactive oxygen species damages cellular machinery and contributes to senescence which narrows the homeostatic window needed to maintain function and survive stress. Sex differences in longevity are apparent in many species and may be related to sex-specific homeostatic responses. Here we use the emerging aging model system Tigriopus californicus, the splashpool copepod, to estimate sex- and age-specific tolerances to two chemical oxidants, hydrogen peroxide and paraquat. Sex-specific tolerance was estimated for both oxidants simultaneously for 15 age-classes. As animals aged, hydrogen peroxide tolerance decreased but paraquat tolerance increased. Also, we observed no sex difference for hydrogen peroxide tolerance, while females were more tolerant of paraquat. Our results demonstrate that oxidative stressors can have dramatically different sex and age effects in Tigriopus californicus. These findings underscore the challenges ahead in understanding relationships among oxidative stressors, sex, and aging.
Collapse
|
40
|
Zhang ZP, Bai X, Cui WB, Chen XH, Liu X, Zhi DJ, Zhang ZX, Fei DQ, Wang DS. Diterpenoid Caesalmin C Delays Aβ-Induced Paralysis Symptoms via the DAF-16 Pathway in Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms23126871. [PMID: 35743309 PMCID: PMC9225120 DOI: 10.3390/ijms23126871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in the world. However, there is no effective drug to cure it. Caesalmin C is a cassane-type diterpenoid abundant in Caesalpinia bonduc (Linn.) Roxb. In this study, we investigated the effect of caesalmin C on Aβ-induced toxicity and possible mechanisms in the transgenic Caenorhabditis elegans AD model. Our results showed that caesalmin C significantly alleviated the Aβ-induced paralysis phenotype in transgenic CL4176 strain C. elegans. Caesalmin C dramatically reduced the content of Aβ monomers, oligomers, and deposited spots in AD C. elegans. In addition, mRNA levels of sod-3, gst-4, and rpt-3 were up-regulated, and mRNA levels of ace-1 were down-regulated in nematodes treated with caesalmin C. The results of the RNAi assay showed that the inhibitory effect of caesalmin C on the nematode paralysis phenotype required the DAF-16 signaling pathway, but not SKN-1 and HSF-1. Further evidence suggested that caesalmin C may also have the effect of inhibiting acetylcholinesterase (AchE) and upregulating proteasome activity. These findings suggest that caesalmin C delays the progression of AD in C. elegans via the DAF-16 signaling pathway and that it could be developed into a promising medication to treat AD.
Collapse
Affiliation(s)
- Zong-Ping Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
| | - Xue Bai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
| | - Wen-Bo Cui
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
| | - Xiao-Han Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
| | - Xu Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
| | - De-Juan Zhi
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
| | - Zhan-Xin Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Dong-Qing Fei
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- Correspondence: (D.-Q.F.); (D.-S.W.)
| | - Dong-Sheng Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
- Correspondence: (D.-Q.F.); (D.-S.W.)
| |
Collapse
|
41
|
Handley A, Wu Q, Sherry T, Cornell R, Pocock R. Diet-responsive transcriptional regulation of insulin in a single neuron controls systemic metabolism. PLoS Biol 2022; 20:e3001655. [PMID: 35594303 PMCID: PMC9162364 DOI: 10.1371/journal.pbio.3001655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/02/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Metabolic homeostasis is coordinated through a robust network of signaling pathways acting across all tissues. A key part of this network is insulin-like signaling, which is fundamental for surviving glucose stress. Here, we show that Caenorhabditis elegans fed excess dietary glucose reduce insulin-1 (INS-1) expression specifically in the BAG glutamatergic sensory neurons. We demonstrate that INS-1 expression in the BAG neurons is directly controlled by the transcription factor ETS-5, which is also down-regulated by glucose. We further find that INS-1 acts exclusively from the BAG neurons, and not other INS-1-expressing neurons, to systemically inhibit fat storage via the insulin-like receptor DAF-2. Together, these findings reveal an intertissue regulatory pathway where regulation of insulin expression in a specific neuron controls systemic metabolism in response to excess dietary glucose. Metabolic homeostasis is coordinated through a robust network of signaling pathways acting across all tissues. This study shows that Caenorhabditis elegans nematodes fed excess dietary glucose reduce the expression of insulin-1 specifically in the BAG glutamatergic sensory neurons, and that insulin-1 produced by these neurons systemically inhibits fat storage via the insulin-like receptor DAF-2.
