1
|
Chawla P, Sharma I, Gau D, Eder I, Chen F, Yu V, Welling N, Boone D, Taboas J, Lee AV, Larregina A, Galson DL, Roy P. Breast cancer cells promote osteoclast differentiation in an MRTF-dependent paracrine manner. Mol Biol Cell 2025; 36:ar8. [PMID: 39630611 PMCID: PMC11742114 DOI: 10.1091/mbc.e24-06-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/07/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Bone is a frequent site for breast cancer metastasis. The vast majority of breast cancer-associated metastasis is osteolytic in nature, and RANKL (receptor activator for nuclear factor κB)-induced differentiation of bone marrow-derived macrophages to osteoclasts (OCLs) is a key requirement for osteolytic metastatic growth of cancer cells. In this study, we demonstrate that Myocardin-related transcription factor (MRTF) in breast cancer cells plays an important role in paracrine modulation of RANKL-induced OCL differentiation. This is partly attributed to MRTFs' critical role in maintaining the basal cellular expression of connective tissue growth factor (CTGF), findings that align with a strong positive correlation between CTGF expression and MRTF-A gene signature in the human disease context. Luminex analyses reveal that MRTF depletion in breast cancer cells has a broad impact on OCL-regulatory cell-secreted factors that extend beyond CTGF. Experimental metastasis studies demonstrate that MRTF depletion diminishes OCL abundance and bone colonization of breast cancer cells in vivo, suggesting that MRTF inhibition could be an effective strategy to diminish OCL formation and skeletal involvement in breast cancer. In summary, this study highlights a novel tumor-extrinsic function of MRTF relevant to breast cancer metastasis.
Collapse
Affiliation(s)
- Pooja Chawla
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219
| | - Ishani Sharma
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219
| | - David Gau
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219
- Pathology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Ian Eder
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219
| | - Fangyuan Chen
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Virginia Yu
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219
| | - Niharika Welling
- Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213
| | - David Boone
- Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206
| | - Juan Taboas
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219
- School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Adrian V. Lee
- Pharmacology, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Deborah L. Galson
- Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Partha Roy
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219
- Pathology, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
2
|
Wong D, Qiu H. New insights into the pharmacological inhibition of SRF activity: Key inhibitory targets and mechanisms. Vascul Pharmacol 2024; 157:107443. [PMID: 39586415 PMCID: PMC11648470 DOI: 10.1016/j.vph.2024.107443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
Serum Response Factor (SRF) is a critical regulatory transcription factor widely expressed across cell types and is essential for animal survival. Excessive SRF activity has been linked to various pathological conditions and diseases, including cardiovascular diseases, cancers and neurodegenerative disorders, making the inhibition of SRF hyperactivity a promising therapeutic strategy. This review summarizes recent advancements in the discovery and development of SRF inhibitors, their regulatory mechanisms, and their respective molecular foundations. These insights deepen our understanding of current therapeutic potentials, paving the way for novel approaches to treat diseases associated with SRF hyperactivity.
Collapse
Affiliation(s)
- Daniel Wong
- Translational Cardiovascular Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA.
| | - Hongyu Qiu
- Translational Cardiovascular Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; Clinical Translational Sciences (CTS) and Bio5 Institution, University of Arizona, Tucson, AZ 8572, USA.
| |
Collapse
|
3
|
Panesso-Gómez S, Cole AJ, Wield A, Anyaeche VI, Shah J, Jiang Q, Ebai T, Sharrow AC, Tseng G, Yoon E, Brown DD, Clark AM, Larsen SD, Eder I, Gau D, Roy P, Dahl KN, Tran L, Jiang H, McAuliffe PF, Lee AV, Buckanovich RJ. Identification of the MRTFA/SRF pathway as a critical regulator of quiescence in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623825. [PMID: 39605642 PMCID: PMC11601311 DOI: 10.1101/2024.11.15.623825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chemoresistance is a major driver of cancer deaths. One understudied mechanism of chemoresistance is quiescence. We used single cell culture to identify, retrieve, and RNA-Seq profile primary quiescent ovarian cancer cells (qOvCa). We found that many qOvCa differentially expressed genes are transcriptional targets of the Myocardin Related Transcription Factor/Serum Response Factor (MRTF/SRF) pathway. We also found that genetic disruption of MRTF-SRF interaction, or an MRTF/SRF inhibitor (CCG257081) impact qOvCa gene expression and induce a quiescent state in cancer cells. Suggesting a broad role for this pathway in quiescence, CCG257081 treatment induced quiescence in breast, lung, colon, pancreatic and ovarian cancer cells. Furthermore, CCG081 (i) maintained a quiescent state in patient derived breast cancer organoids and, (ii) induced tumor growth arrest in ovarian cancer xenografts. Together, these data suggest that MRTF/SRF pathway is a critical regulator of quiescence in cancer and a possible therapeutic target.
