1
|
Affiliation(s)
- Khara Lucius
- Khara Lucius, ND, FABNO, is a naturopathic doctor at the Center for Integrative Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Fingernagel J, Boye S, Kietz A, Höbel S, Wozniak K, Moreno S, Janke A, Lederer A, Aigner A, Temme A, Voit B, Appelhans D. Mono- and Polyassociation Processes of Pentavalent Biotinylated PEI Glycopolymers for the Fabrication of Biohybrid Structures with Targeting Properties. Biomacromolecules 2019; 20:3408-3424. [DOI: 10.1021/acs.biomac.9b00667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Johannes Fingernagel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| | - André Kietz
- Clinical Pharmacology, Faculty of Medicine, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Sabrina Höbel
- Clinical Pharmacology, Faculty of Medicine, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Katarzyna Wozniak
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| | - Andreas Janke
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Achim Aigner
- Clinical Pharmacology, Faculty of Medicine, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Achim Temme
- Experimental Neurosurgery/Tumor Immunology, TU Dresden, D-01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner site Dresden, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| |
Collapse
|
3
|
Mistletoe-Based Drugs Work in Synergy with Radio-Chemotherapy in the Treatment of Glioma In Vitro and In Vivo in Glioblastoma Bearing Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1376140. [PMID: 31354846 PMCID: PMC6636536 DOI: 10.1155/2019/1376140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022]
Abstract
Background Extracts from Viscum album L. (VE) are used in the complementary cancer therapy in Europe for decades. VE contain several compounds like the mistletoe lectins (MLs) 1-3 and viscotoxins and also several minor ingredients. Since mistletoe lectin 1 (ML-1) has been described as the main component of VE harboring antitumor activity, purified native or recombinant ML-1 has been recently used in clinical trials. MLs stimulate the immune system, induce cytotoxicity, are able to modify the expression of cancer-associated genes, and influence the proliferation and motility of tumor cells. Objective In this study our goal was to determine anticancer effects of the VE ISCADOR Qu, of recombinant ML-1 (Aviscumine), and of native ML-1 in the treatment of glioblastoma (GBM), the most common and highly malignant brain tumor in adults. Additionally we were interested whether these drugs, used in combination with a temozolomide-(TMZ)-based radio-chemotherapy, provide synergistic effects. Methods Cell culture assays, ex vivo murine hippocampal brain slice cultures, human GBM cryosections, and a xenograft orthotopic glioblastoma mouse model were used. Results In cells, the expression of the ML receptor CD75s, which is also expressed in GBM specimen, but not in normal brain, correlates with the drug-induced cytotoxicity. In GBM cells, the drugs induce cell death in a concentration-dependent manner and reduce cell growth by inducing cell cycle arrest in the G2/M phase. The cell cycle arrest was paralleled by modifications in the expression of cell cycle regulating genes. ML containing drugs, if combined with glioma standard therapy, provide synergistic and additive anticancer effects. Despite not reaching statistical significance, a single intratumoral application of Aviscumine prolonged the median survival of GBM mice longer than tumor irradiation. Moreover, intratumorally applied Aviscumine prolonged the survival of GBM-bearing mice if used in combination with irradiation and TMZ for further 6.5 days compared to the radio-chemotherapy. Conclusion Our results suggest that an adjuvant treatment of glioma patients with ML-containing drugs might be beneficial.