Collapse
Affiliation(s)
- Ava Handley
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
- * E-mail: (AH); (RP)
| | - Qiuli Wu
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School of Southeast University, Nanjing, China
| | - Tessa Sherry
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Rebecca Cornell
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
- * E-mail: (AH); (RP)
| |
Collapse
|
42
|
Zhu A, Zheng F, Zhang W, Li L, Li Y, Hu H, Wu Y, Bao W, Li G, Wang Q, Li H. Oxidation and Antioxidation of Natural Products in the Model Organism Caenorhabditiselegans. Antioxidants (Basel) 2022; 11:antiox11040705. [PMID: 35453390 PMCID: PMC9029379 DOI: 10.3390/antiox11040705] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
Natural products are small molecules naturally produced by multiple sources such as plants, animals, fungi, bacteria and archaea. They exert both beneficial and detrimental effects by modulating biological targets and pathways involved in oxidative stress and antioxidant response. Natural products’ oxidative or antioxidative properties are usually investigated in preclinical experimental models, including virtual computing simulations, cell and tissue cultures, rodent and nonhuman primate animal models, and human studies. Due to the renewal of the concept of experimental animals, especially the popularization of alternative 3R methods for reduction, replacement and refinement, many assessment experiments have been carried out in new alternative models. The model organism Caenorhabditis elegans has been used for medical research since Sydney Brenner revealed its genetics in 1974 and has been introduced into pharmacology and toxicology in the past two decades. The data from C. elegans have been satisfactorily correlated with traditional experimental models. In this review, we summarize the advantages of C. elegans in assessing oxidative and antioxidative properties of natural products and introduce methods to construct an oxidative damage model in C. elegans. The biomarkers and signaling pathways involved in the oxidative stress of C. elegans are summarized, as well as the oxidation and antioxidation in target organs of the muscle, nervous, digestive and reproductive systems. This review provides an overview of the oxidative and antioxidative properties of natural products based on the model organism C. elegans.
Collapse
Affiliation(s)
- An Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
| | - Wenjing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
| | - Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
| | - Yajiao Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Department of Pathogen Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Wenqiang Bao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Department of Pathogen Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Guojun Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
- School of Public Health, Capital Medical University, Beijing 100069, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| |
Collapse
|
43
|
Zhang L, Wang S, Zhao Y, Nurdebek B, Bu Y, Wang D. Long-term exposure to polystyrene nanoparticles causes transgenerational toxicity by affecting the function and expression of MEV-1 and DAF-2 signals in Caenorhabditis elegans. NANOIMPACT 2022; 26:100403. [PMID: 35560288 DOI: 10.1016/j.impact.2022.100403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 05/21/2023]
Abstract
In this study, we determined the roles of oxidative stress and related signals in mediating transgenerational toxicity of 30 nm polystyrene nanoparticles (PS-NPs) in Caenorhabditis elegans. Using brood size and locomotion behavior as endpoints, exposure to 1-100 μg/L PS-NPs caused transgenerational toxicity. Meanwhile, the activation of reactive oxygen species (ROS) was also observed transgenerationally after exposure to 1-100 μg/L PS-NPs. After exposure to 1 μg/L PS-NPs, the transgenerational toxicity was monitored until F2 generation (F2-G) and recovered at F3-G. At the F1-G of 1 μg/L PS-NPs-exposed nematodes, RNAi knockdown of daf-2 with function to inhibit oxidative stress suppressed the transgenerational toxicity and increased the mitochondrial SOD-3 expression. In contrast, at F3-G of 1 μg/L PS-NPs-exposed nematodes, RNAi knockdown of mev-1 with function to induce oxidative stress promoted locomotion and brood size, and suppressed the SOD-3 expression. Moreover, we observed the dynamic expressions of mev-1, daf-2, and sod-2 transgenerationally after exposure to 1 μg/L PS-NPs at P0-G, which further suggested the involvement of MEV-1, DAF-2, and SOD-3 in affecting induction of transgenerational PS-NP toxicity. Therefore, we provided the evidence to suggest the roles of oxidative stress activation and related molecular signals in mediating induction of transgenerational PS-NP toxicity. Our data highlights the crucial function of oxidative stress-related signals during induction of transgenerational PS-NP toxicity.
