1
|
Sun J, Jin X, Li Y. OTUD7B inhibited hepatic injury from NAFLD by inhibiting K48-linked ubiquitination and degradation of β-catenin. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167555. [PMID: 39520879 DOI: 10.1016/j.bbadis.2024.167555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/27/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the prevalent liver disease. Ovarian tumor domain-containing 7B (OTUD7B) is a deubiquitinating enzyme and its role in NAFLD remains unclear. In high-fat diet (HFD)-induced NAFLD mouse model and palmitic acid (PA)-treated HepG2 cells, OTUD7B expression was decreased. Adenoviral overexpression of OTUD7B in mice resulted in reduced body weight and liver injury, with decreased serum aminotransferase (ALT) and aspartate aminotransferase (AST) levels. OTUD7B overexpression attenuated hepatic lipid deposition (serum TG, TC, LDL-C, HDLC, and FFA levels), which might be through the suppression of lipogenesis and β-oxidation-related genes. The contents of hepatic inflammatory factors (TNF-α, IL-6, and IL-1β) were decreased following OTUD7B overexpression in NAFLD mice. A mechanism study indicated that the protective effect of OTUD7B overexpression might be associated with β-catenin signal activation. OTUD7B overexpression promoted PA-induced β-catenin activity in TopFlash assay, and increased total β-catenin and c-myc levels in cells. The increase in β-catenin levels was contributed to the stabilization via inhibiting K48-linked ubiquitination and proteasomal degradation by OTUD7B. NR4A2 role in NASH has been proved. NR4A2 ChIP-seq and RNA-seq data excluded transcriptional regulation of NR4A2 to OTUD7B, and it was experimentally evidenced that NR4A2 bound to OTUD7B promoter region and positively transcriptionally regulate OTUD7B expression. In summary, OTUD7B overexpression ameliorated hepatic inflammation and steatosis in NAFLD. The possible mechanism of OTUD7B might be through the inhibition of β-catenin degradation by removing K48-linked ubiquitination, which might be regulated by NR4A2.
Collapse
Affiliation(s)
- Jing Sun
- Department of Gastroenterology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiuli Jin
- Department of Gastroenterology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiling Li
- Department of Gastroenterology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Luo J, Luo J, Wu Y, Fu Y, Fang Z, Han B, Du B, Yang Z, Xu B. Anti-Obesity Effects of Adzuki Bean Saponins in Improving Lipid Metabolism Through Reducing Oxidative Stress and Alleviating Mitochondrial Abnormality by Activating the PI3K/Akt/GSK3β/β-Catenin Signaling Pathway. Antioxidants (Basel) 2024; 13:1380. [PMID: 39594522 PMCID: PMC11591031 DOI: 10.3390/antiox13111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a chronic and complex disease defined by the excessive deposition of fat and is highly associated with oxidative stress. Adzuki bean saponins (ABS) showed anti-obesity activity in our previous in vivo study; however, the active saponins of adzuki beans and potential mechanisms are still unclear. This research aims to elucidate the anti-obesity effects of ABS in improving lipid metabolism and oxidative stress, exploring the effective ingredients and potential molecular mechanisms through UHPLC-QE-MS analysis, network pharmacology, bioinformatics, and in vitro experiments both in the 3T3-L1 cell line and HepG2 cell line. The results indicate that ABS can improve intracellular lipid accumulation, adipogenesis, oxidative stress, and mitochondrial damage caused by lipid accumulation including ROS generation, abnormal mitochondrial membrane potential, and ATP disorder. Fifteen saponin components were identified with the UHPLC-QE-MS analysis. The network pharmacology and bioinformatics analyses indicated that the PI3K/Akt signaling pathway is associated with the bioactive effect of ABS. Through Western blotting and immunofluorescence analysis, the anti-obesity effect of ABS is achieved through regulation of the PI3K/Akt/GSK3β/β-catenin signaling pathway and activation of downstream transcription factor c-Myc in the lipid accumulation cell model, and regulation of β-catenin signaling and inhibition of downstream transcription factor C/EBPα in the adipocyte cell model. These results illustrate the biological activity of ABS in improving fat metabolism and oxidative stress by restoring mitochondrial function through β-catenin signaling, the PI3K/Akt/GSK3β/β-catenin signaling pathway, laying the foundation for its further development.
Collapse
Affiliation(s)
- Jinhai Luo
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (J.L.); (Y.W.); (B.H.)
| | - Jincan Luo
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.L.); (Z.F.)
- Guangzhou National Laboratory, International Bio-Island, Guangzhou 510005, China;
| | - Yingzi Wu
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (J.L.); (Y.W.); (B.H.)
| | - Yu Fu
- Guangzhou National Laboratory, International Bio-Island, Guangzhou 510005, China;
| | - Zhonghao Fang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.L.); (Z.F.)
- Guangzhou National Laboratory, International Bio-Island, Guangzhou 510005, China;
| | - Bincheng Han
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (J.L.); (Y.W.); (B.H.)
| | - Bin Du
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;
| | - Zifeng Yang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.L.); (Z.F.)
- Guangzhou National Laboratory, International Bio-Island, Guangzhou 510005, China;
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou 511436, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Baojun Xu
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (J.L.); (Y.W.); (B.H.)
| |
Collapse
|
3
|
Huang Y, Liang M, Liao Y, Ji Z, Lin W, Pu X, Wang L, Wang W. Investigating the Mechanisms of 15-PGDH Inhibitor SW033291 in Improving Type 2 Diabetes Mellitus: Insights from Metabolomics and Transcriptomics. Metabolites 2024; 14:509. [PMID: 39330516 PMCID: PMC11434390 DOI: 10.3390/metabo14090509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
This study focused on exploring the effects of SW033291, an inhibitor of 15-hydroxyprostaglandin dehydrogenase, on type 2 diabetes mellitus (T2DM) mice from a comprehensive perspective. Studies have demonstrated that SW033291 benefits tissue repair, organ function, and muscle mass in elderly mice. Our recent investigation initially reported the beneficial effect of SW033291 on T2DM progression. Herein, we used a T2DM mouse model induced by a high-fat diet and streptozotocin injection. Then, serum and liver metabolomics, as well as liver transcriptomic analyses, were performed to provide a systematic perspective of the SW033291-ameliorated T2DM. The results indicate SW033291 improved T2DM by regulating steroid hormone biosynthesis and linoleic/arachidonic acid metabolism. Furthermore, integrated transcriptomic and metabolomic analyses suggested that key genes and metabolites such as Cyp2c55, Cyp3a11, Cyp21a1, Myc, Gstm1, Gstm3, 9,10-dihydroxyoctadecenoic acid, 11-dehydrocorticosterone, and 12,13-dihydroxy-9Z-octadecenoic acid played crucial roles in these pathways. qPCR analysis validated the significant decreases in the hepatic gene expressions of Cyp2c55, Cyp3a11, Myc, Gstm1, and Gstm3 in the T2DM mice, which were reversed following SW033291 treatment. Meanwhile, the elevated mRNA level of Cyp21a1 in T2DM mice was decreased after SW033291 administration. Taken together, our findings suggest that SW033291 has promising potential in alleviating T2DM and could be a novel therapeutic candidate.
