1
|
Wallace TC, Cowan-Pyle AE, Klatt KC, Bailey RL. Relationship of Choline Intake with Biomarkers of Liver Health by Genotype-A Cross-Sectional Analysis. J Nutr 2025:S0022-3166(25)00230-5. [PMID: 40306555 DOI: 10.1016/j.tjnut.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Controlled feeding studies demonstrate that genetic variation in the folate-mediated one-carbon and choline metabolism pathway influence risk of organ dysfunction from consuming choline-deficient (<50 mg/d) diets. Whether genotype influences the relationship between choline intake and biomarkers of liver function in the general population remains unknown. OBJECTIVES This study aims to conduct an exploratory cross-sectional analysis to examine the relationship between dietary choline intake with circulating biomarkers of liver function that are commonly impaired by inadequate choline, stratified by genotype across common single-nucleotide polymorphisms (SNPs) in one-carbon and choline metabolism-related enzymes. METHODS United States adults (≥20 y) in the 1999-2002 National Health and Nutrition Examination Survey (NHANES) who were nonpregnant, nonlactating, had reliable 24-h dietary recall(s), and blood collected for DNA purification (that is, complete genetic data) were included (n = 1438). Mean dietary choline intake was estimated using the USDA's Food and Nutrient Database for Dietary Studies and the Choline Content of Common Foods Database. Associations between choline intake and available biomarkers of liver function, adjusted for age (y), BMI, fasting plasma glucose, and total protein and energy intake, were investigated for each SNP, using multiple linear regression. Statistical significance was set at a Bonferroni-corrected P < 0.0167 to account for multiplicity across tertiles of choline intake, based on the number of examined genotypes. RESULTS The lowest tertile of choline intake was not associated with elevated markers of liver dysfunction relative to higher intakes in the entire population or in analyses stratified by common SNPs in one-carbon and choline metabolism pathway enzymes. Higher choline intake was associated with an increase in circulating triglycerides among individuals with the MTR GG (rs1805087) minor genotype. CONCLUSIONS In this exploratory NHANES analysis, self-reported choline intakes were not associated with worsening circulating liver function biomarkers in the study population as a whole or when stratified by genotype. Our findings did not recapitulate observed relationships in controlled feeding trials, potentially due to higher habitual choline intakes or limitations of using national surveillance samples to assess diet-x-gene interactions. Further exploration of this research question in prospective cohorts or controlled trials with a broader array of nutritional status markers is warranted.
Collapse
Affiliation(s)
- Taylor C Wallace
- Think Healthy Group, LLC, Washington, DC, United States; School of Medicine and Health Sciences, George Washington University, Washington, DC, United States; Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States.
| | - Alexandra E Cowan-Pyle
- Institute for Advancing Health Through Agriculture, Texas A&M AgriLife Research, Texas A&M University System, College Station, TX, United States
| | - Kevin C Klatt
- Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, United States
| | - Regan L Bailey
- Institute for Advancing Health Through Agriculture, Texas A&M AgriLife Research, Texas A&M University System, College Station, TX, United States; Department of Nutrition, Texas A&M University, College Station, TX, United States
| |
Collapse
|
2
|
Krammer L, Darnhofer B, Kljajic M, Liesinger L, Schittmayer M, Neshchadin D, Gescheidt G, Kollau A, Mayer B, Fischer RC, Wallner S, Macheroux P, Birner-Gruenberger R, Breinbauer R. A general approach for activity-based protein profiling of oxidoreductases with redox-differentiated diarylhalonium warheads. Chem Sci 2025; 16:6240-6256. [PMID: 40103729 PMCID: PMC11912224 DOI: 10.1039/d4sc08454c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
Activity-based protein profiling (ABPP) is a unique proteomic tool for measuring the activity of enzymes in their cellular context, which has been well established for enzyme classes exhibiting a characteristic nucleophilic residue (e.g., hydrolases). In contrast, the enzyme class of oxidoreductases has received less attention, as its members rely mainly on cofactors instead of nucleophilic amino acid residues for catalysis. ABPP probes have been designed for specific oxidoreductase subclasses, which rely on the oxidative conversion of the probes into strong electrophiles. Here we describe the development of ABPP probes for the simultaneous labeling of various subclasses of oxidoreductases. The probe warheads are based on hypervalent diarylhalonium salts, which show unique reactivity as their activation proceeds via a reductive mechanism resulting in aryl radicals leading to covalent labeling of liver proteins at several different amino acids in close proximity to the active sites. The redox potential of the probes can be tuned by isosteric replacement varying the halonium central atom. ABPP experiments with liver using 16 probes differing in warhead, linker, and structure revealed distinct overlapping profiles and broad substrate specificities of several probes. With their capability of multi oxidoreductase subclass labeling - including rare examples for the class of reductases - and their unique design, the herein reported probes offer new opportunities for the investigation of the "oxidoreductome" of microorganisms, plants, animal and human tissues.
Collapse
Affiliation(s)
- Leo Krammer
- Institute of Organic Chemistry, Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Barbara Darnhofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz Stiftingtalstraße 6 8036 Graz Austria
| | - Marko Kljajic
- Institute of Organic Chemistry, Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Laura Liesinger
- Institute of Chemical Technologies and Analytics, Technische Universität Wien Getreidemarkt 9 1060 Vienna Austria
| | - Matthias Schittmayer
- Institute of Chemical Technologies and Analytics, Technische Universität Wien Getreidemarkt 9 1060 Vienna Austria
| | - Dmytro Neshchadin
- Institute of Physical and Theoretical Chemistry, Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Georg Gescheidt
- Institute of Physical and Theoretical Chemistry, Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Alexander Kollau
- Institute of Pharmaceutical Sciences, University of Graz Humboldtstraße 46 8010 Graz Austria
| | - Bernd Mayer
- Institute of Pharmaceutical Sciences, University of Graz Humboldtstraße 46 8010 Graz Austria
| | - Roland C Fischer
- Institute of Inorganic Chemistry, Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Silvia Wallner
- Institute of Biochemistry, Graz University of Technology Petersgasse 12 8010 Graz Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology Petersgasse 12 8010 Graz Austria
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Medical University of Graz Stiftingtalstraße 6 8036 Graz Austria
- Institute of Chemical Technologies and Analytics, Technische Universität Wien Getreidemarkt 9 1060 Vienna Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| |
Collapse
|
3
|
Suzauddula M, Islam MN, Ahmed T. The complex role of glycine N-methyltransferase in metabolism-a review. Mol Biol Rep 2025; 52:271. [PMID: 40025311 DOI: 10.1007/s11033-025-10374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Glycine N-methyltransferase (GNMT) is an enzyme predominantly found in the liver, playing a crucial role in various metabolic pathways. GNMT is involved in transmethylation, transsulfuration, one-carbon metabolism, energy metabolism, and DNA methylation. Deletion or Knockdown of GNMT influences the expression of several key metabolic enzymes by accumulating S-adenosylmethionine (SAM). Dysregulation of GNMT and these metabolic enzymes can lead to metabolic dysfunction and chronic diseases. OBJECTIVE To provide a comprehensive review of the impact of Glycine N-methyltransferase (GNMT) on metabolism, focusing on its epigenetic and genetic mechanisms, its role in metabolic pathways, and its association with chronic diseases. RESULTS GNMT is highly expressed in the liver and exerts direct and indirect effects on various metabolic pathways, including transmethylation, transsulfuration, one-carbon metabolism, energy metabolism, and global DNA methylation. Current understanding suggests that GNMT operates through both epigenetic and genetic mechanisms, influencing the expression of key metabolic enzymes such as BHMT, NNMT, PEMT, DNMTs, CBS, and MTHFR through the accumulation of S-adenosylmethionine. Dysregulation of these proteins not only affects metabolic function but also contributes to the development of several chronic diseases. Furthermore, the level of GNMT protein has been directly linked to non-alcoholic fatty liver disease, with its function being gender, age, and organ specific. At the same time, GNMT and disease progression correlate, dietary supplementation and pharmacological approaches have shown promise in controlling GNMT levels. CONCLUSION GNMT plays a multifaceted role in metabolism, influencing various pathways and contributing to chronic disease development. Understanding its mechanisms and interactions opens avenues for targeted dietary and pharmacological therapies to manage GNMT-related metabolic dysfunction.
