1
|
Anakha J, Prasad YR, Pande AH. Endostatin in disease modulation: From cancer to beyond. Vascul Pharmacol 2025; 158:107459. [PMID: 39708990 DOI: 10.1016/j.vph.2024.107459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Angiogenesis plays a pivotal role in various pathological conditions, making it a key target in therapeutic development. Anti-angiogenic therapies are gaining traction for their potential in treating a range of angiogenesis-dependent diseases. Among these, endogenous angiogenesis inhibitors, particularly endostatin, have garnered significant attention for their therapeutic potential. While extensively studied for its anti-angiogenic effects in cancer, endostatin also exhibits anti-atherosclerotic and anti-fibrotic properties, broadening its therapeutic scope. Despite the successful clinical use of recombinant human endostatin in China for nearly two decades, its broader therapeutic potential remains underexplored. Thus, this review delves into the multifaceted applications of endostatin, examining its role in ocular diseases, inflammation, reproductive disorders, and tumor angiogenesis. Furthermore, it provides a comprehensive overview of its emerging roles beyond angiogenesis, particularly in the context of atherosclerosis and fibroproliferative conditions.
Collapse
Affiliation(s)
- J Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| | - Yenisetti Rajendra Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
2
|
Xu Y, Xiang Z, E W, Lang Y, Huang S, Qin W, Yang J, Chen Z, Liu Z. Single-cell transcriptomes reveal a molecular link between diabetic kidney and retinal lesions. Commun Biol 2023; 6:912. [PMID: 37670124 PMCID: PMC10480496 DOI: 10.1038/s42003-023-05300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
The occurrence of diabetic nephropathy (DN) and diabetic retinopathy (DR) are closely associated in patients with diabetes. However, the cellular and molecular linkage of DN and DR has not been elucidated, and further revelations are needed to improve mutual prognostic decisions and management. Here, we generate and integrate single-cell RNA sequencing profiles of kidney and retina to explore the cellular and molecular association of kidney and retina in both physiological and pathological conditions. We find renal mesangial cells and retinal pericytes share molecular features and undergo similar molecular transitions under diabetes. Furthermore, we uncover that chemokine regulation shared by the two cell types is critical for the co-occurrence of DN and DR, and the chemokine score can be used for the prognosis of DN complicated with DR. These findings shed light on the mechanism of the co-occurrence of DN and DR and could improve the prevention and treatments of diabetic microvascular complications.
Collapse
Affiliation(s)
- Ying Xu
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhidan Xiang
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weigao E
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Lang
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Sijia Huang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Weisong Qin
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingping Yang
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
- Medical School of Nanjing University, Nanjing, China.
| | - Zhaohong Chen
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Sanabria-de la Torre R, García-Fontana C, González-Salvatierra S, Andújar-Vera F, Martínez-Heredia L, García-Fontana B, Muñoz-Torres M. The Contribution of Wnt Signaling to Vascular Complications in Type 2 Diabetes Mellitus. Int J Mol Sci 2022; 23:6995. [PMID: 35805996 PMCID: PMC9266892 DOI: 10.3390/ijms23136995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Vascular complications are the leading cause of morbidity and mortality among patients with type 2 diabetes mellitus (T2DM). These vascular abnormalities result in a chronic hyperglycemic state, which influences many signaling molecular pathways that initially lead to increased oxidative stress, increased inflammation, and endothelial dysfunction, leading to both microvascular and macrovascular complications. Endothelial dysfunction represents the initial stage in both types of vascular complications; it represents "mandatory damage" in the development of microvascular complications and only "introductory damage" in the development of macrovascular complications. Increasing scientific evidence has revealed an important role of the Wnt pathway in the pathophysiology of the vascular wall. It is well known that the Wnt pathway is altered in patients with T2DM. This review aims to be an update of the current literature related to the Wnt pathway molecules that are altered in patients with T2DM, which may also be the cause of damage to the vasculature. Both microvascular complications (retinopathy, nephropathy, and neuropathy) and macrovascular complications (coronary artery disease, cerebrovascular disease, and peripheral arterial disease) are analyzed. This review aims to concisely concentrate all the evidence to facilitate the view on the vascular involvement of the Wnt pathway and its components by highlighting the importance of exploring possible therapeutic strategy for patients with T2DM who develop vascular pathologies.
Collapse
Affiliation(s)
- Raquel Sanabria-de la Torre
- Department of Medicine, University of Granada, 18016 Granada, Spain; (R.S.-d.l.T.); (S.G.-S.); (L.M.-H.); (M.M.-T.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
| | - Cristina García-Fontana
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sheila González-Salvatierra
- Department of Medicine, University of Granada, 18016 Granada, Spain; (R.S.-d.l.T.); (S.G.-S.); (L.M.-H.); (M.M.-T.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
| | - Francisco Andújar-Vera
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), 18014 Granada, Spain
| | - Luis Martínez-Heredia
- Department of Medicine, University of Granada, 18016 Granada, Spain; (R.S.-d.l.T.); (S.G.-S.); (L.M.-H.); (M.M.-T.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Muñoz-Torres
- Department of Medicine, University of Granada, 18016 Granada, Spain; (R.S.-d.l.T.); (S.G.-S.); (L.M.-H.); (M.M.-T.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Decreased endostatin in db/db retinas is associated with optic disc intravitreal vascularization. Exp Eye Res 2021; 212:108801. [PMID: 34688624 DOI: 10.1016/j.exer.2021.108801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
Endostatin, a naturally cleaved fragment of type XVIII collagen with antiangiogenic activity, has been involved in the regulation of neovascularization during diabetic retinopathy. Here, the intracellular distribution of endostatin in healthy mouse and human neuroretinas has been analyzed. In addition, to study the effect of experimental hyperglycemia on retinal endostatin, the db/db mouse model has been used. Endostatin protein expression in mouse and human retinas was studied by immunofluorescence and Western blot, and compared with db/db mice. Eye fundus angiography, histology, and immunofluorescence were used to visualize mouse retinal and intravitreal vessels. For the first time, our results revealed the presence of endostatin in neurons of mouse and human retinas. Endostatin was mainly expressed in bipolar cells and photoreceptors, in contrast to the optic disc, where endostatin expression was undetectable. Diabetic mice showed a reduction of endostatin in their retinas associated with the appearance of intravitreal vessels at the optic disc in 50% of db/db mice. Intravitreal vessels showed GFAP positive neuroglia sheath, basement membrane thickening by collagen IV deposition, and presence of MMP-2 and MMP-9 in the vascular wall. All together, these results point that decreased retinal endostatin during experimental diabetes is associated with optic disc intravitreal vascularization. Based on their phenotype, these intravitreal vessels could be neovessels. However, it cannot be ruled out the possibility that they may also represent persistent hyaloid vessels.
Collapse
|
5
|
Campochiaro PA, Akhlaq A. Sustained suppression of VEGF for treatment of retinal/choroidal vascular diseases. Prog Retin Eye Res 2020; 83:100921. [PMID: 33248215 DOI: 10.1016/j.preteyeres.2020.100921] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/27/2022]
Abstract
Neovascular age-related macular degeneration (NVAMD) is the most prevalent choroidal vascular disease, and diabetic retinopathy (DR) and retinal vein occlusion (RVO) are the most prevalent retinal vascular diseases. In each of these, hypoxia plays a central role by stabilizing hypoxia-inducible factor-1 which increases production of vascular endothelial growth factor (VEGF) and other hypoxia-regulated gene products. High VEGF causes excessive vascular permeability, neovascularization, and in DR and RVO, promotes closure of retinal vessels exacerbating hypoxia and creating a positive feedback loop. Hence once VEGF expression is elevated it tends to remain elevated and drives disease progression. While other hypoxia-regulated gene products also contribute to pathology in these disease processes, it is remarkable how much pathology is reversed by selective inhibition of VEGF. Clinical trials have demonstrated outstanding visual outcomes in patients with NVAMD, DR, or RVO from frequent intraocular injections of VEGF-neutralizing proteins, but for a variety of reasons injection frequency has been substantially less in clinical practice and visual outcomes are disappointing. Herein we discuss the rationale, preclinical, and early clinical results of new approaches that provide sustained suppression of VEGF. These approaches will revolutionize the management of these prevalent retinal/choroidal vascular diseases.
Collapse
Affiliation(s)
- Peter A Campochiaro
- The Departments of Ophthalmology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Anam Akhlaq
- The Departments of Ophthalmology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Wang Z, Liu CH, Huang S, Chen J. Wnt Signaling in vascular eye diseases. Prog Retin Eye Res 2018; 70:110-133. [PMID: 30513356 DOI: 10.1016/j.preteyeres.2018.11.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
Abstract
The Wnt signaling pathway plays a pivotal role in vascular morphogenesis in various organs including the eye. Wnt ligands and receptors are key regulators of ocular angiogenesis both during the eye development and in vascular eye diseases. Wnt signaling participates in regulating multiple vascular beds in the eye including regression of the hyaloid vessels, and development of structured layers of vasculature in the retina. Loss-of-function mutations in Wnt signaling components cause rare genetic eye diseases in humans such as Norrie disease, and familial exudative vitreoretinopathy (FEVR) with defective ocular vasculature. On the other hand, experimental studies in more prevalent vascular eye diseases, such as wet age-related macular degeneration (AMD), diabetic retinopathy (DR), retinopathy of prematurity (ROP), and corneal neovascularization, suggest that aberrantly increased Wnt signaling is one of the causations for pathological ocular neovascularization, indicating the potential of modulating Wnt signaling to ameliorate pathological angiogenesis in eye diseases. This review recapitulates the key roles of the Wnt signaling pathway during ocular vascular development and in vascular eye diseases, and pharmaceutical approaches targeting the Wnt signaling as potential treatment options.
Collapse
Affiliation(s)
- Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Shuo Huang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States.
| |
Collapse
|
7
|
Farjood F, Vargis E. Novel devices for studying acute and chronic mechanical stress in retinal pigment epithelial cells. LAB ON A CHIP 2018; 18:3413-3424. [PMID: 30328441 DOI: 10.1039/c8lc00659h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Choroidal neovascularization (CNV) is a major cause of blindness in patients with age-related macular degeneration (AMD). Overexpression of vascular endothelial growth factor (VEGF), a potent angiogenic protein, by retinal pigment epithelial (RPE) cells is a key stimulator of CNV. Mechanical stress occurs during different stages of AMD and is a possible inducer of VEGF expression in RPE cells. However, robust and realistic approaches to studying acute and chronic mechanical stress under various AMD stages do not exist. The majority of previous work has studied cyclic stretching of RPE cells grown on flexible substrates, but an ideal model must be able to mimic localized and continuous stretching of the RPE as would occur in AMD in vivo. To bridge this gap, we developed two in vitro devices to model chronic and acute mechanical stress on RPE cells during different stages of AMD. In one device, high levels of continuous mechanical stress were applied to focal regions of the RPE monolayer by stretching the underlying silicon substrate to study the role of chronic mechanical stimulation. In the second device, RPE cells were grown on porous plastic substrates and acute stress was studied by stretching small areas. Using these devices, we studied the effect of mechanical stress on VEGF expression in RPE cells. Our results suggest that mechanical stress in RPE cells induces VEGF expression and promotes in vitro angiogenesis. These results confirm the hypothesis that mechanical stress is involved in the initiation and progression of CNV.