Collapse
Affiliation(s)
- Yuanfeng Huang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
| | - Mingjie Liang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
- Guangdong Nephrotic Drug Engineering Technology Research Center, Guangdong Consun Pharmaceutical Group, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangzhou 510700, China
| | - Yiwen Liao
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
| | - Zirui Ji
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
| | - Wanfen Lin
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
| | - Xiangjin Pu
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
| | - Lexun Wang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
| | - Weixuan Wang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
| |
Collapse
|
4
|
Machi JF, Altilio I, Qi Y, Morales AA, Silvestre DH, Hernandez DR, Da Costa-Santos N, Santana AG, Neghabi M, Nategh P, Castro TL, Werneck-de-Castro JP, Ranji M, Evangelista FS, Vazquez-Padron RI, Bernal-Mizrachi E, Rodrigues CO. Endothelial c-Myc knockout disrupts metabolic homeostasis and triggers the development of obesity. Front Cell Dev Biol 2024; 12:1407097. [PMID: 39100099 PMCID: PMC11294153 DOI: 10.3389/fcell.2024.1407097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction: Obesity is a major risk factor associated with multiple pathological conditions including diabetes and cardiovascular disease. Endothelial dysfunction is an early predictor of obesity. However, little is known regarding how early endothelial changes trigger obesity. In the present work we report a novel endothelial-mediated mechanism essential for regulation of metabolic homeostasis, driven by c-Myc. Methods: We used conditional knockout (EC-Myc KO) and overexpression (EC-Myc OE) mouse models to investigate the endothelial-specific role of c-Myc in metabolic homeostasis during aging and high-fat diet exposure. Body weight and metabolic parameters were collected over time and tissue samples collected at endpoint for biochemical, pathology and RNA-sequencing analysis. Animals exposed to high-fat diet were also evaluated for cardiac dysfunction. Results: In the present study we demonstrate that EC-Myc KO triggers endothelial dysfunction, which precedes progressive increase in body weight during aging, under normal dietary conditions. At endpoint, EC-Myc KO animals showed significant increase in white adipose tissue mass relative to control littermates, which was associated with sex-specific changes in whole body metabolism and increase in systemic leptin. Overexpression of endothelial c-Myc attenuated diet-induced obesity and visceral fat accumulation and prevented the development of glucose intolerance and cardiac dysfunction. Transcriptome analysis of skeletal muscle suggests that the protective effects promoted by endothelial c-Myc overexpression are associated with the expression of genes known to increase weight loss, energy expenditure and glucose tolerance. Conclusion: Our results show a novel important role for endothelial c-Myc in regulating metabolic homeostasis and suggests its potential targeting in preventing obesity and associated complications such as diabetes type-2 and cardiovascular dysfunction.
Collapse
Affiliation(s)
- Jacqueline F. Machi
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Isabella Altilio
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Yue Qi
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Alejo A. Morales
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Diego H. Silvestre
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Diana R. Hernandez
- DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Nicolas Da Costa-Santos
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Aline G. Santana
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Mehrnoosh Neghabi
- Department of Electrical Engineering and Computer Science, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Parisa Nategh
- Department of Electrical Engineering and Computer Science, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Thiago L. Castro
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - João P. Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Mahsa Ranji
- Department of Electrical Engineering and Computer Science, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, United States
| | | | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Claudia O. Rodrigues
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
5
|
Jones RG, von Walden F, Murach KA. Exercise-Induced MYC as an Epigenetic Reprogramming Factor That Combats Skeletal Muscle Aging. Exerc Sport Sci Rev 2024; 52:63-67. [PMID: 38391187 PMCID: PMC10963142 DOI: 10.1249/jes.0000000000000333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Of the "Yamanaka factors" Oct3/4 , Sox2 , Klf4 , and c-Myc (OSKM), the transcription factor c-Myc ( Myc ) is the most responsive to exercise in skeletal muscle and is enriched within the muscle fiber. We hypothesize that the pulsatile induction of MYC protein after bouts of exercise can serve to epigenetically reprogram skeletal muscle toward a more resilient and functional state.
Collapse
Affiliation(s)
- Ronald G. Jones
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR
| | - Ferdinand von Walden
- Neuropediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Kevin A. Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR
| |
Collapse
|
6
|
Ma J, Sui F, Liu Y, Yuan M, Dang H, Liu R, Shi B, Hou P. Sorafenib decreases glycemia by impairing hepatic glucose metabolism. Endocrine 2022; 78:446-457. [PMID: 36205915 DOI: 10.1007/s12020-022-03202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Sorafenib has been reported to reduce blood glucose levels in diabetic and non-diabetic patients in previous retrospective studies. However, the mechanism of which the hypoglycemic effects of sorafenib is not clearly explored. In this study, we investigated the effect of sorafenib on blood glucose levels in diabetic and normal mice and explored the possible mechanism. METHODS We established a mouse model of type 2 diabetes by a high-fat diet combined with a low-dose of streptozotocin (STZ), to identify the hypoglycemic effect of sorafenib in different mice. Glucose tolerance, insulin tolerance and pyruvate tolerance tests were done after daily gavage with sorafenib to diabetic and control mice. To explore the molecular mechanism by which sorafenib regulates blood glucose levels, hepatic glucose metabolism signaling was studied by a series of in vivo and in vitro experiments. RESULTS Sorafenib reduced blood glucose levels in both control and diabetic mice, particularly in the latter. The diabetic mice exhibited improved glucose and insulin tolerance after sorafenib treatment. Further studies showed that the expressions of gluconeogenesis-related enzymes, such as PCK1, G6PC and PCB, were significantly decreased upon sorafenib treatment. Mechanistically, sorafenib downregulates the expression of c-MYC downstream targets PCK1, G6PC and PCB through blocking the ERK/c-MYC signaling pathway, thereby playing its hypoglycemic effect by impairing hepatic glucose metabolism. CONCLUSION Sorafenib reduces blood glucose levels through downregulating gluconeogenic genes, especially in diabetic mice, suggesting the patients with T2DM when treated with sorafenib need more emphasis in monitoring blood glucose to avoid unnecessary hypoglycemia.
Collapse
Affiliation(s)
- Jingjing Ma
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Fang Sui
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Yan Liu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Mengmeng Yuan
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Hui Dang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Rui Liu
- Department of Radio-Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China.
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China.
| |
Collapse
|
7
|
Anti-diabetic effect of hesperidin on palmitate (PA)-treated HepG2 cells and high fat diet-induced obese mice. Food Res Int 2022; 162:112059. [DOI: 10.1016/j.foodres.2022.112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/17/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022]
|
8
|
Kim YY, Jang H, Lee G, Jeon YG, Sohn JH, Han JS, Lee WT, Park J, Huh JY, Nahmgoong H, Han SM, Kim J, Pak M, Kim S, Kim JS, Kim JB. Hepatic GSK3β-Dependent CRY1 Degradation Contributes to Diabetic Hyperglycemia. Diabetes 2022; 71:1373-1387. [PMID: 35476750 DOI: 10.2337/db21-0649] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022]
Abstract
Excessive hepatic glucose production (HGP) is a key factor promoting hyperglycemia in diabetes. Hepatic cryptochrome 1 (CRY1) plays an important role in maintaining glucose homeostasis by suppressing forkhead box O1 (FOXO1)-mediated HGP. Although downregulation of hepatic CRY1 appears to be associated with increased HGP, the mechanism(s) by which hepatic CRY1 dysregulation confers hyperglycemia in subjects with diabetes is largely unknown. In this study, we demonstrate that a reduction in hepatic CRY1 protein is stimulated by elevated E3 ligase F-box and leucine-rich repeat protein 3 (FBXL3)-dependent proteasomal degradation in diabetic mice. In addition, we found that GSK3β-induced CRY1 phosphorylation potentiates FBXL3-dependent CRY1 degradation in the liver. Accordingly, in diabetic mice, GSK3β inhibitors effectively decreased HGP by facilitating the effect of CRY1-mediated FOXO1 degradation on glucose metabolism. Collectively, these data suggest that tight regulation of hepatic CRY1 protein stability is crucial for maintaining systemic glucose homeostasis.