Collapse
Affiliation(s)
- Md Suzauddula
- Department of Nutrition and Food Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Md Numan Islam
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Tanvir Ahmed
- Department of Food Engineering & Tea Technology, Shahjalal University of Science & Technology, Sylhet, Bangladesh.
| |
Collapse
|
4
|
Kenny TC, Scharenberg S, Abu-Remaileh M, Birsoy K. Cellular and organismal function of choline metabolism. Nat Metab 2025; 7:35-52. [PMID: 39779890 PMCID: PMC11990872 DOI: 10.1038/s42255-024-01203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Choline is an essential micronutrient critical for cellular and organismal homeostasis. As a core component of phospholipids and sphingolipids, it is indispensable for membrane architecture and function. Additionally, choline is a precursor for acetylcholine, a key neurotransmitter, and betaine, a methyl donor important for epigenetic regulation. Consistent with its pleiotropic role in cellular physiology, choline metabolism contributes to numerous developmental and physiological processes in the brain, liver, kidney, lung and immune system, and both choline deficiency and excess are implicated in human disease. Mutations in the genes encoding choline metabolism proteins lead to inborn errors of metabolism, which manifest in diverse clinical pathologies. While the identities of many enzymes involved in choline metabolism were identified decades ago, only recently has the field begun to understand the diverse mechanisms by which choline availability is regulated and fuelled via metabolite transport/recycling and nutrient acquisition. This review provides a comprehensive overview of choline metabolism, emphasizing emerging concepts and their implications for human health and disease.
Collapse
Affiliation(s)
- Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Samantha Scharenberg
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University, Stanford, CA, USA
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, USA.
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
5
|
Bernhard W, Böckmann KA, Minarski M, Wiechers C, Busch A, Bach D, Poets CF, Franz AR. Evidence and Perspectives for Choline Supplementation during Parenteral Nutrition-A Narrative Review. Nutrients 2024; 16:1873. [PMID: 38931230 PMCID: PMC11206924 DOI: 10.3390/nu16121873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Choline is an essential nutrient, with high requirements during fetal and postnatal growth. Tissue concentrations of total choline are tightly regulated, requiring an increase in its pool size proportional to growth. Phosphatidylcholine and sphingomyelin, containing a choline headgroup, are constitutive membrane phospholipids, accounting for >85% of total choline, indicating that choline requirements are particularly high during growth. Daily phosphatidylcholine secretion via bile for lipid digestion and very low-density lipoproteins for plasma transport of arachidonic and docosahexaenoic acid to other organs exceed 50% of its hepatic pool. Moreover, phosphatidylcholine is required for converting pro-apoptotic ceramides to sphingomyelin, while choline is the source of betaine as a methyl donor for creatine synthesis, DNA methylation/repair and kidney function. Interrupted choline supply, as during current total parenteral nutrition (TPN), causes a rapid drop in plasma choline concentration and accumulating deficit. The American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) defined choline as critical to all infants requiring TPN, claiming its inclusion in parenteral feeding regimes. We performed a systematic literature search in Pubmed with the terms "choline" and "parenteral nutrition", resulting in 47 relevant publications. Their results, together with cross-references, are discussed. While studies on parenteral choline administration in neonates and older children are lacking, preclinical and observational studies, as well as small randomized controlled trials in adults, suggest choline deficiency as a major contributor to acute and chronic TPN-associated liver disease, and the safety and efficacy of parenteral choline administration for its prevention. Hence, we call for choline formulations suitable to be added to TPN solutions and clinical trials to study their efficacy, particularly in growing children including preterm infants.
Collapse
Affiliation(s)
- Wolfgang Bernhard
- Department of Neonatology, University Children’s Hospital, 72076 Tübingen, Germany; (W.B.); (K.A.B.); (M.M.); (C.W.); (C.F.P.)
| | - Katrin A. Böckmann
- Department of Neonatology, University Children’s Hospital, 72076 Tübingen, Germany; (W.B.); (K.A.B.); (M.M.); (C.W.); (C.F.P.)
| | - Michaela Minarski
- Department of Neonatology, University Children’s Hospital, 72076 Tübingen, Germany; (W.B.); (K.A.B.); (M.M.); (C.W.); (C.F.P.)
| | - Cornelia Wiechers
- Department of Neonatology, University Children’s Hospital, 72076 Tübingen, Germany; (W.B.); (K.A.B.); (M.M.); (C.W.); (C.F.P.)
| | - Annegret Busch
- Pharmaceutical Department, University Hospital, 72076 Tübingen, Germany; (A.B.); (D.B.)
| | - Daniela Bach
- Pharmaceutical Department, University Hospital, 72076 Tübingen, Germany; (A.B.); (D.B.)
| | - Christian F. Poets
- Department of Neonatology, University Children’s Hospital, 72076 Tübingen, Germany; (W.B.); (K.A.B.); (M.M.); (C.W.); (C.F.P.)
| | - Axel R. Franz
- Department of Neonatology, University Children’s Hospital, 72076 Tübingen, Germany; (W.B.); (K.A.B.); (M.M.); (C.W.); (C.F.P.)
- Center for Pediatric Clinical Studies, University Children’s Hospital, 72076 Tübingen, Germany
| |
Collapse
|
6
|
Andreu‐Sánchez S, Ahmad S, Kurilshikov A, Beekman M, Ghanbari M, van Faassen M, van den Munckhof ICL, Steur M, Harms A, Hankemeier T, Ikram MA, Kavousi M, Voortman T, Kraaij R, Netea MG, Rutten JHW, Riksen NP, Zhernakova A, Kuipers F, Slagboom PE, van Duijn CM, Fu J, Vojinovic D. Unraveling interindividual variation of trimethylamine N-oxide and its precursors at the population level. IMETA 2024; 3:e183. [PMID: 38898991 PMCID: PMC11183189 DOI: 10.1002/imt2.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 06/21/2024]
Abstract
Trimethylamine N-oxide (TMAO) is a circulating microbiome-derived metabolite implicated in the development of atherosclerosis and cardiovascular disease (CVD). We investigated whether plasma levels of TMAO, its precursors (betaine, carnitine, deoxycarnitine, choline), and TMAO-to-precursor ratios are associated with clinical outcomes, including CVD and mortality. This was followed by an in-depth analysis of their genetic, gut microbial, and dietary determinants. The analyses were conducted in five Dutch prospective cohort studies including 7834 individuals. To further investigate association results, Mendelian Randomization (MR) was also explored. We found only plasma choline levels (hazard ratio [HR] 1.17, [95% CI 1.07; 1.28]) and not TMAO to be associated with CVD risk. Our association analyses uncovered 10 genome-wide significant loci, including novel genomic regions for betaine (6p21.1, 6q25.3), choline (2q34, 5q31.1), and deoxycarnitine (10q21.2, 11p14.2) comprising several metabolic gene associations, for example, CPS1 or PEMT. Furthermore, our analyses uncovered 68 gut microbiota associations, mainly related to TMAO-to-precursors ratios and the Ruminococcaceae family, and 16 associations of food groups and metabolites including fish-TMAO, meat-carnitine, and plant-based food-betaine associations. No significant association was identified by the MR approach. Our analyses provide novel insights into the TMAO pathway, its determinants, and pathophysiological impact on the general population.