Collapse
|
4
|
Adjuvant Therapy Using Mistletoe Containing Drugs Boosts the T-Cell-Mediated Killing of Glioma Cells and Prolongs the Survival of Glioma Bearing Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3928572. [PMID: 30224928 PMCID: PMC6129785 DOI: 10.1155/2018/3928572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/22/2018] [Accepted: 07/24/2018] [Indexed: 11/21/2022]
Abstract
Viscum album L. extracts (VE) are applied as complementary cancer therapeutics for more than one century. Extracts contain several compounds like mistletoe lectins (ML) 1-3 and viscotoxins, but also several minor ingredients. Since ML-1 has been described as one of the main active components harboring antitumor activity, purified native or recombinant ML-1 has been also used in clinical trials in the last years. The present study examined and compared the immunoboosting effects of three ML-1 containing drugs (the extract ISCADOR Qu, the recombinant ML-1 Aviscumine, and purified native ML-1) in the context of the T-cell mediated killing of glioma cells. Additionally we examined the possible underlying T-cell stimulating mechanisms. Using cocultures of immune and glioma cells, a PCR-based microarray, quantitative RT-PCR, and an antibody-based array to measure cytokines in blood serum, immunosupporting effects were determined. A highly aggressive, orthotopic, immunocompetent syngeneic mouse glioma model was used to determine the survival of mice treated with ISCADOR Qu alone or in combination with tumor irradiation and temozolomide (TMZ). Treatment of glioblastoma (GBM) cells with ISCADOR Qu that contains a high ML concentration, but also viscotoxins and other compounds, as well as with Aviscumine or native ML-1, enhanced the expansion of cancer cell-specific T-cells as well as T-cell-mediated tumor cell lysis, but to a different degree. In GBM cells all three ML-1-containing preparations modulated the expression of immune response associated genes. In vivo, subcutaneous ISCADOR Qu injections at increasing concentration induced cytokine release in immunocompetent VM/Dk-mice. Finally, ISCADOR Qu, if applied in combination with tumor irradiation and TMZ, further prolonged the survival of glioma mice. Our findings indicate that ML-1 containing drugs enhance anti-GBM immune responses and work in synergy with radiochemotherapy. Therefore, adjuvant mistletoe therapy should be considered as an auspicious treatment option for glioma patients.
Collapse
|
5
|
Kholodenko IV, Kalinovsky DV, Doronin II, Deyev SM, Kholodenko RV. Neuroblastoma Origin and Therapeutic Targets for Immunotherapy. J Immunol Res 2018; 2018:7394268. [PMID: 30116755 PMCID: PMC6079467 DOI: 10.1155/2018/7394268] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/27/2018] [Indexed: 01/30/2023] Open
Abstract
Neuroblastoma is a pediatric solid cancer of heterogeneous clinical behavior. The unique features of this type of cancer frequently hamper the process of determining clinical presentation and predicting therapy effectiveness. The tumor can spontaneously regress without treatment or actively develop and give rise to metastases despite aggressive multimodal therapy. In recent years, immunotherapy has become one of the most promising approaches to the treatment of neuroblastoma. Still, only one drug for targeted immunotherapy of neuroblastoma, chimeric monoclonal GD2-specific antibodies, is used in the clinic today, and its application has significant limitations. In this regard, the development of effective and safe GD2-targeted immunotherapies and analysis of other potential molecular targets for the treatment of neuroblastoma represents an important and topical task. The review summarizes biological characteristics of the origin and development of neuroblastoma and outlines molecular markers of neuroblastoma and modern immunotherapy approaches directed towards these markers.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Orekhovich Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow 119121, Russia
| | - Daniel V. Kalinovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| | - Igor I. Doronin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Real Target LLC, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University “MEPhI”, Moscow 115409, Russia
| | - Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Real Target LLC, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| |
Collapse
|
6
|
Deng X, Qiu Q, Wang X, Huang W, Qian H. Design, Synthesis, and Biological Evaluation of Novel Cholesteryl Peptides with Anticancer and Multidrug Resistance-Reversing Activities. Chem Biol Drug Des 2015; 87:374-81. [DOI: 10.1111/cbdd.12667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/22/2015] [Accepted: 09/10/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Xin Deng
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing Jiangsu 210009 China
| | - Qianqian Qiu
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing Jiangsu 210009 China
| | - Xuekun Wang
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing Jiangsu 210009 China
| | - Wenlong Huang
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing Jiangsu 210009 China
| | - Hai Qian
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing Jiangsu 210009 China
| |
Collapse
|
7
|
de Aquino MTP, Malhotra A, Mishra MK, Shanker A. Challenges and future perspectives of T cell immunotherapy in cancer. Immunol Lett 2015; 166:117-33. [PMID: 26096822 PMCID: PMC4499494 DOI: 10.1016/j.imlet.2015.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 05/10/2015] [Accepted: 05/27/2015] [Indexed: 12/15/2022]
Abstract
Since the formulation of the tumour immunosurveillance theory, considerable focus has been on enhancing the effectiveness of host antitumour immunity, particularly with respect to T cells. A cancer evades or alters the host immune response by various ways to ensure its development and survival. These include modifications of the immune cell metabolism and T cell signalling. An inhibitory cytokine milieu in the tumour microenvironment also leads to immune suppression and tumour progression within a host. This review traces the development in the field and attempts to summarize the hurdles that the approach of adoptive T cell immunotherapy against cancer faces, and discusses the conditions that must be improved to allow effective eradication of cancer.