Collapse
Affiliation(s)
- Ye Young Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Hagoon Jang
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Gung Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jee Hyung Sohn
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji Seul Han
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Won Taek Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jeu Park
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jin Young Huh
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Hahn Nahmgoong
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sang Mun Han
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jeesoo Kim
- Center for RNA Research, Institute for Basic Science, School of Biological Sciences, Seoul, South Korea
| | - Minwoo Pak
- Department of Computer Science and Engineering, Institute of Engineering Research, Seoul National University, Seoul, South Korea
| | - Sun Kim
- Department of Computer Science and Engineering, Institute of Engineering Research, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul, South Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, School of Biological Sciences, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
9
|
Klaus VS, Schriever SC, Monroy Kuhn JM, Peter A, Irmler M, Tokarz J, Prehn C, Kastenmüller G, Beckers J, Adamski J, Königsrainer A, Müller TD, Heni M, Tschöp MH, Pfluger PT, Lutter D. Correlation guided Network Integration (CoNI) reveals novel genes affecting hepatic metabolism. Mol Metab 2021; 53:101295. [PMID: 34271221 PMCID: PMC8361260 DOI: 10.1016/j.molmet.2021.101295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 11/19/2022] Open
Abstract
Objective Technological advances have brought a steady increase in the availability of various types of omics data, from genomics to metabolomics. Integrating these multi-omics data is a chance and challenge for systems biology; yet, tools to fully tap their potential remain scarce. Methods We present here a fully unsupervised and versatile correlation-based method – termed Correlation guided Network Integration (CoNI) – to integrate multi-omics data into a hypergraph structure that allows for the identification of effective modulators of metabolism. Our approach yields single transcripts of potential relevance that map to specific, densely connected, metabolic subgraphs or pathways. Results By applying our method on transcriptomics and metabolomics data from murine livers under standard Chow or high-fat diet, we identified eleven genes with potential regulatory effects on hepatic metabolism. Five candidates, including the hepatokine INHBE, were validated in human liver biopsies to correlate with diabetes-related traits such as overweight, hepatic fat content, and insulin resistance (HOMA-IR). Conclusion Our method's successful application to an independent omics dataset confirmed that the novel CoNI framework is a transferable, entirely data-driven, flexible, and versatile tool for multiple omics data integration and interpretation.
Collapse
Affiliation(s)
- Valentina S Klaus
- Computational Discovery Research Unit, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany; TUM School of Medicine, Neurobiology of Diabetes, Technical University Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany
| | - Sonja C Schriever
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany; Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
| | - José Manuel Monroy Kuhn
- Computational Discovery Research Unit, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany
| | - Andreas Peter
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Janina Tokarz
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Neuherberg, Germany
| | - Cornelia Prehn
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gabi Kastenmüller
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany; Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Neuherberg, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Neuherberg, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Germany
| | - Timo D Müller
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| | - Martin Heni
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Matthias H Tschöp
- TUM School of Medicine, Neurobiology of Diabetes, Technical University Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany; Division of Metabolic Diseases, Department of Medicine, Technical University Munich, Munich, Germany
| | - Paul T Pfluger
- TUM School of Medicine, Neurobiology of Diabetes, Technical University Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany; Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dominik Lutter
- Computational Discovery Research Unit, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany.
| |
Collapse
|
10
|
Transcriptional Profiling and Biological Pathway(s) Analysis of Type 2 Diabetes Mellitus in a Pakistani Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165866. [PMID: 32823525 PMCID: PMC7460550 DOI: 10.3390/ijerph17165866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022]
Abstract
The epidemic of type 2 diabetes mellitus (T2DM) is an important global health concern. Our earlier epidemiological investigation in Pakistan prompted us to conduct a molecular investigation to decipher the differential genetic pathways of this health condition in relation to non-diabetic controls. Our microarray studies of global gene expression were conducted on the Affymetrix platform using Human Genome U133 Plus 2.0 Array along with Ingenuity Pathway Analysis (IPA) to associate the affected genes with their canonical pathways. High-throughput qRT-PCR TaqMan Low Density Array (TLDA) was performed to validate the selected differentially expressed genes of our interest, viz., ARNT, LEPR, MYC, RRAD, CYP2D6, TP53, APOC1, APOC2, CYP1B1, SLC2A13, and SLC33A1 using a small population validation sample (n = 15 cases and their corresponding matched controls). Overall, our small pilot study revealed a discrete gene expression profile in cases compared to controls. The disease pathways included: Insulin Receptor Signaling, Type II Diabetes Mellitus Signaling, Apoptosis Signaling, Aryl Hydrocarbon Receptor Signaling, p53 Signaling, Mitochondrial Dysfunction, Chronic Myeloid Leukemia Signaling, Parkinson's Signaling, Molecular Mechanism of Cancer, and Cell Cycle G1/S Checkpoint Regulation, GABA Receptor Signaling, Neuroinflammation Signaling Pathway, Dopamine Receptor Signaling, Sirtuin Signaling Pathway, Oxidative Phosphorylation, LXR/RXR Activation, and Mitochondrial Dysfunction, strongly consistent with the evidence from epidemiological studies. These gene fingerprints could lead to the development of biomarkers for the identification of subgroups at high risk for future disease well ahead of time, before the actual disease becomes visible.
Collapse
|
11
|
Wu N, Huang J, Zhang XF, Ou-Yang L, He S, Zhu Z, Xie W. Weighted Fused Pathway Graphical Lasso for Joint Estimation of Multiple Gene Networks. Front Genet 2019; 10:623. [PMID: 31396259 PMCID: PMC6662592 DOI: 10.3389/fgene.2019.00623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/13/2019] [Indexed: 01/17/2023] Open
Abstract
Gene regulatory networks (GRNs) are often inferred based on Gaussian graphical models that could identify the conditional dependence among genes by estimating the corresponding precision matrix. Classical Gaussian graphical models are usually designed for single network estimation and ignore existing knowledge such as pathway information. Therefore, they can neither make use of the common information shared by multiple networks, nor can they utilize useful prior information to guide the estimation. In this paper, we propose a new weighted fused pathway graphical lasso (WFPGL) to jointly estimate multiple networks by incorporating prior knowledge derived from known pathways and gene interactions. Based on the assumption that two genes are less likely to be connected if they do not participate together in any pathways, a pathway-based constraint is considered in our model. Moreover, we introduce a weighted fused lasso penalty in our model to take into account prior gene interaction data and common information shared by multiple networks. Our model is optimized based on the alternating direction method of multipliers (ADMM). Experiments on synthetic data demonstrate that our method outperforms other five state-of-the-art graphical models. We then apply our model to two real datasets. Hub genes in our identified state-specific networks show some shared and specific patterns, which indicates the efficiency of our model in revealing the underlying mechanisms of complex diseases.
Collapse
Affiliation(s)
- Nuosi Wu
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Jiang Huang
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Xiao-Fei Zhang
- School of Mathematics and Statistics, Central China Normal University, Wuhan, China
| | - Le Ou-Yang
- Guangdong Key Laboratory of Intelligent Information Processing and Shenzhen Key Laboratory of Media Security, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
| | - Shan He
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | - Zexuan Zhu
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Weixin Xie
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
12
|
Buj R, Aird KM. Deoxyribonucleotide Triphosphate Metabolism in Cancer and Metabolic Disease. Front Endocrinol (Lausanne) 2018; 9:177. [PMID: 29720963 PMCID: PMC5915462 DOI: 10.3389/fendo.2018.00177] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/03/2018] [Indexed: 12/22/2022] Open
Abstract
The maintenance of a healthy deoxyribonucleotide triphosphate (dNTP) pool is critical for the proper replication and repair of both nuclear and mitochondrial DNA. Temporal, spatial, and ratio imbalances of the four dNTPs have been shown to have a mutagenic and cytotoxic effect. It is, therefore, essential for cell homeostasis to maintain the balance between the processes of dNTP biosynthesis and degradation. Multiple oncogenic signaling pathways, such as c-Myc, p53, and mTORC1 feed into dNTP metabolism, and there is a clear role for dNTP imbalances in cancer initiation and progression. Additionally, multiple chemotherapeutics target these pathways to inhibit nucleotide synthesis. Less is understood about the role for dNTP levels in metabolic disorders and syndromes and whether alterations in dNTP levels change cancer incidence in these patients. For instance, while deficiencies in some metabolic pathways known to play a role in nucleotide synthesis are pro-tumorigenic (e.g., p53 mutations), others confer an advantage against the onset of cancer (G6PD). More recent evidence indicates that there are changes in nucleotide metabolism in diabetes, obesity, and insulin resistance; however, whether these changes play a mechanistic role is unclear. In this review, we will address the complex network of metabolic pathways, whereby cells can fuel dNTP biosynthesis and catabolism in cancer, and we will discuss the potential role for this pathway in metabolic disease.