Collapse
Affiliation(s)
- Farhad Farjood
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, USA.
| | | |
Collapse
|
8
|
Cell-specific gene therapy driven by an optimized hypoxia-regulated vector reduces choroidal neovascularization. J Mol Med (Berl) 2018; 96:1107-1118. [PMID: 30105447 DOI: 10.1007/s00109-018-1683-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022]
Abstract
Aberrant growth of blood vessels in the choroid layer of the eye, termed choroidal neovascularization (CNV), is the pathological hallmark of exudative age-related macular degeneration (AMD), causing irreversible blindness among the elderly. Co-localization of proangiogenic factors and hypoxia inducible factors (HIF) in neovascular membranes from AMD eyes suggests the role of hypoxia in pathogenesis of CNV. In order to utilize hypoxic conditions in RPE for therapeutic purposes, we developed an optimized hypoxia regulated, RPE cell-specific gene therapy to inhibit choroidal neovascularization. An adeno-associated virus (AAV2) vector comprising a RPE-specific promoter and HIF-1 response elements (HRE) was designed to regulate production of human endostatin (a powerful angiostatic protein) in RPE. The vector was tested in a mouse model of laser-induced CNV using subretinal delivery. Spectral domain optical coherence tomography (SD-OCT) images from live mice and confocal images from lectin stained RPE flat mount sections demonstrated reduction in CNV areas by 80% compared to untreated eyes. Quantitative real-time polymerase chain reaction (qPCR) confirmed exogenous endostatin mRNA expression from the regulated vector that was significantly elevated 3, 7, and 14 days following laser treatment, but its expression was completely shut off after 45 days. Thus, RPE-specific, hypoxia-regulated delivery of anti-angiogenic proteins could be a valuable therapeutic approach to treat neovascular AMD at the time and in the ocular space where it arises. KEY POINTS An optimized gene therapy vector targeting hypoxia and tissue-specific expression has been designed. The inhibitory role of gene therapy vector was tested in a mouse model of laser-induced CNV. An 80% reduction in choroidal neovascularization was achieved by the optimized vector. The expression of endostatin was limited to retinal pigment epithelium and regulated by hypoxia.
Collapse
|
9
|
Endogenous Antiangiogenic Factors in Chronic Kidney Disease: Potential Biomarkers of Progression. Int J Mol Sci 2018; 19:ijms19071859. [PMID: 29937525 PMCID: PMC6073618 DOI: 10.3390/ijms19071859] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/17/2018] [Accepted: 06/22/2018] [Indexed: 12/17/2022] Open
Abstract
Chronic kidney disease (CKD) is a major global health problem. Unless intensive intervention is initiated, some patients can rapidly progress to end-stage kidney disease. However, it is often difficult to predict renal outcomes using conventional laboratory tests in individuals with CKD. Therefore, many researchers have been searching for novel biomarkers to predict the progression of CKD. Angiogenesis is involved in physiological and pathological processes in the kidney and is regulated by the balance between a proangiogenic factor, vascular endothelial growth factor (VEGF)-A, and various endogenous antiangiogenic factors. In recent reports using genetically engineered mice, the roles of these antiangiogenic factors in the pathogenesis of kidney disease have become increasingly clear. In addition, recent clinical studies have demonstrated associations between circulating levels of antiangiogenic factors and renal dysfunction in CKD patients. In this review, we summarize recent advances in the study of representative endogenous antiangiogenic factors, including soluble fms-related tyrosine kinase 1, soluble endoglin, pigment epithelium-derived factor, VEGF-A165b, endostatin, and vasohibin-1, in associations with kidney diseases and discuss their predictive potentials as biomarkers of progression of CKD.
Collapse
|
10
|
Flt3 Regulation in the Mononuclear Phagocyte System Promotes Ocular Neovascularization. J Ophthalmol 2018; 2018:2518568. [PMID: 29854425 PMCID: PMC5960574 DOI: 10.1155/2018/2518568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
Fms-like tyrosine kinase 3 (Flt3), a tyrosine kinase receptor expressed in CD34+ hematopoietic stem/progenitor cells, is important for both normal myeloid and lymphoid differentiation. It has been implicated in mice and humans for potential multilineage differentiation. We found that mice deficient in Flt3 or mice that received an Flt3 inhibitor (AC220) showed significantly reduced areas of ischemia-induced retinal neovascularization (RNV) and laser-induced choroidal NV (CNV) (P < 0.05). Increased Flt3 expression at the protein level was detected in retinas of oxygen-induced retinopathy (OIR) mice at P15 and P18 during retinal NV (RNV) progression. We subsequently found that macrophages (Mphi) polarization was regulated at the site of CNV in Flt3-deficient mice. Flow cytometry analysis demonstrated that Flt3 deficiency shifted Mphi polarization towards an M2 phenotype during RNV with significant reduction in M1 cytokine expression when compared to the wild-type controls (P < 0.05). Based on the above findings, we concluded that Flt3 inhibition alleviated ocular NV by promoting a Mphi polarization shift towards the M2 phenotype. Therapies targeting Flt3 may provide a new approach for the treatment of ocular NV.
Collapse
|
11
|
Williams LB, Adesida AB. Angiogenic approaches to meniscal healing. Injury 2018; 49:467-472. [PMID: 29395218 DOI: 10.1016/j.injury.2018.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 02/02/2023]
Abstract
Meniscal injuries commonly result in osteoarthritis causing long term morbidity, lifelong treatment, joint replacement and significant financial burden to the Canadian healthcare system. Injuries to the outer third of the meniscus often heal well due to adequate blood supply. Healing of injuries in the inner two thirds of the meniscus are often critically retarded due to a lack of blood flow necessitating partial meniscectomy in many instances. Localized angiogenesis in the inner meniscus has yet to be achieved despite a belief that vascularization of these lesions corresponds with meniscal healing. This review briefly summarizes the growth factors that have been assessed for a role in meniscal healing and points to a significant knowledge gap in our understanding of meniscal healing.
Collapse
Affiliation(s)
- Lynn B Williams
- Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Adetola B Adesida
- Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
12
|
Liu Y, Fortmann SD, Shen J, Wielechowski E, Tretiakova A, Yoo S, Kozarsky K, Wang J, Wilson JM, Campochiaro PA. AAV8-antiVEGFfab Ocular Gene Transfer for Neovascular Age-Related Macular Degeneration. Mol Ther 2017; 26:542-549. [PMID: 29292162 DOI: 10.1016/j.ymthe.2017.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/27/2017] [Accepted: 12/02/2017] [Indexed: 12/11/2022] Open
Abstract
Sustained suppression of VEGF is needed in many patients with neovascular age-related macular degeneration (NVAMD), and gene transfer of a VEGF-neutralizing protein is a promising approach to achieve it. Initial clinical trials testing this approach have shown encouraging signals, but evidence of robust transgene expression and consistent antiangiogenic and antipermeability activity has been lacking. In this study, we demonstrate expression of an anti-human VEGF antibody fragment (antiVEGFfab) after subretinal injection of AAV8-antiVEGFfab. In transgenic mice expressing human VEGF in retina (rho/VEGF mice), a model of type 3 choroidal neovascularization (NV), eyes injected with ≥1 × 107 gene copies (GC) of AAV8-antiVEGFfab had significantly less mean area of NV than null vector-injected eyes. A dose-dependent response was observed with modest reduction of NV with ≤3 × 107, >50% reduction with ≥1 × 108 GC and almost complete elimination of NV with 3 × 109 or 1 × 1010 GC. In Tet/opsin/VEGF mice, in which doxycycline-induced high expression of VEGF leads to severe vascular leakage and exudative retinal detachment (RD), reduction of total RD by 70%-80% occurred with 3 × 109 or 1 × 1010 GC of AAV8-antiVEGFfab, an effect that was sustained for at least a month. These data strongly support initiating clinical trials testing subretinal injection of AAV8-antiVEGFfab in patients with NVAMD.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Departments of Ophthalmology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seth D Fortmann
- Departments of Ophthalmology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jikui Shen
- Departments of Ophthalmology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erik Wielechowski
- Departments of Medicine and Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Anna Tretiakova
- Departments of Medicine and Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | - Jiangxia Wang
- Johns Hopkins Biostatistics Center, Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - James M Wilson
- Departments of Medicine and Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Peter A Campochiaro
- Departments of Ophthalmology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Antiangiogenic Therapy for Diabetic Nephropathy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5724069. [PMID: 28835895 PMCID: PMC5556994 DOI: 10.1155/2017/5724069] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/16/2017] [Accepted: 06/13/2017] [Indexed: 12/28/2022]
Abstract
Angiogenesis has been shown to be a potential therapeutic target for early stages of diabetic nephropathy in a number of animal experiments. Vascular endothelial growth factor (VEGF) is the main mediator for abnormal angiogenesis in diabetic glomeruli. Although beneficial effects of anti-VEGF antibodies have previously been demonstrated in diabetic animal experiments, recent basic and clinical evidence has revealed that the blockade of VEGF signaling resulted in proteinuria and renal thrombotic microangiopathy, suggesting the importance of maintaining normal levels of VEGF in the kidneys. Therefore, antiangiogenic therapy for diabetic nephropathy should eliminate excessive glomerular angiogenic response without accelerating endothelial injury. Some endogenous antiangiogenic factors such as endostatin and tumstatin inhibit overactivation of endothelial cells but do not specifically block VEGF signaling. In addition, the novel endothelium-derived antiangiogenic factor vasohibin-1 enhances stress tolerance and survival of the endothelial cells, while inhibiting excess angiogenesis. These factors have been demonstrated to suppress albuminuria and glomerular alterations in a diabetic mouse model. Thus, antiangiogenic therapy with promising candidates will possibly improve renal prognosis in patients with early stages of diabetic nephropathy.
Collapse
|
14
|
Lai DW, Lin KH, Sheu WHH, Lee MR, Chen CY, Lee WJ, Hung YW, Shen CC, Chung TJ, Liu SH, Sheu ML. TPL2 (Therapeutic Targeting Tumor Progression Locus-2)/ATF4 (Activating Transcription Factor-4)/SDF1α (Chemokine Stromal Cell-Derived Factor-α) Axis Suppresses Diabetic Retinopathy. Circ Res 2017; 121:e37-e52. [PMID: 28724746 DOI: 10.1161/circresaha.117.311066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/09/2017] [Accepted: 07/19/2017] [Indexed: 11/16/2022]
Abstract
RATIONALE Diabetic retinopathy is characterized by vasopermeability, vascular leakage, inflammation, blood-retinal barrier breakdown, capillary degeneration, and neovascularization. However, the mechanisms underlying the association between diabetes mellitus and progression retinopathy remain unclear. OBJECTIVE TPL2 (tumor progression locus 2), a serine-threonine protein kinase, exerts a pathological effect on vascular angiogenesis. This study investigated the role of Nε-(carboxymethyl)lysine, a major advanced glycation end products, and the involved TPL2-related molecular signals in diabetic retinopathy using models of in vitro and in vivo and human samples. METHODS AND RESULTS Serum Nε-(carboxymethyl)lysine levels and TPL2 kinase activity were significantly increased in clinical patients and experimental animals with diabetic retinopathy. Intravitreal administration of pharmacological blocker or neutralizing antibody inhibited TPL2 and effectively suppressed the pathological characteristics of retinopathy in streptozotocin-induced diabetic animal models. Intravitreal VEGF (vascular endothelial growth factor) neutralization also suppressed the diabetic retinopathy in diabetic animal models. Mechanistic studies in primary human umbilical vein endothelial cells and primary retinal microvascular endothelial cells from streptozotocin-diabetic rats, db/db mice, and samples from patients with diabetic retinopathy revealed a positive parallel correlation between Nε-(carboxymethyl)lysine and the TPL2/chemokine SDF1α (stromal cell-derived factor-α) axis that is dependent on endoplasmic reticulum stress-related molecules, especially ATF4 (activating transcription factor-4). CONCLUSIONS This study demonstrates that inhibiting the Nε-(carboxymethyl)lysine-induced TPL2/ATF4/SDF1α axis can effectively prevent diabetes mellitus-mediated retinal microvascular dysfunction. This signaling axis may include the therapeutic potential for other diseases involving pathological neovascularization or macular edema.