Collapse
Affiliation(s)
- Le Zhang
- Medical School, Southeast University, Nanjing 210009, China
| | - Shuting Wang
- Medical School, Southeast University, Nanjing 210009, China
| | - Yunli Zhao
- Medical School, Southeast University, Nanjing 210009, China
| | | | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China.
| |
Collapse
|
44
|
Jewett E, Arnott G, Connolly L, Vasudevan N, Kevei E. Microplastics and Their Impact on Reproduction-Can we Learn From the C. elegans Model? FRONTIERS IN TOXICOLOGY 2022; 4:748912. [PMID: 35399297 PMCID: PMC8987311 DOI: 10.3389/ftox.2022.748912] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
Biologically active environmental pollutants have significant impact on ecosystems, wildlife, and human health. Microplastic (MP) and nanoplastic (NP) particles are pollutants that are present in the terrestrial and aquatic ecosystems at virtually every level of the food chain. Moreover, recently, airborne microplastic particles have been shown to reach and potentially damage respiratory systems. Microplastics and nanoplastics have been shown to cause increased oxidative stress, inflammation, altered metabolism leading to cellular damage, which ultimately affects tissue and organismal homeostasis in numerous animal species and human cells. However, the full impact of these plastic particles on living organisms is not completely understood. The ability of MPs/NPs to carry contaminants, toxic chemicals, pesticides, and bioactive compounds, such as endocrine disrupting chemicals, present an additional risk to animal and human health. This review will discusses the current knowledge on pathways by which microplastic and nanoplastic particles impact reproduction and reproductive behaviors from the level of the whole organism down to plastics-induced cellular defects, while also identifying gaps in current knowledge regarding mechanisms of action. Furthermore, we suggest that the nematode Caenorhabditis elegans provides an advantageous high-throughput model system for determining the effect of plastic particles on animal reproduction, using reproductive behavioral end points and cellular readouts.
Collapse
Affiliation(s)
- Elysia Jewett
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Gareth Arnott
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Eva Kevei
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
45
|
Gems D. The hyperfunction theory: An emerging paradigm for the biology of aging. Ageing Res Rev 2022; 74:101557. [PMID: 34990845 PMCID: PMC7612201 DOI: 10.1016/j.arr.2021.101557] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022]
Abstract
The process of senescence (aging) is predominantly determined by the action of wild-type genes. For most organisms, this does not reflect any adaptive function that senescence serves, but rather evolutionary effects of declining selection against genes with deleterious effects later in life. To understand aging requires an account of how evolutionary mechanisms give rise to pathogenic gene action and late-life disease, that integrates evolutionary (ultimate) and mechanistic (proximate) causes into a single explanation. A well-supported evolutionary explanation by G.C. Williams argues that senescence can evolve due to pleiotropic effects of alleles with antagonistic effects on fitness and late-life health (antagonistic pleiotropy, AP). What has remained unclear is how gene action gives rise to late-life disease pathophysiology. One ultimate-proximate account is T.B.L. Kirkwood's disposable soma theory. Based on the hypothesis that stochastic molecular damage causes senescence, this reasons that aging is coupled to reproductive fitness due to preferential investment of resources into reproduction, rather than somatic maintenance. An alternative and more recent ultimate-proximate theory argues that aging is largely caused by programmatic, developmental-type mechanisms. Here ideas about AP and programmatic aging are reviewed, particularly those of M.V. Blagosklonny (the hyperfunction theory) and J.P. de Magalhães (the developmental theory), and their capacity to make sense of diverse experimental findings is assessed.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| |
Collapse
|
46
|
Suriyalaksh M, Raimondi C, Mains A, Segonds-Pichon A, Mukhtar S, Murdoch S, Aldunate R, Krueger F, Guimerà R, Andrews S, Sales-Pardo M, Casanueva O. Gene regulatory network inference in long-lived C. elegans reveals modular properties that are predictive of novel aging genes. iScience 2022; 25:103663. [PMID: 35036864 PMCID: PMC8753122 DOI: 10.1016/j.isci.2021.103663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/09/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022] Open
Abstract
