1
|
Kishi S, Nagasu H, Kidokoro K, Kashihara N. Oxidative stress and the role of redox signalling in chronic kidney disease. Nat Rev Nephrol 2024; 20:101-119. [PMID: 37857763 DOI: 10.1038/s41581-023-00775-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
Chronic kidney disease (CKD) is a major public health concern, underscoring a need to identify pathogenic mechanisms and potential therapeutic targets. Reactive oxygen species (ROS) are derivatives of oxygen molecules that are generated during aerobic metabolism and are involved in a variety of cellular functions that are governed by redox conditions. Low levels of ROS are required for diverse processes, including intracellular signal transduction, metabolism, immune and hypoxic responses, and transcriptional regulation. However, excess ROS can be pathological, and contribute to the development and progression of chronic diseases. Despite evidence linking elevated levels of ROS to CKD development and progression, the use of low-molecular-weight antioxidants to remove ROS has not been successful in preventing or slowing disease progression. More recent advances have enabled evaluation of the molecular interactions between specific ROS and their targets in redox signalling pathways. Such studies may pave the way for the development of sophisticated treatments that allow the selective control of specific ROS-mediated signalling pathways.
Collapse
Affiliation(s)
- Seiji Kishi
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| |
Collapse
|
2
|
Elmarakby AA, Saad KM, Crislip GR, Sullivan JC. Acute nitric oxide synthase inhibition induces greater increases in blood pressure in female versus male Wistar Kyoto rats. Physiol Rep 2023; 11:e15771. [PMID: 37549936 PMCID: PMC10406564 DOI: 10.14814/phy2.15771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 08/09/2023] Open
Abstract
Nitric oxide (NO) contributes to blood pressure (BP) regulation via its vasodilatory and anti-inflammatory properties. We and others previously reported sex differences in BP in normotensive and hypertensive rat models where females have lower BP than age-matched males. As females are known to have greater NO bioavailability than age-matched males, the current study was designed to test the hypothesis that anesthetized female normotensive Wistar Kyoto rats (WKY) are more responsive to acute NOS inhibition-induced increases in BP compared to male WKY. Twelve-week-old male and female WKY were randomized to infusion of the nonspecific NOS inhibitor NG -nitro-L-arginine methyl ester (L-NAME, 1 mg/kg/min) or selective NOS1 inhibition with vinyl-L-NIO (VNIO, 0.5 mg/kg/min) for 60 min. Mean arterial BP, glomerular filtration rate (GFR), urine volume, and electrolyte excretion were assessed before, and during L-NAME or VNIO infusion. L-NAME and VNIO significantly increased BP in both sexes; however, the increase in BP with L-NAME infusion was greater in females versus males compared to baseline BP values. Acute infusion of neither L-NAME nor VNIO for 60 min altered GFR in either sex. However, urine volume, sodium, chloride and potassium excretion levels increased comparably in male and female WKY with L-NAME and VNIO infusion. Our findings suggest sex differences in BP responses to acute non-isoform-specific NOS inhibition in WKY, with females being more responsive to L-NAME-induced elevations in BP relative to male WKY. However, sex differences in the BP response did not coincide with sex differences in renal hemodynamic responses to acute NOS inhibition.
Collapse
Affiliation(s)
- Ahmed A. Elmarakby
- Departments of Oral Biology & Diagnostic SciencesAugusta UniversityAugustaGeorgiaUSA
- Department of Pharmacology and Toxicology, Faculty of PharmacyMansoura UniversityMansouraEgypt
| | - Karim M. Saad
- Departments of Oral Biology & Diagnostic SciencesAugusta UniversityAugustaGeorgiaUSA
- Department of Pharmacology and Toxicology, Faculty of PharmacyMansoura UniversityMansouraEgypt
| | - G. Ryan Crislip
- Departments of PhysiologyAugusta UniversityAugustaGeorgiaUSA
| | | |
Collapse
|
3
|
Wang A, Tian X, Xu J, Li H, Xu Q, Chen P, Meng X, Wang Y. Soluble lectin-like oxidized low-density Lipoproteinreceptor-1 and recurrent stroke: A nested case-control study. CNS Neurosci Ther 2022; 28:2001-2010. [PMID: 35909324 PMCID: PMC9627350 DOI: 10.1111/cns.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/06/2022] [Accepted: 07/17/2022] [Indexed: 02/06/2023] Open
Abstract
MAIN PROBLEM The prognostic value of soluble lectin-like oxidized low-density lipoproteinreceptor-1 (sLOX-1) for stroke was unclearly. This study aimed to investigate the association between sLOX-1 and recurrent stroke in patients with acute ischemic stroke (AIS) or transient ischemic attack (TIA). METHODS Data were obtained from the Third China National Stroke Registry. Eligible cases consisted of 400 patients who developed recurrent stroke within 1-year follow-up, 800 controls were selected using age- and sex-matched with a 1:2 case-control ratio. Conditional logistic regressions were used to evaluate the association between sLOX-1 and recurrent stroke. RESULTS Among 1200 patients included in this study, the median (interquartile range) of sLOX-1 was 247.12 (132.81-413.58) ng/L. After adjustment for conventional confounding factors, the odds ratio with 95% confidence interval in the highest tertile versus the lowest tertile was 2.23 (1.61-3.08) for recurrent stroke, 2.31 (1.64-3.24) for ischemic stroke, 2.30 (1.66-3.19) for combined vascular events within 1-year follow-up. Furthermore, the addition of sLOX-1 to a conventional risk model had an incremental effect on predictive value for recurrent stroke (C-statistics 0.76, p < 0.0001; integrated discrimination improvement 13.38%, p < 0.0001; net reclassification improvement 55.39%, p < 0.0001). Similar results were observed when the timepoint was set up as 3 months. Subgroup analysis showed the association between higher sLOX-1 and recurrent stroke was more pronounced in patients with a history of stroke (p for interaction = 0.0062). CONCLUSIONS sLOX-1 was positively associated with the risk of recurrent stroke, which may be a candidate biomarker to improve risk stratification of recurrent stroke.
Collapse
Affiliation(s)
- Anxin Wang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Xue Tian
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Department of Epidemiology and Health StatisticsSchool of Public Health, Capital Medical UniversityBeijingChina
| | - Jie Xu
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Hao Li
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Qin Xu
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Pan Chen
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Xia Meng
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Yongjun Wang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
4
|
The role of nitric oxide in sepsis-associated kidney injury. Biosci Rep 2022; 42:231441. [PMID: 35722824 PMCID: PMC9274646 DOI: 10.1042/bsr20220093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 01/09/2023] Open
Abstract
Sepsis is one of the leading causes of acute kidney injury (AKI), and several mechanisms including microcirculatory alterations, oxidative stress, and endothelial cell dysfunction are involved. Nitric oxide (NO) is one of the common elements to all these mechanisms. Although all three nitric oxide synthase (NOS) isoforms are constitutively expressed within the kidneys, they contribute in different ways to nitrergic signaling. While the endothelial (eNOS) and neuronal (nNOS) isoforms are likely to be the main sources of NO under basal conditions and participate in the regulation of renal hemodynamics, the inducible isoform (iNOS) is dramatically increased in conditions such as sepsis. The overexpression of iNOS in the renal cortex causes a shunting of blood to this region, with consequent medullary ischemia in sepsis. Differences in the vascular reactivity among different vascular beds may also help to explain renal failure in this condition. While most of the vessels present vasoplegia and do not respond to vasoconstrictors, renal microcirculation behaves differently from nonrenal vascular beds, displaying similar constrictor responses in control and septic conditions. The selective inhibition of iNOS, without affecting other isoforms, has been described as the ideal scenario. However, iNOS is also constitutively expressed in the kidneys and the NO produced by this isoform is important for immune defense. In this sense, instead of a direct iNOS inhibition, targeting the NO effectors such as guanylate cyclase, potassium channels, peroxynitrite, and S-nitrosothiols, may be a more interesting approach in sepsis-AKI and further investigation is warranted.
Collapse
|
5
|
Gheibi S, Samsonov AP, Gheibi S, Vazquez AB, Kashfi K. Regulation of carbohydrate metabolism by nitric oxide and hydrogen sulfide: Implications in diabetes. Biochem Pharmacol 2020; 176:113819. [PMID: 31972170 DOI: 10.1016/j.bcp.2020.113819] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/15/2020] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two gasotransmitters that are produced in the human body and have a key role in many of the physiological activities of the various organ systems. Decreased NO bioavailability and deficiency of H2S are involved in the pathophysiology of type 2 diabetes and its complications. Restoration of NO levels have favorable metabolic effects in diabetes. The role of H2S in pathophysiology of diabetes is however controversial; H2S production is decreased during development of obesity, diabetes, and its complications, suggesting the potential therapeutic effects of H2S. On the other hand, increased H2S levels disturb the pancreatic β-cell function and decrease insulin secretion. In addition, there appear to be important interactions between NO and H2S at the levels of both biosynthesis and signaling pathways, yet clear an insight into this relationship is lacking. H2S potentiates the effects of NO in the cardiovascular system as well as NO release from its storage pools. Likewise, NO increases the activity and the expression of H2S-generating enzymes. Inhibition of NO production leads to elimination/attenuation of the cardioprotective effects of H2S. Regarding the increasing interest in the therapeutic applications of NO or H2S-releasing molecules in a variety of diseases, particularly in the cardiovascular disorders, much is to be learned about their function in glucose/insulin metabolism, especially in diabetes. The aim of this review is to provide a better understanding of the individual and the interactive roles of NO and H2S in carbohydrate metabolism.