Collapse
Affiliation(s)
- De-Wei Lai
- From the Institute of Biomedical Sciences (D.-W.L., M.-L.S.), Department of Chemistry (M.-R.L., C.-Y.C.), Rong Hsing Research Center for Translational Medicine (K.-H.L., W.H.-H.S., M.-L.S.), National Chung Hsing University, Taichung, Taiwan; Department of Ophthalmology (K.-H.L.), Division of Endocrinology and Metabolism (W.H.-H.S.), and Department of Medical Research (W.-J.L., Y.-W.H., M.-L.S.), Taichung Veterans General Hospital, Taiwan; Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan (C.-C.S.); Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (T.-J.C.); Department of Internal Medicine, Armed Forces Taichung General Hospital, Taiwan (T.-J.C.); Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (S.-H.L.); and Institute of Toxicology, College of Medicine, National Taiwan University, Taipei (S.-H.L.)
| | - Keng-Hung Lin
- From the Institute of Biomedical Sciences (D.-W.L., M.-L.S.), Department of Chemistry (M.-R.L., C.-Y.C.), Rong Hsing Research Center for Translational Medicine (K.-H.L., W.H.-H.S., M.-L.S.), National Chung Hsing University, Taichung, Taiwan; Department of Ophthalmology (K.-H.L.), Division of Endocrinology and Metabolism (W.H.-H.S.), and Department of Medical Research (W.-J.L., Y.-W.H., M.-L.S.), Taichung Veterans General Hospital, Taiwan; Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan (C.-C.S.); Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (T.-J.C.); Department of Internal Medicine, Armed Forces Taichung General Hospital, Taiwan (T.-J.C.); Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (S.-H.L.); and Institute of Toxicology, College of Medicine, National Taiwan University, Taipei (S.-H.L.)
| | - Wayne Huey-Herng Sheu
- From the Institute of Biomedical Sciences (D.-W.L., M.-L.S.), Department of Chemistry (M.-R.L., C.-Y.C.), Rong Hsing Research Center for Translational Medicine (K.-H.L., W.H.-H.S., M.-L.S.), National Chung Hsing University, Taichung, Taiwan; Department of Ophthalmology (K.-H.L.), Division of Endocrinology and Metabolism (W.H.-H.S.), and Department of Medical Research (W.-J.L., Y.-W.H., M.-L.S.), Taichung Veterans General Hospital, Taiwan; Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan (C.-C.S.); Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (T.-J.C.); Department of Internal Medicine, Armed Forces Taichung General Hospital, Taiwan (T.-J.C.); Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (S.-H.L.); and Institute of Toxicology, College of Medicine, National Taiwan University, Taipei (S.-H.L.)
| | - Maw-Rong Lee
- From the Institute of Biomedical Sciences (D.-W.L., M.-L.S.), Department of Chemistry (M.-R.L., C.-Y.C.), Rong Hsing Research Center for Translational Medicine (K.-H.L., W.H.-H.S., M.-L.S.), National Chung Hsing University, Taichung, Taiwan; Department of Ophthalmology (K.-H.L.), Division of Endocrinology and Metabolism (W.H.-H.S.), and Department of Medical Research (W.-J.L., Y.-W.H., M.-L.S.), Taichung Veterans General Hospital, Taiwan; Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan (C.-C.S.); Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (T.-J.C.); Department of Internal Medicine, Armed Forces Taichung General Hospital, Taiwan (T.-J.C.); Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (S.-H.L.); and Institute of Toxicology, College of Medicine, National Taiwan University, Taipei (S.-H.L.)
| | - Chung-Yu Chen
- From the Institute of Biomedical Sciences (D.-W.L., M.-L.S.), Department of Chemistry (M.-R.L., C.-Y.C.), Rong Hsing Research Center for Translational Medicine (K.-H.L., W.H.-H.S., M.-L.S.), National Chung Hsing University, Taichung, Taiwan; Department of Ophthalmology (K.-H.L.), Division of Endocrinology and Metabolism (W.H.-H.S.), and Department of Medical Research (W.-J.L., Y.-W.H., M.-L.S.), Taichung Veterans General Hospital, Taiwan; Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan (C.-C.S.); Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (T.-J.C.); Department of Internal Medicine, Armed Forces Taichung General Hospital, Taiwan (T.-J.C.); Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (S.-H.L.); and Institute of Toxicology, College of Medicine, National Taiwan University, Taipei (S.-H.L.)
| | - Wen-Jane Lee
- From the Institute of Biomedical Sciences (D.-W.L., M.-L.S.), Department of Chemistry (M.-R.L., C.-Y.C.), Rong Hsing Research Center for Translational Medicine (K.-H.L., W.H.-H.S., M.-L.S.), National Chung Hsing University, Taichung, Taiwan; Department of Ophthalmology (K.-H.L.), Division of Endocrinology and Metabolism (W.H.-H.S.), and Department of Medical Research (W.-J.L., Y.-W.H., M.-L.S.), Taichung Veterans General Hospital, Taiwan; Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan (C.-C.S.); Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (T.-J.C.); Department of Internal Medicine, Armed Forces Taichung General Hospital, Taiwan (T.-J.C.); Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (S.-H.L.); and Institute of Toxicology, College of Medicine, National Taiwan University, Taipei (S.-H.L.)
| | - Yi-Wen Hung
- From the Institute of Biomedical Sciences (D.-W.L., M.-L.S.), Department of Chemistry (M.-R.L., C.-Y.C.), Rong Hsing Research Center for Translational Medicine (K.-H.L., W.H.-H.S., M.-L.S.), National Chung Hsing University, Taichung, Taiwan; Department of Ophthalmology (K.-H.L.), Division of Endocrinology and Metabolism (W.H.-H.S.), and Department of Medical Research (W.-J.L., Y.-W.H., M.-L.S.), Taichung Veterans General Hospital, Taiwan; Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan (C.-C.S.); Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (T.-J.C.); Department of Internal Medicine, Armed Forces Taichung General Hospital, Taiwan (T.-J.C.); Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (S.-H.L.); and Institute of Toxicology, College of Medicine, National Taiwan University, Taipei (S.-H.L.)
| | - Chin-Chang Shen
- From the Institute of Biomedical Sciences (D.-W.L., M.-L.S.), Department of Chemistry (M.-R.L., C.-Y.C.), Rong Hsing Research Center for Translational Medicine (K.-H.L., W.H.-H.S., M.-L.S.), National Chung Hsing University, Taichung, Taiwan; Department of Ophthalmology (K.-H.L.), Division of Endocrinology and Metabolism (W.H.-H.S.), and Department of Medical Research (W.-J.L., Y.-W.H., M.-L.S.), Taichung Veterans General Hospital, Taiwan; Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan (C.-C.S.); Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (T.-J.C.); Department of Internal Medicine, Armed Forces Taichung General Hospital, Taiwan (T.-J.C.); Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (S.-H.L.); and Institute of Toxicology, College of Medicine, National Taiwan University, Taipei (S.-H.L.)
| | - Tsung-Ju Chung
- From the Institute of Biomedical Sciences (D.-W.L., M.-L.S.), Department of Chemistry (M.-R.L., C.-Y.C.), Rong Hsing Research Center for Translational Medicine (K.-H.L., W.H.-H.S., M.-L.S.), National Chung Hsing University, Taichung, Taiwan; Department of Ophthalmology (K.-H.L.), Division of Endocrinology and Metabolism (W.H.-H.S.), and Department of Medical Research (W.-J.L., Y.-W.H., M.-L.S.), Taichung Veterans General Hospital, Taiwan; Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan (C.-C.S.); Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (T.-J.C.); Department of Internal Medicine, Armed Forces Taichung General Hospital, Taiwan (T.-J.C.); Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (S.-H.L.); and Institute of Toxicology, College of Medicine, National Taiwan University, Taipei (S.-H.L.)
| | - Shing-Hwa Liu
- From the Institute of Biomedical Sciences (D.-W.L., M.-L.S.), Department of Chemistry (M.-R.L., C.-Y.C.), Rong Hsing Research Center for Translational Medicine (K.-H.L., W.H.-H.S., M.-L.S.), National Chung Hsing University, Taichung, Taiwan; Department of Ophthalmology (K.-H.L.), Division of Endocrinology and Metabolism (W.H.-H.S.), and Department of Medical Research (W.-J.L., Y.-W.H., M.-L.S.), Taichung Veterans General Hospital, Taiwan; Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan (C.-C.S.); Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (T.-J.C.); Department of Internal Medicine, Armed Forces Taichung General Hospital, Taiwan (T.-J.C.); Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (S.-H.L.); and Institute of Toxicology, College of Medicine, National Taiwan University, Taipei (S.-H.L.)
| | - Meei-Ling Sheu
- From the Institute of Biomedical Sciences (D.-W.L., M.-L.S.), Department of Chemistry (M.-R.L., C.-Y.C.), Rong Hsing Research Center for Translational Medicine (K.-H.L., W.H.-H.S., M.-L.S.), National Chung Hsing University, Taichung, Taiwan; Department of Ophthalmology (K.-H.L.), Division of Endocrinology and Metabolism (W.H.-H.S.), and Department of Medical Research (W.-J.L., Y.-W.H., M.-L.S.), Taichung Veterans General Hospital, Taiwan; Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan (C.-C.S.); Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (T.-J.C.); Department of Internal Medicine, Armed Forces Taichung General Hospital, Taiwan (T.-J.C.); Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (S.-H.L.); and Institute of Toxicology, College of Medicine, National Taiwan University, Taipei (S.-H.L.).
| |
Collapse
|
15
|
Di Giancamillo A, Deponti D, Modina S, Tessaro I, Domeneghini C, Peretti GM. Age-related modulation of angiogenesis-regulating factors in the swine meniscus. J Cell Mol Med 2017; 21:3066-3075. [PMID: 28580627 PMCID: PMC5661103 DOI: 10.1111/jcmm.13218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/23/2017] [Indexed: 12/17/2022] Open
Abstract
An in‐depth knowledge of the native meniscus morphology and biomechanics in its different areas is essential to develop an engineered tissue. Meniscus is characterized by a great regional variation in extracellular matrix components and in vascularization. Then, the aim of this work was to characterize the expression of factors involved in angiogenesis in different areas during meniscus maturation in pigs. The menisci were removed from the knee joints of neonatal, young and adult pigs, and they were divided into the inner, intermediate and outer areas. Vascular characterization and meniscal maturation were evaluated by immunohistochemistry and Western blot analysis. In particular, expression of the angiogenic factor Vascular Endothelial Growth Factor (VEGF) and the anti‐angiogenic marker Endostatin (ENDO) was analysed, as well as the vascular endothelial cadherin (Ve‐CAD). In addition, expression of Collagen II (COLL II) and SOX9 was examined, as markers of the fibro‐cartilaginous differentiation. Expression of VEGF and Ve‐CAD had a similar pattern in all animals, with a significant increase from the inner to the outer part of the meniscus. Pooling the zones, expression of both proteins was significantly higher in the neonatal meniscus than in young and adult menisci. Conversely, the young meniscus revealed a significantly higher expression of ENDO compared to the neonatal and adult ones. Analysis of tissue maturation markers showed an increase in COLL II and a decrease in SOX9 expression with age. These preliminary data highlight some of the changes that occur in the swine meniscus during growth, in particular the ensemble of regulatory factors involved in angiogenesis.
