1
|
Qian L, Chen P, Zhang S, Wang Z, Guo Y, Koutouratsas V, Fleishman JS, Huang C, Zhang S. The uptake of extracellular vesicles: Research progress in cancer drug resistance and beyond. Drug Resist Updat 2025; 79:101209. [PMID: 39893749 DOI: 10.1016/j.drup.2025.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Extracellular vesicles (EVs) are heterogeneous vesicles released by donor cells that can be taken up by recipient cells, thus inducing cellular phenotype changes. Since their discovery decades ago, roles of EVs in modulating initiation, growth, survival and metastasis of cancer have been revealed. Recent studies from multifaceted perspectives have further detailed the contribution of EVs to cancer drug resistance; however, the role of EV uptake in conferring drug resistance seems to be overlooked. In this comprehensive review, we update the EV subtypes and approaches for determining EV uptake. The biological basis of EV uptake is systematically summarized. Moreover, we focus on the diverse uptake mechanisms by which EVs carry out the intracellular delivery of functional molecules and drug resistance signaling. Furthermore, we highlight how EV uptake confers drug resistance and identify potential strategies for targeting EV uptake to overcome drug resistance. Finally, we discuss the research gap on the role of EV uptake in promoting drug resistance. This updated knowledge provides a new avenue to overcome cancer drug resistance by targeting EV uptake.
Collapse
Affiliation(s)
- Luomeng Qian
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Pangzhou Chen
- Department of Breast Surgery, Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Zhenglu Wang
- Department of Pathology, Tianjin Key Laboratory for Organ Transplantation, Tianjin First Centre Hospital, Tianjin 300192, China
| | - Yuan Guo
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Vasili Koutouratsas
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Chuanqiang Huang
- Department of Breast Surgery, Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
2
|
Kim HS, Jee SA, Einisadr A, Seo Y, Seo HG, Jang BS, Park HH, Chung WS, Kim BG. Detrimental influence of Arginase-1 in infiltrating macrophages on poststroke functional recovery and inflammatory milieu. Proc Natl Acad Sci U S A 2025; 122:e2413484122. [PMID: 39951507 PMCID: PMC11848331 DOI: 10.1073/pnas.2413484122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
Poststroke inflammation critically influences functional outcomes following ischemic stroke. Arginase-1 (Arg1) is considered a marker for anti-inflammatory macrophages, associated with the resolution of inflammation and promotion of tissue repair in various pathological conditions. However, its specific role in poststroke recovery remains to be elucidated. This study investigates the functional impact of Arg1 expressed in macrophages on poststroke recovery and inflammatory milieu. We observed a time-dependent increase in Arg1 expression, peaking at 7 d after photothrombotic stroke in mice. Cellular mapping analysis revealed that Arg1 was predominantly expressed in LysM-positive infiltrating macrophages. Using a conditional knockout (cKO) mouse model, we examined the role of Arg1 expressed in infiltrating macrophages. Contrary to its presumed beneficial effects, Arg1 cKO in LysM-positive macrophages significantly improved skilled forelimb motor function recovery after stroke. Mechanistically, Arg1 cKO attenuated fibrotic scar formation, enhanced peri-infarct remyelination, and increased synaptic density while reducing microglial synaptic elimination in the peri-infarct cortex. Gene expression analysis of fluorescence-activated single cell sorting (FACS)-sorted CD45low microglia revealed decreased transforming growth factor-β (TGF-β) signaling and proinflammatory cytokine activity in peri-infarct microglia from Arg1 cKO animals. In vitro coculture experiments demonstrated that Arg1 activity in macrophages modulates microglial synaptic phagocytosis, providing evidence for macrophage-microglia interaction. These findings present unique insights into the function of Arg1 in central nervous system injury and highlight an interaction between infiltrating macrophages and resident microglia in shaping the poststroke inflammatory milieu. Our study identifies Arg1 in macrophages as a potential therapeutic target for modulating poststroke inflammation and improving functional recovery.
Collapse
Affiliation(s)
- Hyung Soon Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Seung Ah Jee
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Ariandokht Einisadr
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Yeojin Seo
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Hyo Gyeong Seo
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Byeong Seong Jang
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Hee Hwan Park
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
- Center for Vascular Biology, Institute for Basic Science, Daejeon34126, Republic of Korea
| | - Byung Gon Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
- Department of Neurology, Ajou University School of Medicine, Suwon16499, Republic of Korea
| |
Collapse
|
3
|
Bosco DB, Kremen V, Haruwaka K, Zhao S, Wang L, Ebner BA, Zheng J, Xie M, Dheer A, Perry JF, Barath A, Nguyen AT, Worrell GA, Wu LJ. Microglial TREM2 promotes phagocytic clearance of damaged neurons after status epilepticus. Brain Behav Immun 2025; 123:540-555. [PMID: 39353548 PMCID: PMC11924143 DOI: 10.1016/j.bbi.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/15/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024] Open
Abstract
In the central nervous system, triggering receptor expressed on myeloid cells 2 (TREM2) is exclusively expressed by microglia and is critical for microglial proliferation, migration, and phagocytosis. Microglial TREM2 plays an important role in neurodegenerative diseases, such as Alzheimer's disease and amyotrophic lateral sclerosis. However, little is known about how TREM2 affects microglial function within epileptogenesis. To investigate this, we utilized male TREM2 knockout (KO) mice within the intra-amygdala kainic acid seizure model. Electroencephalographic analysis, immunocytochemistry, and RNA sequencing revealed that TREM2 deficiency significantly promoted seizure-induced pathology. We found that TREM2 KO increased both the severity of acute status epilepticus and the number of spontaneous recurrent seizures characteristic of chronic focal epilepsy. Phagocytic clearance of damaged neurons by microglia was also impaired by TREM2 KO and reduced phagocytic activity correlated with increased spontaneous seizures. Analysis of human tissue from patients who underwent surgical resection for drug resistant temporal lobe epilepsy also showed a negative correlation between expression of the microglial phagocytic marker CD68 and focal to bilateral tonic-clonic generalized seizure history. These results indicate that microglial TREM2 and phagocytic activity are important to epileptogenic pathology.
Collapse
MESH Headings
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Animals
- Status Epilepticus/metabolism
- Status Epilepticus/genetics
- Microglia/metabolism
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Mice, Knockout
- Male
- Phagocytosis/physiology
- Phagocytosis/genetics
- Mice
- Neurons/metabolism
- Humans
- Disease Models, Animal
- Kainic Acid
- Mice, Inbred C57BL
- Epilepsy, Temporal Lobe/metabolism
- Epilepsy, Temporal Lobe/genetics
- Seizures/metabolism
- Seizures/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
Collapse
Affiliation(s)
- Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Koichiro Haruwaka
- Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lingxiao Wang
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Blake A Ebner
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jiaying Zheng
- Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Aastha Dheer
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Jadyn F Perry
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Abhijeet Barath
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Aivi T Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
4
|
Mei T, Chen Y, Gao Y, Zhao H, Lyu X, Lin J, Niu T, Han H, Tong Z. Formaldehyde initiates memory and motor impairments under weightlessness condition. NPJ Microgravity 2024; 10:100. [PMID: 39468074 PMCID: PMC11519943 DOI: 10.1038/s41526-024-00441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
During space flight, prolonged weightlessness stress exerts a range of detrimental impacts on the physiology and psychology of astronauts. These manifestations encompass depressive symptoms, anxiety, and impairments in both short-term memory and motor functions, albeit the precise underlying mechanisms remain elusive. Recent studies have revealed that hindlimb unloading (HU) animal models, which simulate space weightlessness, exhibited a disorder in memory and motor function associated with endogenous formaldehyde (FA) accumulation in the hippocampus and cerebellum, disruption of brain extracellular space (ECS), and blockage of interstitial fluid (ISF) drainage. Notably, the impairment of the blood-brain barrier (BBB) caused by space weightlessness elicits the infiltration of albumin and hemoglobin from the blood vessels into the brain ECS. However, excessive FA has the potential to form cross-links between these two proteins and amyloid-beta (Aβ), thereby obstructing ECS and inducing neuron death. Moreover, FA can inhibit N-methyl-D-aspartate (NMDA) currents by crosslinking NR1 and NR2B subunits, thus impairing memory. Additionally, FA has the ability to modulate the levels of certain microRNAs (miRNAs) such as miRNA-29b, which can affect the expression of aquaporin-4 (AQP4) so as to regulate ECS structure and ISF drainage. Especially, the accumulation of FA may inactivate the ataxia telangiectasia-mutated (ATM) protein kinase by forming cross-linking, a process that is associated with ataxia. Hence, this review presents that weightlessness stress-derived FA may potentially serve as a crucial catalyst in the deterioration of memory and motor abilities in the context of microgravity.
Collapse
Affiliation(s)
- Tianhao Mei
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Chen
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Hang Zhao
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingzhou Lyu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Lin
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tianye Niu
- Shenzhen Bay Laboratory, Shenzhen, China.
- University of Science and Technology of China, Anhui, China.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| | - Zhiqian Tong
- Beijing Geriatric Hospital, Beijing, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
5
|
Balena T, Staley K. Neuronal Death: Now You See It, Now You Don't. Neuroscientist 2024:10738584241282632. [PMID: 39316584 DOI: 10.1177/10738584241282632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Fatally injured neurons may necrose and rupture immediately, or they may initiate a programmed cell death pathway and then wait for microglial phagocytosis. Biochemical and histopathologic assays of neuronal death assess the numbers of neurons awaiting phagocytosis at a particular time point after injury. This number varies with the fraction of neurons that have necrosed vs initiated programmed cell death, the time elapsed since injury, the rate of phagocytosis, and the assay's ability to detect neurons at different stages of programmed cell death. Many of these variables can be altered by putatively neurotoxic and neuroprotective interventions independent of the effects on neuronal death. This complicates analyses of neurotoxicity and neuroprotection and has likely contributed to difficulties with clinical translation of neuroprotective strategies after brain injury. Time-resolved assays of neuronal health, such as ongoing expression of transgenic fluorescent proteins, are a useful means of avoiding these problems.