Collapse
Affiliation(s)
- Sevda Gheibi
- Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden.
| | - Alan P Samsonov
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Shahsanam Gheibi
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Alexandra B Vazquez
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY, USA.
| |
Collapse
|
6
|
Zhang B, Gan L, Shahid MS, Lv Z, Fan H, Liu D, Guo Y. In vivo and in vitro protective effect of arginine against intestinal inflammatory response induced by Clostridium perfringens in broiler chickens. J Anim Sci Biotechnol 2019; 10:73. [PMID: 31428367 PMCID: PMC6697915 DOI: 10.1186/s40104-019-0371-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/07/2019] [Indexed: 01/29/2023] Open
Abstract
Background Necrotic enteritis is a widespread disease in poultry caused by Clostridium perfringens. We previously reported that dietary arginine supplementation protected the intestinal mucosa of broiler chickens with necrotic enteritis, but the related protective mechanisms remain unclear. The in vivo trial was designed as a 2 × 2 factorial arrangement to evaluated the effects of arginine supplementation on inflammatory responses, arginine transporters, arginine catabolism and JAK-STAT signalling pathway in broiler chickens challenged with C. perfringens or without C. perfringens. Furthermore, we validated the in vivo results using intestinal epithelial cells of chicken embryos. Results C. perfringens infection markedly increased gut gross pathological and histopathological lesion scores, promoted liver C. perfringens invasion, reduced serum arginine levels, and elevated jejunal mucosal lysozyme activities (P < 0.05), but these effects were significantly reversed by arginine supplementation in vivo (P < 0.05). The challenge significantly increased serum procalcitonin levels, jejunal mucosal iNOS activities and jejunal IL-6, TGF-β3, cationic amino acid transporter (CAT)-1, and CAT-3 mRNA expression (P < 0.05), whereas arginine supplementation significantly reduced jejunal IFN-γ, IL-1β, IL-6, IL-10, TGF-β3, and CAT-3 mRNA expression (P < 0.05). Arginine supplementation significantly attenuated the C. perfringens challenge-induced increases in jejunal iNOS, arginase 2, arginine decarboxylase, arginine:glycine amidinotransferase, JAK1, JAK3, STAT1, and STAT6 mRNA expression (P < 0.05). The in vitro experiment showed that C. perfringens challenge markedly increased cellular cytotoxicity and the mRNA expression of IL-1β, IL-8, IL-10, CAT-1 and CAT-3 (P < 0.05), which were significantly reversed by 50 μmol/L and/or 400 μmol/L arginine pre-treatment (P < 0.05). Conclusions Arginine prevented C. perfringens challenge-induced circulated arginine deficiency, normalized intestinal arginine transport and catabolism, down-regulated JAK-STAT signalling pathway and attenuated the inflammatory response, which exerted protective effects on the intestine of broiler chickens.
Collapse
Affiliation(s)
- Beibei Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Liping Gan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Muhammad Suhaib Shahid
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Hao Fan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| |
Collapse
|
7
|
Ohgi K, Kajiya H, Goto-T K, Okamoto F, Yoshinaga Y, Okabe K, Sakagami R. Toll-like receptor 2 activation primes and upregulates osteoclastogenesis via lox-1. Lipids Health Dis 2018; 17:132. [PMID: 29859535 PMCID: PMC5985062 DOI: 10.1186/s12944-018-0787-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/23/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lectin-like oxidized low-density-lipoprotein receptor 1 (Lox-1) is the receptor for oxidized low-density lipoprotein (oxLDL), a mediator in dyslipidemia. Toll-like receptor (TLR)-2 and - 4 are receptors of lipopolysaccharide (LPS) from Porphyromonas gingivalis, a major pathogen of chronic periodontitis. Although some reports have demonstrated that periodontitis has an adverse effect on dyslipidemia, little is clear that the mechanism is explained the effects of dyslipidemia on osteoclastogenesis. We have hypothesized that osteoclast oxLDL has directly effect on osteoclasts (OCs), and therefore alveolar bone loss on periodontitis may be increased by dyslipidemia. The present study aimed to elucidate the effect of Lox-1 on osteoclastogenesis associated with TLRs in vitro. METHODS Mouse bone marrow cells (BMCs) were stimulated with macrophage colony-stimulating factor into bone marrow macrophages (BMMs). The cells were also stimulated with synthetic ligands for TLR2 (Pam3CSK4) or TLR4 (Lipid A), with or without receptor activator of nuclear factor kappa-B ligand (RANKL), and assessed for osteoclastogenesis by tartrate-resistant acid phosphatase (TRAP) staining, immunostaining, western blotting, flow activated cell sorting (FACS) analysis, real-time polymerase chain reaction (PCR), and reverse transcription PCR. RESULTS Lox-1 expression was significantly upregulated by Pam3CSK4 and Lipid A in BMCs (p < 0.05), but not in BMMs. FACS analysis identified that Pam3CSK4 upregulated RANK and Lox-1 expression in BMCs. TRAP-positive cells were not increased by stimulation with Pam3CSK4 alone, but were increased by stimulation with combination combined Pam3CSK and oxLDL. Expression of both Lox-1 and myeloid differentiation factor 88 (MyD88), an essential adaptor protein in the TLR signaling pathway, were suppressed by inhibitors of TLR2, TLR4 and mitogen-activated protein kinase (MAPK). CONCLUSIONS This study supports that osteoclastogenesis is promoted under the coexistence of oxLDL by TLR2-induced upregulation of Lox-1 in BMCs. This indicates that periodontitis could worsen with progression of dyslipidemia.
Collapse
Affiliation(s)
- Kimiko Ohgi
- Department of Odontology, Fukuoka Dental College, Fukuoka, 8140193, Japan
| | - Hiroshi Kajiya
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, 8140193, Japan.
| | - Kazuko Goto-T
- Department of Dental Hygiene, Fukuoka College of Health Sciences, Fukuoka, 8140193, Japan
| | - Fujio Okamoto
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, 8140193, Japan
| | - Yasunori Yoshinaga
- Department of Odontology, Fukuoka Dental College, Fukuoka, 8140193, Japan
| | - Koji Okabe
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, 8140193, Japan
| | - Ryuji Sakagami
- Department of Odontology, Fukuoka Dental College, Fukuoka, 8140193, Japan
| |
Collapse
|
8
|
Skarpengland T, Skjelland M, Kong XY, Skagen K, Holm S, Otterdal K, Dahl CP, Krohg-Sørensen K, Sagen EL, Bjerkeli V, Aamodt AH, Abbas A, Gregersen I, Aukrust P, Halvorsen B, Dahl TB. Increased Levels of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Ischemic Stroke and Transient Ischemic Attack. J Am Heart Assoc 2018; 7:JAHA.117.006479. [PMID: 29330254 PMCID: PMC5850141 DOI: 10.1161/jaha.117.006479] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Soluble lectin‐like oxidized low‐density lipoprotein receptor‐1 (sLOX‐1) has been shown to be increased in patients with acute ischemic stroke. Here, we evaluated plasma sLOX‐1 levels and vascular carotid plaque LOX‐1 (ie, OLR1) gene expression in patients with ischemic stroke and transient ischemic attack (TIA) with particular focus on their relation to time since symptom onset. Methods and Results Plasma sLOX‐1 (n=232) and carotid plaque OLR1 gene expression (n=146) were evaluated in patients who were referred to evaluation for carotid endarterectomy, as well as in healthy control plasma (n=81). Patients were categorized according to presence of acute ischemic stroke or transient ischemic attack (n=35) ≤7 days, >7 days ≤3 months (n=90), >3 months (n=40), or no reported symptoms before study inclusion (n=67). Our major findings were the following: (1) Patients with carotid atherosclerosis had increased plasma sLOX‐1 levels as compared with controls. (2) Plaque OLR1 mRNA levels were increased in carotid plaques (n=146) compared with nonatherosclerotic vessels (ie, common iliac arteries of organ donors, n=10). (3) There were no differences in sLOX plasma levels or OLR1 gene expression when analyzed according to the time since relevant cerebral ischemic symptoms. (4) Also patients with severe carotid atherosclerosis without any previous ischemic events had raised sLOX‐1 levels. (5) Immunostaining showed colocalization between LOX‐1 and macrophages within the carotid plaques. (6) Also patients with acute stroke (within 7 days) caused by atrial fibrillation (n=22) had comparable raised sLOX‐1 levels. Conclusions sLOX‐1 levels are elevated in patients with ischemic stroke and transient ischemic attack independent of cause and time since the ischemic event.
Collapse
Affiliation(s)
- Tonje Skarpengland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Mona Skjelland
- Department of Neurology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Xiang Yi Kong
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammatory Research Center, University of Oslo, Norway
| | - Karolina Skagen
- Department of Neurology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kari Otterdal
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Christen P Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kirsten Krohg-Sørensen
- Department of Thoracic and Cardiovascular Surgery, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Norway
| | - Ellen L Sagen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammatory Research Center, University of Oslo, Norway
| | - Vigdis Bjerkeli
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Norway.,K.G. Jebsen Inflammatory Research Center, University of Oslo, Norway
| | - Anne Hege Aamodt
- Department of Neurology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Ida Gregersen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammatory Research Center, University of Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Norway.,K.G. Jebsen Inflammatory Research Center, University of Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Norway.,K.G. Jebsen Inflammatory Research Center, University of Oslo, Norway
| | - Tuva B Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway .,Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Norway.,K.G. Jebsen Inflammatory Research Center, University of Oslo, Norway
| |
Collapse
|
9
|
Aras B, Akçilar R, Koçak FE, Koçak H, Savran B, Metineren H, Karakuş YT, Yücel M. Effect of ukrain on ischemia/reperfusion-induced kidney injury in rats. J Surg Res 2016; 202:267-75. [PMID: 27229100 DOI: 10.1016/j.jss.2015.12.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/06/2015] [Accepted: 12/22/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND The aim of this study was to investigate the potential protective effect of ukrain on an experimental kidney injury model induced by ischemia and reperfusion (IR) in rats. MATERIAL AND METHODS A total of 24 male Sprague-Dawley rats were equally and randomly separated into three groups as follows: group-1: controls (C; only laparotomy); group 2: renal ischemia-reperfusion (IR; occlusion of the renal artery for 30 min and 2 h of reperfusion); and group 3: ukrain treatment and IR applied group (U + IR; occlusion of the renal artery for 30 min and 2 h of reperfusion; ukrain was intraperitoneally administered 1 h before the IR process). RESULTS Serum total oxidant status (TOS) and total antioxidant status (TAS) levels were measured. The oxidative stress index was determined by calculating the TOS/TAS ratio. TAS serum levels significantly increased, and TOS serum levels also prominently decreased in U + IR group, when compared with the IR group (P < 0.001). Mean NGAL level was remarkably higher in IR group, when compared with the U + IR group (P < 0.001). Caspase-3 messenger RNA (mRNA) expression level increased in IR and decreased in U + IR group (P < 0.001). Bcl-xL serum and mRNA expression levels increased in the U + IR group (P < 0.001). In addition, serum iNOS and mRNA expression levels increased in IR group and decreased in U + IR group (P < 0.001). CONCLUSIONS Data established from the present study suggest that ukrain may exhibit protective effect against IR-induced kidney injury and that antioxidant activity primarily modulates this effect.