Collapse
Affiliation(s)
- Maria Teresa P de Aquino
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Anshu Malhotra
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Manoj K Mishra
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101, USA
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; Tumor-Host Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
8
|
Maletzki C, Linnebacher M, Savai R, Hobohm U. Mistletoe lectin has a shiga toxin-like structure and should be combined with other Toll-like receptor ligands in cancer therapy. Cancer Immunol Immunother 2013; 62:1283-92. [PMID: 23832140 PMCID: PMC11028761 DOI: 10.1007/s00262-013-1455-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/21/2013] [Indexed: 12/17/2022]
Abstract
Mistletoe extract (ME) is applied as an adjuvant treatment in cancer therapy in thousands of patients each year in Europe. The main immunostimulating component of mistletoe extract, mistletoe lectin, recently has been shown to be a pattern recognition receptor ligand and hence is binding to an important class of pathogen-sensing receptors. Pattern recognition receptor ligands are potent activators of dendritic cells. This activation is a prerequisite for a full-blown T-cell response against cancer cells. Pattern recognition receptor ligands are increasingly recognized as important players in cancer immunotherapy. We collect evidence from case studies on spontaneous regression, from epidemiology, from experiments in a mouse cancer model, and from protein structure comparisons to argue that a combination of mistletoe therapy with other pattern recognition receptor ligand substances leads to an increased immune stimulatory effect. We show that mistletoe lectin is a plant protein of bacterial origin with a 3D structure very similar to shiga toxin from Shigella dysenteriae, which explains the remarkable immunogenicity of mistletoe lectin. Secondly, we show that a combination of pattern recognition receptor ligands applied metronomically in a cancer mouse model leads to complete remission, while single pattern recognition receptor ligands slowed tumor growth. Taken together, we propose to combine mistletoe drugs with other pattern recognition receptor ligand drugs to increase its efficacy in adjuvant or even primary cancer therapy.
Collapse
Affiliation(s)
| | | | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Uwe Hobohm
- University of Applied Sciences, Wiesenstrasse 14, 35390 Giessen, Germany
| |
Collapse
|
9
|
Triterpenoids amplify anti-tumoral effects of mistletoe extracts on murine B16.f10 melanoma in vivo. PLoS One 2013; 8:e62168. [PMID: 23614029 PMCID: PMC3629099 DOI: 10.1371/journal.pone.0062168] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/18/2013] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Mistletoe extracts are often used in complementary cancer therapy although the efficacy of that therapy is controversially discussed. Approved mistletoe extracts contain mainly water soluble compounds of the mistletoe plant, i.e. mistletoe lectins. However, mistletoe also contains water-insoluble triterpenoids (mainly oleanolic acid) that have anti-tumorigenic effects. To overcome their loss in watery extracts we have solubilized mistletoe triterpenoids with cyclodextrins, thus making them available for in vivo cancer experiments. EXPERIMENTAL DESIGN B16.F10 subcutaneous melanoma bearing C57BL/6 mice were treated with new mistletoe extracts containing both water soluble compounds and solubilized triterpenoids. Tumor growth and survival was monitored. In addition, histological examinations of the tumor material and tumor surrounding tissue were performed. RESULTS Addition of solubilized triterpenoids increased the anti-tumor effects of the mistletoe extracts, resulting in reduced tumor growth and prolonged survival of the mice. Histological examination of the treated tumors showed mainly tumor necrosis and some apoptotic cells with active caspase-3 and TUNEL staining. A significant decrease of CD31-positive tumor blood vessels was observed after treatment with solubilized triterpenoids and different mistletoe extracts. CONCLUSION We conclude that the addition of solubilized mistletoe triterpenoids to conventional mistletoe extracts improves the efficacy of mistletoe treatment and may represent a novel treatment option for malignant melanoma.