Collapse
Affiliation(s)
- Trevor Balena
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Kevin Staley
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Wang EY, Chen HS, Wu MC, Yang YL, Wang HL, Liu CW, Lai TW. Microglia through MFG-E8 signaling decrease the density of degenerating neurons and protect the brain from the development of cortical infarction after stroke. PLoS One 2024; 19:e0308464. [PMID: 39110702 PMCID: PMC11305554 DOI: 10.1371/journal.pone.0308464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Neuronal loss is a hallmark of stroke and other neurodegenerative diseases, and as such, neuronal loss caused by microglia has been thought to be a contributing factor to disease progression. Here, we show that microglia indeed contribute significantly to neuronal loss in a mouse model of stroke, but this microglial-dependent process of neuronal clearance specifically targets stressed and degenerating neurons in the ischemic cortical region and not healthy non-ischemic neurons. Nonspecific stimulation of microglia decreased the density of neurons in the ischemic cortical region, whereas specific inhibition of MFG-E8 signaling, which is required for microglial phagocytosis of neurons, had the opposite effect. In both scenarios, the effects were microglia specific, as the same treatments had no effect in mice whose microglia were depleted prior to stroke. Finally, even though the inhibition of MFG-E8 signaling increased neuronal density in the ischemic brain region, it substantially exacerbated the development of cortical infarction. In conclusion, microglia through MFG-E8 signaling contribute to the loss of ischemic neurons and, in doing so, minimize the development of cortical infarction after stroke.
Collapse
Affiliation(s)
- Eric Yuhsiang Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | | | - Meng-Chih Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ya Lan Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hwai-Lee Wang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Che-Wei Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Plastic and Reconstructive Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Ted Weita Lai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
7
|
Bosco DB, Kremen V, Haruwaka K, Zhao S, Wang L, Ebner BA, Zheng J, Dheer A, Perry JF, Xie M, Nguyen AT, Worrell GA, Wu LJ. Impaired microglial phagocytosis promotes seizure development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573794. [PMID: 38260601 PMCID: PMC10802340 DOI: 10.1101/2023.12.31.573794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In the central nervous system, triggering receptor expressed on myeloid cells 2 (TREM2) is exclusively expressed by microglia and is critical for microglial proliferation, migration, and phagocytosis. TREM2 plays an important role in neurodegenerative diseases, such as Alzheimer's disease and amyotrophic lateral sclerosis. However, little is known about the role TREM2 plays in epileptogenesis. To investigate this, we utilized TREM2 knockout (KO) mice within the murine intra-amygdala kainic acid seizure model. Electroencephalographic analysis, immunocytochemistry, and RNA sequencing revealed that TREM2 deficiency significantly promoted seizure-induced pathology. We found that TREM2 KO increased both acute status epilepticus and spontaneous recurrent seizures characteristic of chronic focal epilepsy. Mechanistically, phagocytic clearance of damaged neurons by microglia was impaired in TREM2 KO mice and the reduced phagocytic capacity correlated with increased spontaneous seizures. Analysis of human tissue from patients who underwent surgical resection for drug resistant temporal lobe epilepsy also showed a negative correlation between microglial phagocytic activity and focal to bilateral tonic-clonic generalized seizure history. These results indicate that microglial TREM2 and phagocytic activity may be important to epileptogenesis and the progression of focal temporal lobe epilepsy.
Collapse
Affiliation(s)
- Dale B. Bosco
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | | | - Shunyi Zhao
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Lingxiao Wang
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Blake A. Ebner
- Department of Laboratory Medicine and Pathology, Mayo Clinic; Rochester, MN, USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Aastha Dheer
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Jadyn F. Perry
- Department of Immunology, Mayo Clinic; Rochester, MN, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Aivi T. Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic; Rochester, MN, USA
| | | | - Long-Jun Wu
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
- Department of Immunology, Mayo Clinic; Rochester, MN, USA
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, USA
| |
Collapse
|
8
|
Balena T, Lillis K, Rahmati N, Bahari F, Dzhala V, Berdichevsky E, Staley K. A Dynamic Balance between Neuronal Death and Clearance in an in Vitro Model of Acute Brain Injury. J Neurosci 2023; 43:6084-6107. [PMID: 37527922 PMCID: PMC10451151 DOI: 10.1523/jneurosci.0436-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/15/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
In in vitro models of acute brain injury, neuronal death may overwhelm the capacity for microglial phagocytosis, creating a queue of dying neurons awaiting clearance. Neurons undergoing programmed cell death are in this queue, and are the most visible and frequently quantified measure of neuronal death after injury. However, the size of this queue should be equally sensitive to changes in neuronal death and the rate of phagocytosis. Using rodent organotypic hippocampal slice cultures as a model of acute perinatal brain injury, serial imaging demonstrated that the capacity for microglial phagocytosis of dying neurons was overwhelmed for 2 weeks. Altering phagocytosis rates (e.g., by changing the number of microglia) dramatically changed the number of visibly dying neurons. Similar effects were generated when the visibility of dying neurons was altered by changing the membrane permeability for stains that label dying neurons. Canonically neuroprotective interventions, such as seizure blockade, and neurotoxic maneuvers, such as perinatal ethanol exposure, were mediated by effects on microglial activity and the membrane permeability of neurons undergoing programmed cell death. These canonically neuroprotective and neurotoxic interventions had either no or opposing effects on healthy surviving neurons identified by the ongoing expression of transgenic fluorescent proteins.SIGNIFICANCE STATEMENT In in vitro models of acute brain injury, microglial phagocytosis is overwhelmed by the number of dying cells. Under these conditions, the assumptions on which assays for neuroprotective and neurotoxic effects are based are no longer valid. Thus, longitudinal assays of healthy cells, such as serial assessment of the fluorescence emission of transgenically expressed proteins, provide more accurate estimates of cell death than do single-time point anatomic or biochemical assays of the number of dying neurons. More accurate estimates of death rates in vitro will increase the translatability of preclinical studies of neuroprotection and neurotoxicity.
Collapse
Affiliation(s)
- Trevor Balena
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Kyle Lillis
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Negah Rahmati
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Fatemeh Bahari
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Volodymyr Dzhala
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Eugene Berdichevsky
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
| | - Kevin Staley
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| |
Collapse
|
9
|
Peradinovic J, Mohovic N, Bulic K, Markovinovic A, Cimbro R, Munitic I. Ageing-Induced Decline in Primary Myeloid Cell Phagocytosis Is Unaffected by Optineurin Insufficiency. BIOLOGY 2023; 12:biology12020240. [PMID: 36829517 PMCID: PMC9953198 DOI: 10.3390/biology12020240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Optineurin is a ubiquitin-binding adaptor protein involved in multiple cellular processes, including innate inflammatory signalling. Mutations in optineurin were found in amyotrophic lateral sclerosis, an adult-onset fatal neurodegenerative disease that targets motor neurons. Neurodegeneration results in generation of neuronal debris, which is primarily cleared by myeloid cells. To assess the role of optineurin in phagocytosis, we performed a flow cytometry-based phagocytic assay of apoptotic neuronal debris and E. coli bioparticles in bone marrow-derived macrophages (BMDMs), and primary neonatal microglia from wild-type (WT) and optineurin-insufficient (Optn470T) mice. We found no difference in phagocytosis efficiency and the accompanying cytokine secretion in WT and Optn470T BMDMs and microglia. This was true at both steady state and upon proinflammatory polarization with lipopolysaccharide. When we analysed the effect of ageing as a major risk factor for neurodegeneration, we found a substantial decrease in the percentage of phagocytic cells and proinflammatory cytokine secretion in BMDMs from 2-year-old mice. However, this ageing-induced phagocytic decline was unaffected by optineurin insufficiency. All together, these results indicate that ageing is the factor that perturbs normal phagocytosis and proinflammatory cytokine secretion, but that optineurin is dispensable for these processes.
Collapse
Affiliation(s)
- Josip Peradinovic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia
| | - Nikolina Mohovic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia
| | - Katarina Bulic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia
| | - Andrea Markovinovic
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9RT, UK
| | - Raffaello Cimbro
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia
- Correspondence: (R.C.); (I.M.)
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia
- Correspondence: (R.C.); (I.M.)
| |
Collapse
|
10
|
Hatami H, Sajedi A, Mir SM, Memar MY. Importance of lactate dehydrogenase (LDH) and monocarboxylate transporters (MCTs) in cancer cells. Health Sci Rep 2023; 6:e996. [PMID: 36570342 PMCID: PMC9768844 DOI: 10.1002/hsr2.996] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background In most regions, cancer ranks the second most frequent cause of death following cardiovascular disorders. Aim In this article, we review the various aspects of glycolysis with a focus on types of MCTs and the importance of lactate in cancer cells. Results and Discussion Metabolic changes are one of the first and most important alterations in cancer cells. Cancer cells use different pathways to survive, energy generation, growth, and proliferation compared to normal cells. The increase in glycolysis, which produces substances such as lactate and pyruvate, has an important role in metastases and invasion of cancer cells. Two important cellular proteins that play a role in the production and transport of lactate include lactate dehydrogenase and monocarboxylate transporters (MCTs). These molecules by their various isoforms and different tissue distribution help to escape the immune system and expansion of cancer cells under different conditions.
Collapse
Affiliation(s)
- Hamed Hatami
- Department of Immunology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Atefe Sajedi
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
| | - Seyed Mostafa Mir
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Clinical Biochemistry, Faculty of MedicineGolestan University of Medical SciencesGorganIran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
11
|
Wu L, Xue R, Chen J, Xu J. dock8 deficiency attenuates microglia colonization in early zebrafish larvae. Cell Death Dis 2022; 8:366. [PMID: 35977943 PMCID: PMC9386030 DOI: 10.1038/s41420-022-01155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022]
Abstract
Microglia are tissue-resident macrophages that carry out immune functions in the brain. The deficiency or dysfunction of microglia has been implicated in many neurodegenerative disorders. DOCK8, a member of the DOCK family, functions as a guanine nucleotide exchange factor and plays key roles in immune regulation and neurological diseases. The functions of DOCK8 in microglia development are not fully understood. Here, we generated zebrafish dock8 mutants by CRISPR/Cas9 genome editing and showed that dock8 mutations attenuate microglia colonization in the zebrafish midbrain at early larvae stages. In vivo time-lapse imaging revealed that the motility of macrophages was reduced in the dock8 mutant. We further found that cdc42/cdc42l, which encode the small GTPase activated by Dock8, also regulate microglia colonization in zebrafish. Collectively, our study suggests that the Dock8-Cdc42 pathway is required for microglia colonization in zebrafish larvae.