Collapse
Affiliation(s)
- Alessia Di Giancamillo
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| | | | - Silvia Modina
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| | | | - Cinzia Domeneghini
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Maria Peretti
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
16
|
Chen Q, Ma JX. Canonical Wnt signaling in diabetic retinopathy. Vision Res 2017; 139:47-58. [PMID: 28545982 DOI: 10.1016/j.visres.2017.02.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 11/16/2022]
Abstract
Diabetic retinopathy (DR) is a common eye complication of diabetes, and the pathogenic mechanism of DR is still under investigation. The canonical Wnt signaling pathway is an evolutionarily conserved pathway that plays fundamental roles in embryogenesis and adult tissue homeostasis. Wnt signaling regulates expression of multiple genes that control retinal development and eye organogenesis, and dysregulated Wnt signaling plays pathophysiological roles in many ocular diseases, including DR. This review highlights recent progress in studies of Wnt signaling in DR. We discuss Wnt signaling regulation in the retina and dysregulation of Wnt signaling associated with ocular diseases with an emphasis on DR. We also discuss the therapeutic potential of modulating Wnt signaling in DR. Continued studies in this field will advance our current understanding on DR and contribute to the development of new treatments.
Collapse
Affiliation(s)
- Qian Chen
- Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Jian-Xing Ma
- Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States.
| |
Collapse
|
17
|
Bee YS, Tu L, Sheu SJ, Lin HC, Tang JH, Wang JH, Prea SM, Dusting GJ, Wu DC, Zhong J, Bui BV, Tai MH, Liu GS. Gene Delivery of Calreticulin Anti-Angiogenic Domain Attenuates the Development of Choroidal Neovascularization in Rats. Hum Gene Ther 2017; 28:403-414. [DOI: 10.1089/hum.2016.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Youn-Shen Bee
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Yuh-Ing Junior College of Health Care and Management, Kaohsiung, Taiwan
- National Defense Medical Center, Taipei, Taiwan
| | - Leilei Tu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shwu-Jiuan Sheu
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsiu-Chen Lin
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jia-Hua Tang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
| | - Selwyn M. Prea
- Department of Optometry and Vision Sciences, University of Melbourne, East Melbourne, Australia
| | - Gregory J. Dusting
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
| | - Deng-Chyang Wu
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jingxiang Zhong
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bang V. Bui
- Department of Optometry and Vision Sciences, University of Melbourne, East Melbourne, Australia
| | - Ming-Hong Tai
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
| |
Collapse
|
18
|
Borrás T. The Pathway From Genes to Gene Therapy in Glaucoma: A Review of Possibilities for Using Genes as Glaucoma Drugs. Asia Pac J Ophthalmol (Phila) 2017; 6:80-93. [PMID: 28161916 PMCID: PMC6005701 DOI: 10.22608/apo.2016126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022] Open
Abstract
Treatment of diseases with gene therapy is advancing rapidly. The use of gene therapy has expanded from the original concept of re-placing the mutated gene causing the disease to the use of genes to con-trol nonphysiological levels of expression or to modify pathways known to affect the disease. Genes offer numerous advantages over conventional drugs. They have longer duration of action and are more specific. Genes can be delivered to the target site by naked DNA, cells, nonviral, and viral vectors. The enormous progress of the past decade in molecular bi-ology and delivery systems has provided ways for targeting genes to the intended cell/tissue and safe, long-term vectors. The eye is an ideal organ for gene therapy. It is easily accessible and it is an immune-privileged site. Currently, there are clinical trials for diseases affecting practically every tissue of the eye, including those to restore vision in patients with Leber congenital amaurosis. However, the number of eye trials compared with those for systemic diseases is quite low (1.8%). Nevertheless, judg-ing by the vast amount of ongoing preclinical studies, it is expected that such number will increase considerably in the near future. One area of great need for eye gene therapy is glaucoma, where a long-term gene drug would eliminate daily applications and compliance issues. Here, we review the current state of gene therapy for glaucoma and the possibilities for treating the trabecular meshwork to lower intraocular pressure and the retinal ganglion cells to protect them from neurodegeneration.
Collapse
Affiliation(s)
- Teresa Borrás
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
19
|
Heljasvaara R, Aikio M, Ruotsalainen H, Pihlajaniemi T. Collagen XVIII in tissue homeostasis and dysregulation - Lessons learned from model organisms and human patients. Matrix Biol 2016; 57-58:55-75. [PMID: 27746220 DOI: 10.1016/j.matbio.2016.10.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/12/2016] [Accepted: 10/10/2016] [Indexed: 12/13/2022]
Abstract
Collagen XVIII is a ubiquitous basement membrane (BM) proteoglycan produced in three tissue-specific isoforms that differ in their N-terminal non-collagenous sequences, but share collagenous and C-terminal non-collagenous domains. The collagenous domain provides flexibility to the large collagen XVIII molecules on account of multiple interruptions in collagenous sequences. Each isoform has a complex multi-domain structure that endows it with an ability to perform various biological functions. The long isoform contains a frizzled-like (Fz) domain with Wnt-inhibiting activity and a unique domain of unknown function (DUF959), which is also present in the medium isoform. All three isoforms share an N-terminal laminin-G-like/thrombospondin-1 sequence whose specific functions still remain unconfirmed. The proteoglycan nature of the isoforms further increases the functional diversity of collagen XVIII. An anti-angiogenic domain termed endostatin resides in the C-terminus of collagen XVIII and is proteolytically cleaved from the parental molecule during the BM breakdown for example in the process of tumour progression. Recombinant endostatin can efficiently reduce tumour angiogenesis and growth in experimental models by inhibiting endothelial cell migration and proliferation or by inducing their death, but its efficacy against human cancers is still a subject of debate. Mutations in the COL18A1 gene result in Knobloch syndrome, a genetic disorder characterised mainly by severe eye defects and encephalocele and, occasionally, other symptoms. Studies with gene-modified mice have elucidated some aspects of this rare disease, highlighting in particular the importance of collagen XVIII in the development of the eye. Research with model organisms have also helped in determining other structural and biological functions of collagen XVIII, such as its requirement in the maintenance of BM integrity and its emerging roles in regulating cell survival, stem or progenitor cell maintenance and differentiation and inflammation. In this review, we summarise current knowledge on the properties and endogenous functions of collagen XVIII in normal situations and tissue dysregulation. When data is available, we discuss the functions of the distinct isoforms and their specific domains.
Collapse
Affiliation(s)
- Ritva Heljasvaara
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, FIN-90014 Oulu, Finland; Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway.
| | - Mari Aikio
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Heli Ruotsalainen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, FIN-90014 Oulu, Finland
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, FIN-90014 Oulu, Finland
| |
Collapse
|
20
|
Campochiaro PA, Lauer AK, Sohn EH, Mir TA, Naylor S, Anderton MC, Kelleher M, Harrop R, Ellis S, Mitrophanous KA. Lentiviral Vector Gene Transfer of Endostatin/Angiostatin for Macular Degeneration (GEM) Study. Hum Gene Ther 2016; 28:99-111. [PMID: 27710144 DOI: 10.1089/hum.2016.117] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neovascular age-related macular degeneration (NVAMD) is a prevalent cause of vision loss. Intraocular injections of VEGF-neutralizing proteins provide benefit, but many patients require frequent injections for a prolonged period. Benefits are often lost over time due to lapses in treatment. New treatments that sustain anti-angiogenic activity are needed. This study tested the safety and expression profile of a lentiviral Equine Infectious Anemia Virus (EIAV) vector expressing endostatin and angiostatin (RetinoStat®). Patients with advanced NVAMD were enrolled at three centers in the United States, and the study eye received a subretinal injection of 2.4 × 104 (n = 3), 2.4 × 105 (n = 3), or 8.0 × 105 transduction units (TU; n = 15). Each of the doses was well-tolerated with no dose-limiting toxicities. There was little or no ocular inflammation. There was one procedure-related serious adverse event (AE), a macular hole, which was managed without difficulty and resolved. There was a vector dose-related increase in aqueous humor levels of endostatin and angiostatin with high reproducibility among subjects within cohorts. Mean levels of endostatin and angiostatin peaked between 12 and 24 weeks after injection of 2.4 × 105 TU or 8.0 × 105 TU at 57-81 ng/mL for endostatin and 15-27 ng/mL for angiostatin, and remained stable through the last measurement at week 48. Long-term follow-up demonstrated expression was maintained at last measurement (2.5 years in eight subjects and >4 years in two subjects). Despite an apparent reduction in fluorescein angiographic leakage that broadly correlated with the expression levels in the majority of patients, only one subject showed convincing evidence of anti-permeability activity in these late-stage patients. There was no significant change in mean lesion size in subjects injected with 8.0 × 105 TU. These data demonstrate that EIAV vectors provide a safe platform with robust and sustained transgene expression for ocular gene therapy.
Collapse
Affiliation(s)
- Peter A Campochiaro
- 1 The Wilmer Eye Institute, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Andreas K Lauer
- 2 Casey Eye Institute, Oregon Health and Science University , Portland Oregon
| | - Elliott H Sohn
- 3 Department of Ophthalmology, University of Iowa Hospitals and Clinics , Iowa City, Iowa
| | - Tahreem A Mir
- 1 The Wilmer Eye Institute, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Stuart Naylor
- 4 Formerly of Oxford BioMedica (UK) Ltd. , Oxford, United Kingdom
| | | | - Michelle Kelleher
- 5 Oxford BioMedica (UK) Ltd. , Windrush Court, Oxford, United Kingdom
| | - Richard Harrop
- 5 Oxford BioMedica (UK) Ltd. , Windrush Court, Oxford, United Kingdom
| | - Scott Ellis
- 5 Oxford BioMedica (UK) Ltd. , Windrush Court, Oxford, United Kingdom
| | | |
Collapse
|
21
|
Grob SR, Finn A, Papakostas TD, Eliott D. Clinical Trials in Retinal Dystrophies. Middle East Afr J Ophthalmol 2016; 23:49-59. [PMID: 26957839 PMCID: PMC4759904 DOI: 10.4103/0974-9233.173135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Research development is burgeoning for genetic and cellular therapy for retinal dystrophies. These dystrophies are the focus of many research efforts due to the unique biology and accessibility of the eye, the transformative advances in ocular imaging technology that allows for in vivo monitoring, and the potential benefit people would gain from success in the field – the gift of renewed sight. Progress in the field has revealed the immense complexity of retinal dystrophies and the challenges faced by researchers in the development of this technology. This study reviews the current trials and advancements in genetic and cellular therapy in the treatment of retinal dystrophies and also discusses the current and potential future challenges.