Collapse
Affiliation(s)
| | - Katherine M. Aird
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
13
|
Dejure FR, Eilers M. MYC and tumor metabolism: chicken and egg. EMBO J 2017; 36:3409-3420. [PMID: 29127156 DOI: 10.15252/embj.201796438] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 09/16/2017] [Accepted: 09/28/2017] [Indexed: 12/17/2022] Open
Abstract
Transcription factors of the MYC family are deregulated in the majority of all human cancers. Oncogenic levels of MYC reprogram cellular metabolism, a hallmark of cancer development, to sustain the high rate of proliferation of cancer cells. Conversely, cells need to modulate MYC function according to the availability of nutrients, in order to avoid a metabolic collapse. Here, we review recent evidence that the multiple interactions of MYC with cell metabolism are mutual and review mechanisms that control MYC levels and function in response to metabolic stress situations. The main hypothesis we put forward is that regulation of MYC levels is an integral part of the adaptation of cells to nutrient deprivation. Since such mechanisms would be particularly relevant in tumor cells, we propose that-in contrast to growth factor-dependent controls-they are not disrupted during tumorigenesis and that maintaining flexibility of expression is integral to MYC's oncogenic function.
Collapse
Affiliation(s)
- Francesca R Dejure
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Würzburg, Germany
| | - Martin Eilers
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
c-MYC-Making Liver Sick: Role of c-MYC in Hepatic Cell Function, Homeostasis and Disease. Genes (Basel) 2017; 8:genes8040123. [PMID: 28422055 PMCID: PMC5406870 DOI: 10.3390/genes8040123] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/30/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
Over 35 years ago, c-MYC, a highly pleiotropic transcription factor that regulates hepatic cell function, was identified. In recent years, a considerable increment in the number of publications has significantly shifted the way that the c-MYC function is perceived. Overexpression of c-MYC alters a wide range of roles including cell proliferation, growth, metabolism, DNA replication, cell cycle progression, cell adhesion and differentiation. The purpose of this review is to broaden the understanding of the general functions of c-MYC, to focus on c-MYC-driven pathogenesis in the liver, explain its mode of action under basal conditions and during disease, and discuss efforts to target c-MYC as a plausible therapy for liver disease.
Collapse
|
15
|
A Comparative Study of the Metabolic and Skeletal Response of C57BL/6J and C57BL/6N Mice in a Diet-Induced Model of Type 2 Diabetes. J Nutr Metab 2015; 2015:758080. [PMID: 26146567 PMCID: PMC4469802 DOI: 10.1155/2015/758080] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents a complex clinical scenario of altered energy metabolism and increased fracture incidence. The C57BL/6 mouse model of diet-induced obesity has been used to study the mechanisms by which altered glucose homeostasis affects bone mass and quality, but genetic variations in substrains of C57BL/6 may have confounded data interpretation. This study investigated the long-term metabolic and skeletal consequences of two commonly used C57BL/6 substrains to a high fat (HF) diet. Male C57BL/6J, C57BL/6N, and the negative control strain, C3H/HeJ, mice were fed a control or HF diet for 24 wks. C57BL/6N mice on a HF diet demonstrated an increase in plasma insulin and blood glucose as early as 4 wk, whereas these responses were delayed in the C57BL/6J mice. The C57BL/6N mice exhibited more severe hepatic steatosis and inflammation. Only the C57BL/6N mice lost significant trabecular bone in response to the high fat diet. The C3H/HeJ mice were protected from bone loss. The data show that C57BL/6J and C57BL/6N mice differ in their metabolic and skeletal response when fed a HF diet. These substrain differences should be considered when designing experiments and are likely to have implications on data interpretation and reproducibility.
Collapse
|
16
|
Ahmed MM, Samir ESA, El-Shehawi AM, Alkafafy ME. Anti-obesity effects of Taif and Egyptian pomegranates: molecular study. Biosci Biotechnol Biochem 2015; 79:598-609. [DOI: 10.1080/09168451.2014.982505] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
The present study investigated the anti-obesity effects of pomegranate (Punica granatum) juices from the two Saudi Arabian, Taif red, Taif white, and Egyptian pomegranates in high-fat diet (HFD)-induced obese rats. Administrating any of the used juices decreased the body weight gain, food consumption, and serum levels of lipid, leptin, and glucose, while it increased serum insulin level. Histologically, all types of juices decreased the number and size of lipid droplets in hepatocytes compared to the obese, non-treated animals. All juices types upregulated the hepatic mRNA expression of hormone-sensitive lipase, pyruvate kinase, and adiponectin in obese rats; the genes were all suppressed by HFD feeding. Additionally, the expression of fatty acid synthase, sterol regulatory element-binding protein-1c, and acetyl-CoA carboxylase1 was also upregulated by all types of juices. Conversely, ghrelin mRNA expression was downregulated by all used juices’ types. These findings demonstrate that all types of tested juices protect against the HFD-induced obesity in rats.
Collapse
Affiliation(s)
- Mohamed M Ahmed
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
- Department of Biochemistry, College of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - El-Shazly A Samir
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
- Department of Biochemistry, College of Veterinary Medicine, Kaferelsheikh University, Kaferelsheikh, Egypt
| | - Ahmed M El-Shehawi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
- Faculty of Agriculture, Department of Genetics, University of Alexandria, Alexandria, Egypt
| | - Mohamed E Alkafafy
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
- Department of Cytology and Histology, College of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
17
|
Chakraborty S, Akhter S, Requena JR, Basu S. Probing the Conformational Dynamics of the Bioactive Peptide TLQP-21 in Solution: A Molecular Dynamics Study. Chem Biol Drug Des 2015; 86:938-44. [PMID: 25682804 DOI: 10.1111/cbdd.12541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 12/19/2022]
Abstract
VGF-derived peptide, TLQP-21, is a physiologically active neuropeptide exhibiting important roles in energy expenditure and balance, gastric contractility, reproduction, pain modulation, and stress. Although the physiological functions of the peptide constitute a research area of considerable interest, structural information is clearly lacking. Here, using extensive 550 nanoseconds molecular dynamics simulation in explicit water model, we have explored the folding energy landscape of the peptide. Principal component analysis and cluster analysis have been used to identify highly populated conformational states of the peptide in solution. The most populated structure of the peptide adopts a highly compact globular form stabilized by several hydrogen-bonding interactions and π-cationic interactions. Strong surface complementarity of hydrophobic residues allows tighter spatial fit of the residues within the core region of the peptide. Our simulation also predicts that the peptide is highly flexible in solution and that the region A7 -R9 and three C-terminal residues, P19 -R21 , possess strong helical propensity.
Collapse
Affiliation(s)
- Sandipan Chakraborty
- Department of Microbiology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700 019, India
| | - Shamim Akhter
- CIMUS Biomedical Research Institute and Department of Medicine, University of Santiago de Compostela-IDIS, Avenida de Barcelona s/n 15782, Santiago de Compostela, Spain.,Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Jesús R Requena
- CIMUS Biomedical Research Institute and Department of Medicine, University of Santiago de Compostela-IDIS, Avenida de Barcelona s/n 15782, Santiago de Compostela, Spain
| | - Soumalee Basu
- Department of Microbiology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700 019, India
| |
Collapse
|
18
|
DNA methylation of the LY86 gene is associated with obesity, insulin resistance, and inflammation. Twin Res Hum Genet 2014; 17:183-91. [PMID: 24735745 DOI: 10.1017/thg.2014.22] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Previous genome-wide association studies (GWAS) have identified a large number of genetic variants for obesity and its related traits, representing a group of potential key genes in the etiology of obesity. Emerging evidence suggests that epigenetics may play an important role in obesity. It has not been explored whether the GWAS-identified loci contribute to obesity through epigenetics (e.g., DNA (deoxyribonucleic acid) methylation) in addition to genetics. METHOD A multi-stage cross-sectional study was designed. We did a literature search and identified 117 genes discovered by GWAS for obesity and its related traits. Then we analyzed whether the methylation levels of these genes were also associated with obesity in two genome-wide methylation panels. We examined an initial panel of seven adolescent obese cases and seven age-matched lean controls, followed by a second panel of 48 adolescent obese cases and 48 age- and gender-matched lean controls. The validated CpG sites were further replicated in two independent replication panels of youth (46 vs. 46 and 230 cases vs. 413 controls, respectively) and a general population of youth, including 703 healthy subjects. RESULTS One CpG site in the lymphocyte antigen 86 (LY86) gene, which showed higher methylation in the obese in both the initial (p = .009) and second genome-wide DNA methylation panel (p = .008), was further validated in both replication panels (meta p = .00016). Moreover, in the general population of youth, the methylation levels of this region were significantly correlated with adiposity indices (p ≤ .02), insulin resistance (p = .001), and inflammatory markers (p < .001). CONCLUSION By focusing on recent GWAS findings in genome-wide methylation profiles, we identified a solid association between LY86 gene DNA methylation and obesity.