Collapse
Affiliation(s)
- Santiago Panesso-Gómez
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander J Cole
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Wield
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vivian I Anyaeche
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jaynish Shah
- Australian Centre for Blood Diseases, Central Clinical School, Monash University and Alfred Health, Melbourne, VIC, Australia
| | - Qi Jiang
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tonge Ebai
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allison C Sharrow
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - George Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Euisik Yoon
- Department of Electrical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Daniel D Brown
- Women's Cancer Research Center, Magee-Women's Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amanda M Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott D Larsen
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ian Eder
- Department of Bioengineering, University of Pittsburgh, PA, USA
| | - David Gau
- Department of Bioengineering, University of Pittsburgh, PA, USA
| | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, PA, USA
| | - Kris N Dahl
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lam Tran
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Hui Jiang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | | | - Adrian V Lee
- Women's Cancer Research Center, Magee-Women's Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ronald J Buckanovich
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Chawla P, Sharma I, Gau D, Eder I, Chen F, Yu V, Welling N, Boone D, Taboas J, Lee AV, Larregina A, Galson DL, Roy P. Breast cancer cells promote osteoclast differentiation in an MRTF-dependent paracrine manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570453. [PMID: 38106226 PMCID: PMC10723471 DOI: 10.1101/2023.12.06.570453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Bone is a frequent site for breast cancer metastasis. The vast majority of breast cancer-associated metastasis is osteolytic in nature, and RANKL (receptor activator for nuclear factor κB)-induced differentiation of bone marrow-derived macrophages (BMDMs) to osteoclasts (OCLs) is a key requirement for osteolytic metastatic growth of cancer cells. In this study, we demonstrate that Myocardin-related transcription factor (MRTF) in breast cancer cells plays an important role in paracrine modulation of RANKL-induced osteoclast differentiation. This is partly attributed to MRTF's critical role in maintaining the basal cellular expression of connective tissue growth factor (CTGF), findings that align with a strong positive correlation between CTGF expression and MRTF-A gene signature in the human disease context. Luminex analyses reveal that MRTF depletion in breast cancer cells has a broad impact on OCL-regulatory cell-secreted factors that extend beyond CTGF. Experimental metastasis studies demonstrate that MRTF depletion diminishes OCL abundance and bone colonization breast cancer cells in vivo , suggesting that MRTF inhibition could be an effective strategy to diminish OCL formation and skeletal involvement in breast cancer. In summary, this study highlights a novel tumor-extrinsic function of MRTF relevant to breast cancer metastasis. SIGNIFICANCE STATEMENT MRTF, a transcriptional coactivator of SRF, is known to promote breast cancer progression through its tumor-cell-intrinsic function. Whether and how MRTF activity in tumor cells modulates other types of cells in the tumor microenvironment are not clearly understood.This study uncovers a novel tumor-cell-extrinsic function of MRTF in breast cancer cells in promoting osteoclast differentiation partly through CTGF regulation, and further demonstrates MRTF's requirement for bone colonization of breast cancer cells in vivo.Our studies suggest that MRTF inhibition could be an effective strategy to diminish osteoclast formation and skeletal involvement in metastatic breast cancer.