Collapse
Affiliation(s)
- Seanna R Grob
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Avni Finn
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Thanos D Papakostas
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA; Retina, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Dean Eliott
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA; Retina, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Campochiaro PA, Hafiz G, Mir TA, Scott AW, Zimmer-Galler I, Shah SM, Wenick AS, Brady CJ, Han I, He L, Channa R, Poon D, Meyerle C, Aronow MB, Sodhi A, Handa JT, Kherani S, Han Y, Sophie R, Wang G, Qian J. Pro-permeability Factors in Diabetic Macular Edema; the Diabetic Macular Edema Treated With Ozurdex Trial. Am J Ophthalmol 2016; 168:13-23. [PMID: 27130369 PMCID: PMC5482180 DOI: 10.1016/j.ajo.2016.04.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/14/2016] [Accepted: 04/20/2016] [Indexed: 01/14/2023]
Abstract
PURPOSE The Diabetic Macular Edema Treated with Ozurdex (DMEO) Trial measured aqueous pro-permeability factors (PPFs) in diabetic macular edema (DME) patients before and after injection of dexamethasone implant or vascular endothelial growth factor (VEGF)-neutralizing protein and correlated changes in levels with changes in excess foveal thickness (EFT) to identify potential PPFs contributing to DME. DESIGN Prospective, randomized crossover clinical trial. METHODS Twenty DME patients randomized to dexamethasone implant or VEGF-neutralizing protein had aqueous taps and spectral-domain optical coherence tomography (SDOCT) at baseline and every 4 weeks for 28 weeks. Aqueous levels of 55 vasoactive proteins were measured with protein array. Crossover at week 16 provided changes in protein levels after each intervention in all 20 patients. RESULTS After dexamethasone implant there was significant correlation between changes in levels of 13 vasoactive proteins with changes in EFT, including 3 known PPFs: angiopoietin-2 (r = 0.40, P = .001), hepatocyte growth factor (HGF; r = 0.31, P = .02), and endocrine gland-VEGF (EG-VEGF, r = 0.43, P < .001). Reduction of prolactin, insulin-like growth factor binding protein-3, and matrix metalloproteinase-9 correlated with edema reduction after injection of a VEGF-neutralizing protein as well as dexamethasone implant, suggesting their modulation is likely secondary to changes in edema rather than causative. CONCLUSIONS Correlation of edema reduction with reduction in the PPFs angiopoietin-2, HGF, and EG-VEGF provides potential insight into the multifactorial molecular mechanism by which dexamethasone implants reduce edema and suggest that additional study is needed to investigate the contributions of these 3 factors to chronic DME.
Collapse
Affiliation(s)
- Peter A Campochiaro
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Gulnar Hafiz
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tahreem A Mir
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Adrienne W Scott
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ingrid Zimmer-Galler
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Syed M Shah
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Adam S Wenick
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher J Brady
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ian Han
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lingmin He
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Roomasa Channa
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David Poon
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Catherine Meyerle
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mary Beth Aronow
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Saleema Kherani
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yong Han
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Raafay Sophie
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Guohua Wang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jiang Qian
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
23
|
Xia JL, Wang LQ, Wu LL, Huang QB. Doxycycline hyclate protects lipopolysaccharide-induced endothelial barrier dysfunction by inhibiting the activation of p38 mitogen-activated protein kinase. Biol Pharm Bull 2015; 37:1882-90. [PMID: 25451837 DOI: 10.1248/bpb.b14-00298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Doxycycline hyclate (DOX-h) attenuates inflammatory conditions independent of its antimicrobial effect. This study aimed to observe the effects of DOX-h on lipopolysaccharide (LPS)-induced endothelial barrier dysfunction. The endothelial monolayer permeability of human umbilical vein endothelial cells (HUVECs) was monitored by transendothelial electrical resistance (TEER). The phosphorylation of mitogen-activated protein kinases (MAPKs) and the arrangement of F-actin were detected. The results showed that both pretreatment and simultaneous treatment with DOX-h markedly attenuated the LPS-induced reduction in TEER and the disorganization of F-actin on HUVECs in a dose- and time-dependent manner. LPS mediated the phosphorylation of all three MAPKs (p38, extracellular signal-regulated kinase (ERK)1/2, and c-Jun N-terminal kinase (JNK)), but DOX-h was only able to inhibit the LPS-induced phosphorylation of p38 and JNK. The data further suggested that DOX-h alleviated LPS-evoked TEER reduction and F-actin redistribution by inhibiting the phosphorylation of p38 and its downstream target, heat shock protein (HSP)27. Thus, DOX-h attenuates LPS-induced endothelial barrier dysfunction via inhibition of the p38 MAPK-HSP27-F-actin pathway.
Collapse
Affiliation(s)
- Jian-ling Xia
- First Clinical College of Medicine, Southern Medical University
| | | | | | | |
Collapse
|
24
|
Campochiaro PA. Molecular pathogenesis of retinal and choroidal vascular diseases. Prog Retin Eye Res 2015; 49:67-81. [PMID: 26113211 DOI: 10.1016/j.preteyeres.2015.06.002] [Citation(s) in RCA: 376] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/09/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023]
Abstract
There are two major types of ocular neovascularization that affect the retina, retinal neovascularization (NV) and subretinal or choroidal NV. Retinal NV occurs in a group of diseases referred to as ischemic retinopathies in which damage to retinal vessels results in retinal ischemia. Most prevalent of these are diabetic retinopathy and retinal vein occlusions. Subretinal and choroidal NV occur in diseases of the outer retina and Bruch's membrane, the most prevalent of which is age-related macular degeneration. Numerous studies in mouse models have helped to elucidate the molecular pathogenesis underlying retinal, subretinal, and choroidal NV. There is considerable overlap because the precipitating event in each is stabilization of hypoxia inducible factor-1 (HIF-1) which leads to upregulation of several hypoxia-regulated gene products, including vascular endothelial growth factor (VEGF), angiopoietin 2, vascular endothelial-protein tyrosine phosphatase (VE-PTP), and several others. Stimulation of VEGF signaling and suppression of Tie2 by angiopoietin 2 and VE-PTP are critical for sprouting of retinal, subretinal, and choroidal NV, with perturbation of Bruch's membrane also needed for the latter. Additional HIF-1-regulated gene products cause further stimulation of the NV. It is difficult to model macular edema in animals and therefore proof-of-concept clinical trials were done and demonstrated that VEGF plays a central role and that suppression of Tie2 is also important. Neutralization of VEGF is currently the first line therapy for all of the above disease processes, but new treatments directed at some of the other molecular targets, particularly stabilization of Tie2, are likely to provide additional benefit for subretinal/choroidal NV and macular edema. In addition, the chronicity of these diseases as well as the implication of VEGF as a cause of retinal nonperfusion and progression of background diabetic retinopathy make sustained delivery approaches for VEGF antagonists a priority.
Collapse
Affiliation(s)
- Peter A Campochiaro
- Departments of Ophthalmology and Neuroscience, Maumenee 815, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287-9277, USA.
| |
Collapse
|
25
|
Venugopal S, Chen M, Liao W, Er SY, Wong WSF, Ge R. Isthmin is a novel vascular permeability inducer that functions through cell-surface GRP78-mediated Src activation. Cardiovasc Res 2015; 107:131-42. [PMID: 25952901 DOI: 10.1093/cvr/cvv142] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 04/22/2015] [Indexed: 11/14/2022] Open
Abstract
AIMS Isthmin (ISM) is a recently identified 60 kDa secreted angiogenesis inhibitor. Two cell-surface receptors for ISM have been defined, the high-affinity glucose-regulated protein 78 kDa (GRP78) and the low-affinity αvβ5 integrin. As αvβ5 integrin plays an important role in pulmonary vascular permeability (VP) and ISM is highly expressed in mouse lung, we sought to clarify the role of ISM in VP. METHODS AND RESULTS Recombinant ISM (rISM) dose-dependently enhances endothelial monolayer permeability in vitro and local dermal VP when administered intradermally in mice. Systemic rISM administration through intravenous injection leads to profound lung vascular hyperpermeability but not in other organs. Mechanistic investigations using molecular, biochemical approaches and specific chemical inhibitors revealed that ISM-GRP78 interaction triggers a direct interaction between GRP78 and Src, leading to Src activation and subsequent phosphorylation of adherens junction proteins and loss of junctional proteins from inter-endothelial junctions, resulting in enhanced VP. Dynamic studies of Src activation, VP and apoptosis revealed that ISM induces VP directly via Src activation while apoptosis contributes indirectly only after prolonged treatment. Furthermore, ISM is significantly up-regulated in lipopolysaccharide (LPS)-treated mouse lung. Blocking cell-surface GRP78 by systemic infusion of anti-GRP78 antibody significantly attenuates pulmonary vascular hyperpermeability in LPS-induced acute lung injury (ALI) in mice. CONCLUSION ISM is a novel VP inducer that functions through cell-surface GRP78-mediated Src activation as well as induction of apoptosis. It induces a direct GRP78-Src interaction, leading to cytoplasmic Src activation. ISM contributes to pulmonary vascular hyperpermeability of LPS-induced ALI in mice.
Collapse
Affiliation(s)
- Shruthi Venugopal
- Department of Biological Sciences, Faculty of Science, 14 Science Drive 4, National University of Singapore, Singapore, Singapore 117543
| | - Mo Chen
- Department of Biological Sciences, Faculty of Science, 14 Science Drive 4, National University of Singapore, Singapore, Singapore 117543
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore Immunology Program, Life Science Institute, National University of Singapore, Singapore, Singapore 117456
| | - Shi Yin Er
- Department of Biological Sciences, Faculty of Science, 14 Science Drive 4, National University of Singapore, Singapore, Singapore 117543
| | - Wai-Shiu Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore Immunology Program, Life Science Institute, National University of Singapore, Singapore, Singapore 117456
| | - Ruowen Ge
- Department of Biological Sciences, Faculty of Science, 14 Science Drive 4, National University of Singapore, Singapore, Singapore 117543
| |
Collapse
|
26
|
Gene Therapy with Endogenous Inhibitors of Angiogenesis for Neovascular Age-Related Macular Degeneration: Beyond Anti-VEGF Therapy. J Ophthalmol 2015; 2015:201726. [PMID: 25821585 PMCID: PMC4363820 DOI: 10.1155/2015/201726] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/08/2014] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of substantial and irreversible vision loss amongst elderly populations in industrialized countries. The advanced neovascular (or “wet”) form of the disease is responsible for severe and aggressive loss of central vision. Current treatments aim to seal off leaky blood vessels via laser therapy or to suppress vessel leakage and neovascular growth through intraocular injections of antibodies that target vascular endothelial growth factor (VEGF). However, the long-term success of anti-VEGF therapy can be hampered by limitations such as low or variable efficacy, high frequency of administration (usually monthly), potentially serious side effects, and, most importantly, loss of efficacy with prolonged treatment. Gene transfer of endogenous antiangiogenic proteins is an alternative approach that has the potential to provide long-term suppression of neovascularization and/or excessive vascular leakage in the eye. Preclinical studies of gene transfer in a large animal model have provided impressive preliminary results with a number of transgenes. In addition, a clinical trial in patients suffering from advanced neovascular AMD has provided proof-of-concept for successful gene transfer. In this mini review, we summarize current theories pertaining to the application of gene therapy for neovascular AMD and the potential benefits when used in conjunction with endogenous antiangiogenic proteins.