Collapse
|
19
|
Yang Y, Wang Y, Zhou K, Hong A. Constructing regulatory networks to identify biomarkers for insulin resistance. Gene 2014; 539:68-74. [PMID: 24512691 DOI: 10.1016/j.gene.2014.01.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 01/21/2014] [Accepted: 01/25/2014] [Indexed: 12/19/2022]
Abstract
Insulin resistance (IR) is a physiological condition in which cells fail to respond to the insulin hormone. Despite advances in the diagnosis and treatment of IR, novel molecular targets are still needed to improve the accuracy of diagnosis and the outcomes of therapy. Here, we present a systems approach to identify molecular biomarkers for IR. We downloaded the gene expression profile of IR from the Gene Expression Omnibus (GEO), generated a regulatory network by mapping co-expressed genes to transcription factors (TFs) and calculated the regulatory impact factor of each transcription factor. Finally, we selected a list of potential molecular targets that could be used as therapeutic targets or diagnostic biomarkers, including ETS1, AR, ESR1 and Myc. Our studies identified multiple TFs that could play an important role in the pathogenesis of IR and provided a systems understanding of the potential relationships among these genes. Our study has the potential to aid in the understanding of IR and provides a basis for IR biomarker discovery.
Collapse
Affiliation(s)
- Yuxin Yang
- Jinan University, College of Life Science and Technology, 601 Huangpu Blvd, Guangzhou, Guangdong 510632, China
| | - Yi Wang
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, USA
| | - Kai Zhou
- The Affiliated Hospital of Luzhou Medical College, 25 Taiping Ave., Luzhou, Sichuan 646000, China
| | - An Hong
- Jinan University, College of Life Science and Technology, 601 Huangpu Blvd, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
20
|
Knoll N, Jarick I, Volckmar AL, Klingenspor M, Illig T, Grallert H, Gieger C, Wichmann HE, Peters A, Hebebrand J, Scherag A, Hinney A. Gene set of nuclear-encoded mitochondrial regulators is enriched for common inherited variation in obesity. PLoS One 2013; 8:e55884. [PMID: 23409076 PMCID: PMC3568071 DOI: 10.1371/journal.pone.0055884] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/03/2013] [Indexed: 01/13/2023] Open
Abstract
There are hints of an altered mitochondrial function in obesity. Nuclear-encoded genes are relevant for mitochondrial function (3 gene sets of known relevant pathways: (1) 16 nuclear regulators of mitochondrial genes, (2) 91 genes for oxidative phosphorylation and (3) 966 nuclear-encoded mitochondrial genes). Gene set enrichment analysis (GSEA) showed no association with type 2 diabetes mellitus in these gene sets. Here we performed a GSEA for the same gene sets for obesity. Genome wide association study (GWAS) data from a case-control approach on 453 extremely obese children and adolescents and 435 lean adult controls were used for GSEA. For independent confirmation, we analyzed 705 obesity GWAS trios (extremely obese child and both biological parents) and a population-based GWAS sample (KORA F4, n = 1,743). A meta-analysis was performed on all three samples. In each sample, the distribution of significance levels between the respective gene set and those of all genes was compared using the leading-edge-fraction-comparison test (cut-offs between the 50th and 95th percentile of the set of all gene-wise corrected p-values) as implemented in the MAGENTA software. In the case-control sample, significant enrichment of associations with obesity was observed above the 50th percentile for the set of the 16 nuclear regulators of mitochondrial genes (pGSEA,50 = 0.0103). This finding was not confirmed in the trios (pGSEA,50 = 0.5991), but in KORA (pGSEA,50 = 0.0398). The meta-analysis again indicated a trend for enrichment (pMAGENTA,50 = 0.1052, pMAGENTA,75 = 0.0251). The GSEA revealed that weak association signals for obesity might be enriched in the gene set of 16 nuclear regulators of mitochondrial genes.
Collapse
Affiliation(s)
- Nadja Knoll
- Department of Child and Adolescent Psychiatry, University of Duisburg-Essen, Essen, Germany
| | - Ivonne Jarick
- Institute of Medical Biometry and Epidemiology, Philipps-University of Marburg, Marburg, Germany
| | - Anna-Lena Volckmar
- Department of Child and Adolescent Psychiatry, University of Duisburg-Essen, Essen, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Technical University of Munich, Else Kröner-Fresenius Center, Freising-Weihenstephan, Germany
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Center Munich – German Research Center for Environmental Health, Neuherberg, Germany
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Center Munich – German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Center Munich – German Research Center for Environmental Health, Neuherberg, Germany
| | - Heinz-Erich Wichmann
- Institute of Epidemiology I, Helmholtz Center Munich – German Research Center for Environmental Health, Neuherberg, Germany, Neuherberg, Germany
- Institute of Medical Informatics, Biometry, and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
- Munich University Hospital, Campus Grosshadern, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Center Munich – German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, University of Duisburg-Essen, Essen, Germany
| | - André Scherag
- Institute for Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
21
|
Pérusse L, Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Snyder EE, Bouchard C. The Human Obesity Gene Map: The 2004 Update. ACTA ACUST UNITED AC 2012; 13:381-490. [PMID: 15833932 DOI: 10.1038/oby.2005.50] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This paper presents the eleventh update of the human obesity gene map, which incorporates published results up to the end of October 2004. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTLs) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2004, 173 human obesity cases due to single-gene mutations in 10 different genes have been reported, and 49 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 166 genes which, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 221. The number of human obesity QTLs derived from genome scans continues to grow, and we have now 204 QTLs for obesity-related phenotypes from 50 genome-wide scans. A total of 38 genomic regions harbor QTLs replicated among two to four studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably with 358 findings of positive associations with 113 candidate genes. Among them, 18 genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, >600 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful publications and genomic and other relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Louis Pérusse
- Division of Kinesiology, Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Sainte-Foy, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sanders JA, Schorl C, Patel A, Sedivy JM, Gruppuso PA. Postnatal liver growth and regeneration are independent of c-myc in a mouse model of conditional hepatic c-myc deletion. BMC PHYSIOLOGY 2012; 12:1. [PMID: 22397685 PMCID: PMC3353165 DOI: 10.1186/1472-6793-12-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/07/2012] [Indexed: 12/27/2022]
Abstract
BACKGROUND The transcription factor c-myc regulates genes involved in hepatocyte growth, proliferation, metabolism, and differentiation. It has also been assigned roles in liver development and regeneration. In previous studies, we made the unexpected observation that c-Myc protein levels were similar in proliferating fetal liver and quiescent adult liver with c-Myc displaying nucleolar localization in the latter. In order to investigate the functional role of c-Myc in adult liver, we have developed a hepatocyte-specific c-myc knockout mouse, c-mycfl/fl;Alb-Cre. RESULTS Liver weight to body weight ratios were similar in control and c-myc deficient mice. Liver architecture was unaffected. Conditional c-myc deletion did not result in compensatory induction of other myc family members or in c-Myc's binding partner Max. Floxed c-myc did have a negative effect on Alb-Cre expression at 4 weeks of age. To explore this relationship further, we used the Rosa26 reporter line to assay Cre activity in the c-myc floxed mice. No significant difference in Alb-Cre activity was found between control and c-mycfl/fl mice. c-myc deficient mice were studied in a nonproliferative model of liver growth, fasting for 48 hr followed by a 24 hr refeeding period. Fasting resulted in a decrease in liver mass and liver protein, both of which recovered upon 24 h of refeeding in the c-mycfl/fl;Alb-Cre animals. There was also no effect of reducing c-myc on recovery of liver mass following 2/3 partial hepatectomy. CONCLUSIONS c-Myc appears to be dispensable for normal liver growth during the postnatal period, restoration of liver mass following partial hepatectomy and recovery from fasting.