Collapse
Affiliation(s)
- Bekir Aras
- Department of Urology, Faculty of Medicine, Dumlupınar University, Kutahya, Turkey.
| | - Raziye Akçilar
- Department of Physiology, Faculty of Medicine, Dumlupınar University, Kutahya, Turkey
| | - F Emel Koçak
- Department of Biochemistry, Faculty of Medicine, Dumlupınar University, Kutahya, Turkey
| | - Havva Koçak
- Department of Biochemistry, Faculty of Medicine, Dumlupınar University, Kutahya, Turkey
| | - Bircan Savran
- Department of Pediatric Surgery, Faculty of Medicine, Dumlupınar University, Kutahya, Turkey
| | - Hüseyin Metineren
- Department of Pathology, Faculty of Medicine, Dumlupınar University, Kutahya, Turkey
| | - Yasin Tuğrul Karakuş
- Department of Pediatry, Faculty of Medicine, Dumlupınar University, Kutahya, Turkey
| | - Mehmet Yücel
- Department of Urology, Faculty of Medicine, Dumlupınar University, Kutahya, Turkey
| |
Collapse
|
10
|
Xue J, Zhang X, Zhang C, Kang N, Liu X, Yu J, Zhang N, Wang H, Zhang L, Chen R, Cui L, Wang L, Wang X. Protective effect of Naoxintong against cerebral ischemia reperfusion injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2016; 182:181-189. [PMID: 26902830 DOI: 10.1016/j.jep.2016.02.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 01/05/2016] [Accepted: 02/14/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Naoxintong (NXT), a renowned traditional Chinese medicine in China, has been used for the treatment of acute and chronic cardio-cerebrovascular diseases in clinic for more than 20 years. AIM OF THE STUDY To evaluate the potential neuroprotective effect of NXT against ischemia reperfusion (I/R) injury in mice and investigate the underlying mechanisms. MATERIALS AND METHODS Focal cerebral I/R injury in adult male CD-1 mice was induced by transient middle cerebral artery occlusion (tMCAO) for 1h followed by reperfusion for 23h. Mice were randomly divided into five groups: Sham group; tMCAO group; Vehicle group; NXT-treated groups at doses of 0.36g/kg and 0.54g/kg. The effects of NXT on murine neurological function were estimated by neurological defect scores, infarct volume and brain water content at 24h after tMCAO. Immunohistochemistry and Western blot were used to detect the expression of LOX-1, pERK1/2 and NF-κB at 24h after tMCAO. qRT-PCR was used to detect the expression of LOX-1 and NF-κB at 24h after tMCAO. RESULTS Compared with Vehicle group, 0.54g/kg group of NXT significantly ameliorated neurological outcome, infarction volume and brain water content, decreased the expression of LOX-1, pERK1/2 and NF-κB (P<0.05). CONCLUSION NXT protected the mice brain against I/R injury, and this protection maybe associated with the down-regulation of LOX-1, pERK1/2 and NF-κB expression.
Collapse
Affiliation(s)
- Jing Xue
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, 050000, PR China.
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China
| | - Ning Kang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China
| | - Xiaoxia Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China
| | - Jingying Yu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China
| | - Nan Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China
| | - Hong Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China
| | - Lan Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China
| | - Rong Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, 050000, PR China
| | - Lili Cui
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, 050000, PR China
| | - Lina Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, 050000, PR China
| | - Xiaolu Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, 050000, PR China
| |
Collapse
|
11
|
Nakayachi M, Ito J, Hayashida C, Ohyama Y, Kakino A, Okayasu M, Sato T, Ogasawara T, Kaneda T, Suda N, Sawamura T, Hakeda Y. Lectin-like oxidized low-density lipoprotein receptor-1 abrogation causes resistance to inflammatory bone destruction in mice, despite promoting osteoclastogenesis in the steady state. Bone 2015; 75:170-82. [PMID: 25744064 DOI: 10.1016/j.bone.2015.02.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
Inflammatory bone diseases have been attributed to increased bone resorption by augmented and activated bone-resorbing osteoclasts in response to inflammation. Although the production of diverse proinflammatory cytokines is induced at the inflamed sites, the inflammation also generates reactive oxygen species that modify many biological compounds, including lipids. Among the oxidized low-density lipoprotein (LDL) receptors, lectin-like oxidized LDL receptor-1 (LOX-1), which is a key molecule in the pathogenesis of multifactorial inflammatory atherosclerosis, was downregulated with osteoclast differentiation. Here, we demonstrate that LOX-1 negatively regulates osteoclast differentiation by basically suppressing the cell-cell fusion of preosteoclasts. The LOX-1-deleted (LOX-1(-/-)) mice consistently decreased the trabecular bone mass because of elevated bone resorption during the growing phase. In contrast, when the calvaria was inflamed by a local lipopolysaccharide-injection, the inflammation-induced bone destruction accompanied by the elevated expression of osteoclastogenesis-related genes was reduced by LOX-1 deficiency. Moreover, the expression of receptor activator of NF-κB ligand (RANKL), a trigger molecule for osteoclast differentiation, evoked by the inflammation was also abrogated in the LOX-1(-/-) mice. Osteoblasts, the major producers of RANKL, also expressed LOX-1 in response to proinflammatory agents, interleukin-1β and prostaglandin E2. In the co-culture of LOX-1(-/-) osteoblasts and wild-type osteoclast precursors, the osteoclastogenesis induced by interleukin-1β and prostaglandin E2 decreased; this process occurred in parallel with the downregulation of osteoblastic RANKL expression. Collectively, LOX-1 abrogation results in resistance to inflammatory bone destruction, despite promoting osteoclastogenesis in the steady state. Our findings indicate the novel involvement of LOX-1 in physiological bone homeostasis and inflammatory bone diseases.
Collapse
Affiliation(s)
- Mai Nakayachi
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan; Division of Orthodontics, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | - Junta Ito
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan.
| | - Chiyomi Hayashida
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | - Yoko Ohyama
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan; Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | - Akemi Kakino
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan
| | - Mari Okayasu
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan; Division of Oral-maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital, Hongo, Tokyo 113-8655, Japan
| | - Takuya Sato
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | - Toru Ogasawara
- Division of Oral-maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital, Hongo, Tokyo 113-8655, Japan
| | - Toshio Kaneda
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara, Tokyo 142-8501, Japan
| | - Naoto Suda
- Division of Orthodontics, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | - Tatsuya Sawamura
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan; Department of Physiology, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Yoshiyuki Hakeda
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan.
| |
Collapse
|
12
|
Zuniga FA, Ormazabal V, Gutierrez N, Aguilera V, Radojkovic C, Veas C, Escudero C, Lamperti L, Aguayo C. Role of lectin-like oxidized low density lipoprotein-1 in fetoplacental vascular dysfunction in preeclampsia. BIOMED RESEARCH INTERNATIONAL 2014; 2014:353616. [PMID: 25110674 PMCID: PMC4109675 DOI: 10.1155/2014/353616] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/24/2014] [Indexed: 11/30/2022]
Abstract
The bioavailability of nitric oxide (NO) represents a key marker in vascular health. A decrease in NO induces a pathological condition denominated endothelial dysfunction, syndrome observed in different pathologies, such as obesity, diabetes, kidney disease, cardiovascular disease, and preeclampsia (PE). PE is one of the major risks for maternal death and fetal loss. Recent studies suggest that the placenta of pregnant women with PE express high levels of lectin-like oxidized LDL receptor-1 (LOX-1), which induces endothelial dysfunction by increasing reactive oxygen species (ROS) and decreasing intracellular NO. Besides LOX-1 activation induces changes in migration and apoptosis of syncytiotrophoblast cells. However, the role of this receptor in placental tissue is still unknown. In this review we will describes the physiological roles of LOX-1 in normal placenta development and the potential involvement of this receptor in the pathophysiology of PE.
Collapse
Affiliation(s)
- Felipe A. Zuniga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, 4070386 Concepcion, Chile
| | - Valeska Ormazabal
- Department of Basic Science, Faculty of Medicine, Universidad Católica de la Santísima Concepción, 4090541 Concepcion, Chile
| | - Nicolas Gutierrez
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, 4070386 Concepcion, Chile
| | - Valeria Aguilera
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, 4070386 Concepcion, Chile
| | - Claudia Radojkovic
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, 4070386 Concepcion, Chile
| | - Carlos Veas
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, 4070386 Concepcion, Chile
| | - Carlos Escudero
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Group of Research and Innovation in Vascular Health (GRIVAS Health), Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, 4081112 Chillán, Chile
| | - Liliana Lamperti
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, 4070386 Concepcion, Chile
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, 4070386 Concepcion, Chile
| |
Collapse
|
13
|
Betz B, Möller-Ehrlich K, Kress T, Kniepert J, Schwedhelm E, Böger RH, Wanner C, Sauvant C, Schneider R. Increased symmetrical dimethylarginine in ischemic acute kidney injury as a causative factor of renal L-arginine deficiency. Transl Res 2013; 162:67-76. [PMID: 23707198 DOI: 10.1016/j.trsl.2013.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 04/25/2013] [Accepted: 04/30/2013] [Indexed: 11/26/2022]
Abstract
Availability of L-arginine, the exclusive substrate for nitric oxide synthases, plays an important role in kidney ischemia/reperfusion injury. The endogenous L-arginine derivatives asymmetrical dimethylarginine (ADMA) and symmetrical dimethylarginine (SDMA) block cellular L-arginine uptake competitively, thereby inhibiting the production of nitric oxide. ADMA also blocks nitric oxide synthase activity directly. Here, we investigate the pathomechanistic impact of ADMA and SDMA on ischemic acute kidney injury. Rats were subject to bilateral renal ischemia (60 minutes)/reperfusion (24 hours) injury. Impairment of renal function was determined with inulin clearance (glomerular filtration rate) and para-aminohippurate (PAH) clearance (renal plasma flow). L-arginine, ADMA, and SDMA levels were measured by liquid chromatography-tandem mass spectrometry. L-arginine was extracted from renal tissue and analyzed by enzyme-linked immunosorbent assay, and protein and messenger RNA expressions were determined by Western blot and real-time reverse transcription polymerase chain reaction. Renal function deteriorated severely after ischemia/reperfusion injury, as demonstrated by inulin and PAH clearance. Serum ADMA and SDMA increased, but tissue expression of specific ADMA or SDMA synthesizing and metabolizing enzymes (protein arginine methyltransferases and dimethyl arginine dimethylaminohydrolases) did not alter. Serum L-arginine increased as well, whereas intracellular L-arginine concentration diminished. Renal messenger RNA expression of cationic amino acid transporters, which mediate L-arginine uptake, remained unchanged. In serum, the ratio of L-arginine to ADMA did not alter after ischemia/reperfusion injury, whereas the ratios of L-arginine to SDMA and ADMA to SDMA decreased. A marked increase in serum SDMA, especially when accompanied by a diminished L-arginine-to-SDMA ratio, might reflect competitive inhibition of cellular L-arginine uptake by SDMA. As a consequence, a pathologic renal L-arginine deficiency in ischemic acute kidney injury results.