Collapse
Affiliation(s)
- Linxiu Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Rongtao Xue
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jiahao Chen
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Jin Xu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
12
|
Rayasam A, Mottahedin A, Faustino J, Mallard C, Vexler ZS. Scavenger receptor CD36 governs recruitment of myeloid cells to the blood-CSF barrier after stroke in neonatal mice. J Neuroinflammation 2022; 19:47. [PMID: 35148760 PMCID: PMC8840310 DOI: 10.1186/s12974-022-02388-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022] Open
Abstract
Background Ischemic stroke induces the activation and recruitment of peripheral leukocytes to the injured brain. These cells can infiltrate the brain through multiple routes, either by penetrating blood–brain barrier or via blood–CSF barriers at the meninges or the choroid plexus (CP). We previously showed that myeloid cell trafficking via the CP occurs early after neonatal arterial stroke and modulates injury. CD36 is a receptor that mediates function of endothelial cells and cells of the monocyte lineage under various neurodegenerative conditions and can influence brain injury after neonatal stroke. Here we asked whether CD36 impacts injury by altering leukocyte trafficking through the CP in neonatal mice subjected to transient middle cerebral artery occlusion (tMCAO). Methods In neonatal mice with intact or globally disrupted CD36 signalling (CD36 KO), we characterized the phenotypes of myeloid cells by flow cytometry and the underlying gene expression signatures in the CPs contralateral and ipsilateral to tMCAO by RNA sequencing analyses, focussing on early post-reperfusion time window. Results Flow cytometry in the isolated CPs revealed that CD36 mediates stepwise recruitment of myeloid cells to the CP ipsilateral to tMCAO early after reperfusion, with a predominant increase first in inflammatory monocyte subsets and neutrophils followed by patrolling monocytes. RNA sequencing analyses demonstrated marked changes in gene expression in the CP ipsilateral compared to the CP contralateral to tMCAO in wild type mice. Changes were further modified by lack of CD36, including distinction in several clusters of genes involved in inflammatory, metabolic and extracellular matrix signalling in the CP ipsilateral to tMCAO. Conclusion Altogether, our data suggest cooperation between blood–CSF–brain interface via the CP through CD36-mediated signalling following neonatal stroke with a key role for inflammatory monocytes and neutrophils. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02388-z.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | - Amin Mottahedin
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joel Faustino
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | - Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Zinaida S Vexler
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA.
| |
Collapse
|
13
|
Yuan Y, Li H, Pu W, Chen L, Guo D, Jiang H, He B, Qin S, Wang K, Li N, Feng J, Wen J, Cheng S, Zhang Y, Yang W, Ye D, Lu Z, Huang C, Mei J, Zhang HF, Gao P, Jiang P, Su S, Sun B, Zhao SM. Cancer metabolism and tumor microenvironment: fostering each other? SCIENCE CHINA. LIFE SCIENCES 2022; 65:236-279. [PMID: 34846643 DOI: 10.1007/s11427-021-1999-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
The changes associated with malignancy are not only in cancer cells but also in environment in which cancer cells live. Metabolic reprogramming supports tumor cell high demand of biogenesis for their rapid proliferation, and helps tumor cell to survive under certain genetic or environmental stresses. Emerging evidence suggests that metabolic alteration is ultimately and tightly associated with genetic changes, in particular the dysregulation of key oncogenic and tumor suppressive signaling pathways. Cancer cells activate HIF signaling even in the presence of oxygen and in the absence of growth factor stimulation. This cancer metabolic phenotype, described firstly by German physiologist Otto Warburg, insures enhanced glycolytic metabolism for the biosynthesis of macromolecules. The conception of metabolite signaling, i.e., metabolites are regulators of cell signaling, provides novel insights into how reactive oxygen species (ROS) and other metabolites deregulation may regulate redox homeostasis, epigenetics, and proliferation of cancer cells. Moreover, the unveiling of noncanonical functions of metabolic enzymes, such as the moonlighting functions of phosphoglycerate kinase 1 (PGK1), reassures the importance of metabolism in cancer development. The metabolic, microRNAs, and ncRNAs alterations in cancer cells can be sorted and delivered either to intercellular matrix or to cancer adjacent cells to shape cancer microenvironment via media such as exosome. Among them, cancer microenvironmental cells are immune cells which exert profound effects on cancer cells. Understanding of all these processes is a prerequisite for the development of a more effective strategy to contain cancers.
Collapse
Affiliation(s)
- Yiyuan Yuan
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200438, China
| | - Huimin Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wang Pu
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences and School of Life Sciences, Fudan University, Shanghai, 200032, China
| | - Leilei Chen
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences and School of Life Sciences, Fudan University, Shanghai, 200032, China
| | - Dong Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Hongfei Jiang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Bo He
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Siyuan Qin
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jingwei Feng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jing Wen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shipeng Cheng
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yaguang Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Weiwei Yang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Dan Ye
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences and School of Life Sciences, Fudan University, Shanghai, 200032, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| | - Canhua Huang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Jun Mei
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hua-Feng Zhang
- CAS Centre for Excellence in Cell and Molecular Biology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ping Gao
- School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, 510006, China.
| | - Peng Jiang
- Tsinghua University School of Life Sciences, and Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Bing Sun
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Shi-Min Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
14
|
Wang K, Li Y, Ren C, Wang Y, He W, Jiang Y. Extracellular Vesicles as Innovative Treatment Strategy for Amyotrophic Lateral Sclerosis. Front Cell Dev Biol 2021; 9:754630. [PMID: 34858980 PMCID: PMC8632491 DOI: 10.3389/fcell.2021.754630] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal motor neuron degenerative disease, and it is hard to diagnose in the early stage, and treatment means are limited, and the treatment effect is unsatisfactory. Therefore, exploring a new effective treatment strategy is urgently needed for ALS patients. Extracellular vesicles (EVs) are a heterogeneous group of natural membrane vesicles containing many bioactive substances, and they play important roles in the paracrine pathway and exhibit neuroprotection effects. A growing body of evidence shows that EVs have great application potential in diagnosis, treatment, and drug delivery in ALS, and they represent an innovative treatment strategy for ALS. In this review, we will briefly introduce the biogenesis of EVs and focus on discussing the role of EVs in ALS treatment to further enrich and boost the development of EVs as an innovative treatment strategy for ALS.
Collapse
Affiliation(s)
- Ke Wang
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yu Li
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Chao Ren
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yongjing Wang
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wenshan He
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yuan Jiang
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
15
|
Anwar MM. Oxidative stress-A direct bridge to central nervous system homeostatic dysfunction and Alzheimer's disease. Cell Biochem Funct 2021; 40:17-27. [PMID: 34716723 DOI: 10.1002/cbf.3673] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/26/2022]
Abstract
Neurologists have highly observed a frequent increasing number of elderly patients with Alzheimer's disease (AD) without any relevant evidence of any genetic or known AD-linked predisposing factors in the past few years. Those patients are characterized by continuous and irreversible neuron cells loss along with declined cognitive functions. Numerous studies have suggested that the exaggerated release of reactive oxygen species (ROS) within the brain may develop late-onset neurodegenerative disorders, especially AD-neuroinflammatory type. However, the central nervous system is vitally linked with whole-brain chemical integrity and its related healthy state, the cascade by which ROS may result in AD's development has not been highly justified or even maintained. It is widely known that the brain consumes a vast amount of oxygen and is characterized by being rich in lipid polyunsaturated fatty acids content, explaining why it is a prone region to oxidative stress (OS) and ROS damage. The formed OS-AD cytoskeletal protein aggregates can be considered a main predisposing factor for amyloid-beta (Aβ) hallmarks precipitation. Herein, this review aims to provide a detailed information on how oxidative stress can play a pathogenic role in activating damage-associated molecular patterns (DAMPs)-related toll-like receptor-4 inflammatory (TLR-4) cascades resulting in the deposition of Aβ hallmarks in brain tissues ending with irreversible cognitive dysfunction. It also explains how microglia can be activated via ROS, which may significantly release several pro-inflammatory cascades ending with general brain atrophy. Furthermore, different types of suggested antioxidant therapies will be discussed to combat AD-related pathological disorders and hallmarks.
Collapse
Affiliation(s)
- Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt.,Neuroscience Research Lab, Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| |
Collapse
|
16
|
Kadhim M, Tuncay Cagatay S, Elbakrawy EM. Non-targeted effects of radiation: a personal perspective on the role of exosomes in an evolving paradigm. Int J Radiat Biol 2021; 98:410-420. [PMID: 34662248 DOI: 10.1080/09553002.2021.1980630] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Radiation-induced non-targeted effects (NTE) have implications in a variety of areas relevant to radiation biology. Here we evaluate the various cargo associated with exosomal signalling and how they work synergistically to initiate and propagate the non-targeted effects including Genomic Instability and Bystander Effects. CONCLUSIONS Extra cellular vesicles, in particular exosomes, have been shown to carry bystander signals. Exosome cargo may contain nucleic acids, both DNA and RNA, as well as proteins, lipids and metabolites. These cargo molecules have all been considered as potential mediators of NTE. A review of current literature shows mounting evidence of a role for ionizing radiation in modulating both the numbers of exosomes released from affected cells as well as the content of their cargo, and that these exosomes can instigate functional changes in recipient cells. However, there are significant gaps in our understanding, particularly regarding modified exosome cargo after radiation exposure and the functional changes induced in recipient cells.