Collapse
|
27
|
Pechan P, Wadsworth S, Scaria A. Gene Therapies for Neovascular Age-Related Macular Degeneration. Cold Spring Harb Perspect Med 2014; 5:a017335. [PMID: 25524721 DOI: 10.1101/cshperspect.a017335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pathological neovascularization is a key component of the neovascular form (also known as the wet form) of age-related macular degeneration (AMD) and proliferative diabetic retinopathy. Several preclinical studies have shown that antiangiogenesis strategies are effective for treating neovascular AMD in animal models. Vascular endothelial growth factor (VEGF) is one of the main inducers of ocular neovascularization, and several clinical trials have shown the benefits of neutralizing VEGF in patients with neovascular AMD or diabetic macular edema. In this review, we summarize several preclinical and early-stage clinical trials with intraocular gene therapies, which have the potential to reduce or eliminate the repeated intravitreal injections that are currently required for the treatment of neovascular AMD.
Collapse
Affiliation(s)
- Peter Pechan
- Gene Therapy, Sanofi-Genzyme R&D Center, Framingham, Massachusetts 01701
| | - Samuel Wadsworth
- Gene Therapy, Sanofi-Genzyme R&D Center, Framingham, Massachusetts 01701
| | - Abraham Scaria
- Gene Therapy, Sanofi-Genzyme R&D Center, Framingham, Massachusetts 01701
| |
Collapse
|
28
|
Bai YJ, Huang LZ, Zhou AY, Zhao M, Yu WZ, Li XX. Antiangiogenesis Effects of Endostatin in Retinal Neovascularization. J Ocul Pharmacol Ther 2013; 29:619-26. [PMID: 23545016 DOI: 10.1089/jop.2012.0225] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yu-jing Bai
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Department of Ophthalmology, Peking University People's Hospital, Beijing, People's Republic of China
| | - Lv-zhen Huang
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Department of Ophthalmology, Peking University People's Hospital, Beijing, People's Republic of China
| | - Ai-yi Zhou
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Department of Ophthalmology, Peking University People's Hospital, Beijing, People's Republic of China
| | - Min Zhao
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Department of Ophthalmology, Peking University People's Hospital, Beijing, People's Republic of China
| | - Wen-zhen Yu
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Department of Ophthalmology, Peking University People's Hospital, Beijing, People's Republic of China
| | - Xiao-xin Li
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Department of Ophthalmology, Peking University People's Hospital, Beijing, People's Republic of China
| |
Collapse
|
29
|
Microvascular complications and diabetic retinopathy: recent advances and future implications. Future Med Chem 2013; 5:301-14. [PMID: 23464520 DOI: 10.4155/fmc.12.206] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Retinal microvascular alterations have been observed during diabetic retinopathy (DR) due to the retinal susceptibility towards subtle pathological alterations. Therefore, retinal microvascular pathology is essential to understand the nature of retinal degenerations during DR. In this review, the role of retinal microvasculature complications during progression of DR, along with recent efforts to normalize such alterations for better therapeutic outcome, will be underlined. In addition, current therapeutics and future directions for advancement of standard treatment for DR patients will be discussed.
Collapse
|
30
|
Campochiaro PA. Ocular neovascularization. J Mol Med (Berl) 2013; 91:311-21. [PMID: 23329331 DOI: 10.1007/s00109-013-0993-5] [Citation(s) in RCA: 306] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 12/22/2012] [Accepted: 01/02/2013] [Indexed: 01/18/2023]
Abstract
Retinal and choroidal vascular diseases constitute the most common causes of moderate and severe vision loss in developed countries. They can be divided into retinal vascular diseases, in which there is leakage and/or neovascularization (NV) from retinal vessels, and subretinal NV, in which new vessels grow into the normally avascular outer retina and subretinal space. The first category of diseases includes diabetic retinopathy, retinal vein occlusions, and retinopathy of prematurity, and the second category includes neovascular age-related macular degeneration (AMD), ocular histoplasmosis, pathologic myopia, and other related diseases. Retinal hypoxia is a key feature of the first category of diseases resulting in elevated levels of hypoxia-inducible factor-1 (HIF-1) which stimulates expression of vascular endothelial growth factor (VEGF), platelet-derived growth factor-B (PDGF-B), placental growth factor, stromal-derived growth factor-1 and their receptors, as well as other hypoxia-regulated gene products such as angiopoietin-2. Although hypoxia has not been demonstrated as part of the second category of diseases, HIF-1 is elevated and thus the same group of hypoxia-regulated gene products plays a role. Clinical trials have shown that VEGF antagonists provide major benefits for patients with subretinal NV due to AMD and even greater benefits are seen by combining antagonists of VEGF and PDGF-B. It is likely that addition of antagonists of other agents listed above will be tested in the future. Other appealing strategies are to directly target HIF-1 or to use gene transfer to express endogenous or engineered anti-angiogenic proteins. While substantial progress has been made, the future looks even brighter for patients with retinal and choroidal vascular diseases.
Collapse
Affiliation(s)
- Peter A Campochiaro
- Departments of Ophthalmology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287-9277, USA.
| |
Collapse
|
31
|
Miller JW. Age-related macular degeneration revisited--piecing the puzzle: the LXIX Edward Jackson memorial lecture. Am J Ophthalmol 2013; 155:1-35.e13. [PMID: 23245386 DOI: 10.1016/j.ajo.2012.10.018] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 12/11/2022]
Abstract
PURPOSE To present the current understanding of age-related macular degeneration (AMD) pathogenesis, based on clinical evidence, epidemiologic data, histopathologic examination, and genetic data; to provide an update on current and emerging therapies; and to propose an integrated model of the pathogenesis of AMD. DESIGN Review of published clinical and experimental studies. METHODS Analysis and synthesis of clinical and experimental data. RESULTS We are closer to a complete understanding of the pathogenesis of AMD, having progressed from clinical observations to epidemiologic observations and clinical pathologic correlation. More recently, modern genetic and genomic studies have facilitated the exploration of molecular pathways. It seems that AMD is a complex disease that results from the interaction of genetic susceptibility with aging and environmental factors. Disease progression also seems to be driven by a combination of genetic and environmental factors. CONCLUSIONS Therapies based on pathophysiologic features have changed the paradigm for treating neovascular AMD. With improved understanding of the underlying genetic susceptibility, we can identify targets to halt early disease and to prevent progression and vision loss.
Collapse
|
32
|
Kozlova EN, Berens C. Guiding Differentiation of Stem Cells in Vivo by Tetracycline-Controlled Expression of Key Transcription Factors. Cell Transplant 2012; 21:2537-54. [DOI: 10.3727/096368911x637407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transplantation of stem or progenitor cells is an attractive strategy for cell replacement therapy. However, poor long-term survival and insufficiently reproducible differentiation to functionally appropriate cells in vivo still present major obstacles for translation of this methodology to clinical applications. Numerous experimental studies have revealed that the expression of just a few transcription factors can be sufficient to drive stem cell differentiation toward a specific cell type, to transdifferentiate cells from one fate to another, or to dedifferentiate mature cells to pluripotent stem/progenitor cells (iPSCs). We thus propose here to apply the strategy of expressing the relevant key transcription factors to guide the differentiation of transplanted cells to the desired cell fate in vivo. To achieve this requires tools allowing us to control the expression of these genes in the transplant. Here, we describe drug-inducible systems that allow us to sequentially and timely activate gene expression from the outside, with a particular emphasis on the Tet system, which has been widely and successfully used in stem cells. These regulatory systems offer a tool for strictly limiting gene expression to the respective optimal stage after transplantation. This approach will direct the differentiation of the immature stem/progenitor cells in vivo to the desired cell type.
Collapse
Affiliation(s)
- Elena N Kozlova
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
33
|
Masri AAA, Eter EE. Agmatine induces gastric protection against ischemic injury by reducing vascular permeability in rats. World J Gastroenterol 2012; 18:2188-96. [PMID: 22611311 PMCID: PMC3351768 DOI: 10.3748/wjg.v18.i18.2188] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 01/04/2012] [Accepted: 03/09/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of administration of agmatine (AGM) on gastric protection against ischemia reperfusion (I/R) injury.
METHODS: Three groups of rats (6/group); sham, gastric I/R injury, and gastric I/R + AGM (100 mg/kg, i.p. given 15 min prior to gastric ischemia) were recruited. Gastric injury was conducted by ligating celiac artery for 30 min and reperfusion for another 30 min. Gastric tissues were histologically studied and immunostained with angiopoietin 1 (Ang-1) and Ang-2. Vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein-1 (MCP-1) were measured in gastric tissue homogenate. To assess whether AKt/phosphatidyl inositol-3-kinase (PI3K) mediated the effect of AGM, an additional group was pretreated with Wortmannin (WM) (inhibitor of Akt/PI3K, 15 μg/kg, i.p.), prior to ischemic injury and AGM treatment, and examined histologically and immunostained. Another set of experiments was run to study vascular permeability of the stomach using Evan’s blue dye.
RESULTS: AGM markedly reduced Evan’s blue dye extravasation (3.58 ± 0.975 μg/stomach vs 1.175 ± 0.374 μg/stomach, P < 0.05), VEGF (36.87 ± 2.71 pg/100 mg protein vs 48.4 ± 6.53 pg/100 mg protein, P < 0.05) and MCP-1 tissue level (29.5 ± 7 pg/100 mg protein vs 41.17 ± 10.4 pg/100 mg protein, P < 0.01). It preserved gastric histology and reduced congestion. Ang-1 and Ang-2 immunostaining were reduced in stomach sections of AGM-treated animals. The administration of WM abolished the protective effects of AGM and extensive hemorrhage and ulcerations were seen.
CONCLUSION: AGM protects the stomach against I/R injury by reducing vascular permeability and inflammation. This protection is possibly mediated by Akt/PI3K.
Collapse
|
34
|
Yoo WS, Seo SW, Park JM, Yoo JM, Chung IY. Effect of Triamcinolone on Retinal Vessel-Related Factors in Oxygen-Induced Retinopathy Rats. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2012. [DOI: 10.3341/jkos.2012.53.12.1864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Woong Sun Yoo
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Seong Wook Seo
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Jinju, Korea
- Gyeongsang Institute of Health Science, Gyeongsang National University, Jinju, Korea
| | - Jong Moon Park
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Jinju, Korea
- Gyeongsang Institute of Health Science, Gyeongsang National University, Jinju, Korea
| | - Ji Myong Yoo
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Jinju, Korea
- Gyeongsang Institute of Health Science, Gyeongsang National University, Jinju, Korea
| | - In Young Chung
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Jinju, Korea
- Gyeongsang Institute of Health Science, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
35
|
The importance of hypoxia-regulated, RPE-targeted gene therapy for choroidal neovascularization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:269-77. [PMID: 22183342 DOI: 10.1007/978-1-4614-0631-0_35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Abstract
Diseases complicated by abnormal growth of vessels or excessive leakage are the most prevalent cause of moderate or severe vision loss in developed countries. Recent progress unraveling the molecular pathogenesis of several of these disease processes has led to new drug therapies that have provided major benefits to patients. However, those treatments often require frequent intraocular injections, and despite monthly injections, some patients have a suboptimal response. Gene transfer of antiangiogenic proteins is an alternative approach that has the potential to provide long-term suppression of neovascularization (NV) and/or excessive vascular leakage in the eye. Studies in animal models of ocular NV have demonstrated impressive results with a number of transgenes, and a clinical trial in patients with advanced neovascular age-related macular degeneration has provided proof-of-concept. Two ongoing clinical trials, one using an adeno-associated viral (AAV) vector to express a vascular endothelial growth factor-binding protein and another using a lentiviral vector to express endostatin and angiostatin, will provide valuable information that should help to inform future trials and provide a foundation on which to build.