Collapse
|
10
|
The human H3N2 influenza viruses A/Victoria/3/75 and A/Hiroshima/52/2005 preferentially bind to α2-3-sialylated monosialogangliosides with fucosylated poly-N-acetyllactosaminyl chains. Glycobiology 2012; 22:1055-76. [DOI: 10.1093/glycob/cws077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
11
|
Zamfir AD, Serb A, Vukeli Ž, Flangea C, Schiopu C, Fabris D, Kalanj-Bognar S, Capitan F, Sisu E. Assessment of the molecular expression and structure of gangliosides in brain metastasis of lung adenocarcinoma by an advanced approach based on fully automated chip-nanoelectrospray mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:2145-2159. [PMID: 22002228 DOI: 10.1007/s13361-011-0250-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/12/2011] [Accepted: 09/12/2011] [Indexed: 05/31/2023]
Abstract
Gangliosides (GGs), sialic acid-containing glycosphingolipids, are known to be involved in the invasive/metastatic behavior of brain tumor cells. Development of modern methods for determination of the variations in GG expression and structure during neoplastic cell transformation is a priority in the field of biomedical analysis. In this context, we report here on the first optimization and application of chip-based nanoelectrospray (NanoMate robot) mass spectrometry (MS) for the investigation of gangliosides in a secondary brain tumor. In our work a native GG mixture extracted and purified from brain metastasis of lung adenocarcinoma was screened by NanoMate robot coupled to a quadrupole time-of-flight MS. A native GG mixture from an age-matched healthy brain tissue, sampled and analyzed under identical conditions, served as a control. Comparative MS analysis demonstrated an evident dissimilarity in GG expression in the two tissue types. Brain metastasis is characterized by many species having a reduced N-acetylneuraminic acid (Neu5Ac) content, however, modified by fucosylation or O-acetylation such as Fuc-GM4, Fuc-GM3, di-O-Ac-GM1, O-Ac-GM3. In contrast, healthy brain tissue is dominated by longer structures exhibiting from mono- to hexasialylated sugar chains. Also, significant differences in ceramide composition were discovered. By tandem MS using collision-induced dissociation at low energies, brain metastasis-associated GD3 (d18:1/18:0) species as well as an uncommon Fuc-GM1 (d18:1/18:0) detected in the normal brain tissue could be structurally characterized. The novel protocol was able to provide a reliable compositional and structural characterization with high analysis pace and at a sensitivity situated in the fmol range.