Collapse
Affiliation(s)
- Munira Kadhim
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Seda Tuncay Cagatay
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Eman Mohammed Elbakrawy
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom.,Department of Radiation Physics, National Center for Radiation Research and Technology, Atomic Energy Authority, 3 Ahmed El-Zomor Al Manteqah Ath Thamenah, Nasr City, Cairo 11787, Egypt
| |
Collapse
|
17
|
Rudnik-Jansen I, Howard KA. FcRn expression in cancer: Mechanistic basis and therapeutic opportunities. J Control Release 2021; 337:248-257. [PMID: 34245786 DOI: 10.1016/j.jconrel.2021.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 01/30/2023]
Abstract
There is an urgent need to identify new cellular targets to expand the repertoire, potency and safety of cancer therapeutics. Neonatal Fc Receptor (FcRn)-driven cellular recycling plays a predominant role in the prolonged serum half-life of human serum albumin (HSA) and immunoglobulin G (IgG) exploited in long-acting cancer drug designs. FcRn-mediated HSA and IgG uptake in epithelial cells and dendritic cell antigen presentation offers new therapeutic opportunities beyond half-life extension. Altered FcRn expression in solid tumours accounting for HSA catabolism or recycling supports a role for FcRn in tumour metabolism and growth. This review addresses the mechanistic basis for different FcRn expression profiles observed in cancer and exploitation for targeted drug delivery. Furthermore, the review highlights FcRn-mediated immunosurveillance and immune therapy. FcRn offers a potential attractive cancer target but in-depth understanding of role and expression profiles during cancer pathogenesis is required for tailoring targeted drug designs.
Collapse
Affiliation(s)
- Imke Rudnik-Jansen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
18
|
Microglial Extracellular Vesicles as Vehicles for Neurodegeneration Spreading. Biomolecules 2021; 11:biom11060770. [PMID: 34063832 PMCID: PMC8224033 DOI: 10.3390/biom11060770] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Microglial cells are the neuroimmune competent cells of the central nervous system. In the adult, microglia are responsible for screening the neuronal parenchyma searching for alterations in homeostasis. Chronic neuroinflammation plays a role in neurodegenerative disease. Indeed, microglia-mediated neuroinflammation is involved in the onset and progression of several disorders in the brain and retina. Microglial cell reactivity occurs in an orchestrated manner and propagates across the neural parenchyma spreading the neuroinflammatory signal from cell to cell. Extracellular vesicles are important vehicles of intercellular communication and act as message carriers across boundaries. Extracellular vesicles can be subdivided in several categories according to their cellular origin (apoptotic bodies, microvesicles and exosomes), each presenting, different but sometimes overlapping functions in cell communication. Mounting evidence suggests a role for extracellular vesicles in regulating microglial cell action. Herein, we explore the role of microglial extracellular vesicles as vehicles for cell communication and the mechanisms that trigger their release. In this review we covered the role of microglial extracellular vesicles, focusing on apoptotic bodies, microvesicles and exosomes, in the context of neurodegeneration and the impact of these vesicles derived from other cells in microglial cell reactivity.
Collapse
|
19
|
Tajbakhsh A, Read M, Barreto GE, Ávila-Rodriguez M, Gheibi-Hayat SM, Sahebkar A. Apoptotic neurons and amyloid-beta clearance by phagocytosis in Alzheimer's disease: Pathological mechanisms and therapeutic outlooks. Eur J Pharmacol 2021; 895:173873. [PMID: 33460611 DOI: 10.1016/j.ejphar.2021.173873] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Neuronal survival and axonal renewal following central nervous system damage and in neurodegenerative illnesses, such as Alzheimer's disease (AD), can be enhanced by fast clearance of neuronal apoptotic debris, as well as the removal of amyloid beta (Aβ) by phagocytic cells through the process of efferocytosis. This process quickly inhibits the release of proinflammatory and antigenic autoimmune constituents, enhancing the formation of a microenvironment vital for neuronal survival and axonal regeneration. Therefore, the detrimental features associated with microglial phagocytosis uncoupling, such as the accumulation of apoptotic cells, inflammation and phagoptosis, could exacerbate the pathology in brain disease. Some mechanisms of efferocytosis could be targeted by several promising agents, such as curcumin, URMC-099 and Y-P30, which have emerged as potential treatments for AD. This review aims to investigate and update the current research regarding the signaling molecules and pathways involved in efferocytosis and how these could be targeted as a potential therapy in AD.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Department of Modern Sciences & Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morgayn Read
- Department of Pharmacology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | | | - Seyed Mohammad Gheibi-Hayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
20
|
Dobri AM, Dudău M, Enciu AM, Hinescu ME. CD36 in Alzheimer's Disease: An Overview of Molecular Mechanisms and Therapeutic Targeting. Neuroscience 2020; 453:301-311. [PMID: 33212223 DOI: 10.1016/j.neuroscience.2020.11.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/17/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
CD36 is a membrane protein with wide distribution in the human body, is enriched in the monocyte-macrophage system and endothelial cells, and is involved in the cellular uptake of long chain fatty acids (LCFA) and oxidized low-density lipoproteins. It is also a scavenger receptor, binding hydrophobic amyloid fibrils found in the Alzheimer's disease (AD) brain. In neurobiology research, it has been mostly studied in relationship with chronic ischemia and stroke, but it was also related to amyloid clearance by microglial phagocytosis. In AD animal models, amyloid binding to CD36 has been consistently correlated with a pro-inflammatory response. Therapeutic approaches have two main focuses: CD36 blockade with monoclonal antibodies or small molecules, which is beneficial in terms of the inflammatory milieu, and upregulation of CD36 for increased amyloid clearance. The balance of the two approaches, centered on microglia, is poorly understood. Furthermore, CD36 evaluation in AD clinical studies is still at a very early stage and there is a gap in the knowledge regarding the impact of LCFA on AD progression and CD36 expression and genetic phenotype. This review summarizes the role played by CD36 in the pathogenic amyloid cascade and explore the translatability of preclinical data towards clinical research.
Collapse
Affiliation(s)
- Ana-Maria Dobri
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania.
| | - Maria Dudău
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania.
| | - Ana-Maria Enciu
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania.
| | - Mihail Eugen Hinescu
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania
| |
Collapse
|
21
|
Li M, Liao L, Tian W. Extracellular Vesicles Derived From Apoptotic Cells: An Essential Link Between Death and Regeneration. Front Cell Dev Biol 2020; 8:573511. [PMID: 33134295 PMCID: PMC7561711 DOI: 10.3389/fcell.2020.573511] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/14/2020] [Indexed: 02/05/2023] Open
Abstract
Apoptosis is a universal and continuous event during tissue development, restoration, repair, and regeneration. Mounting evidence has demonstrated that apoptosis is essential for the activation of tissue regeneration. However, the underlying mechanism remains elusive. A striking development in recent years comes from research on extracellular vesicles (EVs) derived from apoptotic cells. During apoptosis, cells secrete vesicles of various sizes containing various components. Apoptotic cell-derived EVs (ApoEVs) have been found to transit to neighboring cells or cells in distant tissues through the circulation. These vesicles could act as containers to transmit the nucleic acid, protein, and lipid signals to target cells. ApoEVs have been shown to promote regeneration in the cardiovascular system, skin, bone, muscle, kidney, etc. Moreover, several specific signaling pathways mediating the anabolic effects of ApoEVs have been classified. In this review, we comprehensively discussed the latest findings on the function of ApoEVs in tissue regeneration and disease prevention. These findings may reveal unexpected clues regarding the regulatory network between cell death and tissue regeneration and suggest novel targets for regenerative medicine. The findings discussed here also raise the question whether and to what extent ApoEVs contribute to embryonic development. This question is all the more urgent because the exact functions of apoptotic events during numerous developmental processes are still largely unclear.
Collapse
Affiliation(s)
- Maojiao Li
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liao
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
The progress and development of GLUT1 inhibitors targeting cancer energy metabolism. Future Med Chem 2020; 11:2333-2352. [PMID: 31581916 DOI: 10.4155/fmc-2019-0052] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A major difference between glucose metabolism in cancer cells and normal cells is that glucose in cancer cells is preferably converted to lactate in aerobic conditions rather than oxidized in mitochondria. This process is called aerobic glycolysis, known as the 'Warburg effect'. In this review, we focus on the energy-metabolism characteristics between tumor and normal cells, analyzing the regulation mechanism of energy metabolism based on glycolysis, and summarizing two targets on the upstream proteins of glycolysis, including glucose transporter (GLUT) and hexokinase. In addition, we proposed the risks and limitations of GLUT1-based drug research and summarized the current research progress of representative drugs, including natural and synthetic GLUT1 inhibitors. This will provide guidance for designing and synthesizing small molecule drugs targeting GLUT1 in glycolysis.