Collapse
Affiliation(s)
- Jennifer A Sanders
- Department of Pediatrics, Rhode Island Hospital and Brown University, Providence, RI 02903, USA.
| | | | | | | | | |
Collapse
|
23
|
Kumadaki S, Karasawa T, Matsuzaka T, Ema M, Nakagawa Y, Nakakuki M, Saito R, Yahagi N, Iwasaki H, Sone H, Takekoshi K, Yatoh S, Kobayashi K, Takahashi A, Suzuki H, Takahashi S, Yamada N, Shimano H. Inhibition of ubiquitin ligase F-box and WD repeat domain-containing 7α (Fbw7α) causes hepatosteatosis through Krüppel-like factor 5 (KLF5)/peroxisome proliferator-activated receptor γ2 (PPARγ2) pathway but not SREBP-1c protein in mice. J Biol Chem 2011; 286:40835-46. [PMID: 21911492 DOI: 10.1074/jbc.m111.235283] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
F-box and WD repeat domain-containing 7α (Fbw7α) is the substrate recognition component of a ubiquitin ligase that controls the degradation of factors involved in cellular growth, including c-Myc, cyclin E, and c-Jun. In addition, Fbw7α degrades the nuclear form of sterol regulatory element-binding protein (SREBP)-1a, a global regulator of lipid synthesis, particularly during mitosis in cultured cells. This study investigated the in vivo role of Fbw7α in hepatic lipid metabolism. siRNA knockdown of Fbw7α in mice caused marked hepatosteatosis with the accumulation of triglycerides. However, inhibition of Fbw7α did not change the level of nuclear SREBP-1 protein or the expression of genes involved in fatty acid synthesis and oxidation. In vivo experiments on the gain and loss of Fbw7α function indicated that Fbw7α regulated the expression of peroxisome proliferator-activated receptor (PPAR) γ2 and its target genes involved in fatty acid uptake and triglyceride synthesis. These genes included fatty acid transporter Cd36, diacylglycerol acyltransferase 1 (Dgat1), and fat-specific protein 27 (Cidec). The regulation of PPARγ2 by Fbw7α was mediated, at least in part, by the direct degradation of the Krüppel-like factor 5 (KLF5) protein, upstream of PPARγ2 expression. Hepatic Fbw7α contributes to normal fatty acid and triglyceride metabolism, functions that represent novel aspects of this cell growth regulator.
Collapse
Affiliation(s)
- Shin Kumadaki
- Department of Internal Medicine (Endocrinology and Metabolism), Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang P, Metukuri MR, Bindom SM, Prochownik EV, O'Doherty RM, Scott DK. c-Myc is required for the CHREBP-dependent activation of glucose-responsive genes. Mol Endocrinol 2010; 24:1274-86. [PMID: 20382893 DOI: 10.1210/me.2009-0437] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glucose regulates programs of gene expression that orchestrate changes in cellular phenotype in several metabolically active tissues. Carbohydrate response element-binding protein (ChREBP) and its binding partner, Mlx, mediate glucose-regulated gene expression by binding to carbohydrate response elements on target genes, such as the prototypical glucose-responsive gene, liver-type pyruvate kinase (Pklr). c-Myc is also required for the glucose response of the Pklr gene, although the relationship between c-Myc and ChREBP has not been defined. Here we describe the molecular events of the glucose-mediated activation of Pklr and determine the effects of decreasing the activity or abundance of c-Myc on this process. Time-course chromatin immunoprecipitation revealed a set of transcription factors [hepatocyte nuclear factor (HNF)1alpha, HNF4alpha, and RNA polymerase II (Pol II)] constitutively resident on the Pklr promoter, with a relative enrichment of acetylated histones 3 and 4 in the same region of the gene. Glucose did not affect HNF1alpha binding or the acetylation of histones H3 or H4. By contrast, glucose promoted the recruitment of ChREBP and c-Myc and increased the occupancy of HNF4alpha and RNA Pol II, which were coincident with the glucose-mediated increase in transcription as determined by a nuclear run-on assay. Depletion of c-Myc activity using a small molecule inhibitor (10058-F4/1RH) abolished the glucose-mediated recruitment of HNF4alpha, ChREBP, and RNA Pol II, without affecting basal gene expression, histone acetylation, and HNF1alpha or basal HNF4alpha occupancy. The activation and recruitment of ChREBP to several glucose-responsive genes were blocked by 1RH, indicating a general necessity for c-Myc in this process.
Collapse
Affiliation(s)
- Pili Zhang
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
25
|
Chen JQ, Brown TR, Russo J. Regulation of energy metabolism pathways by estrogens and estrogenic chemicals and potential implications in obesity associated with increased exposure to endocrine disruptors. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:1128-43. [PMID: 19348861 PMCID: PMC2747085 DOI: 10.1016/j.bbamcr.2009.03.009] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 10/20/2022]
Abstract
The prevalence of obesity among children, adolescents and adults has been dramatically increasing worldwide during the last several decades. The obesity epidemic has been recognized as one of the major global health problems, because its health hazard is linked to a number of common diseases including breast and prostate cancers. Obesity is caused by combination of genetic and environmental factors. While genetic contribution to obesity has been known to be significant, the genetic factors remain relatively unchanged. Recent studies have highlighted the involvement of environmental "obesogens", i.e. the xenobiotic chemicals that can disrupt the normal development and homeostatic control over adipogenesis and energy balance. Several lines of evidence suggest that increasing exposure to chemicals with endocrine-disrupting activities (endocrine-disrupting chemicals, EDCs) contributes to the increased obesity. The cellular and molecular mechanisms underlying obesogen-associated obesity are just now being appreciated. In this paper, we comprehensively reviewed current knowledge about the role of estrogen receptors alpha and beta (ERalpha and ERbeta) in regulation of energy metabolism pathways, including glucose transport, glycolysis, tricarboxylic acid (TCA) cycle, mitochondrial respiratory chain (MRC), adenosine nucleotide translocator (ANT) and fatty acid beta-oxidation and synthesis, by estrogens; and then examined the disturbance of E(2)/ER-mediated energy metabolism pathways by environmental obesogens; and finally, we discussed the potential implications of disturbance of energy metabolism pathways by obesogens in obesity and pointed out several key aspects of this area that need to be further explored. A better understanding of the cellular and molecular mechanisms underlying obesogen-associated obesity will lead to new approaches for slow down and/or prevention of the increased trend of obesity associated with exposure to obesogens.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| | | | | |
Collapse
|
26
|
Bartolomucci A, Possenti R, Levi A, Pavone F, Moles A. The role of the vgf gene and VGF-derived peptides in nutrition and metabolism. GENES & NUTRITION 2007; 2:169-80. [PMID: 18850173 PMCID: PMC2474945 DOI: 10.1007/s12263-007-0047-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 10/24/2006] [Indexed: 12/01/2022]
Abstract
Energy homeostasis is a complex physiological function coordinated at multiple levels. The issue of genetic regulation of nutrition and metabolism is attracting increasing interest and new energy homeostasis-regulatory genes are continuously identified. Among these genes, vgf is gaining increasing interest following two observations: (1) VGF-/- mice have a lean and hypermetabolic phenotype; (2) the first VGF-derived peptide involved in energy homeostasis, named TLQP-21, has been identified. The aim of this review will be to discuss the role of the vgf gene and VGF derived peptides in metabolic and nutritional functions. In particular we will: (1) provide a brief overview on the central systems regulating energy homeostasis and nutrition particularly focusing on the melanocortin system; (2) introduce the structure and molecular characteristic of vgf; (3) describe the phenotype of VGF deficient mice; (4) present recent data on the metabolic role of VGF-derived peptides, particularly focusing on one peptide named TLQP-21.