Collapse
Affiliation(s)
- Sergio Andreu‐Sánchez
- Department of Genetics, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Department of Pediatrics, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Shahzad Ahmad
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
- Metabolomics & Analytics Centre, Leiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CenterLeidenThe Netherlands
| | - Mohsen Ghanbari
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University Medical Center GroningenUniversity of GroningenGroningenThe Netherland
| | - Inge C. L. van den Munckhof
- Department of Internal Medicine and Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Marinka Steur
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Amy Harms
- Metabolomics & Analytics Centre, Leiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Thomas Hankemeier
- Metabolomics & Analytics Centre, Leiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - M. Arfan Ikram
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Maryam Kavousi
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Trudy Voortman
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Robert Kraaij
- Department of Internal MedicineErasmus University Medical CenterRotterdamThe Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Joost H. W. Rutten
- Department of Internal Medicine and Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Niels P. Riksen
- Department of Internal Medicine and Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Department of Laboratory Medicine, University Medical Center GroningenUniversity of GroningenGroningenThe Netherland
- European Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - P. Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CenterLeidenThe Netherlands
| | | | - Jingyuan Fu
- Department of Genetics, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Department of Pediatrics, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Dina Vojinovic
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
7
|
Takeda Y, Naka G, Katsuya Y, Kobayashi K, Suzuki M, Hashimoto M, Hirano S, Uemura Y. Correlation of toxicities and efficacies of pemetrexed with clinical factors and single-nucleotide polymorphisms: a prospective observational study. BMC Cancer 2023; 23:800. [PMID: 37633908 PMCID: PMC10464354 DOI: 10.1186/s12885-023-11257-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/04/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Pemetrexed is an efficacious multi-targeted antifolate with acceptable toxicity for non-squamous non-small cell lung cancer (non-Sq NSCLC) and malignant pleural mesothelioma. Vitamin B12 and folic acid as premedication can reduce the frequency of severe toxicities of pemetrexed chemotherapy. However, adverse effects are frequent in clinical settings. In this study, we aimed to identify the clinical factors and single-nucleotide polymorphisms (SNPs) associated with the toxicity and efficacy of pemetrexed chemotherapy. METHODS This observational study was conducted from October 2012 to December 2019; we evaluated the toxicities and efficacies of pemetrexed chemotherapy using multivariate logistic or Cox regression analysis. In total, 106 patients received pemetrexed chemotherapy. SNPs were analyzed for four patients with malignant pleural mesothelioma and 67 with non-Sq NSCLC. RESULTS The median progression-free survival (PFS) and overall survival of 63 patients with non-Sq NSCLC, excluding four in the adjuvant setting, were 6.8 and 33.3 months, respectively. Per propensity-score-adjusted multivariate Cox analyses, favorable factors for PFS were folic acid level ≥ 9.3 ng/mL before premedication, platinum combination, bevacizumab combination, vitamin B12 level < 1136 pg/mL before chemotherapy, A/A + A/G of BHMT (742 G > A), and A/A + A/C of DHFR (680 C > A). Favorable prognostic factors included good performance status, low smoking index, body mass index ≥ 20.66 kg/m2, folic acid level ≥ 5.55 ng/mL before premedication, higher retinol-binding protein before chemotherapy, and A/G of MTRR (66 A > G). Among the 71 patients who were analyzed for SNPs, the frequencies of hematologic toxicities and non-hematologic toxicities in Grades 3-4 were 38% and 36.6%, respectively. Per propensity-score-adjusted multivariate logistic analyses, risk factors for Grades 3-4 hematologic toxicities were vitamin B12 level < 486 pg/mL before premedication, leucocyte count < 6120 /µL before chemotherapy, folic acid level < 15.8 ng/mL before chemotherapy, status with a reduced dose of chemotherapy, and C/T + T/T of MTHFR (677 C > T). Risk factors for Grades 2-4 non-hematologic toxicities were homocysteine levels ≥ 11.8 nmol/mL before premedication, transthyretin level < 21.5 mg/dL before chemotherapy, C/C + T/T of MTHFR (677 C > T), and A/A + G/G of SLC19A1 [IVS2 (4935) G > A]. CONCLUSION The information on metabolites and SNPs of the folate and methionine cycle will help predict the toxicities and efficacies of pemetrexed. TRIAL REGISTRATION This trial was retrospectively registered with the University hospital Medical Information Network (UMIN000009366) on November 20, 2012.
Collapse
Affiliation(s)
- Yuichiro Takeda
- Department of Clinical Laboratory, National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-Ku, Tokyo, 162-8655, Japan.
- Department of Respiratory Medicine, National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-Ku, Tokyo, 162-8655, Japan.
| | - Go Naka
- Department of Respiratory Medicine, National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-Ku, Tokyo, 162-8655, Japan
| | - Yuki Katsuya
- Department of Respiratory Medicine, National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-Ku, Tokyo, 162-8655, Japan
- Present Address: Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Konomi Kobayashi
- Department of Respiratory Medicine, National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-Ku, Tokyo, 162-8655, Japan
- Present Address: Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Manabu Suzuki
- Department of Respiratory Medicine, National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-Ku, Tokyo, 162-8655, Japan
| | - Masao Hashimoto
- Department of Respiratory Medicine, National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-Ku, Tokyo, 162-8655, Japan
| | - Satoshi Hirano
- Department of Medical Oncology, Funabashi Municipal Medical Center, 1-21-1 Kanasugi, Funabashi, Chiba, 273-8588, Japan
| | - Yukari Uemura
- Section of Biostatistics, Department of Clinical Research Center, The National Center for Global Health and Medicine Center, 1-21-1 Toyama Shinjuku-Ku, Tokyo, 162-8655, Japan
| |
Collapse
|
8
|
Li Y, Shen X, Yang X, Lian F, Li Y, Li J, Huang Y, Shen W, Liu H. CHDH, a key mitochondrial enzyme, plays a diagnostic role in metabolic disorders diseases and tumor progression. Front Genet 2023; 14:1240650. [PMID: 37600654 PMCID: PMC10433736 DOI: 10.3389/fgene.2023.1240650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Human choline dehydrogenase (CHDH) is a transmembrane protein located in mitochondria. CHDH has been shown to be one of the important catalytic enzymes that catalyze the oxidation of choline to betaine and is involved in mitochondrial autophagy after mitochondrial damage. In recent years, an increasing number of studies have focused on CHDH and found a close association with the pathogenesis of various diseases, including tumor prognosis. Here we summarized the genomic localization, protein structure and basic functions of CHDH and discuss the progress of CHDH research in metabolic disorders and other diseases. Moreover, we described the regulatory role of CHDH on the progression of different types of malignant tumors. In addition, major pathogenic mechanisms of CHDH in multiple diseases may be associated with single nucleotide polymorphism (SNP). We look forward to providing new strategies and basis for clinical diagnosis and prognosis prediction of diseases by diagnosing SNP loci of CHDH genes. Our work evaluates the feasibility of CHDH as a molecular marker relevant to the diagnosis of some metabolic disorders diseases and tumors, which may provide new targets for the treatment of related diseases and tumors.
Collapse
Affiliation(s)
- Yifei Li
- College of Clinical Medicine, Jining Medical University, Jining, China
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Xinzhuang Shen
- College of Clinical Medicine, Jining Medical University, Jining, China
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Xiaowen Yang
- College of Clinical Medicine, Jining Medical University, Jining, China
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Fuming Lian
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Yanping Li
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Jinmeng Li
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Yongming Huang
- Department of General Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Wenzhi Shen
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Huan Liu
- College of Clinical Medicine, Jining Medical University, Jining, China
| |
Collapse
|
9
|
Schoen MS, Boland KM, Christ SE, Cui X, Ramakrishnan U, Ziegler TR, Alvarez JA, Singh RH. Total choline intake and working memory performance in adults with phenylketonuria. Orphanet J Rare Dis 2023; 18:222. [PMID: 37516884 PMCID: PMC10386684 DOI: 10.1186/s13023-023-02842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Despite early diagnosis and compliance with phenylalanine (Phe)-restricted diets, many individuals with phenylketonuria (PKU) still exhibit neurological changes and experience deficits in working memory and other executive functions. Suboptimal choline intake may contribute to these impairments, but this relationship has not been previously investigated in PKU. The objective of this study was to determine if choline intake is correlated with working memory performance, and if this relationship is modified by diagnosis and metabolic control. METHODS This was a cross-sectional study that included 40 adults with PKU and 40 demographically matched healthy adults. Web-based neurocognitive tests were used to assess working memory performance and 3-day dietary records were collected to evaluate nutrient intake. Recent and historical blood Phe concentrations were collected as measures of metabolic control. RESULTS Working memory performance was 0.32 z-scores (95% CI 0.06, 0.58) lower, on average, in participants with PKU compared to participants without PKU, and this difference was not modified by total choline intake (F[1,75] = 0.85, p = 0.36). However, in a subgroup with complete historical blood Phe data, increased total choline intake was related to improved working memory outcomes among participants with well controlled PKU (Phe = 360 µmol/L) after adjusting for intellectual ability and mid-childhood Phe concentrations (average change in working memory per 100 mg change in choline = 0.11; 95% CI 0.02, 0.20; p = 0.02). There also was a trend, albeit nonsignificant (p = 0.10), for this association to be attenuated with increased Phe concentrations. CONCLUSIONS Clinical monitoring of choline intake is essential for all individuals with PKU but may have important implications for working memory functioning among patients with good metabolic control. Results from this study should be confirmed in a larger controlled trial in people living with PKU.