Collapse
|
23
|
Samii A, Razmkhah F. Transformation of Hematopoietic Stem and Progenitor Cells by Leukemia Extracellular Vesicles: A Step Toward Leukemogenesis. Stem Cell Rev Rep 2020; 16:1081-1091. [DOI: 10.1007/s12015-020-09975-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
24
|
Lu Y, Zhang XS, Zhou XM, Gao YY, Chen CL, Liu JP, Ye ZN, Zhang ZH, Wu LY, Li W, Hang CH. Peroxiredoxin 1/2 protects brain against H 2O 2-induced apoptosis after subarachnoid hemorrhage. FASEB J 2018; 33:3051-3062. [PMID: 30351993 DOI: 10.1096/fj.201801150r] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent studies suggest that peroxiredoxin1/2 (Prx1/2) may be involved in the pathophysiology of postischemic inflammatory responses in the brain. In this study, we assessed the distribution and function of Prx1/2 in mice after experimental subarachnoid hemorrhage (SAH). We investigated the distribution of Prx1/2 in the brains of mice both in vivo and in vitro using immunofluorescence staining. The expression of Prx1/2 after SAH was determined by Western blot. Adenanthin was used to inhibit Prx1/2 function, and Prx1/2 overexpression was achieved by injecting adeno-associated virus. Oxidative stress and neuronal apoptosis were assessed both in vivo and in vitro. The neurologic function, inflammatory response, and related cellular signals were analyzed. The results showed that Prx1 was mainly expressed in astrocytes, and Prx2 was abundant in neurons. The expression of Prx1/2 was elevated after SAH, and their expression levels peaked before proinflammatory cytokines. Inhibiting Prx1/2 promoted neuronal apoptosis by increasing the hydrogen peroxide (H2O2) levels via the apoptosis signal-regulating kinase 1/p38 pathway. By contrast, overexpression of Prx1/2 attenuated oxidative stress and neuronal apoptosis after SAH. Thus, early expression of Prx1/2 may protect the brain from oxidative damage after SAH and may provide a novel target for treating SAH.-Lu, Y., Zhang, X.-S., Zhou, X.-M., Gao, Y.-Y., Chen, C.-L., Liu, J.-P., Ye, Z.-N., Zhang, Z.-H., Wu, L.-Y., Li, W., Hang, C.-H. Peroxiredoxin 1/2 protects brain against H2O2-induced apoptosis after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Yue Lu
- Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiang-Sheng Zhang
- Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiao-Ming Zhou
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yong-Yue Gao
- Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chun-Lei Chen
- Department of Neurosurgery, Nanjing Medical University, Nanjing, China
| | - Jing-Peng Liu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, South Medical University, Nanjing, China
| | - Zhen-Nan Ye
- Department of Neurosurgery, Jinling Hospital, School of Medicine, South Medical University, Nanjing, China
| | - Zi-Huan Zhang
- Department of Neurosurgery, Zhongdu Hospital, Bengbu, China
| | - Ling-Yun Wu
- Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
25
|
Molecular Communication of a Dying Neuron in Stroke. Int J Mol Sci 2018; 19:ijms19092834. [PMID: 30235837 PMCID: PMC6164443 DOI: 10.3390/ijms19092834] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 02/06/2023] Open
Abstract
When a main artery of the brain occludes, a cellular response involving multiple cell types follows. Cells directly affected by the lack of glucose and oxygen in the neuronal core die by necrosis. In the periphery surrounding the ischemic core (the so-called penumbra) neurons, astrocytes, microglia, oligodendrocytes, pericytes, and endothelial cells react to detrimental factors such as excitotoxicity, oxidative stress, and inflammation in different ways. The fate of the neurons in this area is multifactorial, and communication between all the players is important for survival. This review focuses on the latest research relating to synaptic loss and the release of apoptotic bodies and other extracellular vesicles for cellular communication in stroke. We also point out possible treatment options related to increasing neuronal survival and regeneration in the penumbra.
Collapse
|
26
|
Sun L, Suo C, Li ST, Zhang H, Gao P. Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect. Biochim Biophys Acta Rev Cancer 2018; 1870:51-66. [PMID: 29959989 DOI: 10.1016/j.bbcan.2018.06.005] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023]
Abstract
While metabolic reprogramming of cancer cells has long been considered from the standpoint of how and why cancer cells preferentially utilize glucose via aerobic glycolysis, the so-called Warburg Effect, the progress in the following areas during the past several years has substantially advanced our understanding of the rewired metabolic network in cancer cells that is intertwined with oncogenic signaling. First, in addition to the major nutrient substrates glucose and glutamine, cancer cells have been discovered to utilize a variety of unconventional nutrient sources for survival. Second, the deregulated biomass synthesis is intertwined with cell cycle progression to coordinate the accelerated progression of cancer cells. Third, the reciprocal regulation of cancer cell's metabolic alterations and the microenvironment, involving extensive host immune cells and microbiota, have come into view as critical mechanisms to regulate cancer progression. These and other advances are shaping the current and future paradigm of cancer metabolism.
Collapse
Affiliation(s)
- Linchong Sun
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Caixia Suo
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Shi-Ting Li
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Huafeng Zhang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Ping Gao
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
27
|
Lee JY, Kim HS. Extracellular Vesicles in Neurodegenerative Diseases: A Double-Edged Sword. Tissue Eng Regen Med 2017; 14:667-678. [PMID: 30603519 PMCID: PMC6171665 DOI: 10.1007/s13770-017-0090-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 01/09/2023] Open
Abstract
Extracellular vesicles (EVs), a heterogenous group of membrane-bound particles, are virtually secreted by all cells and play important roles in cell-cell communication. Loaded with proteins, mRNAs, non-coding RNAs and membrane lipids from their donor cells, these vesicles participate in normal physiological and pathogenic processes. In addition, these sub-cellular vesicles are implicated in the progression of neurodegenerative disorders. Accumulating evidence suggests that intercellular communication via EVs is responsible for the propagation of key pathogenic proteins involved in the pathogenesis of amyotrophic lateral sclerosis, Parkinson's diseases, Alzheimer's diseases and other neurodegenerative disorders. For therapeutic perspective, EVs present advantage over other synthetic drug delivery systems or cell therapy; ability to cross biological barriers including blood brain barrier (BBB), ability to modulate inflammation and immune responses, stability and longer biodistribution with lack of tumorigenicity. In this review, we summarized the current state of EV research in central nervous system in terms of their values in diagnosis, disease pathology and therapeutic applications.
Collapse
Affiliation(s)
- Ji Yong Lee
- Department of Biomedical Engineering, Catholic Kwandong University, 24 Beomil-ro, 579beon-gil, Gangneung-si, Gangwon-do 25601 Republic of Korea
| | - Han-Soo Kim
- Department of Biomedical Sciences, College of Medical Convergence, Catholic Kwandong University, 24 Beomil-ro 579beon-gil, Gangneung-si, Gangwon-do 25601 Republic of Korea
| |
Collapse
|
28
|
|
29
|
Badr HA, AlSadek DMM, El-Houseini ME, Saeui CT, Mathew MP, Yarema KJ, Ahmed H. Harnessing cancer cell metabolism for theranostic applications using metabolic glycoengineering of sialic acid in breast cancer as a pioneering example. Biomaterials 2017; 116:158-173. [PMID: 27926828 PMCID: PMC5193387 DOI: 10.1016/j.biomaterials.2016.11.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/14/2016] [Accepted: 11/24/2016] [Indexed: 12/18/2022]
Abstract
Abnormal cell surface display of sialic acids - a family of unusual 9-carbon sugars - is widely recognized as distinguishing feature of many types of cancer. Sialoglycans, however, typically cannot be identified with sufficiently high reproducibility and sensitivity to serve as clinically accepted biomarkers and similarly, almost all efforts to exploit cancer-specific differences in sialylation signatures for therapy remain in early stage development. In this report we provide an overview of important facets of glycosylation that contribute to cancer in general with a focus on breast cancer as an example of malignant disease characterized by aberrant sialylation. We then describe how cancer cells experience nutrient deprivation during oncogenesis and discuss how the resulting metabolic reprogramming, which endows breast cancer cells with the ability to obtain nutrients during scarcity, constitutes an "Achilles' heel" that we believe can be exploited by metabolic glycoengineering (MGE) strategies to develop new diagnostic methods and therapeutic approaches. In particular, we hypothesize that adaptations made by breast cancer cells that allow them to efficiently scavenge sialic acid during times of nutrient deprivation renders them vulnerable to MGE, which refers to the use of exogenously-supplied, non-natural monosaccharide analogues to modulate targeted aspects of glycosylation in living cells and animals. In specific, once non-natural sialosides are incorporated into the cancer "sialome" they can be exploited as epitopes for immunotherapy or as chemical tags for targeted delivery of imaging or therapeutic agents selectively to tumors.
Collapse
Affiliation(s)
- Haitham A Badr
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Dina M M AlSadek
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Motawa E El-Houseini
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Christopher T Saeui
- Department of Biomedical Engineering and Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD 21231, USA
| | - Mohit P Mathew
- Department of Biomedical Engineering and Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD 21231, USA
| | - Kevin J Yarema
- Department of Biomedical Engineering and Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD 21231, USA.
| | - Hafiz Ahmed
- GlycoMantra, Inc., Baltimore, MD 21227, USA.
| |
Collapse
|
30
|
Saito M, Chakraborty G, Hui M, Masiello K, Saito M. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain. Brain Sci 2016; 6:brainsci6030031. [PMID: 27537918 PMCID: PMC5039460 DOI: 10.3390/brainsci6030031] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/05/2016] [Accepted: 08/12/2016] [Indexed: 11/16/2022] Open
Abstract
Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD). While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy). Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7) mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.
Collapse
Affiliation(s)
- Mariko Saito
- Division of Neurochemisty, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
- Department of Psychiatry, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, USA.
| | - Goutam Chakraborty
- Division of Neurochemisty, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| | - Maria Hui
- Division of Neurochemisty, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| | - Kurt Masiello
- Division of Neurochemisty, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| | - Mitsuo Saito
- Department of Psychiatry, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, USA.
- Division of Analytical Psychopharmacology, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| |
Collapse
|
31
|
Abstract
Tumorigenesis is dependent on the reprogramming of cellular metabolism as both direct and indirect consequence of oncogenic mutations. A common feature of cancer cell metabolism is the ability to acquire necessary nutrients from a frequently nutrient-poor environment and utilize these nutrients to both maintain viability and build new biomass. The alterations in intracellular and extracellular metabolites that can accompany cancer-associated metabolic reprogramming have profound effects on gene expression, cellular differentiation, and the tumor microenvironment. In this Perspective, we have organized known cancer-associated metabolic changes into six hallmarks: (1) deregulated uptake of glucose and amino acids, (2) use of opportunistic modes of nutrient acquisition, (3) use of glycolysis/TCA cycle intermediates for biosynthesis and NADPH production, (4) increased demand for nitrogen, (5) alterations in metabolite-driven gene regulation, and (6) metabolic interactions with the microenvironment. While few tumors display all six hallmarks, most display several. The specific hallmarks exhibited by an individual tumor may ultimately contribute to better tumor classification and aid in directing treatment.