We design a “wisdom-of-the-crowds” GRN inference pipeline and couple it to complex network analysis to understand the organizational principles governing gene regulation in long-lived glp-1/Notch Caenorhabditis elegans. The GRN has three layers (input, core, and output) and is topologically equivalent to bow-tie/hourglass structures prevalent among metabolic networks. To assess the functional importance of structural layers, we screened 80% of regulators and discovered 50 new aging genes, 86% with human orthologues. Genes essential for longevity—including ones involved in insulin-like signaling (ILS)—are at the core, indicating that GRN's structure is predictive of functionality. We used in vivo reporters and a novel functional network covering 5,497 genetic interactions to make mechanistic predictions. We used genetic epistasis to test some of these predictions, uncovering a novel transcriptional regulator, sup-37, that works alongside DAF-16/FOXO. We present a framework with predictive power that can accelerate discovery in C. elegans and potentially humans. Gene-regulatory inference provides global network of long-lived animals The large-scale topology of the network has an hourglass structure Membership to the core of the hourglass is a good predictor of functionality Discovered 50 novel aging genes, including sup-37, a DAF-16 dependent gene
Collapse
Affiliation(s)
| | | | - Abraham Mains
- Babraham Institute, Babraham, Cambridge CB22 3AT, UK
| | | | | | | | - Rebeca Aldunate
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Felix Krueger
- Babraham Institute, Babraham, Cambridge CB22 3AT, UK
| | - Roger Guimerà
- ICREA, Barcelona 08010, Catalonia, Spain.,Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Catalonia, Spain
| | - Simon Andrews
- Babraham Institute, Babraham, Cambridge CB22 3AT, UK
| | - Marta Sales-Pardo
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Catalonia, Spain
| | | |
Collapse
|
47
|
Tang X, Zhao Y, Liu Y, Liu Y, Liu Y, Niu F, Fang F. 3,6'-disinapoyl sucrose attenuates Aβ 1-42 - induced neurotoxicity in Caenorhabditis elegans by enhancing antioxidation and regulating autophagy. J Cell Mol Med 2022; 26:1024-1033. [PMID: 35044105 PMCID: PMC8831957 DOI: 10.1111/jcmm.17153] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
The aggregation of β‐amyloid (Aβ) has the neurotoxicity, which is thought to play critical role in the pathogenesis of Alzheimer's disease (AD). Inhibiting Aβ deposition and neurotoxicity has been considered as an important strategy for AD treatment. 3,6'‐Disinapoyl sucrose (DISS), one of the oligosaccharide esters derived from traditional Chinese medicine Polygalae Radix, possesses antioxidative activity, neuroprotective effect and anti‐depressive activity. This study was to explore whether DISS could attenuate the pathological changes of Aβ1‐42 transgenic Caenorhabditis elegans (C. elegans). The results showed that DISS (5 and 50 μM) treatment significantly prolonged the life span, increased the number of egg‐laying, reduced paralysis rate, decreased the levels of lipofuscin and ROS and attenuated Aβ deposition in Aβ1‐42 transgenic C. elegans. Gene analysis showed that DISS could up‐regulate the mRNA expression of sod‐3, gst‐4, daf‐16, bec‐1 and lgg‐1, while down‐regulate the mRNA expression of daf‐2 and daf‐15 in Aβ1‐42 transgenic C. elegans. These results suggested that DISS has the protective effect against Aβ1‐42‐induced pathological damages and prolongs the life span of C. elegans, which may be related to the reduction of Aβ deposition and neurotoxicity by regulating expression of genes related to antioxidation and autophagy.
Collapse
Affiliation(s)
- Xiaoli Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuming Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yanan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Liu
- State Key Lab for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fenxi Niu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fang Fang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
48
|
Zečić A, Dhondt I, Braeckman BP. Accumulation of Glycogen and Upregulation of LEA-1 in C. elegans daf-2(e1370) Support Stress Resistance, Not Longevity. Cells 2022; 11:245. [PMID: 35053361 PMCID: PMC8773926 DOI: 10.3390/cells11020245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/26/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
DAF-16-dependent activation of a dauer-associated genetic program in the C. elegans insulin/IGF-1 daf-2(e1370) mutant leads to accumulation of large amounts of glycogen with concomitant upregulation of glycogen synthase, GSY-1. Glycogen is a major storage sugar in C. elegans that can be used as a short-term energy source for survival, and possibly as a reservoir for synthesis of a chemical chaperone trehalose. Its role in mitigating anoxia, osmotic and oxidative stress has been demonstrated previously. Furthermore, daf-2 mutants show increased abundance of the group 3 late embryogenesis abundant protein LEA-1, which has been found to act in synergy with trehalose to exert its protective role against desiccation and heat stress in vitro, and to be essential for desiccation tolerance in C. elegans dauer larvae. Here we demonstrate that accumulated glycogen is not required for daf-2 longevity, but specifically protects against hyperosmotic stress, and serves as an important energy source during starvation. Similarly, lea-1 does not act to support daf-2 longevity. Instead, it contributes to increased resistance of daf-2 mutants to heat, osmotic, and UV stress. In summary, our experimental results suggest that longevity and stress resistance can be uncoupled in IIS longevity mutants.