Collapse
Affiliation(s)
- Meriah S Schoen
- Department of Human Genetics, Emory University School of Medicine, 101 Woodruff Circle, Suite 7130, Atlanta, GA, 30322, USA.
| | - Kelly M Boland
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Shawn E Christ
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Xiangqin Cui
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Usha Ramakrishnan
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Thomas R Ziegler
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jessica A Alvarez
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Rani H Singh
- Department of Human Genetics, Emory University School of Medicine, 101 Woodruff Circle, Suite 7130, Atlanta, GA, 30322, USA
| |
Collapse
|
10
|
Wu CH, Chang TY, Chen YC, Huang RFS. PEMT rs7946 Polymorphism and Sex Modify the Effect of Adequate Dietary Choline Intake on the Risk of Hepatic Steatosis in Older Patients with Metabolic Disorders. Nutrients 2023; 15:3211. [PMID: 37513629 PMCID: PMC10383596 DOI: 10.3390/nu15143211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
In humans, PEMT rs7946 polymorphism exerts sex-specific effects on choline requirement and hepatic steatosis (HS) risk. Few studies have explored the interaction effect of the PEMT rs7946 polymorphism and sex on the effect of adequate choline intake on HS risk. In this cross-sectional study, we investigated the association between PEMT polymorphism and adequate choline intake on HS risk. We enrolled 250 older patients with metabolic disorders with (n = 152) or without (n = 98; control) ultrasonically diagnosed HS. An elevated PEMT rs7946 A allele level was associated with a lower HS risk and body mass index in both men and women. Dietary choline intake-assessed using a semiquantitative food frequency questionnaire-was associated with reduced obesity in men only (p for trend < 0.05). ROC curve analysis revealed that the cutoff value of energy-adjusted choline intake for HS diagnosis was 448 mg/day in women (AUC: 0.62; 95% CI: 0.57-0.77) and 424 mg/day in men (AUC: 0.63, 95% CI: 0.57-0.76). In women, GG genotype and high choline intake (>448 mg/day) were associated with a 79% reduction in HS risk (adjusted OR: 0.21; 95% CI: 0.05-0.82); notably, GA or AA genotype was associated with a reduced HS risk regardless of choline intake (p < 0.05). In men, GG genotype and high choline intake (>424 mg/day) were associated with a 3.7-fold increase in HS risk (OR: 3.7; 95% CI: 1.19-11.9). Further adjustments for a high-density lipoprotein level and body mass index mitigated the effect of choline intake on HS risk. Current dietary choline intake may be inadequate for minimizing HS risk in postmenopausal Taiwanese women carrying the PEMT rs7946 GG genotype. Older men consuming more than the recommended amount of choline may have an increased risk of nonalcoholic fatty liver disease; this risk is mediated by a high-density lipoprotein level and obesity.
Collapse
Affiliation(s)
- Chien-Hsien Wu
- Ph.D. Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Department of Gastroenterology and Hepatology, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242033, Taiwan
| | - Ting-Yu Chang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yen-Chu Chen
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Rwei-Fen S Huang
- Ph.D. Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
11
|
Vasconcellos C, Ferreira O, Lopes MF, Ribeiro AF, Vasques J, Guerreiro CS. Nutritional Genomics in Nonalcoholic Fatty Liver Disease. Biomedicines 2023; 11:biomedicines11020319. [PMID: 36830856 PMCID: PMC9953045 DOI: 10.3390/biomedicines11020319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic condition associated with genetic and environmental factors in which fat abnormally accumulates in the liver. NAFLD is epidemiologically associated with obesity, type 2 diabetes, and dyslipidemia. Environmental factors, such as physical inactivity and an unbalanced diet, interact with genetic factors, such as epigenetic mechanisms and polymorphisms for the genesis and development of the condition. Different genetic polymorphisms seem to be involved in this context, including variants in PNPLA3, TM6SF2, PEMT, and CHDH genes, playing a role in the disease's susceptibility, development, and severity. From carbohydrate intake and weight loss to omega-3 supplementation and caloric restriction, different dietary and nutritional factors appear to be involved in controlling the onset and progression of NAFLD conditions influencing metabolism, gene, and protein expression. The polygenic risk score represents a sum of trait-associated alleles carried by an individual and seems to be associated with NAFLD outcomes depending on the dietary context. Understanding the exact extent to which lifestyle interventions and genetic predispositions can play a role in the prevention and management of NAFLD can be crucial for the establishment of a personalized and integrative approach to patients.
Collapse
Affiliation(s)
- Carolina Vasconcellos
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Oureana Ferreira
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Marta Filipa Lopes
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - André Filipe Ribeiro
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - João Vasques
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Catarina Sousa Guerreiro
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
12
|
Brink LR, Bender TM, Davies R, Luo H, Miketinas D, Shah N, Loveridge N, Gross G, Fawkes N. Optimizing Maternal Nutrition: The Importance of a Tailored Approach. Curr Dev Nutr 2022; 6:nzac118. [PMID: 36157850 PMCID: PMC9492153 DOI: 10.1093/cdn/nzac118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Improving nutritional status during pregnancy is a global interest. Frequently, women either fail to meet or exceed nutrient recommendations. Current strategies to improve maternal nutrition focus on a "one-size-fits-all" approach and fail to consider individual factors that affect the mother's overall nutritional status. The objectives of this review were to determine the importance of key nutrients for optimal maternal and fetal health, to explore to what extent current recommendations consider individual factors, and to explore novel strategies to close the gap between current guidelines and real-world challenges through more personalized approaches. This review intercalated different nutritional guidelines and recent scientific publications and research initiatives related to maternal nutrition. Based on that, an overview of current recommendations, challenges related to present approaches, and perspectives for future directions are described. Current guidelines are not optimally supporting adequate nutrient intake and health of expectant mothers and their offspring. Existing recommendations are not consistent and do not sufficiently take into account how interindividual variation leads to differences in nutrient status. Personalized nutrition offers women the opportunity to improve their health by using strategies that are tailored to their unique nutritional needs. Such strategies can include personalized supplementation, holistic lifestyle interventions, digital and application-based technologies, and dietary assessment through blood biomarker and genetic analysis. However, these approaches warrant further investigation and optimization. More personalized approaches have the potential to optimize mothers' and their offspring's health outcomes more appropriately to their nutritional needs before, during, and after pregnancy. Moving away from a generalized "one-size-fits-all" approach can be achieved through a variety of means. Future aims should be to provide supporting evidence to create customized subpopulation-based or individualized recommendations, improve nutrition education, and develop novel approaches to improve adherence to dietary and lifestyle interventions.
Collapse
Affiliation(s)
- Lauren R Brink
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN, USA
| | - Tonya M Bender
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN, USA
| | - Rosalind Davies
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, Slough, UK
| | | | - Derek Miketinas
- Nutrition and Food Sciences, Texas Woman's University, Houston, TX, USA
| | - Neil Shah
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, Slough, UK
| | - Nik Loveridge
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, Slough, UK
| | - Gabriele Gross
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, Nijmegen, The Netherlands
| | - Neil Fawkes
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, Slough, UK
| |
Collapse
|
13
|
Bortz J, Klatt KC, Wallace TC. Perspective: Estrogen and the Risk of Cognitive Decline: A Missing Choline(rgic) Link? Adv Nutr 2021; 13:S2161-8313(22)00068-0. [PMID: 34849527 PMCID: PMC8970832 DOI: 10.1093/advances/nmab145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Factors that influence the risk of neurocognitive decline and Alzheimer's disease (AD) may provide insight into therapies for both disease treatment and prevention. While age is the most striking risk factor for AD, it is notable that the prevalence of AD is higher in women, representing two-thirds of cases. To explore potential underlying biological underpinnings of this observation, the intent of this article is to explore the interplay between cognitive aging and sex hormones, the cholinergic system, and novel hypotheses related to the essential nutrient, choline. Mechanistic evidence points toward estrogen's neuroprotective effects being strongly dependent on its interactions with the cholinergic system, a modulator of attentional functioning, learning, and memory. Estrogen has been shown to attenuate anticholinergic-induced impairments in verbal memory and normalize patterns of frontal and occipital cortex activation, resulting in a more "young adult" phenotype. However, similar to estrogen replacement's effect in cardiovascular diseases, its putative protective effects may be restricted to early postmenopausal women only, supportive of the "critical window hypothesis." Estrogen's impact on the cholinergic system may act both locally in the brain but also through peripheral tissues. Estrogen is critical for inducing endogenous choline synthesis via the phosphatidylethanolamine N-methyltransferase (PEMT) pathway of phosphatidylcholine (PC) synthesis. PEMT is dramatically induced in response to estrogen, producing not only a PC molecule and source of choline for the brain but also a key source of the long-chain omega-3 fatty acid, DHA. Herein, we highlight novel hypotheses related to hormone replacement therapy and nutrient metabolism aimed at directing future preclinical and clinical investigation.