Collapse
Affiliation(s)
- P A Campochiaro
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287-9277, USA.
| |
Collapse
|
37
|
Wilson AM, Di Polo A. Gene therapy for retinal ganglion cell neuroprotection in glaucoma. Gene Ther 2011; 19:127-36. [PMID: 21975466 DOI: 10.1038/gt.2011.142] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide. The primary cause of glaucoma is not known, but several risk factors have been identified, including elevated intraocular pressure and age. Loss of vision in glaucoma is caused by the death of retinal ganglion cells (RGCs), the neurons that convey visual information from the retina to the brain. Therapeutic strategies aimed at delaying or halting RGC loss, known as neuroprotection, would be valuable to save vision in glaucoma. In this review, we discuss the significant progress that has been made in the use of gene therapy to understand mechanisms underlying RGC degeneration and to promote the survival of these neurons in experimental models of optic nerve injury.
Collapse
Affiliation(s)
- A M Wilson
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec, Canada
| | | |
Collapse
|
38
|
Campochiaro PA. Gene transfer for neovascular age-related macular degeneration. Hum Gene Ther 2011; 22:523-9. [PMID: 21443427 DOI: 10.1089/hum.2011.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Age-related macular degeneration (AMD) is a complex disease that has two phases: a degenerative phase often referred to as nonneovascular AMD (non-NVAMD) or dry AMD and a phase dominated by growth of new blood vessels in the subretinal space, referred to as NVAMD or wet AMD. Advances in the understanding of the molecular pathogenesis of NVAMD have led to new drug therapies that have provided major benefits to patients. However, those treatments require frequent intraocular injections that in many patients must be continued indefinitely to maintain visual benefits. Gene transfer to augment expression of endogenous antiangiogenic proteins is an alternative approach that has the potential to provide long-term stability in patients with NVAMD. Studies in animal models that mimic aspects of NVAMD have identified several possible transgenes, and a clinical trial in patients with advanced NVAMD has suggested that the approach may be feasible. Many important questions remain, but the rationale and preliminary data are compelling. The results of two ongoing clinical trials may answer several of the questions and help direct future research.
Collapse
Affiliation(s)
- Peter A Campochiaro
- Department of Ophthalmology and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
39
|
Abstract
Patients struggling with diabetes are at elevated risks for several sight-threatening diseases, including proliferative diabetic retinopathy (DR). DR manifests in two stages: first, the retinal microvasculature is compromised and capillary degeneration occurs; subsequently, an over-compensatory angiogenic response is initiated. Early changes in the retinal microcirculation include disruptions in blood flow, thickening of basement membrane, eventual loss of mural cells, and the genesis of acellular capillaries. Endothelial apoptosis and capillary dropout lead to a hypoxic inner retina, alterations in growth factors, and upregulation of inflammatory mediators. With disease progression, pathologic angiogenesis generates abnormal preretinal microvessels. Current therapies, which include panretinal photocoagulation and vitrectomy, have remained unaltered for several decades. With several exciting preclinical advances, emergent technologies and innovative cellular targets may offer newfound hope for developing "next-generation" interventional or preventive clinical approaches that will significantly advance current standards of care and clinical outcomes.
Collapse
Affiliation(s)
- Jennifer T Durham
- Sackler School of Graduate Biomedical Sciences, Program in Cellular and Molecular Physiology, Department of Molecular Physiology and Pharmacology and the Center for Innovation in Wound Healing Research, Tufts University, 150 Harrison Avenue, Boston, MA 02111, USA.
| | | |
Collapse
|
40
|
Kim J, Kim SW, Kim WJ. PEI-g-PEG-RGD/small interference RNA polyplex-mediated silencing of vascular endothelial growth factor receptor and its potential as an anti-angiogenic tumor therapeutic strategy. Oligonucleotides 2011; 21:101-7. [PMID: 21375397 DOI: 10.1089/oli.2011.0278] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tumor angiogenesis appears to be achieved by the expression of vascular endothelial growth factor (VEGF) within solid tumors that stimulate host vascular endothelial cell mitogenesis and possibly chemotaxis. VEGF's angiogenic actions are mediated through its high-affinity binding to 2 endothelium-specific receptor tyrosine kinase, Flt-1 (VEGFR1), and Flk-1/KDR (VEGFR2). RNA interference-mediated knockdown of protein expression at the messenger RNA level provides a new therapeutic strategy to overcome various diseases. To achieve high efficacy in RNA interference-mediated therapy, it is critical to develop an efficient delivering system to deliver small interference RNA (siRNA) into tissues or cells site-specifically. We previously reported an angiogenic endothelial cell-targeted polymeric gene carrier, PEI-g-PEG-RGD. This targeted carrier was developed by the conjugation of the ανβ3/ανβ5 integrin-binding RGD peptide (ACDCRGDCFC) to the cationic polymer, branched polyethylenimine, with a hydrophilic polyethylene glycol (PEG) spacer. In this study, we used PEI-g-PEG-RGD to deliver siRNA against VEGFR1 into tumor site. The physicochemical properties of PEI-g-PEG-RGD/siRNA complexes was evaluated. Further, tumor growth profile was also investigated after systemic administration of PEI-g-PEG-RGD/siRNA complexes.
Collapse
Affiliation(s)
- Jihoon Kim
- Department of Chemistry, BK School of Molecular Science, Polymer Research Institute, Pohang University of Science and Technology , Pohang, Korea
| | | | | |
Collapse
|
41
|
Seppinen L, Pihlajaniemi T. The multiple functions of collagen XVIII in development and disease. Matrix Biol 2011; 30:83-92. [DOI: 10.1016/j.matbio.2010.11.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 12/11/2022]
|
42
|
Maeshima Y, Makino H. Angiogenesis and chronic kidney disease. FIBROGENESIS & TISSUE REPAIR 2010; 3:13. [PMID: 20687922 PMCID: PMC2924264 DOI: 10.1186/1755-1536-3-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 08/05/2010] [Indexed: 01/13/2023]
Abstract
The number of patients requiring renal replacement therapy due to end-stage renal disease (ESRD) is increasing worldwide. The prevalence of chronic kidney disease (CKD), and the importance of CKD as a risk factor in development of ESRD and in complicating cardiovascular disease (CVD) have been confirmed. In recent years, the involvement of angiogenesis-related factors in the progression of CKD has been studied, and the potential therapeutic effects on CKD of modulating these factors have been identified. Vascular endothelial growth factor (VEGF)-A, a potent pro-angiogenic factor, is involved in the development of the kidney, in maintenance of the glomerular capillary structure and filtration barrier, and in the renal repair process after injury. VEGF-A is also involved in the development of early diabetic nephropathy, demonstrated by the therapeutic effects of anti-VEGF-A antibody. Angiopoietin (Ang)-1 induces the maturation of newly formed blood vessels, and the therapeutic effects of Ang-1 in diabetic nephropathy have been described. In experimental models of diabetic nephropathy, the therapeutic effects of angiogenesis inhibitors, including angiostatin, endostatin and tumstatin peptides, the isocoumarin NM-3, and vasohibin-1, have been reported. Further analysis of the involvement of angiogenesis-related factors in the development of CKD is required. Determining the disease stage at which therapy is most effective and developing an effective drug delivery system targeting the kidney will be essential for pro-or anti-angiogenic strategies for patients with CKD.
Collapse
Affiliation(s)
- Yohei Maeshima
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | | |
Collapse
|
43
|
Kachi S, Binley K, Yokoi K, Umeda N, Akiyama H, Muramatu D, Iqball S, Kan O, Naylor S, Campochiaro PA. Equine infectious anemia viral vector-mediated codelivery of endostatin and angiostatin driven by retinal pigmented epithelium-specific VMD2 promoter inhibits choroidal neovascularization. Hum Gene Ther 2010; 20:31-9. [PMID: 20377369 DOI: 10.1089/hum.2008.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Equine infectious anemia virus (EIAV) is a nonprimate lentivirus that does not cause human disease. Subretinal injection into mice of a recombinant EIAV lentiviral vector in which lacZ is driven by a CMV promoter (EIAV CMV LacZ) resulted in rapid and strong expression of LacZ in retinal pigmented epithelial (RPE) cells and some other cells including ganglion cells, resulting in the presence of 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside within the optic nerve. Substitution of the RPE-specific promoter from the vitelliform macular dystrophy (VMD2) gene for the CMV promoter resulted in prolonged (at least 1 year) expression of LacZ that was restricted to RPE cells, albeit reduced 6- to 10-fold compared with the CMV promoter. Similarly, the amount of FLAG-tagged endostatin detected in eyes injected with the EIAV VMD2 Endo(FLAG) vector was similar to that seen in eyes injected with a vector that expressed both endostatin and angiostatin [EIAV VMD2 Endo(FLAG)/Angio]; expression was approximately 6-fold lower than with identical vectors in which the CMV promoter drove expression. Compared with murine eyes treated with a control EIAV vector, subretinal injection of EIAV vectors expressing murine endostatin alone or in combination with angiostatin driven by either the CMV or VMD2 promoter caused significant suppression of choroidal neovascularization (NV) at laser-induced rupture sites in Bruch's membrane. These data support proceeding toward clinical studies with EIAV-based gene therapy for choroidal NV, using the VMD2 promoter to selectively drive expression of a combination of endostatin and angiostatin in RPE cells.
Collapse
Affiliation(s)
- Shu Kachi
- Department of Ophthalmology and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Nitzsche B, Gloesenkamp C, Schrader M, Ocker M, Preissner R, Lein M, Zakrzewicz A, Hoffmann B, Höpfner M. Novel compounds with antiangiogenic and antiproliferative potency for growth control of testicular germ cell tumours. Br J Cancer 2010; 103:18-28. [PMID: 20551952 PMCID: PMC2905278 DOI: 10.1038/sj.bjc.6605725] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/11/2010] [Accepted: 05/14/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Testicular germ cell tumour (TGCT) is the most common cause of death from solid tumours in young men and especially for platinum-refractory patients novel treatment approaches are urgently needed. Using an in silico screening approach for the detection of novel cancer drugs with inhibitory effects on the tyrosine kinase activity of growth factors (e.g., VEGFR, PDGFR), we identified two compounds (HP-2 and HP-14) with antiangiogenic and antiproliferative potency, which were evaluated in endothelial cell models and TGCT cells. RESULTS HP-2 and HP-14 effectively inhibited the growth of VEGFR-2-expressing TGCT cell lines (Tera-1, Tera-2 and 2102EP) and endothelial cell models, while they failed to supress the growth of VEGFR-2-lacking tumour cells. cDNA-microarrays revealed an inhibition of the expression of several growth factor receptors and related signal transduction molecules. Vascular endothelial growth factor (VEGF)-induced cell migration was also potently inhibited. Cell cycle-regulating proteins such as p21 and p27 were upregulated, leading to an S-phase arrest. Additional in vivo evaluations confirmed the antiangiogenic potency and good tolerability of the novel substances. CONCLUSION Our data show that the identified novel compounds inhibit the growth of TGCT cells and decrease angiogenic microvessel formation. The mode of action involves cell cycle arresting effects and changes in the expression pattern of several angiogenic genes. The novel compounds may qualify as new candidates for targeted treatment of TGCT and merit further evaluation.