Collapse
|
5
|
Eder I, Yu V, Antonello J, Chen F, Gau D, Chawla P, Joy M, Lucas PC, Boone D, Lee AV, Roy P. mDia2 is an important mediator of MRTF-A-dependent regulation of breast cancer cell migration. Mol Biol Cell 2024; 35:ar133. [PMID: 39196658 PMCID: PMC11481706 DOI: 10.1091/mbc.e24-01-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 08/30/2024] Open
Abstract
Dysregulated actin cytoskeleton gives rise to aberrant cell motility and metastatic spread of tumor cells. This study evaluates the effect of overexpression of wild-type versus functional mutants of MRTF-A on migration and invasion of breast cancer (BC) cells. Our studies indicate that SRF's interaction is critical for MRTF-A-induced promotion of both two-dimensional and three-dimensional cell migration, while the SAP-domain function is important selectively for three-dimensional cell migration. Increased MRTF-A activity is associated with more effective membrane protrusion, a phenotype that is attributed predominantly to SRF's interaction with MRTF. We demonstrate formin-family protein mDia2 as an important mediator of MRTF-stimulated actin polymerization at the leading edge and cell migration. Multiplexed quantitative immunohistochemistry and transcriptome analyses of clinical BC specimens further demonstrate a positive correlation between nuclear localization of MRTF with malignant traits of cancer cells and enrichment of MRTF-SRF gene signature in pair-matched distant metastases versus primary tumors. In conclusion, this study establishes a novel mechanism of MRTF-dependent regulation of cell migration and provides evidence for the association between MRTF activity and increased malignancy in human BC, justifying future development of specific small molecule inhibitors of the MRTF-SRF transcriptional complex as potential therapeutic agents in BC.
Collapse
Affiliation(s)
- Ian Eder
- Bioengineering, University of Pittsburgh, PA 15219
| | - Virginia Yu
- Bioengineering, University of Pittsburgh, PA 15219
| | | | - Fangyuan Chen
- School of Medicine, University of Pittsburgh, PA 15261
- School of Medicine, Tsinghua University, China, Beijing 100084
| | - David Gau
- Bioengineering, University of Pittsburgh, PA 15219
| | - Pooja Chawla
- Bioengineering, University of Pittsburgh, PA 15219
| | - Marion Joy
- Hillman Cancer Center, University of Pittsburgh, PA 15232
| | - Peter C. Lucas
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905
| | - David Boone
- Biomedical Informatics, University of Pittsburgh, PA 15206
| | | | - Partha Roy
- Bioengineering, University of Pittsburgh, PA 15219
- Pathology, University of Pittsburgh, PA 15213
| |
Collapse
|
6
|
Eder I, Yu V, Antonello J, Chen F, Gau D, Chawla P, Joy M, Lucas P, Boone D, Lee AV, Roy P. mDia2 is an important mediator of MRTF-A-dependent regulation of breast cancer cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572883. [PMID: 38187641 PMCID: PMC10769385 DOI: 10.1101/2023.12.21.572883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Dysregulated actin cytoskeleton gives rise to aberrant cell motility and metastatic spread of tumor cells. This study evaluates the effect of overexpression of wild-type vs functional mutants of MRTF-A on migration and invasion of breast cancer (BC) cells. Our studies indicate that SRF's interaction is critical for MRTF-A-induced promotion of both 2D and 3D cell migration, while the SAP-domain function is important selectively for 3D cell migration. Increased MRTF-A activity is associated with more effective membrane protrusion, a phenotype that is attributed predominantly to SRF's interaction of MRTF. We demonstrate formin-family protein mDia2 as an important mediator of MRTF-stimulated actin polymerization at the leading edge and cell migration. Multiplexed quantitative immunohistochemistry and transcriptome analyses of clinical BC specimens further demonstrate a positive correlation between nuclear localization of MRTF with malignant traits of cancer cells and enrichment of MRTF-SRF gene signature in pair-matched distant metastases vs primary tumors. In conclusion, this study establishes a novel mechanism of MRTF-dependent regulation of cell migration and provides evidence for the association between MRTF activity and increased malignancy in human breast cancer, justifying future development of a specific small molecule inhibitor of the MRTF-SRF transcriptional complex as a potential therapeutic agent in breast cancer. SIGNIFICANCE Actin cytoskeletal dysregulation gives rise to metastatic dissemination of cancer cells. This study mechanistically investigates the impact of specific functional disruption of MRTF (a transcriptional co-factor of SRF) on breast cancer cell migration.This study establishes a novel mechanism linking mDia2 to MRTF-dependent regulation of cell migration and provides clinical evidence for the association between MRTF activity and increased malignancy in human breast cancer.Findings from these studies justify future exploration of specific small molecule inhibitor of the MRTF-SRF transcriptional complex as a potential therapeutic agent in breast cancer.