Collapse
|
14
|
Martínez-Montoro JI, Cornejo-Pareja I, Gómez-Pérez AM, Tinahones FJ. Impact of Genetic Polymorphism on Response to Therapy in Non-Alcoholic Fatty Liver Disease. Nutrients 2021; 13:4077. [PMID: 34836332 PMCID: PMC8625016 DOI: 10.3390/nu13114077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
In the last decades, the global prevalence of non-alcoholic fatty liver disease (NAFLD) has reached pandemic proportions with derived major health and socioeconomic consequences; this tendency is expected to be further aggravated in the coming years. Obesity, insulin resistance/type 2 diabetes mellitus, sedentary lifestyle, increased caloric intake and genetic predisposition constitute the main risk factors associated with the development and progression of the disease. Importantly, the interaction between the inherited genetic background and some unhealthy dietary patterns has been postulated to have an essential role in the pathogenesis of NAFLD. Weight loss through lifestyle modifications is considered the cornerstone of the treatment for NAFLD and the inter-individual variability in the response to some dietary approaches may be conditioned by the presence of different single nucleotide polymorphisms. In this review, we summarize the current evidence on the influence of the association between genetic susceptibility and dietary habits in NAFLD pathophysiology, as well as the role of gene polymorphism in the response to lifestyle interventions and the potential interaction between nutritional genomics and other emerging therapies for NAFLD, such as bariatric surgery and several pharmacologic agents.
Collapse
Affiliation(s)
- José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010 Málaga, Spain; (J.I.M.-M.); (F.J.T.)
- Faculty of Medicine, University of Málaga, 29071 Málaga, Spain
| | - Isabel Cornejo-Pareja
- Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana María Gómez-Pérez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010 Málaga, Spain; (J.I.M.-M.); (F.J.T.)
| | - Francisco J. Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010 Málaga, Spain; (J.I.M.-M.); (F.J.T.)
- Faculty of Medicine, University of Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
15
|
Goh YQ, Cheam G, Wang Y. Understanding Choline Bioavailability and Utilization: First Step Toward Personalizing Choline Nutrition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10774-10789. [PMID: 34392687 DOI: 10.1021/acs.jafc.1c03077] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Choline is an essential macronutrient involved in neurotransmitter synthesis, cell-membrane signaling, lipid transport, and methyl-group metabolism. Nevertheless, the vast majority are not meeting the recommended intake requirement. Choline deficiency is linked to nonalcoholic fatty liver disease, skeletal muscle atrophy, and neurodegenerative diseases. The conversion of dietary choline to trimethylamine by gut microbiota is known for its association with atherosclerosis and may contribute to choline deficiency. Choline-utilizing bacteria constitutes less than 1% of the gut community and is modulated by lifestyle interventions such as dietary patterns, antibiotics, and probiotics. In addition, choline utilization is also affected by genetic factors, further complicating the impact of choline on health. This review overviews the complex interplay between dietary intakes of choline, gut microbiota and genetic factors, and the subsequent impact on health. Understanding of gut microbiota metabolism of choline substrates and interindividual variability is warranted in the development of personalized choline nutrition.
Collapse
Affiliation(s)
- Ying Qi Goh
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
| | - Guoxiang Cheam
- School of Biological Sciences, Nanyang Technological University, Singapore 639798
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
| |
Collapse
|
16
|
Bai U, Su X, Zheng Z, Zhang L, Ma Y, Dou Y, Zhang X, Su G, Li G, Zhang L. Comparative metabolomics analysis of Small-Tailed Han and DairyMeade ovine milk. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03840-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Smith SM, Virdee MS, Eckerle JK, Sandness KE, Georgieff MK, Boys CJ, Zeisel SH, Wozniak JR. Polymorphisms in SLC44A1 are associated with cognitive improvement in children diagnosed with fetal alcohol spectrum disorder: an exploratory study of oral choline supplementation. Am J Clin Nutr 2021; 114:617-627. [PMID: 33876196 PMCID: PMC8326038 DOI: 10.1093/ajcn/nqab081] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The essential nutrient choline provides one-carbon units for metabolite synthesis and epigenetic regulation in tissues including brain. Dietary choline intake is often inadequate, and higher intakes are associated with improved cognitive function. OBJECTIVE Choline supplements confer cognitive improvement for those diagnosed with fetal alcohol spectrum disorder (FASD), a common set of neurodevelopmental impairments; however, the effect sizes have been modest. In this retrospective analysis, we report that genetic polymorphisms affecting choline utilization are associated with cognitive improvement following choline intervention. METHODS Fifty-two children from the upper midwestern United States and diagnosed with FASD, ages 2-5 y, were randomly assigned to receive choline (500 mg/d; n = 26) or placebo (n = 26) for 9 mo, and were genotyped for 384 choline-related single nucleotide polymorphisms (SNPs). Memory and cognition were assessed at enrollment, study terminus, and at 4-y follow-up for a subset. RESULTS When stratified by intervention (choline vs. placebo), 14-16 SNPs within the cellular choline transporter gene solute carrier family 44 member 1 (SLC44A1) were significantly associated with performance in an elicited imitation sequential memory task, wherein the effect alleles were associated with the greatest pre-/postintervention improvement. Of these, rs3199966 is a structural variant (S644A) and rs2771040 is a single-nucleotide variant within the 3' untranslated region of the plasma membrane isoform. An additive genetic model best explained the genotype associations. Lesser associations were observed for cognitive outcome and polymorphisms in flavin monooxygenase-3 (FMO3), methylenetetrahydrofolate dehydrogenase-1 (MTHFD1), fatty acid desaturase-2 (FADS2), and adiponectin receptor 1 (ADIPOR1). CONCLUSIONS These SLC44A1 variants were previously associated with greater vulnerability to choline deficiency. Our data potentially support the use of choline supplements to improve cognitive function in individuals diagnosed with FASD who carry these effect alleles. Although these findings require replication in both retrospective and prospective confirmatory trials, they emphasize the need to incorporate similar genetic analyses of choline-related polymorphisms in other FASD-choline trials, and to test for similar associations within the general FASD population. This trial was registered at www.clinicaltrials.gov as NCT01149538.
Collapse
Affiliation(s)
| | - Manjot S Virdee
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Judith K Eckerle
- Department of Pediatrics, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Kristin E Sandness
- Department of Pediatrics, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Michael K Georgieff
- Department of Pediatrics, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Christopher J Boys
- Department of Pediatrics, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Steven H Zeisel
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA,Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Jeffrey R Wozniak
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
18
|
Vanderhout SM, Rastegar Panah M, Garcia-Bailo B, Grace-Farfaglia P, Samsel K, Dockray J, Jarvi K, El-Sohemy A. Nutrition, genetic variation and male fertility. Transl Androl Urol 2021; 10:1410-1431. [PMID: 33850777 PMCID: PMC8039611 DOI: 10.21037/tau-20-592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Infertility affects nearly 50 million couples worldwide, with 40-50% of cases having a male factor component. It is well established that nutritional status impacts reproductive development, health and function, although the exact mechanisms have not been fully elucidated. Genetic variation that affects nutrient metabolism may impact fertility through nutrigenetic mechanisms. This review summarizes current knowledge on the role of several dietary components (vitamins A, B12, C, D, E, folate, betaine, choline, calcium, iron, caffeine, fiber, sugar, dietary fat, and gluten) in male reproductive health. Evidence of gene-nutrient interactions and their potential effect on fertility is also examined. Understanding the relationship between genetic variation, nutrition and male fertility is key to developing personalized, DNA-based dietary recommendations to enhance the fertility of men who have difficulty conceiving.