Collapse
Affiliation(s)
- Natalya N Pavlova
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
32
|
Li F, Faustino J, Woo MS, Derugin N, Vexler ZS. Lack of the scavenger receptor CD36 alters microglial phenotypes after neonatal stroke. J Neurochem 2015. [PMID: 26223273 DOI: 10.1111/jnc.13239] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The stage of brain development at the time of stroke has a major impact on the pathophysiological mechanisms of ischemic damage, including the neuroinflammatory response. Microglial cells have been shown to contribute to acute and subchronic injury in adult stroke models, whereas in neonatal rodents we showed that microglial cells serve as endogenous neuroprotectants early following transient middle cerebral artery occlusion, limiting neuroinflammation and injury. In the neonate, microglial depletion or lack of the scavenger receptor CD36 exacerbates injury. In this study we asked if lack of CD36 affects microglial phenotypes after neonatal stroke. Using RT-PCR we characterized the patterns of gene expression in microglia isolated from injured regions following acute transient middle cerebral artery occlusion in postnatal day 10 mice and showed that expression of several pro-inflammatory genes, including Toll-like receptors, remains largely unaffected in activated microglia in injured regions. Using multiple biochemical assays we demonstrated that lack of CD36 alters several functions of microglia in acutely injured neonatal brain: it further enhances accumulation of the chemokine MCP-1, affects the number of CD11b(+) /CD45(+) cells, along with protein expression of its co-receptor, Toll-like receptor 2, but does not affect accumulation of superoxide in microglia or the cytokines TNFα and IL-1β in injured regions.
Collapse
Affiliation(s)
- Fan Li
- Department of Neurology, University of California San Francisco, San Francisco, California, USA.,Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Joel Faustino
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Moon-Sook Woo
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Nikita Derugin
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Zinaida S Vexler
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
33
|
Zhao XR, Gonzales N, Aronowski J. Pleiotropic role of PPARγ in intracerebral hemorrhage: an intricate system involving Nrf2, RXR, and NF-κB. CNS Neurosci Ther 2014; 21:357-66. [PMID: 25430543 DOI: 10.1111/cns.12350] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/10/2014] [Accepted: 10/11/2014] [Indexed: 12/13/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke involving formation of hematoma within brain parenchyma, which accounts for 8-15% of all strokes in Western societies and 20-30% among Asian populations, and has a 1-year mortality rate >50%. The high mortality and severe morbidity make ICH a major public health problem. Only a few evidence-based targeted treatments are used for ICH management, and interventions focus primarily on supportive care and comorbidity prevention. Even in patients who survive the ictus, extravasated blood (including plasma components) and subsequent intrahematoma hemolytic products trigger a series of adverse events within the brain parenchyma, leading to secondary brain injury, edema and severe neurological deficits or death. Although the hematoma in humans gradually resolves within months, full restoration of neurological function can be slow and often incomplete, leaving survivors with devastating neurological deficits. During past years, peroxisome proliferator-activated receptor gamma (PPARγ) transcription factor and its agonists received recognition as important players in regulating not only glucose and lipid metabolism (which underlies its therapeutic effect in type 2 diabetes mellitus), and more recently, as an instrumental pleiotropic regulator of antiinflammation, antioxidative regulation, and phagocyte-mediated cleanup processes. PPARγ agonists have emerged as potential therapeutic target for stroke. The use of PPARγ as a therapeutic target appears to have particularly strong compatibility toward pathogenic components of ICH. In addition to its direct genomic effect, PPARγ may interact with transcription factor, NF-κB, which may underlie many aspects of the antiinflammatory effect of PPARγ. Furthermore, PPARγ appears to regulate expression of Nrf2, another transcription factor and master regulator of detoxification and antioxidative regulation. Finally, the synergistic costimulation of PPARγ and retinoid X receptor, RXR, may play an additional role in the therapeutic modulation of PPARγ function. In this article, we outline the main components of the role of PPARγ in ICH pathogenesis.
Collapse
Affiliation(s)
- Xiu-Rong Zhao
- Department of Neurology, Stroke Research Center, University of Texas Medical School - Houston, Houston, TX, USA
| | | | | |
Collapse
|
34
|
Transcriptional analysis of apoptotic cerebellar granule neurons following rescue by gastric inhibitory polypeptide. Int J Mol Sci 2014; 15:5596-622. [PMID: 24694544 PMCID: PMC4013584 DOI: 10.3390/ijms15045596] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/04/2014] [Accepted: 03/17/2014] [Indexed: 12/31/2022] Open
Abstract
Apoptosis triggered by exogenous or endogenous stimuli is a crucial phenomenon to determine the fate of neurons, both in physiological and in pathological conditions. Our previous study established that gastric inhibitory polypeptide (Gip) is a neurotrophic factor capable of preventing apoptosis of cerebellar granule neurons (CGNs), during its pre-commitment phase. In the present study, we conducted whole-genome expression profiling to obtain a comprehensive view of the transcriptional program underlying the rescue effect of Gip in CGNs. By using DNA microarray technology, we identified 65 genes, we named survival related genes, whose expression is significantly de-regulated following Gip treatment. The expression levels of six transcripts were confirmed by real-time quantitative polymerase chain reaction. The proteins encoded by the survival related genes are functionally grouped in the following categories: signal transduction, transcription, cell cycle, chromatin remodeling, cell death, antioxidant activity, ubiquitination, metabolism and cytoskeletal organization. Our data outline that Gip supports CGNs rescue via a molecular framework, orchestrated by a wide spectrum of gene actors, which propagate survival signals and support neuronal viability.
Collapse
|
35
|
Pahnke J, Fröhlich C, Krohn M, Schumacher T, Paarmann K. Impaired mitochondrial energy production and ABC transporter function-A crucial interconnection in dementing proteopathies of the brain. Mech Ageing Dev 2013; 134:506-15. [PMID: 24012632 DOI: 10.1016/j.mad.2013.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 06/21/2013] [Accepted: 08/24/2013] [Indexed: 01/07/2023]
Abstract
Ageing is the main risk factor for the development of dementing neurodegenerative diseases (NDs) and it is accompanied by the accumulation of variations in mitochondrial DNA. The resulting tissue-specific alterations in ATP production and availability cause deteriorations of cerebral clearance mechanisms that are important for the removal of toxic peptides and its aggregates. ABC transporters were shown to be the most important exporter superfamily for toxic peptides, e.g. β-amyloid and α-synuclein. Their activity is highly dependent on the availability of ATP and forms a directed energy-exporter network, linking decreased mitochondrial function with highly impaired ABC transporter activity and disease progression. In this paper, we describe a network based on interactions between ageing, energy metabolism, regeneration, accumulation of toxic peptides and the development of proteopathies of the brain with a focus on Alzheimer's disease (AD). Additionally, we provide new experimental evidence for interactions within this network in regenerative processes in AD.
Collapse
Affiliation(s)
- Jens Pahnke
- Neurodegeneration Research Lab (NRL), Department of Neurology, University of Magdeburg, Leipziger Str. 44, H64, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44, H64, 39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
36
|
Abstract
Microglia are critical nervous system-specific cells influencing brain development, maintenance of the neural environment, response to injury, and repair. They contribute to neuronal proliferation and differentiation, pruning of dying neurons, synaptic remodeling and clearance of debris and aberrant proteins. Colonization of the brain occurs during gestation with an expansion following birth with localization stimulated by programmed neuronal death, synaptic pruning, and axonal degeneration. Changes in microglia phenotype relate to cellular processes including specific neurotransmitter, pattern recognition, or immune-related receptor activation. Upon activation, microglia cells have the capacity to release a number of substances, e.g., cytokines, chemokines, nitric oxide, and reactive oxygen species, which could be detrimental or beneficial to the surrounding cells. With aging, microglia shift their morphology and may display diminished capacity for normal functions related to migration, clearance, and the ability to shift from a pro-inflammatory to an anti-inflammatory state to regulate injury and repair. This shift in microglia potentially contributes to increased susceptibility and neurodegeneration as a function of age. In the current review, information is provided on the colonization of the brain by microglia, the expression of various pattern recognition receptors to regulate migration and phagocytosis, and the shift in related functions that occur in normal aging.
Collapse
Affiliation(s)
- G Jean Harry
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, MD C1-04, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
37
|
Aldini G, Vistoli G, Stefek M, Chondrogianni N, Grune T, Sereikaite J, Sadowska-Bartosz I, Bartosz G. Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radic Res 2013; 47 Suppl 1:93-137. [PMID: 23560617 DOI: 10.3109/10715762.2013.792926] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advanced glycoxidation end products (AGEs) and lipoxidation end products (ALEs) contribute to the development of diabetic complications and of other pathologies. The review discusses the possibilities of counteracting the formation and stimulating the degradation of these species by pharmaceuticals and natural compounds. The review discusses inhibitors of ALE and AGE formation, cross-link breakers, ALE/AGE elimination by enzymes and proteolytic systems, receptors for advanced glycation end products (RAGEs) and blockade of the ligand-RAGE axis.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kavanagh T, Mills JD, Kim WS, Halliday GM, Janitz M. Pathway analysis of the human brain transcriptome in disease. J Mol Neurosci 2012; 51:28-36. [PMID: 23263795 DOI: 10.1007/s12031-012-9940-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 12/10/2012] [Indexed: 01/10/2023]
Abstract
Pathway analysis is a powerful method for discerning differentially regulated genes and elucidating their biological importance. It allows for the identification of perturbed or aberrantly expressed genes within a biological context from extensive data sets and offers a simplistic approach for interrogating such data sets. With the growing use of microarrays and RNA-Seq, data for genome-wide studies are growing at an alarming rate, and the use of deep sequencing is revealing elements of the genome previously uncharacterised. Through the employment of pathway analysis, mechanisms in complex diseases may be explored and novel causatives found primarily through differentially regulated genes. Further, with the implementation of next generation sequencing, a deeper resolution may be attained, particularly in identification of isoform diversity and SNPs. Here, we look at a broad overview of pathway analysis in the human brain transcriptome and its relevance in teasing out underlying causes of complex diseases. We will outline processes in data gathering and analysis of particular diseases in which these approaches have been successful.