Collapse
Affiliation(s)
- Alina D Zamfir
- Department of Chemical and Biological Sciences, Aurel Vlaicu University of Arad, Revolutiei Blvd. 77, RO-310130, Arad, Romania.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Thin-layer chromatography, overlay technique and mass spectrometry: A versatile triad advancing glycosphingolipidomics. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:875-96. [DOI: 10.1016/j.bbalip.2011.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/18/2011] [Accepted: 04/10/2011] [Indexed: 12/16/2022]
|
13
|
Chang WT, Pan CY, Rajanbabu V, Cheng CW, Chen JY. Tilapia (Oreochromis mossambicus) antimicrobial peptide, hepcidin 1-5, shows antitumor activity in cancer cells. Peptides 2011; 32:342-52. [PMID: 21093514 DOI: 10.1016/j.peptides.2010.11.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 11/06/2010] [Accepted: 11/08/2010] [Indexed: 11/20/2022]
Abstract
The inhibitory function of tilapia hepcidin (TH)1-5, an antimicrobial peptide, was not examined in previous studies. In this study, we synthesized the TH1-5 peptide and tested TH1-5's antitumor activity against several tumor cell lines. We show that TH1-5 inhibited the proliferation of tumor cells and reduced colony formation in a soft agar assay. Scanning electron microscopy and transmission electron microscopy showed that TH1-5 altered the membrane structure similar to the function of a lytic peptide. Acridine orange/ethidium bromide staining, a wound-healing assay, and a flow cytometric analysis showed that TH1-5 induced necrosis with high-concentration treatment and induced apoptosis with low-concentration treatment. Inflammation is known to be closely associated with the development of cancer. TH1-5 showing anti-inflammatory effects in a previous publication induced us to evaluate the anti-inflammatory effects in cancer cell lines through the expressions of immune-related genes after being treated with the TH1-5 peptide. However, real-time qualitative RT-PCR indicated that TH1-5 treatment induced downregulation of the expressions of interleukin (IL)-6, IL-8, IL-12, IL-15, interferon-γ, CTSG, caspase-7, and Bcl-2, and upregulation of IL-2 and CAPN5 in HeLa cells, and upregulation of IL-8 and CTSG in HT1080 cells. These results suggest that TH1-5 possibly induces an inflammatory response in HeLa cells, but not in HT1080 cells. Overall, these results indicate that TH1-5 possesses the potential to be a novel peptide for cancer therapy.
Collapse
Affiliation(s)
- Wang-Ting Chang
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan
| | | | | | | | | |
Collapse
|
14
|
Differences in CD75s- and iso-CD75s-ganglioside content and altered mRNA expression of sialyltransferases ST6GAL1 and ST3GAL6 in human hepatocellular carcinomas and nontumoral liver tissues. Glycobiology 2010; 21:584-94. [DOI: 10.1093/glycob/cwq200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
15
|
Müthing J, Distler U. Advances on the compositional analysis of glycosphingolipids combining thin-layer chromatography with mass spectrometry. MASS SPECTROMETRY REVIEWS 2010; 29:425-479. [PMID: 19609886 DOI: 10.1002/mas.20253] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Glycosphingolipids (GSLs), composed of a hydrophilic carbohydrate chain and a lipophilic ceramide anchor, play pivotal roles in countless biological processes, including infectious diseases and the development of cancer. Knowledge of the number and sequence of monosaccharides and their anomeric configuration and linkage type, which make up the principal items of the glyco code of biologically active carbohydrate chains, is essential for exploring the function of GSLs. As part of the investigation of the vertebrate glycome, GSL analysis is undergoing rapid expansion owing to the application of novel biochemical and biophysical technologies. Mass spectrometry (MS) takes part in the network of collaborations to further unravel structural and functional aspects within the fascinating world of GSLs with the ultimate aim to better define their role in human health and disease. However, a single-method analytical MS technique without supporting tools is limited yielding only partial structural information. Because of its superior resolving power, robustness, and easy handling, high-performance thin-layer chromatography (TLC) is widely used as an invaluable tool in GSL analysis. The intention of this review is to give an insight into current advances obtained by coupling supplementary techniques such as TLC and mass spectrometry. A retrospective view of the development of this concept and the recent improvements by merging (1) TLC separation of GSLs, (2) their detection with oligosaccharide-specific proteins, and (3) in situ MS analysis of protein-detected GSLs directly on the TLC plate, are provided. The procedure works on a nanogram scale and was successfully applied to the identification of cancer-associated GSLs in several types of human tumors. The combination of these two supplementary techniques opens new doors by delivering specific structural information of trace quantities of GSLs with only limited investment in sample preparation.