Collapse
Affiliation(s)
- Boris Betz
- Division of Nephrology, Department of Medicine I, University Hospital of Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW LOX-1 is a multiligand receptor implicated in endothelial dysfunction and atherosclerosis, although it was originally identified as an oxidized LDL receptor. In this review, the roles of various LOX-1 ligands and their interaction with LOX-1 are discussed to understand the pathophysiological significance of LOX-1. RECENT FINDINGS LOX-1 knockout mice showed resistance of endothelium-dependent vasorelaxation against oxidized LDL and retardation of atherosclerosis progression. LOX-1 ligand reduction in mice also attenuated atherosclerosis progression. In a human cohort study, high concentration of apoB-containing LOX-1 ligands predicted the incidence of cardiovascular disease. Furthermore, modified HDL, which existed in high concentration in the plasma of coronary artery disease patients, was found to induce impairment of endothelial nitric oxide release via LOX-1. In addition to lipoproteins, LOX-1 was found to work as a C-reactive protein receptor providing a scaffold for the activation of the complement system. SUMMARY LOX-1 is a unique molecule among the sensors of danger signals. LOX-1 is not only sensing danger signals such as modified LDL and heat shock protein, but also scaffolding other danger sensors including C-reactive protein and C1q, and directly commanding responses to danger signals by working as a cell adhesion molecule. Via these functions, LOX-1 might work as a surveillance molecule of vascular homeostasis.
Collapse
Affiliation(s)
- Tatsuya Sawamura
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | | | | |
Collapse
|
15
|
Yoshimoto R, Fujita Y, Kakino A, Iwamoto S, Takaya T, Sawamura T. The discovery of LOX-1, its ligands and clinical significance. Cardiovasc Drugs Ther 2012; 25:379-91. [PMID: 21805404 PMCID: PMC3204104 DOI: 10.1007/s10557-011-6324-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
LOX-1 is an endothelial receptor for oxidized low-density lipoprotein (oxLDL), a key molecule in the pathogenesis of atherosclerosis.The basal expression of LOX-1 is low but highly induced under the influence of proinflammatory and prooxidative stimuli in vascular endothelial cells, smooth muscle cells, macrophages, platelets and cardiomyocytes. Multiple lines of in vitro and in vivo studies have provided compelling evidence that LOX-1 promotes endothelial dysfunction and atherogenesis induced by oxLDL. The roles of LOX-1 in the development of atherosclerosis, however, are not simple as it had been considered. Evidence has been accumulating that LOX-1 recognizes not only oxLDL but other atherogenic lipoproteins, platelets, leukocytes and CRP. As results, LOX-1 not only mediates endothelial dysfunction but contributes to atherosclerotic plaque formation, thrombogenesis, leukocyte infiltration and myocardial infarction, which determine mortality and morbidity from atherosclerosis. Moreover, our recent epidemiological study has highlighted the involvement of LOX-1 in human cardiovascular diseases. Further understandings of LOX-1 and its ligands as well as its versatile functions will direct us to ways to find novel diagnostic and therapeutic approaches to cardiovascular disease.
Collapse
Affiliation(s)
- Ryo Yoshimoto
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
16
|
LOX-1, oxidative stress and inflammation: a novel mechanism for diabetic cardiovascular complications. Cardiovasc Drugs Ther 2012; 25:451-9. [PMID: 21993919 DOI: 10.1007/s10557-011-6342-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus is a common metabolic disease characterized by a state of oxidative stress, inflammation and endothelial dysfunction. This malady can lead to a number of complications such as ischemic heart disease, nephropathy, neuropathy, retinopathy and impaired wound healing. The etiology of diabetic complications is multifactorial, and is closely associated with oxidative stress and inflammation. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), a receptor for oxidized low density lipoprotein (ox-LDL), plays critical roles in multiple signal transduction pathways and is involved in the process of oxidative stress and inflammation. Recent studies provide important insights into the roles of LOX-1 in the development and progression of diabetic vasculopathy which is the underlying mechanism of diabetic complications. In this review, we summarize mechanistic studies, mainly related to LOX-1, on the development and progression of diabetes mellitus and its cardiovascular complications.
Collapse
|
17
|
Andrews DT, Sutherland J, Dawson P, Royse AG, Royse C. L-arginine cardioplegia reduces oxidative stress and preserves diastolic function in patients with low ejection fraction undergoing coronary artery surgery. Anaesth Intensive Care 2012; 40:99-106. [PMID: 22313068 DOI: 10.1177/0310057x1204000110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PL-arginine cardioplegia decreases biochemical markers of myocardial damage and oxidative stress in patients with normal left ventricular function. We investigated the effects of L-arginine supplemented cardioplegic arrest in patients with reduced ejection fraction. Fifty-three adult patients with left ventricular ejection fraction <35% undergoing elective coronary artery bypass surgery were randomised to receive blood cardioplegia with or without L-arginine. Following cardiopulmonary bypass, measured endpoints were cardiac troponin-I concentration at 12 and 24 hours, coronary sinus concentrations of malondialdehyde and superoxide dismutase activity at five and 15 minutes, lactic acid flux at one, five and 15 minutes and left ventricular systolic and diastolic function after protamine administration. There were no differences in cardiac troponin-I between groups. Malondialdehyde was lower in the L-arginine group, 0.28 ± 0.12 vs 0.48 ± 0.32 (5 minutes) and 0.31 ± 0.14 vs 0.38 ± 0.15 nmol.ml(-1) (15 minutes) (P=0.0004). Superoxide dismutase activity was higher in L-arginine group, 229 ± 87 vs 191.3 ± 68 (5 minutes), 229 ± 54 vs 198 ± 15 nmol.minute(-1).m(l) (15 minutes) (P=0.005). Lactic acid flux was lower in L-arginine group, 0.15 ± 0.23 vs 0.48 ± 0.32 (1 minute), 0.08 ± 0.19 vs 0.38 ± 0.31 (5 minutes) and -0.15 ± 0.13 vs 0.26 ± 0.30 mmol.l(-1) (15 minutes), (P=0.0003). There was no difference in left ventricular systolic function. The mitral annular tissue Doppler inflow (e') velocity during early diastole improved in the L-arginine group following cardiopulmonary bypass (control 4.2 ± 1.9 cm.s(-1) to 3.6 ± 1.2 cm.s(-1) vs L-arginine 3.8 ±1.2 cm.s(-1) to 4.6 ± 1.4 cm.s(-1)) (P=0.018). In patients with reduced ejection fraction, L-arginine supplemented cardioplegic arrest did not affect postoperative cardiac troponin-I levels, but attenuated cardiac cellular peroxidation and improved early left ventricular diastolic function.
Collapse
Affiliation(s)
- David T Andrews
- Department of Anaesthesia and Pain Management, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
18
|
Yurdakan G, Tekin IO, Comert M, Acikgoz S, Sipahi EY. The presence of oxidized low-density lipoprotein and inducible nitric oxide synthase expression in renal damage after intestinal ischemia reperfusion. Kaohsiung J Med Sci 2011; 28:16-22. [PMID: 22226057 DOI: 10.1016/j.kjms.2011.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/21/2011] [Indexed: 12/25/2022] Open
Abstract
Intestinal ischemia/reperfusion (I/R) is a complex phenomenon that causes destruction of both local and remote tissues. The objective of this study was to investigate the possible participation of oxidized low-density lipoproteins (oxLDLs) and inducible nitric oxide synthase (iNOS) expression in renal tissue damage after intestinal I/R. The superior mesenteric artery was blocked for 30 minutes, followed by 24 hours of reperfusion. At the end of the reperfusion period, renal tissues were removed; the presence of oxLDL, superoxide dismutase enzyme activity, malondialdehyde levels, and iNOS expression were evaluated. I/R resulted in positive oxLDL staining in renal tissue. Compared with control rats, tissue from the I/R group showed significantly higher malondialdehyde levels and lower superoxide dismutase enzyme activity. Strong and diffuse iNOS expression was present in the I/R group. Our findings support the hypothesis that I/R of intestinal tissue results in oxidative and nitrosative stress and enhances lipid peroxidation in the end organ. These data show that oxLDL accumulates in rat renal tissue after intestinal I/R. Antioxidant strategies may provide organ protection in patients with reperfusion injury, at least by affecting interactions with free radicals, nitric oxide, and oxLDL. This study demonstrates for the first time that oxLDL may play a role in renal tissue damage after intestinal I/R. Antioxidant strategies may be beneficial for protection from reperfusion injury.