Collapse
Affiliation(s)
- Alessandro Bartolomucci
- Institute of Neuroscience, CNR, Via del Fosso di Fiorano 64, 00143 Rome, Italy
- Dipartimento di Biologia Evolutiva e Funzionale, Università di Parma, V.le G.P. Usberti 11A, 43100 Parma, Italy
| | - Roberta Possenti
- Department of Neuroscience, University of Roma II-Tor Vergata, Rome, Italy
- Institute of Neurobiology and Molecular Medicine, CNR, Rome, Italy
| | - Andrea Levi
- Institute of Neurobiology and Molecular Medicine, CNR, Rome, Italy
| | - Flaminia Pavone
- Institute of Neuroscience, CNR, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Anna Moles
- Institute of Neuroscience, CNR, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| |
Collapse
|
27
|
Quin GJ, Len ACL, Billson FA, Gillies MC. Proteome map of normal rat retina and comparison with the proteome of diabetic rat retina: new insight in the pathogenesis of diabetic retinopathy. Proteomics 2007; 7:2636-50. [PMID: 17647246 DOI: 10.1002/pmic.200600486] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have employed proteomics to establish a proteome map of the normal rat retina. This baseline map was then used for comparison with the early diabetic rat retinal proteome. Diabetic rat retinae were obtained from Dark Agouti rats after 10 wk of streptozotocin-induced hyperglycaemia. Extracted proteins from normal and diabetic rat retinae were separated and compared using 2-DE. A total of 145 protein spots were identified in the normal rat retina using MALDI-MS and database matching. LC-coupled ESI-MS increased the repertoire of identified proteins by 23 from 145 to 168. Comparison with early diabetic rat retinae revealed 24 proteins unique to the diabetic gels, and 37 proteins absent from diabetic gels. Uniquely expressed proteins identified included the HSPs 70.1A and 8, and platelet activating factor. There were eight spots with increased expression and 27 with decreased expression on diabetic gels. Beta catenin, phosducin and aldehyde reductase were increased in expression in diabetes whilst succinyl coA ligase and dihydropyrimidase-related protein were decreased. Identification of such changes in protein expression has given new insights and a more comprehensive understanding of the pathogenesis of diabetic retinopathy, widening the scope of potential avenues for new therapies for this common cause of blindness.
Collapse
MESH Headings
- Animals
- Blood Glucose/analysis
- Databases, Protein
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/metabolism
- Diabetic Retinopathy/etiology
- Diabetic Retinopathy/pathology
- Electrophoresis, Gel, Two-Dimensional
- Male
- Peptide Mapping/methods
- Proteome/analysis
- Proteomics/methods
- Rats
- Rats, Inbred Strains
- Retina/chemistry
- Spectrometry, Mass, Electrospray Ionization
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Godfrey J Quin
- Save Sight Institute, Department of Clinical Ophthalmology, University of Sydney, Sydney Eye Hospital, Sydney NSW, Australia.
| | | | | | | |
Collapse
|
28
|
Liang LR, Lu S, Wang X, Lu Y, Mandal V, Patacsil D, Kumar D. FM-test: a fuzzy-set-theory-based approach to differential gene expression data analysis. BMC Bioinformatics 2006; 7 Suppl 4:S7. [PMID: 17217525 PMCID: PMC1780132 DOI: 10.1186/1471-2105-7-s4-s7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background Microarray techniques have revolutionized genomic research by making it possible to monitor the expression of thousands of genes in parallel. As the amount of microarray data being produced is increasing at an exponential rate, there is a great demand for efficient and effective expression data analysis tools. Comparison of gene expression profiles of patients against those of normal counterpart people will enhance our understanding of a disease and identify leads for therapeutic intervention. Results In this paper, we propose an innovative approach, fuzzy membership test (FM-test), based on fuzzy set theory to identify disease associated genes from microarray gene expression profiles. A new concept of FM d-value is defined to quantify the divergence of two sets of values. We further analyze the asymptotic property of FM-test, and then establish the relationship between FM d-value and p-value. We applied FM-test to a diabetes expression dataset and a lung cancer expression dataset, respectively. Within the 10 significant genes identified in diabetes dataset, six of them have been confirmed to be associated with diabetes in the literature and one has been suggested by other researchers. Within the 10 significantly overexpressed genes identified in lung cancer data, most (eight) of them have been confirmed by the literatures which are related to the lung cancer. Conclusion Our experiments on synthetic datasets show that FM-test is effective and robust. The results in diabetes and lung cancer datasets validated the effectiveness of FM-test. FM-test is implemented as a Web-based application and is available for free at .
Collapse
Affiliation(s)
- Lily R Liang
- Department of Computer Science and Information Technology, University of the District of Columbia, Washington, DC, 20008, USA
| | - Shiyong Lu
- Department of Computer Science, Wayne State University, Detroit, MI, 48202, USA
| | | | - Yi Lu
- Department of Computer Science, Wayne State University, Detroit, MI, 48202, USA
| | - Vinay Mandal
- Department of Computer Science, Wayne State University, Detroit, MI, 48202, USA
| | - Dorrelyn Patacsil
- Department of Biological and Environmental Sciences, University of the District of Columbia, Washington, DC, 20008, USA
| | - Deepak Kumar
- Department of Biological and Environmental Sciences, University of the District of Columbia, Washington, DC, 20008, USA
| |
Collapse
|
29
|
Bartolomucci A, La Corte G, Possenti R, Locatelli V, Rigamonti AE, Torsello A, Bresciani E, Bulgarelli I, Rizzi R, Pavone F, D’Amato FR, Severini C, Mignogna G, Giorgi A, Schininà ME, Elia G, Brancia C, Ferri GL, Conti R, Ciani B, Pascucci T, Dell’Omo G, Muller EE, Levi A, Moles A. TLQP-21, a VGF-derived peptide, increases energy expenditure and prevents the early phase of diet-induced obesity. Proc Natl Acad Sci U S A 2006; 103:14584-9. [PMID: 16983076 PMCID: PMC1600003 DOI: 10.1073/pnas.0606102103] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Indexed: 12/30/2022] Open
Abstract
The vgf gene has been identified as an energy homeostasis regulator. Vgf encodes a 617-aa precursor protein that is processed to yield an incompletely characterized panel of neuropeptides. Until now, it was an unproved assumption that VGF-derived peptides could regulate metabolism. Here, a VGF peptide designated TLQP-21 was identified in rat brain extracts by means of immunoprecipitation, microcapillary liquid chromatography-tandem MS, and database searching algorithms. Chronic intracerebroventricular (i.c.v.) injection of TLQP-21 (15 mug/day for 14 days) increased resting energy expenditure (EE) and rectal temperature in mice. These effects were paralleled by increased epinephrine and up-regulation of brown adipose tissue beta2-AR (beta2 adrenergic receptor) and white adipose tissue (WAT) PPAR-delta (peroxisome proliferator-activated receptor delta), beta3-AR, and UCP1 (uncoupling protein 1) mRNAs and were independent of locomotor activity and thyroid hormones. Hypothalamic gene expression of orexigenic and anorexigenic neuropeptides was unchanged. Furthermore, in mice that were fed a high-fat diet for 14 days, TLQP-21 prevented the increase in body and WAT weight as well as hormonal changes that are associated with a high-fat regimen. Biochemical and molecular analyses suggest that TLQP-21 exerts its effects by stimulating autonomic activation of adrenal medulla and adipose tissues. In conclusion, we present here the identification in the CNS of a previously uncharacterized VGF-derived peptide and prove that its chronic i.c.v. infusion effected an increase in EE and limited the early phase of diet-induced obesity.