Collapse
Affiliation(s)
- Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany.
| | | |
Collapse
|
16
|
Distler U, Souady J, Hülsewig M, Drmić-Hofman I, Haier J, Friedrich AW, Karch H, Senninger N, Dreisewerd K, Berkenkamp S, Schmidt MA, Peter-Katalinić J, Müthing J. Shiga toxin receptor Gb3Cer/CD77: tumor-association and promising therapeutic target in pancreas and colon cancer. PLoS One 2009; 4:e6813. [PMID: 19714252 PMCID: PMC2730034 DOI: 10.1371/journal.pone.0006813] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 06/22/2009] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Despite progress in adjuvant chemotherapy in the recent decades, pancreatic and colon cancers remain common causes of death worldwide. Bacterial toxins, which specifically bind to cell surface-exposed glycosphingolipids, are a potential novel therapy. We determined the expression of globotriaosylceramide (Gb3Cer/CD77), the Shiga toxin receptor, in human pancreatic and colon adenocarcinomas. METHODOLOGY/PRINCIPAL FINDINGS Tissue lipid extracts of matched pairs of cancerous and adjacent normal tissue from 21 pancreatic and 16 colon cancer patients were investigated with thin-layer chromatography overlay assay combined with a novel mass spectrometry approach. Gb3Cer/CD77 was localized by immunofluorescence microscopy of cryosections from malignant and corresponding healthy tissue samples. 62% of pancreatic and 81% of colon adenocarcinomas showed increased Gb3Cer/CD77 expression, whereas 38% and 19% of malignant pancreas and colon tissue, respectively, did not, indicating an association of this marker with neoplastic transformation. Also, Gb3Cer/CD77 was associated with poor differentiation (G>2) in pancreatic cancer (P = 0.039). Mass spectrometric analysis evidenced enhanced expression of Gb3Cer/CD77 with long (C24) and short chain fatty acids (C16) in malignant tissues and pointed to the presence of hydroxylated fatty acid lipoforms, which are proposed to be important for receptor targeting. They could be detected in 86% of pancreatic and about 19% of colon adenocarcinomas. Immunohistology of tissue cryosections indicated tumor-association of these receptors. CONCLUSIONS/SIGNIFICANCE Enhanced expression of Gb3Cer/CD77 in most pancreatic and colon adenocarcinomas prompts consideration of Shiga toxin, its B-subunit or B-subunit-derivatives as novel therapeutic strategies for the treatment of these challenging malignancies.
Collapse
Affiliation(s)
- Ute Distler
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Jamal Souady
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Marcel Hülsewig
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Irena Drmić-Hofman
- Department of Pathology, Laboratory for Clinical and Forensic Genetics, University Hospital and Medical School Split, Split, Croatia
| | - Jörg Haier
- Department of General Surgery, University Hospital Münster, Münster, Germany
| | | | - Helge Karch
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Norbert Senninger
- Department of General Surgery, University Hospital Münster, Münster, Germany
| | - Klaus Dreisewerd
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | | | | | - Jasna Peter-Katalinić
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | | |
Collapse
|
17
|
Kirsch S, Müthing J, Peter-Katalinić J, Bindila L. On-line nano-HPLC/ESI QTOF MS monitoring of alpha2-3 and alpha2-6 sialylation in granulocyte glycosphingolipidome. Biol Chem 2009; 390:657-72. [PMID: 19361287 DOI: 10.1515/bc.2009.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel glycosphingolipidomic protocol using nano-high performance liquid chromatography coupled on-line to electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOF-MS) focusing on the separation of isomeric ganglioside structures is described here. A highly efficient separation of alpha2-3- and alpha2-6-sialylated ganglioside species of different carbohydrate chain length was achieved on an HILIC-amido column, followed by sensitive flow-through ESI-QTOF-MS detection and unambiguous structural identification by tandem MS experiments. The protocol was applied to encompass the glycosphingolipidome of human granulocytes, where 182 distinct components could be clearly identified and assigned regarding the ganglioside type and the isomer distribution.