Collapse
Affiliation(s)
- Gamze Yurdakan
- Department of Pathology, Faculty of Medicine, Zonguldak Karaelmas University, Zonguldak, Turkey
| | | | | | | | | |
Collapse
|
19
|
Lung inflammation is induced by renal ischemia and reperfusion injury as part of the systemic inflammatory syndrome. Inflamm Res 2010; 59:861-9. [PMID: 20396927 DOI: 10.1007/s00011-010-0198-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 03/27/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022] Open
Abstract
INTRODUCTION Ischemia and reperfusion injury (IRI) are mainly caused by leukocyte activation, endothelial dysfunction and production of reactive oxygen species. Moreover, IRI can lead to a systemic response affecting distant organs, such as the lungs. AIM The objective was to study the pulmonary inflammatory systemic response after renal IRI. METHODS Male C57Bl/6 mice were subjected to 45 min of bilateral renal ischemia, followed by 4, 6, 12, 24 and 48 h of reperfusion. Blood was collected to measure serum creatinine and cytokine concentrations. Bronchoalveolar lavage fluid (BALF) was collected to determine the number of cells and PGE(2) concentration. Expressions of iNOS and COX-2 in lung were determined by Western blot. Gene analyses were quantified by real time PCR. RESULTS Serum creatinine increased in the IRI group compared to sham mainly at 24 h after IRI (2.57 +/- 0.16 vs. 0.43 +/- 0.07, p < 0.01). The total number of cells in BAL fluid was higher in the IRI group in comparison with sham, 12 h (100 x 10(4) +/- 15.63 vs. 18.1 x 10(4) +/- 10.5, p < 0.05) 24 h (124 x 10(4) +/- 8.94 vs. 23.2 x 10(4) +/- 3.5, p < 0.05) and 48 h (79 x 10(4) +/- 15.72 vs. 22.2 x 10(4) +/- 4.2, p < 0.05), mainly by mononuclear cells and neutrophils. Pulmonary COX-2 and iNOS were up-regulated in the IRI group. TNF-alpha, IL-1beta, MCP-1, KC and IL-6 mRNA expression were up-regulated in kidney and lungs 24 h after renal IRI. ICAM-1 mRNA was up-regulated in lungs 24 h after renal IRI. Serum TNF-alpha, IL-1beta and MCP-1 and BALF PGE(2) concentrations were increased 24 h after renal IRI. CONCLUSION Renal IRI induces an increase of cellular infiltration, up-regulation of COX-2, iNOS and ICAM-1, enhanced chemokine expression and a Th1 cytokine profile in lung demonstrating that the inflammatory response is indeed systemic, possibly leading to an amplification of renal injury.
Collapse
|
20
|
Kelly KJ, Burford JL, Dominguez JH. Postischemic inflammatory syndrome: a critical mechanism of progression in diabetic nephropathy. Am J Physiol Renal Physiol 2009; 297:F923-31. [PMID: 19656916 DOI: 10.1152/ajprenal.00205.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Diabetes is a major epidemic, and diabetic nephropathy is the most common cause of end-stage renal disease. Two critical components of diabetic nephropathy are persistent inflammation and chronic renal ischemia from widespread vasculopathy. Moreover, acute ischemic renal injury is common in diabetes, potentially causing chronic kidney disease or end-stage renal disease. Accordingly, we tested the hypothesis that acute renal ischemia accelerates nephropathy in diabetes by activating proinflammatory pathways. Lean and obese-diabetic ZS rats (F(1) hybrids of spontaneously hypertensive heart failure and Zucker fatty diabetic rats) were subjected to bilateral renal ischemia or sham surgery before the onset of proteinuria. The postischemic state in rats with obesity-diabetes was characterized by progressive chronic renal failure, increased proteinuria, and renal expression of proinflammatory mediators. Leukocyte number in obese-diabetic rat kidney was markedly increased for months after ischemia. Intrarenal blood flow velocity was decreased after ischemia in lean control and obese-diabetic rats, although it recovered in lean rats. At 2 mo after ischemia, blood flow velocity decreased further in sham-surgery and postischemia obese-diabetic rats, so that RBC flow velocity was only 39% of control in the obese-diabetic rats after ischemia. In addition, microvascular density remained depressed at 2 mo in kidneys of obese-diabetic rats after ischemia. Abnormal microvascular permeability and increases in interstitial fibrosis and apoptotic renal cell death were also more pronounced after ischemia in obese-diabetic rats. These data support the hypothesis that acute renal ischemia in obesity-diabetes severely aggravates chronic inflammation and vasculopathy, creating a self-perpetuating postischemia inflammatory syndrome, which accelerates renal failure.
Collapse
Affiliation(s)
- K J Kelly
- Division of Nephrology, Indiana Univ. School of Medicine, 950 West Walnut St., RII-202, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
21
|
Wang L, Zhang L, Yu Y, Wang Y, Niu N. The Protective Effects of Taurine against Early Renal Injury in STZ-Induced Diabetic Rats, Correlated with Inhibition of Renal LOX-1-Mediated ICAM-1 Expression. Ren Fail 2009; 30:763-71. [DOI: 10.1080/08860220802272563] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
22
|
Foster JM, Carmines PK, Pollock JS. PP2B-dependent NO production in the medullary thick ascending limb during diabetes. Am J Physiol Renal Physiol 2009; 297:F471-80. [PMID: 19458119 DOI: 10.1152/ajprenal.90760.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Calcineurin (PP2B) has recently been shown to be upregulated in the medullary thick ascending limb (mTAL) during diabetes. The mTAL expresses all three isoforms of nitric oxide synthase (NOS), which are subject to phosphoregulation and represent substrates for PP2B. Therefore, we hypothesized that diabetes induces PP2B-dependent upregulation of NOS activity and NO production in the mTAL. Three weeks after injection of streptozotocin (STZ rats) or vehicle (sham rats), mTAL suspensions were prepared for use in functional and biochemical assays. PP2B activity and expression were increased in mTALs from STZ rats compared with sham. Nitrite production was significantly reduced in mTALs from STZ rats compared with sham. However, incubation with the free radical scavenger, tempol, unmasked a significant increase in nitrite production by mTALs from STZ rats. Inhibition of PP2B attenuated the increase in nitrite production and NOS activity evident in mTALs from STZ rats. Analysis of specific NOS isoform activity revealed increased NOS1 and NOS2 activities in mTALs from STZ rats. All three NOS isoform activities were regulated in a PP2B-dependent manner. Western blot analysis detected no differences in NOS isoform expression, although phosphorylation of pThr(495)-NOS3 was significantly reduced in mTALs from STZ rats. Phosphorylation of pSer(852)-NOS1, pSer(633)-NOS3, and pSer(1177)-NOS3 was similar in mTALs from STZ and sham rats. Inhibition of PP2B did not alter the phosphorylation of NOS1 or NOS3 at known sites. In conclusion, while NO bioavailability in mTALs is reduced during diabetes, free radical scavenging with tempol unmasks increased NO production that involves PP2B-dependent activation of NOS1 and NOS2.
Collapse
Affiliation(s)
- Jan M Foster
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
23
|
Hyodo Y, Miyake H, Kondo Y, Fujisawa M. Downregulation of Lectin-like Oxidized Low-Density Lipoprotein Receptor-1 After Ischemic Preconditioning in Ischemia-Reperfused Rat Kidneys. Urology 2009; 73:906-10. [DOI: 10.1016/j.urology.2008.11.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 11/07/2008] [Accepted: 11/30/2008] [Indexed: 11/15/2022]
|
24
|
Yamamoto N, Toyoda M, Abe M, Kobayashi T, Kobayashi K, Kato M, Miyauchi M, Kimura M, Umezono T, Suzuki D. Lectin-like oxidized LDL receptor-1 (LOX-1) expression in the tubulointerstitial area likely plays an important role in human diabetic nephropathy. Intern Med 2009; 48:189-94. [PMID: 19218767 DOI: 10.2169/internalmedicine.48.1251] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Diabetic nephropathy (DN) is a common cause of end-stage renal disease. However, the precise mechanism of DN, which involves the role of lipid, is still not fully understood. Lectin-like oxidized LDL receptor-1 (LOX-1) is a type II single-transmembrane protein that binds oxidized low density lipoprotein (Ox-LDL). This study examined the expression of LOX-1 mRNA in renal tissues from type 2 diabetes patients with DN using in situ hybridization (ISH). PATIENTS AND METHODS Renal tissues were obtained from 15 type 2 patients with DN and 5 minimal change nephrotic syndrome (MCNS), membranous nephropathy (MN) and normal human kidney (NHK). Glomerular and tubulointerstitial LOX-1 mRNA expression was evaluated by ISH. Results The cells positive for LOX-1 mRNA were identified in the glomeruli of DN, MCNS, MN and NHK, however, there was no positive signal in the tubulointerstitial area in MCNS and NHK. Some cells positive for LOX-1 mRNA were detectable in the tubulointerstitial area in DN and MN. In the results of glomerular staining, there was no significant difference between them. There was a significant correlation between the tubulointerstitial LOX-1 expression and the degree of the tubulointerstitial damage and urinary protein in DN. CONCLUSION Increased expression of LOX-1 mRNA in the tubulointerstitial area may be closely linked to the development and progression of human DN, and in particular the tubulointerstitial damage.
Collapse
Affiliation(s)
- Naoyuki Yamamoto
- Division of Nephrology and Metabolism, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rusai K, Fekete A, Szebeni B, Vannay Á, Bokodi G, Müller V, Viklicky O, Bloudickova S, Rajnoch J, Heemann U, Reusz G, Szabó A, Tulassay T, Szabó AJ. EFFECT OF INHIBITION OF NEURONAL NITRIC OXIDE SYNTHASE AND l-ARGININE SUPPLEMENTATION ON RENAL ISCHAEMIA-REPERFUSION INJURY AND THE RENAL NITRIC OXIDE SYSTEM. Clin Exp Pharmacol Physiol 2008; 35:1183-9. [DOI: 10.1111/j.1440-1681.2008.04976.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
26
|
Chen Y, Ohmori K, Mizukawa M, Yoshida J, Zeng Y, Zhang L, Shinomiya K, Kosaka H, Kohno M. Differential impact of atorvastatin vs pravastatin on progressive insulin resistance and left ventricular diastolic dysfunction in a rat model of type II diabetes. Circ J 2007; 71:144-52. [PMID: 17186993 DOI: 10.1253/circj.71.144] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Controversy exists regarding the effects of statin therapy on progressive insulin resistance (IR) and its consequences, in the present study a rat model of spontaneously developing type II diabetes mellitus (DM) was used to examine the impact of atorvastatin (AS) vs pravastatin (PS). METHODS AND RESULTS The Otsuka Long-Evans Tokushima Fatty rats were either untreated or treated with 100 mg/kg per day of AS or PS from 6 weeks of age for 24 weeks. AS achieved much greater lipid lowering than PS. Serial oral glucose tolerance tests revealed new-onset diabetes was delayed by PS only. The untreated rats exhibited a progressive decrease in plasma adiponectin, increases in plasma leptin and tumor necrosis factor-alpha, and reduction of plasma nitric oxide (NO), which were limited more by PS than AS. PS, but not AS, enhanced adiponectin mRNA expression in white adipose tissue at 30 weeks. Cardiac endothelial NO synthase expression was upregulated, and overexpression of both transforming growth factor-beta1 and monocyte chemoattractant protein-1 mRNA was limited more by PS than AS. Coronary perivascular fibrosis at 30 weeks was suppressed only by PS, which was accompanied by preserved left ventricular diastolic function assessed with Doppler echocardiography. CONCLUSIONS The moderate lipid lowering by PS, but not the intensive lipid lowering by AS, prevented new-onset DM and diastolic dysfunction in a rat model of IR, and this was associated with preferable adipocytokine profiles and cardiac redox states.