Collapse
Affiliation(s)
- A. Bartolomucci
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, 00143 Rome, Italy
| | - G. La Corte
- Institute of Neurobiology and Molecular Medicine, Consiglio Nazionale delle Ricerche, 00143 Rome, Italy
| | - R. Possenti
- Institute of Neurobiology and Molecular Medicine, Consiglio Nazionale delle Ricerche, 00143 Rome, Italy
- Department of Neuroscience, University of Roma II–Tor Vergata, 00161 Rome, Italy
| | - V. Locatelli
- Department of Experimental and Environmental Medicine and Biotechnology and Interdepartmental Center for Bioinformatics and Proteomics, University of Milan–Bicocca, 20052 Monza, Italy
| | - A. E. Rigamonti
- Department of Pharmacology, Chemotherapy, and Medical Toxicology, University of Milan, 20129 Milan, Italy
| | - A. Torsello
- Department of Experimental and Environmental Medicine and Biotechnology and Interdepartmental Center for Bioinformatics and Proteomics, University of Milan–Bicocca, 20052 Monza, Italy
| | - E. Bresciani
- Department of Experimental and Environmental Medicine and Biotechnology and Interdepartmental Center for Bioinformatics and Proteomics, University of Milan–Bicocca, 20052 Monza, Italy
| | - I. Bulgarelli
- Department of Experimental and Environmental Medicine and Biotechnology and Interdepartmental Center for Bioinformatics and Proteomics, University of Milan–Bicocca, 20052 Monza, Italy
| | - R. Rizzi
- Department of Neuroscience, University of Roma II–Tor Vergata, 00161 Rome, Italy
| | - F. Pavone
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, 00143 Rome, Italy
| | - F. R. D’Amato
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, 00143 Rome, Italy
| | - C. Severini
- Institute of Neurobiology and Molecular Medicine, Consiglio Nazionale delle Ricerche, 00143 Rome, Italy
| | - G. Mignogna
- Department of Biochemical Science, University “La Sapienza,” 00185 Rome, Italy
| | - A. Giorgi
- Department of Biochemical Science, University “La Sapienza,” 00185 Rome, Italy
| | - M. E. Schininà
- Department of Biochemical Science, University “La Sapienza,” 00185 Rome, Italy
| | - G. Elia
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - C. Brancia
- NEF Laboratory, Department of Cytomorphology, University of Cagliari, 09042 Monserrato, Italy
| | - G.-L. Ferri
- NEF Laboratory, Department of Cytomorphology, University of Cagliari, 09042 Monserrato, Italy
| | - R. Conti
- Department of Endocrinology and Metabolism, Sigma-Tau Pharmaceuticals Industries S.p.A., 00040 Rome, Italy
| | - B. Ciani
- Department of Endocrinology and Metabolism, Sigma-Tau Pharmaceuticals Industries S.p.A., 00040 Rome, Italy
| | - T. Pascucci
- Foundation Santa Lucia, 00143 Rome, Italy; and
| | - G. Dell’Omo
- Institute of Anatomy and Center for Neuroscience, University of Zürich, CH-8057 Zürich, Switzerland
| | - E. E. Muller
- Department of Pharmacology, Chemotherapy, and Medical Toxicology, University of Milan, 20129 Milan, Italy
| | - A. Levi
- Institute of Neurobiology and Molecular Medicine, Consiglio Nazionale delle Ricerche, 00143 Rome, Italy
| | - A. Moles
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, 00143 Rome, Italy
| |
Collapse
|
30
|
Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Pérusse L, Bouchard C. The human obesity gene map: the 2005 update. Obesity (Silver Spring) 2006; 14:529-644. [PMID: 16741264 DOI: 10.1038/oby.2006.71] [Citation(s) in RCA: 706] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper presents the 12th update of the human obesity gene map, which incorporates published results up to the end of October 2005. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTL) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2005, 176 human obesity cases due to single-gene mutations in 11 different genes have been reported, 50 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 244 genes that, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 408. The number of human obesity QTLs derived from genome scans continues to grow, and we now have 253 QTLs for obesity-related phenotypes from 61 genome-wide scans. A total of 52 genomic regions harbor QTLs supported by two or more studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably, with 426 findings of positive associations with 127 candidate genes. A promising observation is that 22 genes are each supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. The electronic version of the map with links to useful publications and relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808-4124, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Nakagawa Y, Shimano H, Yoshikawa T, Ide T, Tamura M, Furusawa M, Yamamoto T, Inoue N, Matsuzaka T, Takahashi A, Hasty AH, Suzuki H, Sone H, Toyoshima H, Yahagi N, Yamada N. TFE3 transcriptionally activates hepatic IRS-2, participates in insulin signaling and ameliorates diabetes. Nat Med 2005; 12:107-13. [PMID: 16327801 DOI: 10.1038/nm1334] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 10/27/2005] [Indexed: 11/08/2022]
Abstract
Using an expression cloning strategy, we have identified TFE3, a basic helix-loop-helix protein, as a transactivator of metabolic genes that are regulated through an E-box in their promoters. Adenovirus-mediated expression of TFE3 in hepatocytes in culture and in vivo strongly activated expression of IRS-2 and Akt and enhanced phosphorylation of insulin-signaling kinases such as Akt, glycogen synthase kinase 3beta and p70S6 kinase. TFE3 also induced hexokinase II (HK2) and insulin-induced gene 1 (INSIG1). These changes led to metabolic consequences, such as activation of glycogen and protein synthesis, but not lipogenesis, in liver. Collectively, plasma glucose levels were markedly reduced both in normal mice and in different mouse models of diabetes, including streptozotocin-treated, db/db and KK mice. Promoter analyses showed that IRS2, HK2 and INSIG1 are direct targets of TFE3. Activation of insulin signals in both insulin depletion and resistance suggests that TFE3 could be a therapeutic target for diabetes.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/metabolism
- Animals
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/physiology
- Blood Glucose/metabolism
- Blotting, Northern
- Cells, Cultured
- Chromatin Immunoprecipitation
- Cloning, Molecular
- Diabetes Mellitus/therapy
- Diabetes Mellitus, Experimental
- Dose-Response Relationship, Drug
- Glycogen/metabolism
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta
- Green Fluorescent Proteins/metabolism
- Hepatocytes/metabolism
- Hexokinase/metabolism
- Humans
- Immunoblotting
- Immunoprecipitation
- Insulin/metabolism
- Insulin Receptor Substrate Proteins
- Intracellular Signaling Peptides and Proteins
- Male
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Biological
- Phosphoproteins/metabolism
- Phosphorylation
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-akt/metabolism
- Rats
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Signal Transduction
- Streptozocin/pharmacology
- Time Factors
- Transcriptional Activation
Collapse
Affiliation(s)
- Yoshimi Nakagawa
- Department of Internal Medicine, Metabolism and Endocrinology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
McClung JP, Roneker CA, Mu W, Lisk DJ, Langlais P, Liu F, Lei XG. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc Natl Acad Sci U S A 2004; 101:8852-7. [PMID: 15184668 PMCID: PMC428436 DOI: 10.1073/pnas.0308096101] [Citation(s) in RCA: 406] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Insulin resistance, a hallmark of type 2 diabetes, is associated with oxidative stress. However, the role of reactive oxygen species or specific antioxidant enzymes in its development has not been tested under physiological conditions. The objective of our study was to investigate the impact of overexpression of glutathione peroxidase 1 (GPX1), an intracellular selenoprotein that reduces hydrogen peroxide (H(2)O(2)) in vivo, on glucose metabolism and insulin function. The GPX1-overexpressing (OE) and WT male mice (n = 80) were fed a selenium-adequate diet (0.4 mg/kg) from 8 to 24 weeks of age. Compared with the WT, the OE mice developed (P < 0.05) hyperglycemia (117 vs. 149 mg/dl), hyperinsulinemia (419 vs. 1,350 pg/ml), and elevated plasma leptin (5 vs. 16 ng/ml) at 24 weeks of age. Meanwhile, these mice were heavier (37 vs. 27 g, P < 0.001) and fatter (37% vs. 17% fat, P < 0.01) than the WT mice. At 30-60 min after an insulin challenge, the OE mice had 25% less (P < 0.05) of a decrease in blood glucose than the WT mice. Their insulin resistance was associated with a 30-70% reduction (P < 0.05) in the insulin-stimulated phosphorylations of insulin receptor (beta-subunit) in liver and Akt (Ser(473) and Thr(308)) in liver and soleus muscle. Here we report the development of insulin resistance in mammals with elevated expression of an antioxidant enzyme and suggest that increased GPX1 activity may interfere with insulin function by overquenching intracellular reactive oxygen species required for insulin sensitizing.
Collapse
Affiliation(s)
- James P McClung
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|