Collapse
Affiliation(s)
- Tomas Kavanagh
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | | | | | | | | |
Collapse
|
39
|
Woo MS, Wang X, Faustino JV, Derugin N, Wendland MF, Zhou P, Iadecola C, Vexler ZS. Genetic deletion of CD36 enhances injury after acute neonatal stroke. Ann Neurol 2012; 72:961-70. [PMID: 23280844 PMCID: PMC3539222 DOI: 10.1002/ana.23727] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 07/16/2012] [Accepted: 07/27/2012] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The scavenger receptor CD36 is injurious in acute experimental focal stroke and neurodegenerative diseases in the adult. We investigated the effects of genetic deletion of CD36 (CD36ko) on acute injury, and oxidative and inflammatory signaling after neonatal stroke. METHODS Postnatal day 9 CD36ko and wild-type (WT) mice were subjected to a transient middle cerebral artery occlusion (MCAO). Injury, phagocytosis of dying cells, and CD36 inflammatory signaling were determined. RESULTS While the volume of tissue at risk by diffusion-weighted magnetic resonance imaging during MCAO was similar in neonatal CD36ko and WT mice, by 24 hours after reperfusion, injury was more severe in CD36ko and was associated with increased caspase-3 cleavage and reduced engulfment of neurons expressing cleaved caspase-3 by activated microglia. No significant superoxide generation was observed in activated microglia in injured WT, whereas increased superoxide production in vessels and nuclear factor (NF)-κB activation induced by MCAO were unaffected by lack of CD36. Lyn expression was higher in injured CD36ko, and cell type-specific patterns of Lyn expression were altered; Lyn was expressed in endothelial cells and microglia in WT but predominantly in dying neurons in CD36ko. INTERPRETATION Lack of CD36 results in poorer short-term outcome from neonatal focal stroke due to lack of attenuation of NF-κB-mediated inflammation and diminished removal of apoptotic neuronal debris. Although inhibition of CD36 does not seem to be a good therapeutic target for protection after acute neonatal stroke, as it is after adult stroke, seeking better understanding of CD36 signaling in particular cell populations may reveal important therapeutic targets for neonatal stroke.
Collapse
Affiliation(s)
- Moon-Sook Woo
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - X. Wang
- Department of Neurology, University of California, San Francisco, San Francisco, CA
- Department of Pediatrics, Xiangya Hospital, Central South University, China
| | - Joel V. Faustino
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Nikita Derugin
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Michael F. Wendland
- Department of Radiology, University of California, San Francisco, San Francisco, CA
| | - Ping Zhou
- Neurology and Neuroscience, Weill Cornell Medical College, New York, NY
| | | | - Zinaida S. Vexler
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
40
|
Logge W, Cheng D, Chesworth R, Bhatia S, Garner B, Kim WS, Karl T. Role of Abca7 in mouse behaviours relevant to neurodegenerative diseases. PLoS One 2012; 7:e45959. [PMID: 23029339 PMCID: PMC3454356 DOI: 10.1371/journal.pone.0045959] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 08/28/2012] [Indexed: 12/28/2022] Open
Abstract
ATP-binding cassette transporters of the subfamily A (ABCA) are responsible for the translocation of lipids including cholesterol, which is crucial for neurological function. Recent studies suggest that the ABC transporter ABCA7 may play a role in the development of brain disorders such as schizophrenia and Alzheimer’s disease. However, Abca7’s role in cognition and other behaviours has not been investigated. Therefore, we characterised homozygous Abca7 knockout mice in a battery of tests for baseline behaviours (i.e. physical exam, baseline locomotion and anxiety) and behaviours relevant to schizophrenia (i.e. prepulse inhibition and locomotor response to psychotropic drugs) and Alzheimer’s disease (i.e. cognitive domains). Knockout mice had normal motor functions and sensory abilities and performed the same as wild type-like animals in anxiety tasks. Short-term spatial memory and fear-associated learning was also intact in Abca7 knockout mice. However, male knockout mice exhibited significantly impaired novel object recognition memory. Task acquisition was unaffected in the cheeseboard task. Female mice exhibited impaired spatial reference memory. This phenomenon was more pronounced in female Abca7 null mice. Acoustic startle response, sensorimotor gating and baseline locomotion was unaltered in Abca7 knockout mice. Female knockouts showed a moderately increased motor response to MK-801 than control mice. In conclusion, Abca7 appears to play only a minor role in behavioural domains with a subtle sex-specific impact on particular cognitive domains.
Collapse
Affiliation(s)
- Warren Logge
- Neuroscience Research Australia, Randwick, Australia
- Schizophrenia Research Institute, Darlinghurst, Australia
| | - David Cheng
- Neuroscience Research Australia, Randwick, Australia
- School of Medical Sciences, University of New South Wales, New South Wales, Australia
| | - Rose Chesworth
- Neuroscience Research Australia, Randwick, Australia
- Schizophrenia Research Institute, Darlinghurst, Australia
| | - Surabhi Bhatia
- Neuroscience Research Australia, Randwick, Australia
- School of Medical Sciences, University of New South Wales, New South Wales, Australia
| | - Brett Garner
- Neuroscience Research Australia, Randwick, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, New South Wales, Australia
- School of Biological Sciences, University of Wollongong, New South Wales, Australia
| | - Woojin Scott Kim
- Neuroscience Research Australia, Randwick, Australia
- School of Medical Sciences, University of New South Wales, New South Wales, Australia
| | - Tim Karl
- Neuroscience Research Australia, Randwick, Australia
- Schizophrenia Research Institute, Darlinghurst, Australia
- School of Medical Sciences, University of New South Wales, New South Wales, Australia
- School of Psychology, University of New South Wales, New South Wales, Australia
- * E-mail:
| |
Collapse
|
41
|
Lee Y, El Andaloussi S, Wood MJA. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 2012; 21:R125-34. [PMID: 22872698 DOI: 10.1093/hmg/dds317] [Citation(s) in RCA: 708] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exosomes and microvesicles are extracellular nanovesicles released by most but not all cells. They are specifically equipped to mediate intercellular communication via the transfer of genetic information, including the transfer of both coding and non-coding RNAs, to recipient cells. As a result, both exosomes and microvesicles play a fundamental biological role in the regulation of normal physiological as well as aberrant pathological processes, via altered gene regulatory networks and/or via epigenetic programming. For example, microvesicle-mediated genetic transfer can regulate the maintenance of stem cell plasticity and induce beneficial cell phenotype modulation. Alternatively, such vesicles play a role in tumor pathogenesis and the spread of neurodegenerative diseases via the transfer of specific microRNAs and pathogenic proteins. Given this natural property for genetic information transfer, the possibility of exploiting these vesicles for therapeutic purposes is now being investigated. Stem cell-derived microvesicles appear to be naturally equipped to mediate tissue regeneration under certain conditions, while recent evidence suggests that exosomes might be harnessed for the targeted delivery of human genetic therapies via the introduction of exogenous genetic cargoes such as siRNA. Thus, extracellular vesicles are emerging as potent genetic information transfer agents underpinning a range of biological processes and with therapeutic potential.
Collapse
Affiliation(s)
- Yi Lee
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | |
Collapse
|
42
|
Desforges NM, Hebron ML, Algarzae NK, Lonskaya I, Moussa CEH. Fractalkine Mediates Communication between Pathogenic Proteins and Microglia: Implications of Anti-Inflammatory Treatments in Different Stages of Neurodegenerative Diseases. Int J Alzheimers Dis 2012; 2012:345472. [PMID: 22919540 PMCID: PMC3420133 DOI: 10.1155/2012/345472] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/03/2012] [Accepted: 07/05/2012] [Indexed: 01/22/2023] Open
Abstract
The role of inflammation in neurodegenerative diseases has been widely demonstrated. Intraneuronal protein accumulation may regulate microglial activity via the fractalkine (CX3CL1) signaling pathway that provides a mechanism through which neurons communicate with microglia. CX3CL1 levels fluctuate in different stages of neurodegenerative diseases and in various animal models, warranting further investigation of the mechanisms underlying microglial response to pathogenic proteins, including Tau, β-amyloid (Aβ), and α-synuclein. The temporal relationship between microglial activity and localization of pathogenic proteins (intra- versus extracellular) likely determines whether neuroinflammation mitigates or exacerbates disease progression. Evidence in transgenic models suggests a beneficial effect of microglial activity on clearance of proteins like Aβ and a detrimental effect on Tau modification, but the role of CX3CL1 signaling in α-synucleinopathies is less clear. Here we review the nature of fractalkine-mediated neuronmicroglia interaction, which has significant implications for the efficacy of anti-inflammatory treatments during different stages of neurodegenerative pathology. Specifically, it is likely that anti-inflammatory treatment in early stages of disease during intraneuronal accumulation of proteins could be beneficial, while anti-inflammatory treatment in later stages when proteins are secreted to the extracellular space could exacerbate disease progression.
Collapse
Affiliation(s)
- Nicole M. Desforges
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Michaeline L. Hebron
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Norah K. Algarzae
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Irina Lonskaya
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Charbel E.-H. Moussa
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
43
|
Experimental infection of suckling mice by subcutaneous inoculation with Oropouche virus. Virus Res 2012; 170:25-33. [PMID: 22877689 DOI: 10.1016/j.virusres.2012.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
Abstract
Oropouche virus, of the family Bunyaviridae, genus Orthobunyavirus, serogroup Simbu, is an important causative agent of arboviral febrile illness in Brazil. An estimated 500,000 cases of Oropouche fever have occurred in Brazil in the last 30 years, with recorded cases also in Panama, Peru, Suriname and Trinidad. We have developed an experimental model of Oropouche virus infection in neonatal BALB/c mouse by subcutaneous inoculation. The vast majority of infected animals developed disease on the 5th day post infection, characterized mainly by lethargy and paralysis, progressing to death within 10 days. Viral replication was documented in brain cells by in situ hybridization, immunohistochemistry and virus titration. Multi-step immunohistochemistry indicated neurons as the main target cells of OROV infection. Histopathology revealed glial reaction and astrocyte activation in the brain and spinal cord, with neuronal apoptosis. Spleen hyperplasia and mild meningitis were also found, without viable virus detected in liver and spleen. This is the first report of an experimental mouse model of OROV infection, with severe involvement of the central nervous system, and should become useful in pathogenesis studies, as well as in preclinical testing of therapeutic interventions for this emerging pathogen.