Collapse
Affiliation(s)
- Yan Chen
- Department of Cardiorenal Cerebrovascular Medicine, Kagawa University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang L, Fujii S, Kosaka H. Effect of oestrogen on reactive oxygen species production in the aortas of ovariectomized Dahl salt-sensitive rats. J Hypertens 2007; 25:407-14. [PMID: 17211248 DOI: 10.1097/hjh.0b013e328010beee] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE In the present study, we examined whether ovariectomy increases reactive oxygen species (ROS) and the expression of nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase and modulates the scavenger enzymes for ROS in the aortas of Dahl salt-sensitive (DSS) rats fed a high salt diet. METHODS DSS female rats were ovariectomized and fed a high salt diet (8% NaCl), or a high salt diet plus oestrogen supplement for 4 weeks. Urinary levels of hydrogen peroxide (H2O2) were measured by using 2',7'-dichlorofluorescein. The expression of an NADPH oxidase subunit p22phox, extracellular superoxide dismutase (ecSOD), glutathione peroxidase (GPx)1, GPx4 and monocyte chemoattractant protein 1 (MCP-1) messenger RNA was assessed by reverse transcription-polymerase chain reaction. The expression of MCP-1, and macrophage infiltration were examined by immunohistochemical analysis. RESULTS Ovariectomy increased superoxide production and the expression of NADPH oxidase subunit p22phox mRNA and protein in the aortas of DSS rats fed a high salt diet. In contrast, ovariectomy reduced the expression of ecSOD mRNA and protein and the expression of GPx1 and GPx4 mRNA in the aorta. Ovariectomy increased MCP-1 mRNA and protein expression and ED1-positive cells in the aorta. CONCLUSIONS Ovariectomy leads to an amplification of oxidative stress in DSS rats fed a high salt diet synergistically by an increase in the ROS-generating system and a decrease in the ROS-eliminating system, as shown in the increase in superoxide production and the urinary excretion of H2O2. Oestrogen supplementation counteracted these alterations, showing how oestrogen is antioxidative.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Kita, Kagawa 761-0793, Japan
| | | | | |
Collapse
|
28
|
Gatica LV, Vega VA, Zirulnik F, Oliveros LB, Gimenez MS. Alterations in the Lipid Metabolism of Rat Aorta: Effects of Vitamin A Deficiency. J Vasc Res 2006; 43:602-10. [PMID: 17047345 DOI: 10.1159/000096247] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 08/05/2006] [Indexed: 11/19/2022] Open
Abstract
Antioxidants are known to reduce cardiovascular disease by reducing the concentration of free radicals in the vessel wall and by preventing the oxidative modification of low-density lipoproteins. The prooxidative effect of a vitamin-A-deficient diet on the aorta has previously been demonstrated by us. In this study, the lipid metabolism in the aorta of rats fed on a vitamin-A-deficient diet was evaluated. Vitamin A deficiency induced a hypolipidemic effect (lower serum triglyceride and cholesterol levels) and a decreased serum paraoxonase 1/arylesterase activity. The concentrations of triglycerides, total cholesterol, free and esterified cholesterol, and phospholipids were increased in the aorta of vitamin-A-deficient rats. The phospholipid compositions showed an increase in phosphatidylcholine (PC), phosphatidylinositol plus phosphatidylserine and phosphatidylethanolamine, a decrease in sphingomyelin, and no change in phosphatidylglycerol. In the aorta, the increase in triglycerides was associated with an increased fatty acid synthesis and mRNA expression of diacylglycerol acyltransferase 1. The increased PC content was attributed to an increased synthesis, as measured by [methyl-(14)C]choline incorporation into PC and high CTP:phosphocholine cytidylyltransferase-alpha mRNA expression. The cholesterol synthesis, evaluated by [1-(14)C]acetate incorporated into cholesterol and mRNA expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase, did not change. The lipoprotein lipase and lectin-like oxidized low-density lipoprotein receptor 1 mRNA expression levels increased in the aorta of vitamin-A-deficient animals. The incorporation of vitamin A into the diet of vitamin-A-deficient rats reverted all the changes observed. These results indicate that a vitamin-A-deficient diet,in addition to having a prooxidative effect, alters the aorta lipid metabolism.
Collapse
Affiliation(s)
- Laura V Gatica
- Department of Biochemistry and Biological Sciences, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | | | | | | | | |
Collapse
|
29
|
Abstract
Endothelial cells play a vital role in the success or failure of a transplant procedure. The procedure itself can be viewed as a series of insults that damages the endothelium thereby triggering an inflammatory cascade that may, if uncontrolled, drive the proliferative and fibrotic processes characteristic of chronic graft vasculopathy. Unfortunately, many immunosuppressant agents contribute to this process. Glucocorticoids and the calcineurin inhibitor cyclosporine induce endothelial dysfunction, and although tacrolimus may not have the same disruptive effects on endothelial function as cyclosporine, its endothelial activity is still being established. In contrast, antiproliferative agents slow the proliferation and migration of endothelial cells and so help protect against graft vasculopathy. Researchers agree that endothelial cell dysfunction is a potentially treatable stage in the multifactorial process of graft vasculopathy and rejection. A number of cardiovascular agents (statins, angiotensin converting enzyme inhibitors, calcium channel blockers), immunoregulatory drugs, and dietary compounds have been shown to have beneficial effects on endothelial function. We briefly review the evidence supporting their use as protection for endothelial cells in transplant recipients.
Collapse
Affiliation(s)
- Thomas Nickel
- Medizinische Klinik und Poliklinik I, University Hospital Munich-Grosshadern, Ludwig-Maximilians University of Munich, Germany
| | | | | |
Collapse
|
30
|
Abstract
In the kidney nitric oxide (NO) has numerous important functions including the regulation of renal haemodynamics, maintenance of medullary perfusion, mediation of pressure-natriuresis, blunting of tubuloglomerular feedback, inhibition of tubular sodium reabsorption and modulation of renal sympathetic neural activity. The net effect of NO in the kidney is to promote natriuresis and diuresis. Significantly, deficient renal NO synthesis has been implicated in the pathogenesis of hypertension. All three isoforms of nitric oxide synthase (NOS), namely neuronal NOS (nNOS or NOS1), inducible NOS (iNOS or NOS2) and endothelial NOS (eNOS or NOS3) are reported to contribute to NO synthesis in the kidney. The regulation of NO synthesis in the kidney by NOSs is complex and incompletely understood. Historically, many studies of NOS regulation in the kidney have emphasized the role of variations in gene transcription and translation. It is increasingly appreciated, however, that the constitutive NOS isoforms (nNOS and eNOS) are also subject to rapid regulation by post-translational mechanisms such as Ca(2+) flux, serine/threonine phosphorylation and protein-protein interactions. Recent studies have emphasized the role of post-translational regulation of nNOS and eNOS in the regulation of NO synthesis in the kidney. In particular, a role for phosphorylation of nNOS and eNOS at both activating and inhibitory sites is emerging in the regulation of NO synthesis in the kidney. This review summarizes the roles of NO in renal physiology and discusses recent advances in the regulation of eNOS and nNOS in the kidney by post-translational mechanisms such as serine/threonine phosphorylation.
Collapse
Affiliation(s)
- P F Mount
- The Austin Research Institute, Austin Hospital, Victoria, Australia.
| | | |
Collapse
|
31
|
Nakai K, Kadiiska MB, Jiang JJ, Stadler K, Mason RP. Free radical production requires both inducible nitric oxide synthase and xanthine oxidase in LPS-treated skin. Proc Natl Acad Sci U S A 2006; 103:4616-21. [PMID: 16537416 PMCID: PMC1450220 DOI: 10.1073/pnas.0510352103] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Indexed: 11/18/2022] Open
Abstract
Free radical formation has been investigated in diverse experimental models of LPS-induced inflammation. Here, using electron spin resonance (ESR) and the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone, we have detected an ESR spectrum of alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone radical adducts in the lipid extract of mouse skin treated with LPS for 6 h. The ESR spectrum was consistent with the trapping of lipid-derived radical adducts. In addition, a secondary radical-trapping technique using dimethyl sulfoxide (DMSO) demonstrated methyl radical formation, revealing the production of hydroxyl radical. Radical adduct formation was suppressed by aminoguanidine, N-(3-aminomethyl)benzylacetamidine (1400W), or allopurinol, suggesting a role for both inducible nitric oxide synthase (iNOS) and xanthine oxidase (XO) in free radical formation. The radical formation was also suppressed in iNOS knockout (iNOS(-/-)) mice, demonstrating the involvement of iNOS. NADPH oxidase was not required in the formation of these radical adducts because the ESR signal intensity was increased by LPS treatment in NADPH oxidase knockout (gp91(phox-/-)) mice as much as it was in the wild-type mouse. Nitric oxide (*NO) end products were increased in LPS-treated skin. As expected, the *NO end products were not suppressed by allopurinol but were by aminoguanidine. Interestingly, nitrotyrosine formation in LPS-treated skin was also suppressed by aminoguanidine and allopurinol independently. Pretreatment with the ferric iron chelator Desferal had no effect on free radical formation. Our results imply that both iNOS and XO, but neither NADPH oxidase nor ferric iron, work synergistically to form lipid radical and nitrotyrosine early in the skin inflammation caused by LPS.