Collapse
Affiliation(s)
- Stephan Kirsch
- Institute of Medical Physics and Biophysics, University of Münster, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
18
|
Distler U, Souady J, Hülsewig M, Drmić-Hofman I, Haier J, Denz A, Grützmann R, Pilarsky C, Senninger N, Dreisewerd K, Berkenkamp S, Schmidt MA, Peter-Katalinić J, Müthing J. Tumor-associated CD75s- and iso-CD75s-gangliosides are potential targets for adjuvant therapy in pancreatic cancer. Mol Cancer Ther 2008; 7:2464-75. [DOI: 10.1158/1535-7163.mct-08-0353] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Distler U, Hülsewig M, Souady J, Dreisewerd K, Haier J, Senninger N, Friedrich AW, Karch H, Hillenkamp F, Berkenkamp S, Peter-Katalinić J, Müthing J. Matching IR-MALDI-o-TOF Mass Spectrometry with the TLC Overlay Binding Assay and Its Clinical Application for Tracing Tumor-Associated Glycosphingolipids in Hepatocellular and Pancreatic Cancer. Anal Chem 2008; 80:1835-46. [DOI: 10.1021/ac702071x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ute Distler
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany, and Sequenom GmbH, D-22761 Hamburg, Germany
| | - Marcel Hülsewig
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany, and Sequenom GmbH, D-22761 Hamburg, Germany
| | - Jamal Souady
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany, and Sequenom GmbH, D-22761 Hamburg, Germany
| | - Klaus Dreisewerd
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany, and Sequenom GmbH, D-22761 Hamburg, Germany
| | - Jörg Haier
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany, and Sequenom GmbH, D-22761 Hamburg, Germany
| | - Norbert Senninger
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany, and Sequenom GmbH, D-22761 Hamburg, Germany
| | - Alexander W. Friedrich
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany, and Sequenom GmbH, D-22761 Hamburg, Germany
| | - Helge Karch
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany, and Sequenom GmbH, D-22761 Hamburg, Germany
| | - Franz Hillenkamp
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany, and Sequenom GmbH, D-22761 Hamburg, Germany
| | - Stefan Berkenkamp
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany, and Sequenom GmbH, D-22761 Hamburg, Germany
| | - Jasna Peter-Katalinić
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany, and Sequenom GmbH, D-22761 Hamburg, Germany
| | - Johannes Müthing
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany, and Sequenom GmbH, D-22761 Hamburg, Germany
| |
Collapse
|
20
|
Glycosphingolipids in vascular endothelial cells: relationship of heterogeneity in Gb3Cer/CD77 receptor expression with differential Shiga toxin 1 cytotoxicity. Glycoconj J 2008; 25:291-304. [DOI: 10.1007/s10719-007-9091-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/18/2007] [Accepted: 11/15/2007] [Indexed: 11/27/2022]
|
21
|
Hussein F, Daniels R. Improvement of an enzyme linked lectin assay to determine recombinant mistletoe lectin I. J Pharm Biomed Anal 2007; 43:758-62. [PMID: 16971084 DOI: 10.1016/j.jpba.2006.07.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 07/21/2006] [Accepted: 07/24/2006] [Indexed: 12/01/2022]
Abstract
Extracts from Viscum album leaves, with mistletoe lectin I (ML I) as the main therapeutic agent, are commonly used as an immunomodulating adjuvat in tumour therapy. Because of its popularity against cancer and the possibility for a better standardisation a recombinant ML I (rML I) was developed by Eck et al. To improve the sensitivity of an already established enzyme linked lectin assay (ELLA) for rML I human haptoglobins with different phenotypes (1.1, 2.1 and 2.2) are used to replace asialofetuin as matrix. To determine the carbohydrate binding specificity of the tested glycoproteins the ELLA was realised in the presence of the competitive carbohydrate beta-d-lactose. It could be shown that using haptoglobin phenotype 1.1 instead of asialofetuin improved the test results markedly. Both, the limit of detection and the limit of quantitation were decreased by an order of magnitude. However, this positive result was obviously accompanied by a loss in specificity of the test. The specificity of asialofetuin for rML I is almost six-fold higher than for the tested haptoglobins. Thus, in cases where high specificity and less sensitivity values for rML I is required the ELLA should still be run with asialofetuin as binding partner.