Collapse
|
44
|
Sweepers in the CNS: Microglial Migration and Phagocytosis in the Alzheimer Disease Pathogenesis. Int J Alzheimers Dis 2012; 2012:891087. [PMID: 22666624 PMCID: PMC3359803 DOI: 10.1155/2012/891087] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/02/2012] [Indexed: 01/28/2023] Open
Abstract
Microglia are multifunctional immune cells in the central nervous system (CNS). In the neurodegenerative diseases such as Alzheimer's disease (AD), accumulation of glial cells, gliosis, occurs in the lesions. The role of accumulated microglia in the pathophysiology of AD is still controversial. When neuronal damage occurs, microglia exert diversified functions, including migration, phagocytosis, and production of various cytokines and chemokines. Among these, microglial phagocytosis of unwanted neuronal debris is critical to maintain the healthy neuronal networks. Microglia express many surface receptors implicated in phagocytosis. It has been suggested that the lack of microglial phagocytosis worsens pathology of AD and induces memory impairment. The present paper summarizes recent evidences on implication of microglial chemotaxis and phagocytosis in AD pathology and discusses the mechanisms related to chemotaxis toward injured neurons and phagocytosis of unnecessary debris.
Collapse
|
45
|
Abutbul S, Shapiro J, Szaingurten-Solodkin I, Levy N, Carmy Y, Baron R, Jung S, Monsonego A. TGF-β signaling through SMAD2/3 induces the quiescent microglial phenotype within the CNS environment. Glia 2012; 60:1160-71. [PMID: 22511296 DOI: 10.1002/glia.22343] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/22/2012] [Indexed: 12/16/2022]
Abstract
Microglia are myeloid-derived cells that colonize the central nervous system (CNS) at early stages of development and constitute up to 20% of the glial populations throughout life. While extensive progress has been recently made in identifying the cellular origin of microglia, the mechanism whereby the cells acquire the unique ramified and quiescent phenotype within the CNS milieu remains unknown. Here, we show that upon co-culturing of either CD117(+) /Lin(-) hematopoietic progenitors or CD11c(+) bone marrow derived cells with organotypic hippocampal slices or primary glia, the cells acquire a ramified morphology concomitant with reduced levels of CD86, MHCII, and CD11c and up-regulation of the microglial cell-surface proteins CX(3) CR1 and Iba-1. We further demonstrate that the transforming growth factor beta (TGF-β) signaling pathway via SMAD2/3 phosphorylation is essential for both primary microglia and myeloid-derived cells in order to acquire their quiescent phenotype. Our study suggests that the abundant expression of TGF-β within the CNS during development and various inflammatory processes plays a key role in promoting the quiescent phenotype of microglia and may thus serve as a target for therapeutic strategies aimed at modulating the function of microglia in neurodegenerative diseases such as Alzheimer's and prion.
Collapse
Affiliation(s)
- Shai Abutbul
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Saito M, Chakraborty G, Shah R, Mao RF, Kumar A, Yang DS, Dobrenis K, Saito M. Elevation of GM2 ganglioside during ethanol-induced apoptotic neurodegeneration in the developing mouse brain. J Neurochem 2012; 121:649-61. [PMID: 22372857 DOI: 10.1111/j.1471-4159.2012.07710.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
GM2 ganglioside in the brain increased during ethanol-induced acute apoptotic neurodegeneration in 7-day-old mice. A small but a significant increase observed 2 h after ethanol exposure was followed by a marked increase around 24 h. Subcellular fractionation of the brain 24 h after ethanol treatment indicated that GM2 increased in synaptic and non-synaptic mitochondrial fractions as well as in a lysosome-enriched fraction characteristic to the ethanol-exposed brain. Immunohistochemical staining of GM2 in the ethanol-treated brain showed strong punctate staining mainly in activated microglia, in which it partially overlapped with staining for LAMP1, a late endosomal/lysosomal marker. Also, there was weaker neuronal staining, which partially co-localized with complex IV, a mitochondrial marker, and was augmented in cleaved caspase 3-positive neurons. In contrast, the control brain showed only faint and diffuse GM2 staining in neurons. Incubation of isolated brain mitochondria with GM2 in vitro induced cytochrome c release in a manner similar to that of GD3 ganglioside. Because ethanol is known to trigger mitochondria-mediated apoptosis with cytochrome c release and caspase 3 activation in the 7-day-old mouse brain, the GM2 elevation in mitochondria may be relevant to neuroapoptosis. Subsequently, activated microglia accumulated GM2, indicating a close relationship between GM2 and ethanol-induced neurodegeneration.
Collapse
Affiliation(s)
- Mitsuo Saito
- Division of Analytical Psychopharmacology, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sanagi T, Nakamura Y, Suzuki E, Uchino S, Aoki M, Warita H, Itoyama Y, Kohsaka S, Ohsawa K. Involvement of activated microglia in increased vulnerability of motoneurons after facial nerve avulsion in presymptomatic amyotrophic lateral sclerosis model rats. Glia 2012; 60:782-93. [PMID: 22344792 DOI: 10.1002/glia.22308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/24/2012] [Indexed: 11/07/2022]
Abstract
Activated microglia are observed in various neurodegenerative diseases and are thought to be involved in the processes of neuronal cell death. Motoneuron damage in the facial nuclei after facial nerve avulsion is accelerated in presymptomatic transgenic rats expressing human mutant Cu(2+) /Zn(2+) superoxide dismutase 1 (SOD1), compared with that in wild-type rats. To reveal the functional role of microglia in motoneuronal death, we investigated the microglial response after facial nerve avulsion in presymptomatic mutant SOD1(H46R) (mSOD1(H46R) ) rats. At 3 days after avulsion, microglial clusters were observed in the facial nuclei of both wild-type and mSOD1(H46R) rats. The numbers of microglial clusters, proliferating microglia, and microglial attachments to motoneurons were significantly higher in mSOD1(H46R) rats, compared with those in wild-type rats. Immunopositive signals for the phagocytic marker ED1 were significantly stronger in mSOD1(H46R) rats, compared with that in wild-type rats, at 2 weeks after avulsion. Furthermore, primary microglia prepared from mSOD1(H46R) rats showed enhanced phagocytic activity, compared with that in wild-type rats. The expression of P2Y(12) mRNA was higher in the facial nuclei of mSOD1(H46R) rats, compared with that in wild-type rats. A laser microdissection system revealed that the expression of ATF3 mRNA was higher in the motoneurons of mSOD1(H46R) rats, compared with that in wild-type rats, at 2 days after avulsion. These results indicate that microglial activation in response to early neuronal damage increased in mSOD1(H46R) rats and suggest that the enhanced activation of microglia may lead to an increase in the vulnerability of motoneurons after avulsion in mSOD1(H46R) rats.
Collapse
Affiliation(s)
- Tomomi Sanagi
- Department of Neurochemistry, National Institute of Neuroscience, Kodaira, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Piehler AP, Ozcürümez M, Kaminski WE. A-Subclass ATP-Binding Cassette Proteins in Brain Lipid Homeostasis and Neurodegeneration. Front Psychiatry 2012; 3:17. [PMID: 22403555 PMCID: PMC3293240 DOI: 10.3389/fpsyt.2012.00017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/19/2012] [Indexed: 12/24/2022] Open
Abstract
The A-subclass of ATP-binding cassette (ABC) transporters comprises 12 structurally related members of the evolutionarily highly conserved superfamily of ABC transporters. ABCA transporters represent a subgroup of "full-size" multispan transporters of which several members have been shown to mediate the transport of a variety of physiologic lipid compounds across membrane barriers. The importance of ABCA transporters in human disease is documented by the observations that so far four members of this protein family (ABCA1, ABCA3, ABCA4, ABCA12) have been causatively linked to monogenetic disorders including familial high-density lipoprotein deficiency, neonatal surfactant deficiency, degenerative retinopathies, and congenital keratinization disorders. Recent research also point to a significant contribution of several A-subfamily ABC transporters to neurodegenerative diseases, in particular Alzheimer's disease (AD). This review will give a summary of our current knowledge of the A-subclass of ABC transporters with a special focus on brain lipid homeostasis and their involvement in AD.
Collapse
|
49
|
Khandelwal PJ, Herman AM, Moussa CEH. Inflammation in the early stages of neurodegenerative pathology. J Neuroimmunol 2011; 238:1-11. [PMID: 21820744 DOI: 10.1016/j.jneuroim.2011.07.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 07/09/2011] [Accepted: 07/12/2011] [Indexed: 12/12/2022]
Abstract
Inflammation is secondary to protein accumulation in neurodegenerative diseases, including Alzheimer's, Parkinson's and Amyotrophic Lateral Sclerosis. Emerging evidence indicate sustained inflammatory responses, involving microglia and astrocytes in animal models of neurodegeneration. It is unknown whether inflammation is beneficial or detrimental to disease progression and how inflammatory responses are induced within the CNS. Persistence of an inflammatory stimulus or failure to resolve sustained inflammation can result in pathology, thus, mechanisms that counteract inflammation are indispensable. Here we review studies on inflammation mediated by innate and adaptive immunity in the early stages of neurodegeneration and highlight important areas for future investigation.
Collapse
Affiliation(s)
- Preeti J Khandelwal
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | |
Collapse
|
50
|
Li G, Xu X, Wang D, Wang J, Wang Y, Yu J. Microglial activation during acute cerebral infarction in the presence of diabetes mellitus. Neurol Sci 2011; 32:1075-9. [PMID: 21607752 DOI: 10.1007/s10072-011-0632-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 05/13/2011] [Indexed: 11/28/2022]
Abstract
The patients suffering from acute cerebral infarction in the presence of diabetes mellitus (DMCI) often have poor clinical outcomes when compared with those in the absence of diabetes mellitus (non-DMCI), but the corresponding differences in pathology still remain elusive. Here, we investigated the proliferation of microglia in DMCI and non-DMCI. Patients who came to autopsy involved four DMCI cases and four non-DMCI cases. The peri-infarct region and the equivalent non-lesional region in the contralateral hemisphere were removed and analyzed. The hematoxylin-eosin staining and immunohistochemistry staining with anti-ferritin were used for evaluating the microglial activation. We found a more evident microglial proliferation in the peri-infarct region (P < 0.01) and in the non-lesional hemisphere (P < 0.05) in DMCI than in non-DMCI patients. In addition, neuronophagia was observed in peri-infarct region of DMCI. Future studies are warranted to further clarify the influence of microglial activation in DMCI.
Collapse
Affiliation(s)
- Gang Li
- Department of Neurology, East Hospital, Tongji University, Jimo Road, No. 150, Shanghai 200210, China
| | | | | | | | | | | |
Collapse
|