Collapse
Affiliation(s)
| | | | | | | | - Konrad Samsel
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Judith Dockray
- Murray Koffler Urologic Wellness Centre, Department of Urology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Keith Jarvi
- Murray Koffler Urologic Wellness Centre, Department of Urology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Zhu J, Liu YH, He XL, Kohlmeier M, Zhou LL, Shen LW, Yi XX, Tang QY, Cai W, Wang B. Dietary Choline Intake during Pregnancy and PEMT rs7946 Polymorphism on Risk of Preterm Birth: A Case-Control Study. ANNALS OF NUTRITION AND METABOLISM 2021; 76:431-440. [PMID: 33503637 DOI: 10.1159/000507472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/24/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION AND AIMS Choline-metabolizing genetic variation may interact with choline intake on fetal programming and pregnancy outcome. This case-control study aims to explore the association of maternal choline consumption and phosphatidylethanolamine N-methyltransferase (PEMT) gene polymorphism rs7946 with preterm birth risk. METHODS 145 Han Chinese women with preterm delivery and 157 Han Chinese women with term delivery were recruited in Shanghai. Dietary choline intake during pregnancy was assessed using a validated food frequency questionnaire. Additionally, DNA samples were genotyped for PEMT rs7946 (G5465A) with plasma homocysteine (Hcy) levels measured. RESULTS Compared with the lowest quartile of choline intake, women within the highest consumption quartile had adjusted odds ratio (aOR) for preterm birth of 0.48 (95% confidence interval, CI [0.24, 0.95]). There was a significant interaction between maternal choline intake and PEMT rs7946 (p for interaction = 0.04), where the AA genotype carriers who consumed the energy-adjusted choline <255.01 mg/day had aOR for preterm birth of 3.75 (95% CI [1.24, 11.35]), compared to those with GG genotype and choline intake >255.01 mg/day during pregnancy. Additionally, the greatest elevated plasma Hcy was found in the cases with AA genotype and choline consumption <255.01 mg/day (p < 0.001). CONCLUSION The AA genotype of PEMT rs7946 may be associated with increased preterm birth in these Han Chinese women with low choline intake during pregnancy.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, Texas, USA.,Department of Clinical Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Hong Liu
- Department of Gynaecology and Obstetrics, Shanghai Seventh People's Hospital, Shanghai, China
| | - Xiang-Long He
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Martin Kohlmeier
- Human Research Core and Nutrigenetics Laboratory, UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Li-Li Zhou
- Department of Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Wei Shen
- Department of Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Xuan Yi
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Ya Tang
- Department of Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Cai
- Department of Clinical Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Bei Wang
- Department of Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| |
Collapse
|
20
|
Ilozumba MN, Cheng TYD, Neuhouser ML, Miller JW, Beresford SAA, Duggan DJ, Toriola AT, Song X, Zheng Y, Bailey LB, Shadyab AH, Liu S, Malysheva O, Caudill MA, Ulrich CM. Associations between Plasma Choline Metabolites and Genetic Polymorphisms in One-Carbon Metabolism in Postmenopausal Women: The Women's Health Initiative Observational Study. J Nutr 2020; 150:2874-2881. [PMID: 32939549 PMCID: PMC7675024 DOI: 10.1093/jn/nxaa266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/12/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Choline plays an integral role in one-carbon metabolism in the body, but it is unclear whether genetic polymorphisms are associated with variations in plasma choline and its metabolites. OBJECTIVES This study aimed to evaluate the association of genetic variants in choline and one-carbon metabolism with plasma choline and its metabolites. METHODS We analyzed data from 1423 postmenopausal women in a case-control study nested within the Women's Health Initiative Observational Study. Plasma concentrations of choline, betaine, dimethylglycine (DMG), and trimethylamine N-oxide were determined in 12-h fasting blood samples collected at baseline (1993-1998). Candidate and tagging single-nucleotide polymorphisms (SNPs) were genotyped in betaine-homocysteine S-methyltransferase (BHMT), BHMT2, 5,10-methylenetetrahydrofolate reductase (MTHFR), methylenetetrahydrofolate dehydrogenase (NADP+ dependent 1) (MTHFD1), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), and 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR). Linear regression was used to derive percentage difference in plasma concentrations per variant allele, adjusting for confounders, including B-vitamin biomarkers. Potential effect modification by plasma vitamin B-12, vitamin B-6, and folate concentrations and folic-acid fortification periods was examined. RESULTS The candidate SNP BHMT R239Q (rs3733890) was associated with lower concentrations of plasma betaine and DMG concentrations (-4.00% and -6.75% per variant allele, respectively; both nominal P < 0.05). Another candidate SNP, BHMT2 rs626105 A>G, was associated with higher plasma DMG concentration (13.0%; P < 0.0001). Several tagSNPs in these 2 genes were associated with plasma concentrations after correction for multiple comparisons. Vitamin B-12 status was a significant effect modifier of the association between the genetic variant BHMT2 rs626105 A>G and plasma DMG concentration. CONCLUSIONS Genetic variations in metabolic enzymes were associated with plasma concentrations of choline and its metabolites. Our findings contribute to the knowledge on the variation in blood nutrient concentrations in postmenopausal women.
Collapse
Affiliation(s)
| | - Ting-Yuan D Cheng
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Marian L Neuhouser
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Joshua W Miller
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Shirley A A Beresford
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - David J Duggan
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Adetunji T Toriola
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoling Song
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yingye Zheng
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Lynn B Bailey
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Aladdin H Shadyab
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Simin Liu
- Department of Epidemiology, Brown University, Providence, RI, USA
- Department of Medicine, Brown University, Providence, RI, USA
| | - Olga Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
21
|
Bernhard W. Choline in cystic fibrosis: relations to pancreas insufficiency, enterohepatic cycle, PEMT and intestinal microbiota. Eur J Nutr 2020; 60:1737-1759. [PMID: 32797252 DOI: 10.1007/s00394-020-02358-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cystic Fibrosis (CF) is an autosomal recessive disorder with life-threatening organ manifestations. 87% of CF patients develop exocrine pancreas insufficiency, frequently starting in utero and requiring lifelong pancreatic enzyme substitution. 99% develop progressive lung disease, and 20-60% CF-related liver disease, from mild steatosis to cirrhosis. Characteristically, pancreas, liver and lung are linked by choline metabolism, a critical nutrient in CF. Choline is a tightly regulated tissue component in the form of phosphatidylcholine (Ptd'Cho) and sphingomyelin (SPH) in all membranes and many secretions, particularly of liver (bile, lipoproteins) and lung (surfactant, lipoproteins). Via its downstream metabolites, betaine, dimethylglycine and sarcosine, choline is the major one-carbon donor for methionine regeneration from homocysteine. Methionine is primarily used for essential methylation processes via S-adenosyl-methionine. CLINICAL IMPACT CF patients with exocrine pancreas insufficiency frequently develop choline deficiency, due to loss of bile Ptd'Cho via feces. ~ 50% (11-12 g) of hepatic Ptd'Cho is daily secreted into the duodenum. Its re-uptake requires cleavage to lyso-Ptd'Cho by pancreatic and small intestinal phospholipases requiring alkaline environment. Impaired CFTR-dependent bicarbonate secretion, however, results in low duodenal pH, impaired phospholipase activity, fecal Ptd'Cho loss and choline deficiency. Low plasma choline causes decreased availability for parenchymal Ptd'Cho metabolism, impacting on organ functions. Choline deficiency results in hepatic choline/Ptd'Cho accretion from lung tissue via high density lipoproteins, explaining the link between choline deficiency and lung function. Hepatic Ptd'Cho synthesis from phosphatidylethanolamine by phosphatidylethanolamine-N-methyltransferase (PEMT) partly compensates for choline deficiency, but frequent single nucleotide polymorphisms enhance choline requirement. Additionally, small intestinal bacterial overgrowth (SIBO) frequently causes intraluminal choline degradation in CF patients prior to its absorption. As adequate choline supplementation was clinically effective and adult as well as pediatric CF patients suffer from choline deficiency, choline supplementation in CF patients of all ages should be evaluated.
Collapse
Affiliation(s)
- Wolfgang Bernhard
- Department of Neonatology, University Children's Hospital, Faculty of Medicine, Eberhard-Karls-University, Calwer Straße 7, 72076, Tübingen, Germany.
| |
Collapse
|
22
|
Xu M, Xue RQ, Lu Y, Yong SY, Wu Q, Cui YL, Zuo XT, Yu XJ, Zhao M, Zang WJ. Choline ameliorates cardiac hypertrophy by regulating metabolic remodelling and UPRmt through SIRT3-AMPK pathway. Cardiovasc Res 2020; 115:530-545. [PMID: 30165480 DOI: 10.1093/cvr/cvy217] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/01/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023] Open
Abstract
AIMS Cardiac hypertrophy is characterized by a shift in metabolic substrate utilization, but the molecular events underlying the metabolic remodelling remain poorly understood. We explored metabolic remodelling and mitochondrial dysfunction in cardiac hypertrophy and investigated the cardioprotective effects of choline. METHODS AND RESULTS The experiments were conducted using a model of ventricular hypertrophy by partially banding the abdominal aorta of Sprague Dawley rats. Cardiomyocyte size and cardiac fibrosis were significantly increased in hypertrophic hearts. In vitro cardiomyocyte hypertrophy was induced by exposing neonatal rat cardiomyocytes to angiotensin II (Ang II) (10-6 M, 24 h). Choline attenuated the mito-nuclear protein imbalance and activated the mitochondrial-unfolded protein response (UPRmt) in the heart, thereby preserving the ultrastructure and function of mitochondria in the context of cardiac hypertrophy. Moreover, choline inhibited myocardial metabolic dysfunction by promoting the expression of proteins involved in ketone body and fatty acid metabolism in response to pressure overload, accompanied by the activation of sirtuin 3/AMP-activated protein kinase (SIRT3-AMPK) signalling. In vitro analyses demonstrated that SIRT3 siRNA diminished choline-mediated activation of ketone body metabolism and UPRmt, as well as inhibition of hypertrophic signals. Intriguingly, serum from choline-treated abdominal aorta banding models (where β-hydroxybutyrate was increased) attenuated Ang II-induced myocyte hypertrophy, which indicates that β-hydroxybutyrate is important for the cardioprotective effects of choline. CONCLUSION Choline attenuated cardiac dysfunction by modulating the expression of proteins involved in ketone body and fatty acid metabolism, and induction of UPRmt; this was likely mediated by activation of the SIRT3-AMPK pathway. Taken together, these results identify SIRT3-AMPK as a key cardiac transcriptional regulator that helps orchestrate an adaptive metabolic response to cardiac stress. Choline treatment may represent a new therapeutic strategy for optimizing myocardial metabolism in the context of hypertrophy and heart failure.