Collapse
Affiliation(s)
| | | | - Bart P. Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium; (A.Z.); (I.D.)
| |
Collapse
|
49
|
Schwartz EKC, Sosner EN, Desmond HE, Lum SJ, Sze JY, Mobbs CV. Serotonin and Dopamine Mimic Glucose-Induced Reinforcement in C. elegans: Potential Role of NSM Neurons and the Serotonin Subtype 4 Receptor. Front Physiol 2022; 12:783359. [PMID: 34987416 PMCID: PMC8721000 DOI: 10.3389/fphys.2021.783359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Food produces powerful reinforcement that can lead to overconsumption and likely contributes to the obesity epidemic. The present studies examined molecular mechanisms mediating food-induced reinforcement in the model system C. elegans. After a 1-h training session during which food (bacteria) is paired with the odorant butanone, odor preference for butanone robustly increased. Glucose mimicked this effect of bacteria. Glucose-induced odor preference was enhanced similarly by prior food withdrawal or blocking glucose metabolism in the presence of food. Food- and glucose-induced odor preference was mimicked by serotonin signaling through the serotonin type-4 (5-HT4) receptor. Dopamine (thought to act primarily through a D1-like receptor) facilitated, whereas the D2 agonist bromocriptine blocked, food- and glucose-induced odor preference. Furthermore, prior food withdrawal similarly influenced reward produced by serotonin, dopamine, or food, implying post-synaptic enhancement of sensitivity to serotonin and dopamine. These results suggest that glucose metabolism plays a key role in mediating both food-induced reinforcement and enhancement of that reinforcement by prior food withdrawal and implicate serotonergic signaling through 5-HT4 receptor in the re-enforcing properties of food.
Collapse
Affiliation(s)
- Elizabeth K C Schwartz
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eitan N Sosner
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hayley E Desmond
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stephanie J Lum
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ji Ying Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Charles V Mobbs
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
50
|
Soo SK, Traa A, Rudich PD, Mistry M, Van Raamsdonk JM. Activation of mitochondrial unfolded protein response protects against multiple exogenous stressors. Life Sci Alliance 2021; 4:e202101182. [PMID: 34583931 PMCID: PMC8500221 DOI: 10.26508/lsa.202101182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022] Open
Abstract
The mitochondrial unfolded protein response (mitoUPR) is an evolutionarily conserved pathway that responds to mitochondria insults through transcriptional changes, mediated by the transcription factor ATFS-1/ATF-5, which acts to restore mitochondrial homeostasis. In this work, we characterized the role of ATFS-1 in responding to organismal stress. We found that activation of ATFS-1 is sufficient to cause up-regulation of genes involved in multiple stress response pathways including the DAF-16-mediated stress response pathway, the cytosolic unfolded protein response, the endoplasmic reticulum unfolded protein response, the SKN-1-mediated oxidative stress response pathway, the HIF-1-mediated hypoxia response pathway, the p38-mediated innate immune response pathway, and antioxidant genes. Constitutive activation of ATFS-1 increases resistance to multiple acute exogenous stressors, whereas disruption of atfs-1 decreases stress resistance. Although ATFS-1-dependent genes are up-regulated in multiple long-lived mutants, constitutive activation of ATFS-1 decreases lifespan in wild-type animals. Overall, our work demonstrates that ATFS-1 serves a vital role in organismal survival of acute stressors through its ability to activate multiple stress response pathways but that chronic ATFS-1 activation is detrimental for longevity.
Collapse
Affiliation(s)
- Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Paige D Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Meeta Mistry
- Bioinformatics Core, Harvard School of Public Health, Harvard Medical School, Boston, MA, USA
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|