Collapse
|
7
|
Prajapati B, Sokolova M, Sidorenko E, Kyriacou M, Kyheröinen S, Vihervaara A, Vartiainen MK. CCG-1423-derived compounds reduce global RNA synthesis and inhibit transcriptional responses. J Cell Sci 2024; 137:jcs261790. [PMID: 38841882 DOI: 10.1242/jcs.261790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Myocardin-related transcription factors (MRTFs) are coactivators of serum response factor (SRF), and thereby regulate cytoskeletal gene expression in response to actin dynamics. MRTFs have also been implicated in transcription of heat shock protein (HSP)-encoding genes in fly ovaries, but the mechanisms remain unclear. Here, we demonstrate that, in mammalian cells, MRTFs are dispensable for gene induction of HSP-encoding genes. However, the widely used small-molecule inhibitors of the MRTF-SRF transcription pathway, derived from CCG-1423, also efficiently inhibit gene transcription of HSP-encoding genes in both fly and mammalian cells in the absence of MRTFs. Quantifying RNA synthesis and RNA polymerase distribution demonstrates that CCG-1423-derived compounds have a genome-wide effect on transcription. Indeed, tracking nascent transcription at nucleotide resolution reveals that CCG-1423-derived compounds reduce RNA polymerase II elongation, and severely dampen the transcriptional response to heat shock. The effects of CCG-1423-derived compounds therefore extend beyond the MRTF-SRF pathway into nascent transcription, opening novel opportunities for their use in transcription research.
Collapse
Affiliation(s)
- Bina Prajapati
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790, Finland
| | - Maria Sokolova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790, Finland
| | - Ekaterina Sidorenko
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790, Finland
| | - Mikael Kyriacou
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790, Finland
| | - Salla Kyheröinen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790, Finland
| | - Anniina Vihervaara
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm 17165, Sweden
| | - Maria K Vartiainen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790, Finland
| |
Collapse
|
8
|
Foda BM, Neubig RR. Role of Rho/MRTF in Aggressive Vemurafenib-Resistant Murine Melanomas and Immune Checkpoint Upregulation. Int J Mol Sci 2023; 24:13785. [PMID: 37762086 PMCID: PMC10531039 DOI: 10.3390/ijms241813785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Cutaneous melanoma is the deadliest skin cancer. Most have Ras-MAPK pathway (BRAFV600E or NRAS) mutations and highly effective targeted therapies exist; however, they and immune therapies are limited by resistance, in part driven by small GTPase (Rho and Rac) activation. To facilitate preclinical studies of combination therapies to provide durable responses, we describe the first mouse melanoma lines resistant to BRAF inhibitors. Treatment of mouse lines, YUMM1.7 and YUMMER, with vemurafenib (Vem), the BRAFV600E-selective inhibitor, resulted in high-level resistance (IC50 shifts 20-30-fold). Resistant cells showed enhanced activation of Rho and the downstream transcriptional coactivator, myocardin-related transcription factor (MRTF). Resistant cells exhibited increased stress fibers, nuclear translocation of MRTF-A, and an increased MRTF-A gene signature. Pharmacological inhibition of the Rho/MRTF pathway using CCG-257081 reduced viability of resistant lines and enhanced sensitivity to Vem. Remarkably, co-treatment of parental lines with Vem and CCG-257081 eliminated resistant colony development. Resistant cells grew more slowly in vitro, but they developed highly aggressive tumors with a shortened survival of tumor-bearing mice. Increased expression of immune checkpoint inhibitor proteins (ICIs) in resistant lines may contribute to aggressive in vivo behavior. Here, we introduce the first drug-resistant mouse melanoma models for assessing combinations of targeted and immune therapies.
Collapse
Affiliation(s)
- Bardees M. Foda
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48823, USA;
- Molecular Genetics and Enzymology Department, National Research Centre, Dokki 12622, Egypt
| | - Richard R. Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48823, USA;
- Nicholas V. Perricone, M.D. Division of Dermatology, Department of Medicine, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|