Collapse
Affiliation(s)
- Man Xu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shannxi, PR China
| | - Run-Qing Xue
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shannxi, PR China
| | - Yi Lu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shannxi, PR China
| | - Su-Yun Yong
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shannxi, PR China
| | - Qing Wu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shannxi, PR China
| | - Yan-Ling Cui
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shannxi, PR China
| | - Xiao-Ting Zuo
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shannxi, PR China
| | - Xiao-Jiang Yu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shannxi, PR China
| | - Ming Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shannxi, PR China
| | - Wei-Jin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shannxi, PR China
| |
Collapse
|
23
|
Zeisel SH. Precision (Personalized) Nutrition: Understanding Metabolic Heterogeneity. Annu Rev Food Sci Technol 2020; 11:71-92. [DOI: 10.1146/annurev-food-032519-051736] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
People differ in their requirements for and responses to nutrients and bioactive molecules in the diet. Many inputs contribute to metabolic heterogeneity (including variations in genetics, epigenetics, microbiome, lifestyle, diet intake, and environmental exposure). Precision nutrition is not about developing unique prescriptions for individual people but rather about stratifying people into different subgroups of the population on the basis of biomarkers of the above-listed sources of metabolic variation and then using this stratification to better estimate the different subgroups’ dietary requirements, thereby enabling better dietary recommendations and interventions. The hope is that we will be able to subcategorize people into ever-smaller groups that can be targeted in terms of recommendations, but we will never achieve this at the individual level, thus, the choice of precision nutrition rather than personalized nutrition to designate this new field. This review focuses mainly on genetically related sources of metabolic heterogeneity and identifies challenges that need to be overcome to achieve a full understanding of the complex interactions between the many sources of metabolic heterogeneity that make people differ from one another in their requirements for and responses to foods. It also discusses the commercial applications of precision nutrition.
Collapse
Affiliation(s)
- Steven H. Zeisel
- Nutrition Research Institute, Department of Nutrition, University of North Carolina, Kannapolis, North Carolina 28081, USA
| |
Collapse
|
24
|
Orozco JS, Hertz-Picciotto I, Abbeduto L, Slupsky CM. Metabolomics analysis of children with autism, idiopathic-developmental delays, and Down syndrome. Transl Psychiatry 2019; 9:243. [PMID: 31582732 PMCID: PMC6776514 DOI: 10.1038/s41398-019-0578-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
Although developmental delays affect learning, language, and behavior, some evidence suggests the presence of disturbances in metabolism are associated with psychiatric disorders. Here, the plasma metabolic phenotype of children with autism spectrum disorder (ASD, n = 167), idiopathic-developmental delay (i-DD, n = 51), and Down syndrome (DS, n = 31), as compared to typically developed (TD, n = 193) controls was investigated in a subset of children from the case-control Childhood Autism Risk from Genetics and the Environment (CHARGE) Study. Metabolome profiles were obtained using nuclear magnetic resonance spectroscopy and analyzed in an untargeted manner. Forty-nine metabolites were identified and quantified in each sample that included amino acids, organic acids, sugars, and other compounds. Multiple linear regression analysis revealed significant associations between 11 plasma metabolites and neurodevelopmental outcome. Despite the varied origins of these developmental disabilities, we observed similar perturbation in one-carbon metabolism pathways among DS and ASD cases. Similarities were also observed in the DS and i-DD cases in the energy-related tricarboxylic acid cycle. Other metabolites and pathways were uniquely associated with DS or ASD. By comparing metabolic signatures between these conditions, the current study expands on extant literature demonstrating metabolic alterations associated with developmental disabilities and provides a better understanding of overlapping vs specific biological perturbations associated with these disorders.
Collapse
Affiliation(s)
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, CA, 95616, USA
| | - Leonard Abbeduto
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, 95616, USA
- MIND Institute, University of California, Davis, CA, 95817, USA
| | - Carolyn M Slupsky
- Department of Nutrition, University of California, Davis, CA, 95616, USA.
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
25
|
Männistö V, Kaminska D, Kärjä V, Tiainen M, de Mello VD, Hanhineva K, Soininen P, Ala-Korpela M, Pihlajamäki J. Total liver phosphatidylcholine content associates with non-alcoholic steatohepatitis and glycine N-methyltransferase expression. Liver Int 2019; 39:1895-1905. [PMID: 31199045 DOI: 10.1111/liv.14174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Alterations in liver phosphatidylcholine (PC) metabolism have been implicated in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Although genetic variation in the phosphatidylethanolamine N-methyltransferase (PEMT) enzyme synthesizing PC has been associated with disease, the functional mechanism linking PC metabolism to the pathogenesis of non-alcoholic steatohepatitis (NASH) remains unclear. METHODS Serum PC levels and liver PC contents were measured using proton nuclear magnetic resonance (NMR) spectroscopy in 169 obese individuals [age 46.6 ± 10 (mean ± SD) years, BMI 43.3 ± 6 kg/m2 , 53 men and 116 women] with histological assessment of NAFLD; 106 of these had a distinct liver phenotype. All subjects were genotyped for PEMT rs7946 and liver mRNA expression of PEMT and glycine N-methyltransferase (GNMT) was analysed. RESULTS Liver PC content was lower in those with NASH (P = 1.8 x 10-6 ) while serum PC levels did not differ between individuals with NASH and normal liver (P = 0.591). Interestingly, serum and liver PC did not correlate (rs = -0.047, P = 0.557). Serum PC and serum cholesterol levels correlated strongly (rs = 0.866, P = 7.1 x 10-49 ), while liver PC content did not correlate with serum cholesterol (rs = 0.065, P = 0.413). Neither PEMT V175M genotype nor PEMT expression explained the association between liver PC content and NASH. Instead, liver GNMT mRNA expression was decreased in those with NASH (P = 3.8 x 10-4 ) and correlated with liver PC content (rs = 0.265, P = 0.001). CONCLUSIONS Decreased liver PC content in individuals with the NASH is independent of PEMT V175M genotype and could be partly linked to decreased GNMT expression.
Collapse
Affiliation(s)
- Ville Männistö
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Dorota Kaminska
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Vesa Kärjä
- Department of Pathology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Mika Tiainen
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Vanessa D de Mello
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,LC-MS Metabolomics Center, Biocenter Kuopio, Kuopio, Finland
| | - Pasi Soininen
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Mika Ala-Korpela
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,Systems Epidemiology, Baker Heart and Diabetes Institute, Melbourne, Vic., Australia.,Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK.,Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.,Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, The Alfred Hospital, Monash University, Melbourne, Vic., Australia
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
26
|
Moore CJ, Perreault M, Mottola MF, Atkinson SA. Diet in Early Pregnancy: Focus on Folate, Vitamin B12, Vitamin D, and Choline. CAN J DIET PRACT RES 2019; 81:58-65. [PMID: 31512510 DOI: 10.3148/cjdpr-2019-025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Purpose: Prenatal multivitamins are recommended in pregnancy. This study assessed food and supplement intakes of folate, vitamin B12 (B12), vitamin D, and choline in pregnant women living in Southern Ontario in comparison with current recommendations. Methods: Women recruited to the Be Healthy in Pregnancy RCT (NCT01693510) completed 3-day diet/supplement records at 12-17 weeks gestation. Intakes of folate, B12, vitamin D, and choline were quantified and compared with recommendations for pregnant women. Results: Folate intake (median (min, max)) was 1963 μg/day dietary folate equivalents (153, 10 846); 90% of women met the Estimated Average Requirement (EAR) but 77% exceeded the Tolerable Upper Intake Level (UL) (n = 232). B12 intake was 12.1 μg/day (0.3, 2336); 96% of women met the EAR with 7% exceeding the EAR 100-fold (n = 232). Vitamin D intake was 564 IU/day (0.0, 11 062); 83% met the EAR, whereas 1.7% exceeded the UL (n = 232). Choline intake was 338 mg/day (120, 1016); only 18% met the Adequate Intake and none exceeded the UL (n = 158). Conclusion: To meet the nutrient requirements of pregnancy many women rely on prenatal vitamins. Reformulating prenatal multivitamin supplements to provide doses of vitamins within recommendations to complement a balanced healthy diet would ensure appropriate micronutrient intakes for pregnant women.