Collapse
Affiliation(s)
- Kozo Nakai
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, MD F0-01, Research Triangle Park, NC 27709
| | - Maria B. Kadiiska
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, MD F0-01, Research Triangle Park, NC 27709
| | - Jin-Jie Jiang
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, MD F0-01, Research Triangle Park, NC 27709
| | - Krisztian Stadler
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, MD F0-01, Research Triangle Park, NC 27709
| | - Ronald P. Mason
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, MD F0-01, Research Triangle Park, NC 27709
| |
Collapse
|
32
|
Gau CH, Chou TC, Chiu HC, Shen EC, Nieh S, Chiang CY, Fu E. Effect of Cyclosporin A on the Expression of Inducible Nitric Oxide Synthase in the Gingiva of Rats. J Periodontol 2005; 76:2260-6. [PMID: 16332238 DOI: 10.1902/jop.2005.76.12.2260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The role of nitric oxide (NO) in the pathogenesis of cyclosporin A (CsA)-induced gingival overgrowth is still unknown. The purpose of this study was to evaluate the effect of CsA on the expression of nitric oxide synthases (NOS) in the gingival tissue of rats. METHODS Thirty male Sprague-Dawley rats were randomly assigned to a control and two test groups. Rats in each group received CsA (0, 10, or 30 mg/kg) daily by gastric feeding for 4 weeks. The plasma NO and the NOS enzyme activities were assayed at week 4 in the blood samples and in the gingiva and lung tissue specimens, respectively. The distribution of inducible nitric oxide synthase (iNOS) was further evaluated in tissues obtained from the gingiva and lung at the end of weeks 1 and 4 by immunohistochemistry. RESULTS In the CsA-treated animals, increased levels of plasma nitrites/nitrates were measured in comparison to those in control rats. Significantly greater iNOS enzyme activities were detected in lung and gingival tissues obtained from CsA-treated animals than from control animals. In addition, cells positively staining for iNOS were clearly observed in both gingival and lung tissues obtained from the CsA-treated animals by immunohistochemistry, whereas a few stained cells were found in those from the control group. The quantity of cells positively stained for iNOS was greater in tissue from week 4 than week 1. CONCLUSIONS The effect of CsA on gingival iNOS expression was evaluated in rats for 4 weeks. A greater iNOS expression in the gingiva was observed after CsA therapy by both enzyme activities and immunohistochemica staining. Therefore, we suggest that CsA can increase gingival iNOS expression, which may play an important role in cyclosporin-induced gingival overgrowth.
Collapse
Affiliation(s)
- Ching-Hwa Gau
- Department of Nursing, Kang-Ning Nursing College, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
33
|
Mount PF, Fraser SA, Watanabe Y, Lane N, Katsis F, Chen ZP, Kemp BE, Power DA. Phosphorylation of neuronal and endothelial nitric oxide synthase in the kidney with high and low salt diets. Nephron Clin Pract 2005; 102:p36-50. [PMID: 16244499 DOI: 10.1159/000089092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 07/04/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Renal nitric oxide (NO) synthesis increases with increasing salt intake, however, the mechanisms underlying this are poorly understood. We hypothesized that activating or inhibitory phosphorylation of neuronal and endothelial nitric oxide synthase (nNOS, eNOS) regulates renal NO production in response to altered dietary salt. METHODS Sprague-Dawley rats were fed low, normal or high salt diets for 12 h or 2 weeks, and kidney NOS phosphorylation was analyzed by Western blot using phosphopeptide antibodies against the sites nNOS-Ser(1412), nNOS-Ser(847), eNOS-Ser(1176) and eNOS-Thr(494). RESULTS At 12 h, total nNOS increased 1.4-fold (p < 0.01) in the high salt group and decreased by 26% (p < 0.05) in the low salt group. Changes in expression of phospho-nNOS at 12 h were accounted for by the changes in total nNOS. No change in total or phospho-eNOS was seen at 12 h. At 2 weeks, in the low salt group expression of total nNOS increased 1.8-fold (p < 0.05) whereas expression of nNOS phosphorylated at the inhibitory site Ser(847) increased 4.3-fold (p < 0.01). Total eNOS was increased 3-fold in the low salt group (p < 0.01), with parallel increases in eNOS phosphorylated at both activating and inhibitory sites (p < 0.05). In the 2-week high salt group no changes in NOS expression or phosphorylation were seen, despite the observed increased excretion of urinary NO metabolites. CONCLUSION In summary, changes in phospho-nNOS and phospho-eNOS expression occurred in parallel with changes in total expression, thus, the overall activating and inhibitory effects of nNOS and eNOS phosphorylation at the sites studied were not changed by altered dietary salt.
Collapse
Affiliation(s)
- Peter F Mount
- The Austin Research Institute, Austin Hospital, Heidelberg, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Spallarossa P, Fabbi P, Manca V, Garibaldi S, Ghigliotti G, Barisione C, Altieri P, Patrone F, Brunelli C, Barsotti A. Doxorubicin-induced expression of LOX-1 in H9c2 cardiac muscle cells and its role in apoptosis. Biochem Biophys Res Commun 2005; 335:188-96. [PMID: 16055083 DOI: 10.1016/j.bbrc.2005.07.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 07/14/2005] [Indexed: 11/25/2022]
Abstract
Up-regulation of LOX-1 is implicated in apoptosis in both vascular smooth muscle cells and in endothelial cells. We examined the effects of doxorubicin on LOX-1 expression in H9c2 cardiomyocytes and the role played by LOX-1 up-regulation in doxorubicin-induced apoptosis. Reactive oxygen species (ROS) formation was assessed by DCF flow cytometry. LOX-1 mRNA and protein expression was assessed by RT-PCR and Western blotting. Apoptosis was evaluated by flow cytometry with annexin/PI double staining. Doxorubicin-induced LOX-1 expression in a concentration- and time-dependent fashion. The doxorubicin-induced ROS formation and the LOX-1 expression were significantly attenuated by pre-treatment with antioxidants. By exposing cells that had been pre-treated with doxorubicin to oxidized-LDL, a LOX-1 agonist, in the presence or in the absence of k-carrageenan, a LOX-1 receptor antagonist, we documented that doxorubicin-induced LOX-1 expression plays a role in inducing apoptosis. These findings suggest that LOX-1 up-regulation is redox-sensitive and may contribute to doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Paolo Spallarossa
- Research Center of Cardiovascular Biology, Department of Cardiology, University of Genova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bräsen JH, Nieminen-Kelhä M, Markmann D, Malle E, Schneider W, Neumayer HH, Budde K, Luft FC, Dragun D. Lectin-like oxidized low-density lipoprotein (LDL) receptor (LOX-1)-mediated pathway and vascular oxidative injury in older-age rat renal transplants. Kidney Int 2005; 67:1583-94. [PMID: 15780115 DOI: 10.1111/j.1523-1755.2005.00240.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Older-age renal allografts are associated with inferior survival; however, the mechanisms are unclear. Reactive oxygen species participate in aging and in chronic vascular disease. We investigated how mediators of oxidative stress may increase allograft susceptibility to vascular injury. METHODS We employed the low-responder allogeneic F344-to-Lew rat renal transplantation model. We used nonimmunosuppressed young (donors and recipients aged 12 weeks), old (donors and recipients aged 52 weeks), and old-to-young animal (donors aged 52 weeks and recipients aged 12 weeks) combinations. Grafts were transplanted after 2 hours cold preservation in University of Wisconsin solution and harvested 1, 2, 7 and 10 days later. Additionally, old animals receiving continuous 1.5 mg/kg cyclosporine (CyA) immunosuppression were included. Renal allograft pathology was scored according to Banff criteria. We studied intragraft vascular adhesion molecule-1 (VCAM-1), lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1), and hypochlorite-modified LDL expression as well as ED-1+ monocytes/macrophages and CD8+ lymphocyte infiltration. Intragraft in situ superoxide anion radical production was determined with dihydroethidium assay on cryosections. RESULTS During the first 2 posttransplant days, old transplants demonstrated higher functional impairment and increased oxidative stress, while young transplant had higher ED-1+ monocytes/macrophage infiltration and VCAM-1 expression. The degree of VCAM-1 expression and ED-1+ monocytes/macrophage and CD8+ lymphocyte infiltration correlated at later time points directly with the transplant age. VCAM-1 and LOX-1 staining were localized predominantly on the endothelium of arterial vessels, shifting the distribution to vascular smooth muscle layer strongly dependent on donor age and the grade of vascular injury. LOX-1 staining colocalized with hypochlorite-modified epitopes in the media of injured arteries. We measured increased in situ superoxide anion radical production in corresponding areas. Immunosuppression with CyA had no protective effect on vascular injury and LOX-1 expression. CONCLUSION Induction of LOX-1-related oxidation pathways and increased susceptibility to oxidative stress could play an important role in promoting vascular injury in old renal transplants independent of the recipient age.
Collapse
Affiliation(s)
- Jan Hinrich Bräsen
- HELIOS Klinikum-Berlin, Franz Volhard Clinic at the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Görür S, Bağdatoğlu OT, Polat G. Protective effect of L-carnitine on renal ischaemia-reperfusion injury in the rat. Cell Biochem Funct 2005; 23:151-5. [PMID: 15386530 DOI: 10.1002/cbf.1159] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was designed to investigate the effect of L-carnitine in ischaemia and reperfusion of the rat kidney. Rats were randomly allocated into three groups. Group I (control group; n = 6) received no treatment. Group II (isotonic saline group; n = 6), received 2 ml of isotonic saline 15 min before the renal ischaemia, and group III (carnitine group; n = 6) received L-carnitine hydrochloride (100 mg kg(-1)) intraperitoneally. At the end of the reperfusion period, rats were sacrificed. Tissue malondialdehyde level (MDA), myeloperoxidase (MPO) activity, and nitrite/nitrate (NO) level of renal tissue were measured to evaluate the lipid peroxidation, neutrophil function, and nitric oxide metabolism, respectively. The tissue levels of MDA, MPO and NO were lower in group III (71.8 +/- 8.4, 172.1 +/- 27.4 U g(-1) tissue, 76.3 +/- 29.7 micromol l(-1) respectively) than levels in groups I (103.4 +/- 13.4 nmol g(-1), 325.9 +/- 20.2 U g(-1) tissue, 144.5 +/- 39.2 micromol l(-1), respectively) and II (103.5 +/- 11.4 nmol g(-1), 317.1 +/- 41.5 U g(-1) tissue, 148.9 +/- 23.9 micromol l(-1), respectively). It is shown that carnitine protects kidney tissue against ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Sadik Görür
- Department of Urology, Kadirli Devlet Hastanesi, Turkey.