Collapse
Affiliation(s)
- B Nitzsche
- Department of Physiology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Arnimallee 22, Berlin 14195, Germany
| | - C Gloesenkamp
- Department of Physiology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Arnimallee 22, Berlin 14195, Germany
| | - M Schrader
- Department of Urology, University of Ulm, Prittwitzstraße 43, 89075 Ulm, Germany
| | - M Ocker
- Institute for Surgical Research, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - R Preissner
- Department of Physiology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Arnimallee 22, Berlin 14195, Germany
| | - M Lein
- Berlin Institute for Urologic Research, Charité –Universitätsmedizin Berlin, Robert Koch -Platz 7, Berlin 10115, Germany
| | - A Zakrzewicz
- Department of Physiology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Arnimallee 22, Berlin 14195, Germany
| | - B Hoffmann
- Department of Physiology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Arnimallee 22, Berlin 14195, Germany
| | - M Höpfner
- Department of Physiology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Arnimallee 22, Berlin 14195, Germany
| |
Collapse
|
45
|
Zarfoss MK, Breaux CB, Whiteley HE, Hamor RE, Flaws JA, Labelle P, Dubielzig RR. Canine pre-iridal fibrovascular membranes: morphologic and immunohistochemical investigations. Vet Ophthalmol 2010; 13:4-13. [DOI: 10.1111/j.1463-5224.2009.00739.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Miki K, Miki A, Matsuoka M, Muramatsu D, Hackett SF, Campochiaro PA. Effects of intraocular ranibizumab and bevacizumab in transgenic mice expressing human vascular endothelial growth factor. Ophthalmology 2009; 116:1748-54. [PMID: 19643496 DOI: 10.1016/j.ophtha.2009.05.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 05/11/2009] [Accepted: 05/12/2009] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE This study compared the effects of intraocular injections of ranibizumab (RBZ) and bevacizumab (BVZ) in transgenic mouse models in which human vascular endothelial growth factor (VEGF) causes subretinal neovascularization (NV) or exudative retinal detachment. DESIGN Randomized trials in animal models. PARTICIPANTS Transgenic mice in which the rhodopsin promoter drives expression of human VEGF in photoreceptors (rho/VEGF mice) and double transgenic mice with doxycycline-inducible expression of human VEGF in photoreceptors (Tet/opsin/VEGF mice). METHODS Rho/VEGF mice received intraocular injections of RBZ, BVZ, or vehicle, and after various time periods the area of subretinal NV was measured. Tet/opsin/VEGF mice were given an intraocular injection of RBZ, BVZ, or vehicle, and after 5 days of doxycycline treatment the presence or absence of retinal detachment was determined. MAIN OUTCOME MEASURES Area of subretinal NV per retina in rho/VEGF mice and the occurrence of retinal detachment in Tet/opsin/VEGF mice. RESULTS In rho/VEGF mice, intraocular injections of RBZ or BVZ strongly suppressed subretinal NV, but the duration of effect was greater for BVZ. Three injections of 10 microg of BVZ over the course of 2 weeks not only suppressed subretinal NV in the injected eye but also caused significant suppression in the fellow eye, indicating a systemic effect. In doxycycline-treated Tet/opsin/VEGF mice, intraocular injection of 10 microg of BVZ significantly reduced the incidence of exudative retinal detachment compared with injection of 10 microg of RBZ. Injection of 25 microg of BVZ reduced the incidence of retinal detachment in both eyes. CONCLUSIONS Intraocular injections of RBZ and BVZ had similar efficacy in rho/VEGF mice, but the duration of effect was greater for BVZ. In Tet/opsin/VEGF mice, in which expression levels of human VEGF are very high and the phenotype is severe, BVZ showed greater efficacy than RBZ. In both models, higher doses or repeated injections of BVZ, but not RBZ, resulted in a systemic effect. These data suggest that BVZ is not inferior to RBZ for treatment of subretinal NV in mice and is superior in a severe model. The systemic effects of BVZ after intraocular injection deserve further study and consideration of their potential consequences. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Katsuaki Miki
- Departments of Ophthalmology and Neuroscience, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287-9277, USA
| | | | | | | | | | | |
Collapse
|
47
|
Campbell M, Collery R, McEvoy A, Gardiner TA, Stitt AW, Brankin B. Involvement of MAPKs in Endostatin-Mediated Regulation of Blood-Retinal Barrier Function. Curr Eye Res 2009; 31:1033-45. [PMID: 17169842 DOI: 10.1080/02713680601013025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE This study aimed to evaluate the effects of endostatin on tight junction (TJ) integrity in retinal microvascular endothelial cells (RMECs) in vitro and in vivo. Moreover, it was hypothesized that endostatin-induced occludin upregulation regulated VEGF165-mediated increases in endothelial cell permeability and involved activation of the MAPK signaling cascade. Endostatin is a 20-kDa fragment of collagen XVIII that has been shown to be efficacious in the eye by preventing retinal neovascularization. Endostatin is a specific inhibitor of endothelial cell proliferation, migration, and angiogenesis and has been reported to reverse VEGF-mediated increases in vasopermeability and to promote integrity of the blood-retinal barrier (BRB). In order to determine the mechanism of endostatin action on BRB integrity, we have examined the effects of endostatin on a number of intracellular pathways implicated in endothelial cell physiology. METHODS C57/Bl6 mice were injected with VEGF165 and/or endostatin, and the distribution of occludin staining was determined using retinal flatmounts. Western blot analysis of RMECs treated with VEGF165 and/or endostatin was used to determine changes in occludin expression and p38 MAPK and extracellular regulated kinase (ERK1/ERK2 MAPK) activation, while FD-4 flux across the RMEC monolayer was used to determine changes in paracellular permeability. RESULTS Endostatin prevented the discontinuous pattern of occludin staining observed at the retinal blood vessels of mice administered an intraocular injection of VEGF165. It was shown that endostatin activated p38 MAPK 5 min after addition to RMECs and continued to do so for approximately 30 min. Endostatin was also shown to activate ERK1/ERK2 5 min after addition and continued to do so, albeit with less potency, up to and including 15 min after addition. Inhibition of p38 MAPK and ERK1/ERK2 prevented endostatin's ability to upregulate levels of occludin expression. Inhibition of these key signaling molecules was shown to prevent endostatin's ability to protect against VEGF165-mediated increases in paracellular permeability in vitro. However, it appears that p38 MAPK may play a more important role in VEGF-mediated permeability, as inhibition of ERK1/ERK2 will not prevent VEGF165-mediated permeability compared with control (untreated) cells or cells treated with both a p38 MAPK inhibitor and VEGF165. CONCLUSIONS Occludin is important for the maintenance of tight junction integrity in vivo. In a p38 MAPK and ERK1/ERK2 dependent manner, endostatin was shown to upregulate the levels of expression of the tight junction protein occludin. Inhibition of these key MAPK components may prevent endostatin's ability to decrease VEGF165-induced paracellular permeability.
Collapse
Affiliation(s)
- Matthew Campbell
- UCD School of Biomolecular Biomedical Sciences, Conway Institute, University College Dublin, Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
48
|
High plasma endostatin level unaffected by low-molecular weight heparin in hemodialysis patients--a preliminary report. Adv Med Sci 2009; 54:199-202. [PMID: 19758969 DOI: 10.2478/v10039-009-0030-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Endostatin (ES) is a potent inhibitor of angiogenesis and neoangiogenesis, and interestingly its activity is modified by heparin. To understand if low-molecular weight heparins have different clinical profiles regarding this cytokine, we studied the effects of enoxaparin, nadroparin and dalteparin administered for hemodialysis (HD) anticoagulation on plasma ES levels. MATERIAL AND METHODS Seventeen chronic HD patients completed this prospective, crossover trial. They were randomized into 6 groups - each patient was administered enoxaparin (effective dose of 0.75 mg/kg), nadroparin (70.4 IU/kg) and dalteparin (78.6 IU/kg) in 3 time periods of 2 months each. At the end of each period plasma levels of ES were measured at the start and at 10 min and 180 min of the HD procedure. RESULTS Mean predialysis plasma ES levels in HD patients were extremely high for all three heparins used. We observed no changes in ES levels during dialysis, there were also no differences in ES profiles for each of the low-molecular weight heparins used. CONCLUSIONS Plasma ES levels are unusually high in chronic HD patients and the significance of this fact needs future research. ES levels do not change after heparin administration and at least in that aspect enoxaparin, nadroparin and dalteparin are equal.
Collapse
|
49
|
Tatar O, Shinoda K, Kaiserling E, Claes C, Eckardt C, Eckert T, Pertile G, Boeyden V, Scharioth GB, Yoeruek E, Szurman P, Bartz-Schmidt KU, Grisanti S. Implications of bevacizumab on vascular endothelial growth factor and endostatin in human choroidal neovascularisation. Br J Ophthalmol 2008; 93:159-65. [PMID: 18838410 DOI: 10.1136/bjo.2008.138594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIM To evaluate the implications of intravitreal bevacizumab on proangiogenic vascular endothelial growth factor (VEGF) with regard to the endogenous angiogenesis inhibitor endostatin in human choroidal neovascularisation (CNV) secondary to age-related macular degeneration. METHODS Retrospective review of an interventional case series of 48 patients who underwent full macular translocation surgery with removal of CNV. Twenty-five patients were treated with intravitreal bevacizumab injection 1 to 154 days prior to surgery (bevacizumab CNV). Twenty-three CNV without any kind of previous treatment were used as controls (control CNV). CNV were stained for CD34, cytokeratin18, VEGF, endostatin and E-selectin. A "predominance score of VEGF over endostatin" (PS) was defined by the difference between VEGF and endostatin staining scores. RESULTS Bevacizumab CNV revealed a weaker VEGF expression in endothelial cells (p = 0.0245) but significantly more intense endostatin in retina pigment epithelium (RPE) (p = 0.0001) and stroma (p<0.0001). Consequently, PS was significantly lower in RPE (p = 0.02), vessels (p = 0.03) and stroma (p = 0.0004) in bevacizumab CNV. The intensity of E-selectin expression in bevacizumab CNV was comparable with that in control CNV. CONCLUSIONS A shift within the angiogenic balance in terms of decreased VEGF predominance over endostatin is detected in human CNV treated with bevacizumab.
Collapse
Affiliation(s)
- O Tatar
- University Eye Clinic at the Centre for Ophthalmology, Eberhard-Karls-University, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Clapp C, Thebault S, Arnold E, García C, Rivera JC, de la Escalera GM. Vasoinhibins: novel inhibitors of ocular angiogenesis. Am J Physiol Endocrinol Metab 2008; 295:E772-8. [PMID: 18544641 DOI: 10.1152/ajpendo.90358.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Disruption of the quiescent state of blood vessels in the retina leads to aberrant vasopermeability and angiogenesis, the major causes of vision loss in diabetic retinopathy. Prolactin is expressed throughout the retina, where it is proteolytically cleaved to vasoinhibins, a family of peptides (including the 16-kDa fragment of prolactin) with potent antiangiogenic, vasoconstrictive, and antivasopermeability actions. Ocular vasoinhibins act directly on endothelial cells to block blood vessel growth and dilation and to promote apoptosis-mediated vascular regression. Also, vasoinhibins prevent retinal angiogenesis and vasopermeability associated with diabetic retinopathy, and inactivation of endothelial nitric oxide synthase via protein phosphatase 2A is among the various mechanisms mediating their actions. Here, we discuss the potential role of vasoinhibins both in the maintenance of normal retinal vasculature and in the cause and prevention of diabetic retinopathy and other vasoproliferative retinopathies.
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Apartado Postal 1-1141, Querétaro, Qro., Mexico, 76001.
| | | | | | | | | | | |
Collapse
|