Collapse
Affiliation(s)
- Fadwa Hussein
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106 Braunschweig, Germany
| | | |
Collapse
|
22
|
Oxygenation alters ganglioside expression in rat liver following partial hepatectomy. Biochem Biophys Res Commun 2005; 330:131-41. [DOI: 10.1016/j.bbrc.2005.02.139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Indexed: 11/21/2022]
|
23
|
Meisen I, Friedrich AW, Karch H, Witting U, Peter-Katalinić J, Müthing J. Application of combined high-performance thin-layer chromatography immunostaining and nanoelectrospray ionization quadrupole time-of-flight tandem mass spectrometry to the structural characterization of high- and low-affinity binding ligands of Shiga toxin 1. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:3659-65. [PMID: 16285017 DOI: 10.1002/rcm.2241] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Shiga toxin 1 (Stx1) represents an AB5 toxin produced by enterohemorrhagic Escherichia coli, which cause gastrointestinal diseases in humans that are often followed by potentially fatal systemic complications, such as acute encephalopathy and hemolytic uremic syndrome. The expression of the preferential Stx1 receptor, Gb3Cer/CD77 (Gal alpha1-4Gal beta1-4Glc beta1-1Cer), is one of the primary determinants of susceptibility to tissue injury. Due to the clinical importance of this life-threatening toxin, a combined strategy of preparative high-performance thin-layer chromatography (HPTLC) overlay assay and mass spectrometry was developed for the detection and structural characterization of Stx1-binding glycosphingolipids (GSLs). A preparation of neutral GSLs from human erythrocytes, comprising 21.4% and 59.1% of the high- and low-affinity Stx1-binding ligands Gb3Cer/CD77 and Gb4Cer, respectively, was separated on silica gel precoated HPTLC plates and probed for the presence of Stx1 receptors. Stx1 positive on the one hand and anti-Gb3Cer/CD77 and anti-Gb4Cer antibody positive bands from parallel reference runs on the other hand were extracted with chloroform/methanol/water (30/60/8, v/v/v). These crude extracts were used without any further purification for a detailed structural analysis by nanoelectrospray ionization quadrupole time-of-flight mass spectrometry (nanoESI-QTOF-MS) in the negative ion mode. In all extracts investigated, neutral GSLs were detected as singly charged deprotonated molecular ions, [M-H]-, and neither buffer-derived salt adducts nor coextracted contaminants from the overlay assay procedure or the silica gel layer were observed. For the structural characterization of Stx1- and antibody-binding GSLs low-energy collision-induced dissociation (CID) was applied to high and low abundant receptor species of the crude extracts. All MS/MS spectra obtained contained full series of Y-type ions, B-type ions and additional ions generated by ring cleavages of the sugar moiety. Only analytical quantities in the microgram scale of a single GSL species within the complex GSL mixture were required for the structural MS characterization of Stx1 ligands as Gb3Cer/CD77 and Gb4Cer. This effective combined HPTLC/MS procedure offers a broad range of applications, not only for toxins of bacterial origin, but also for any GSL-binding agents such as plant-derived lectins or human proteins with yet unknown binding specificities.
Collapse
Affiliation(s)
- Iris Meisen
- Institute for Medical Physics and Biophysics, University of Münster, Robert-Koch-Strasse 31, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|