| | | | | |
Collapse
|
37
|
Zhang L, Fujii S, Igarashi J, Kosaka H. Effects of thiol antioxidant on reduced nicotinamide adenine dinucleotide phosphate oxidase in hypertensive Dahl salt-sensitive rats. Free Radic Biol Med 2004; 37:1813-20. [PMID: 15528040 DOI: 10.1016/j.freeradbiomed.2004.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 08/03/2004] [Accepted: 08/26/2004] [Indexed: 02/09/2023]
Abstract
Recent studies implicate of reactive oxygen species (ROS) in hypertension; however, whether reactive oxygen species promote hypertensive derangements is not fully clear. We thus investigated the effects of an antioxidant, N-acetyl-L-cysteine, on hypertensive Dahl salt-sensitive rats. High-salt intake for 4 weeks markedly elevated systolic arterial pressure, urinary excretion of protein, 8-isoprostane, and H(2)O(2), and the enzyme activity of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase along with the elevated expression of its subunits gp91phox and p47phox at the levels of mRNA and protein. Supplement with N-acetyl-L-cysteine reduced the increase in systolic arterial pressure and counteracted the elevation of urinary excretion of protein, 8-isoprostane, and H(2)O(2), and the increases in NADPH oxidase activity/expression in high-salt-loaded Dahl salt-sensitive rats. N-acetyl-L-cysteine supplement ameliorated plasma and urinary levels of thromboxane B(2) (an end metabolite of thromboxane A(2)), associated with improvement of both the abnormal contraction and the impaired nitric oxide-dependent relaxation in renal arteries. These results revealed that oxidative stress mediates hypertensive changes in Dahl salt-sensitive rats, because thiol antioxidant N-acetyl-L-cysteine attenuated the augmentation of local ROS production by diminishing the elevation of NADPH oxidase expression and ameliorated renal/vascular hypertensive changes.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | | | | | | |
Collapse
|
38
|
Nakai K, Kubota Y, Kosaka H. Inhibition of nuclear factor kappa B activation and inducible nitric oxide synthase transcription by prolonged exposure to high glucose in the human keratinocyte cell line HaCaT. Br J Dermatol 2004; 150:640-6. [PMID: 15099358 DOI: 10.1111/j.0007-0963.2004.05867.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND In human skin, inducible nitric oxide synthase (iNOS) appears to be a key enzyme during wound healing and has roles in protection from infection. We speculated that diabetic skin complications such as delayed wound healing and skin infection were due to iNOS activity altered by high glucose in skin keratinocytes. OBJECTIVES The purpose of this study was to see how high levels of glucose affect iNOS activity in the human keratinocyte cell line (HaCaT). METHODS HaCaT cells were exposed to high glucose for 1 day or 10 days. We measured nitric oxide (NO) end product nitrite in the culture medium using the Griess reagent, and intracellular tetrahydrobiopterin (BH(4), a cofactor of NOS) content by using high-performance liquid chromatography, analysed the expression level of iNOS mRNA by the reverse transcriptase-polymerase chain reaction method and evaluated the DNA binding activity of nuclear factor kappa B (NF-kappaB) by enzyme-immunoassay. RESULTS Short-term exposure (1 day) to a high level of glucose increased BH(4) and iNOS activity at the post-translational level. However, long-term exposure (10 days) to high glucose downregulates NF-kappaB binding activity and inhibits iNOS transcription and its activity. CONCLUSIONS Pretreatment with high glucose for 10 days down-regulated NF-kappaB activity and inhibited iNOS transcription and NO production, implying the involvement of a deficiency in NO synthesis in both skin infection and impaired wound healing in diabetic patients.
Collapse
Affiliation(s)
- K Nakai
- Department of Dermatology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Kita, Kagawa 761-0793, Japan
| | | | | |
Collapse
|
39
|
Chirathaworn C, Pongpanich A, Poovorawan Y. Herpes simplex virus 1 induced LOX-1 expression in an endothelial cell line, ECV 304. Viral Immunol 2004; 17:308-314. [PMID: 15279708 DOI: 10.1089/0882824041310531] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Infections, such as by Chlamydophilia pneumoniae, cytomegalovirus, herpes simplex virus, and Helicobacter pylori, have been shown to be involved in atherogenesis. Herpes simplex virus I (HSV-1) could infect vascular endothelial cells, and it has been shown that, when endothelial cells were activated with oxidized LDL (oxLDL), a number of cellular events are occurred, leading to endothelial cell dysfunction. Since LOX-1 is a major receptor for oxLDL on endothelial cells and its expression was increased in atherosclerosis, we investigated whether HSV1 infection can lead to the increase expression of LOX-1 in endothelial cells. LOX-1 mRNA expression determined by RT-PCR and LOX-1 promoter activity measured by luciferase assay were increased in endothelial cells following HSV-1 infection. This suggests that one of the mechanisms by which HSV-1 is involved in atherogenesis maybe the enhanced uptake of oxLDL via the increased expression of LOX-1 in endothelial cells.
Collapse
Affiliation(s)
- C Chirathaworn
- Department of Microbiology, Chulalongkorn University, Bangkok, Thailand.
| | | | | |
Collapse
|
40
|
Abstract
In glomerular and tubulointerstitial disease, polymorphonuclear- and monocyte-derived reactive oxygen species may contribute to oxidative modification of proteins, lipids, and nucleic acids. In part, the processes instigated by reactive oxygen species parallel events that lead to the development of atherosclerosis. Myeloperoxidase (MPO), a heme protein and catalyst for (lipo)protein oxidation is present in these mononuclear cells. The ability of MPO to generate hypochlorous acid/hypochlorite (HOCl/OCl-) from hydrogen peroxide in the presence of chloride ions is a unique and defining activity for this enzyme. The MPO-hydrogen peroxide-chloride system leads to a variety of chlorinated protein and lipid adducts that in turn may cause dysfunction of cells in different compartments of the kidney. The aim of this article is to cover and interpret some experimental and clinical aspects in glomerular and tubulointerstitial diseases in which the MPO-hydrogen peroxide-chloride system has been considered an important pathophysiologic factor in the progression but also the attenuation of experimental renal disease. The colocalization of MPO and HOCl-modified proteins in glomerular peripheral basement membranes and podocytes in human membranous glomerulonephritis, the presence of HOCl-modified proteins in mononuclear cells of the interstitium and in damaged human tubular epithelia, the inflammation induced and exacerbated by MPO antibody complexes in necrotizing glomerulonephritis, and the presence of HOCl-modified epitopes in urine following hyperlipidemia-induced renal damage in rodents suggest that MPO is an important pathogenic factor in glomerular and tubulointerstitial diseases. Specifically, the interaction of MPO with nitric oxide metabolism adds to the complexity of actions of oxidants and may help to explain bimodal partly detrimental partly beneficial effects of the MPO-hydrogen peroxide-chloride system in redox-modulated renal diseases.
Collapse
Affiliation(s)
- Ernst Malle
- Karl-Franzens University Graz, Institute of Medical Biochemistry and Molecular Biology, Graz, Austria
| | | | | |
Collapse
|
41
|
Nakai K, Urushihara M, Kubota Y, Kosaka H. Ascorbate enhances iNOS activity by increasing tetrahydrobiopterin in RAW 264.7 cells. Free Radic Biol Med 2003; 35:929-37. [PMID: 14556857 DOI: 10.1016/s0891-5849(03)00463-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studies on the effect of ascorbic acid on inducible nitric oxide synthase (iNOS) activity are few and diverse, likely to be dependent on the species of cells. We investigated a role of ascorbic acid in iNOS induction and nitric oxide (NO) generation in mouse macrophage cell line RAW 264.7. Although interferon- (IFN-) gamma alone produced NO end products, ascorbic acid enhanced NO production only when cells were synergistically stimulated with IFN-gamma plus Escherichia coli lipopolysaccharide (LPS). Ascorbate neither enhanced nor decreased the expression of iNOS protein in RAW 264.7 cells, in contrast to the reports that ascorbic acid augments iNOS induction in a mouse macrophage-like cell line J774.1 and that ascorbate suppresses iNOS induction in rat skeletal muscle endothelial cells. Intracellular levels of tetrahydrobiopterin (BH4), a cofactor for iNOS, were increased by ascorbate in RAW 264.7 cells. However, ascorbate did not increase GTP cyclohydrolase I mRNA, the main enzyme at the critical steps in the BH4 synthetic pathway, expression levels and activity. Sepiapterin, which supplies BH4 via salvage pathway, more efficiently enhanced NO production if ascorbate was added. These data suggest that enhanced activation of iNOS by ascorbic acid is mediated by increasing the stability of BH4 in RAW 264.7 cells.
Collapse
Affiliation(s)
- Kozo Nakai
- Department of Dermatology, Kagawa Medical University, Kagawa, Japan
| | | | | | | |
Collapse
|
42
|
Fujii S, Zhang L, Igarashi J, Kosaka H. L-arginine reverses p47phox and gp91phox expression induced by high salt in Dahl rats. Hypertension 2003; 42:1014-20. [PMID: 14504257 DOI: 10.1161/01.hyp.0000094557.36656.d0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Derangements in the production and degradation of reactive oxygen species (ROS) as well as nitric oxide (NO) have been implicated in cardiovascular diseases. We explored how supplementation with l-arginine, an NO synthase substrate, restores such derangements of ROS/NO systems in Dahl salt-sensitive, hypertensive (DS) rats. We detected an increase of NADPH oxidase activity, a key enzyme that produces superoxide, in the membrane fraction of the renal cortex derived from DS rats loaded with high salt for 4 weeks; high salt loading also remarkably increased urinary H2O2, 8-isoprostane, and thromboxane B2 excretion and decreased plasma NO end products. These changes from high salt loading were counteracted by oral l-arginine supplementation. We further examined expression patterns of NADPH oxidase subunits in renal cortex derived from these animals. High salt loading increased gp91phox and p47phox but not p22phox or Rac1 or mRNA abundance, which were counteracted with L-arginine supplementation. Western blot analyses after subcellular fractionation revealed that l-arginine supplementation distinctly decreases membrane localization of p47phox protein, as it decreases total expression of Rac1 protein in DS rats with high salt loading. These results disclose that high salt loading causes a deficiency in available L-arginine amounts for NO synthases and induces NADPH oxidase activation in the renal cortex of DS rats, which l-arginine supplementation markedly restores. Since superoxide rapidly eliminates NO, which inhibits sodium reabsorption in the cortical collecting duct, superoxide production caused by upregulated NADPH oxidase activity in the renal cortex of high salt-loaded DS rats may accelerate sodium reabsorption and hypertension.
Collapse
Affiliation(s)
- Shigemoto Fujii
- Department of Cardiovascular Physiology, Kagawa Medical University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | |
Collapse
|