Collapse
|
27
|
Choline: Exploring the Growing Science on Its Benefits for Moms and Babies. Nutrients 2019; 11:nu11081823. [PMID: 31394787 PMCID: PMC6722688 DOI: 10.3390/nu11081823] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022] Open
Abstract
The importance of ensuring adequate choline intakes during pregnancy is increasingly recognized. Choline is critical for a number of physiological processes during the prenatal period with roles in membrane biosynthesis and tissue expansion, neurotransmission and brain development, and methyl group donation and gene expression. Studies in animals and humans have shown that supplementing the maternal diet with additional choline improves several pregnancy outcomes and protects against certain neural and metabolic insults. Most pregnant women in the U.S. are not achieving choline intake recommendations of 450 mg/day and would likely benefit from boosting their choline intakes through dietary and/or supplemental approaches.
Collapse
|
28
|
Mazidi M, Katsiki N, Mikhailidis DP, Banach M. Adiposity May Moderate the Link Between Choline Intake and Non-alcoholic Fatty Liver Disease. J Am Coll Nutr 2019; 38:633-639. [PMID: 31305223 DOI: 10.1080/07315724.2018.1507011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background: In animal models, histological and biochemical changes are observed in response to choline deficiency. It is unclear whether dietary choline is linked to non-alcoholic fatty liver disease (NAFLD). Objective: We examined the link among liver tests, fatty liver index (FLI), and choline consumption. Furthermore, we evaluated the impact of adiposity on this association. Method: The National Health and Nutrition Examination Survey (NHANES) was used to obtain data on choline intake and liver function biomarkers. Masked variance and weighting methodology were performed to account for the complex NHANES data. Results: Of the 20,643 participants, 46.8% were men and 45.6% had NAFLD (defined as United States FLI ≥30). In a fully adjusted model (for demographic, dietary, and clinical factors), a significant negative association was found between FLI and choline consumption (β = -0.206, p < 0.001). Participants in the highest quartile (Q4) of choline intake had a 14% lower risk of NAFLD compared with those in the first quartile (Q1). This link was stronger for postmenopausal women; women in Q4 had a 26% lower risk of NAFLD compared with those in Q1. Body mass index (BMI) strongly moderated the link between FLI and choline intake. For example, when choline consumption increased from low (272 mg/d) to high (356 mg/d), FLI decreased from 79.3 to 74.1 in the low BMI category (mean BMI = 22.1 kg/m2) and from 32.1 to 20.6 in the high BMI category (mean BMI =35.9 kg/m2). Conclusions: Our results suggest the presence of a reverse significant association between choline intake and risk of NAFLD. Furthermore, BMI was shown to mediate this relationship since changes in FLI, in relation to choline consumption, were more pronounced in participants with a higher BMI.
Collapse
Affiliation(s)
- Mohsen Mazidi
- Key State Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Chaoyang , Beijing , China
| | - Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital , Thessaloniki , Greece
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London (UCL) , London , UK
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz , Poland.,Polish Mother's Memorial Hospital Research Institute (PMMHRI) , Lodz , Poland.,Cardiovascular Research Centre, University of Zielona Gora , Zielona Gora , Poland
| |
Collapse
|
29
|
King JH, Kwan STC, Bae S, Klatt KC, Yan J, Malysheva OV, Jiang X, Roberson MS, Caudill MA. Maternal choline supplementation alters vitamin B-12 status in human and murine pregnancy. J Nutr Biochem 2019; 72:108210. [PMID: 31473512 DOI: 10.1016/j.jnutbio.2019.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/26/2019] [Accepted: 07/02/2019] [Indexed: 12/28/2022]
Abstract
Despite participation in overlapping metabolic pathways, the relationship between choline and vitamin B-12 has not been well characterized especially during pregnancy. We sought to determine the effects of maternal choline supplementation on vitamin B-12 status biomarkers in human and mouse pregnancy, hypothesizing that increased choline intake would improve vitamin B-12 status. Associations between common genetic variants in choline-metabolizing genes and vitamin B-12 status biomarkers were also explored in humans. Healthy third-trimester pregnant women (n=26) consumed either 480 or 930 mg choline/day as part of a 12-week controlled feeding study. Wild-type NSA and Dlx3 heterozygous (Dlx3+/-) mice, which display placental insufficiency, consumed a 1×, 2× or 4× choline diet and were sacrificed at gestational days 15.5 and 18.5. Serum vitamin B-12, methylmalonic acid (MMA) and homocysteine were measured in all samples; holotranscobalamin (in humans) and hepatic vitamin B-12 (in mice) were also measured. The 2× choline supplementation for 12 weeks in pregnant women yielded higher serum concentrations of holotranscobalamin, the bioactive form of vitamin B-12 (~24%, P=.01). Women with genetic variants in choline dehydrogenase (CHDH) and betaine-homocysteine S-methyltransferase (BHMT) had higher serum MMA concentrations (~31%, P=.03) and lower serum holotranscobalamin concentrations (~34%, P=.03), respectively. The 4× choline dose decreased serum homocysteine concentrations in both NSA and Dlx3+/- mice (~36% and~43% respectively, P≤.015). In conclusion, differences in choline supply due to supplementation or genetic variation modulate vitamin B-12 status during pregnancy, supporting a functional relationship between these nutrients.
Collapse
Affiliation(s)
- Julia H King
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | | | - Sajin Bae
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Kevin C Klatt
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Jian Yan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Olga V Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Xinyin Jiang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY; Department of Health and Nutrition Sciences, Brooklyn College, Brooklyn, NY
| | - Mark S Roberson
- Department of Biomedical Sciences, Cornell University, Ithaca, NY.
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY.
| |
Collapse
|
30
|
Choline and DHA in Maternal and Infant Nutrition: Synergistic Implications in Brain and Eye Health. Nutrients 2019; 11:nu11051125. [PMID: 31117180 PMCID: PMC6566660 DOI: 10.3390/nu11051125] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/06/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022] Open
Abstract
The aim of this review is to highlight current insights into the roles of choline and docosahexaenoic acid (DHA) in maternal and infant nutrition, with special emphasis on dietary recommendations, gaps in dietary intake, and synergistic implications of both nutrients in infant brain and eye development. Adequate choline and DHA intakes are not being met by the vast majority of US adults, and even more so by women of child-bearing age. Choline and DHA play a significant role in infant brain and eye development, with inadequate intakes leading to visual and neurocognitive deficits. Emerging findings illustrate synergistic interactions between choline and DHA, indicating that insufficient intakes of one or both could have lifelong deleterious impacts on both maternal and infant health.
Collapse
|
31
|
Chmurzynska A, Seremak‐Mrozikiewicz A, Malinowska AM, Różycka A, Radziejewska A, KurzawiŃska G, Barlik M, Wolski H, Drews K. Associations between folate and choline intake, homocysteine metabolism, and genetic polymorphism of
MTHFR, BHMT
and
PEMT
in healthy pregnant Polish women. Nutr Diet 2019; 77:368-372. [DOI: 10.1111/1747-0080.12549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Agata Chmurzynska
- Institute of Human Nutrition and DieteticsPoznań University of Life Sciences Poznań Poland
| | - Agnieszka Seremak‐Mrozikiewicz
- Division of Perinatology and Women's DiseasesPoznań University of Medical Sciences Poznań Poland
- Laboratory of Molecular Biology, Division of Perinatology and Women's DiseasesPoznań University of Medical Sciences Poznań Poland
| | - Anna M. Malinowska
- Institute of Human Nutrition and DieteticsPoznań University of Life Sciences Poznań Poland
| | - Agata Różycka
- Department of Biochemistry and Molecular BiologyPoznań University of Medical Sciences Poznań Poland
| | - Anna Radziejewska
- Institute of Human Nutrition and DieteticsPoznań University of Life Sciences Poznań Poland
| | - Grażyna KurzawiŃska
- Division of Perinatology and Women's DiseasesPoznań University of Medical Sciences Poznań Poland
- Laboratory of Molecular Biology, Division of Perinatology and Women's DiseasesPoznań University of Medical Sciences Poznań Poland
| | - Magdalena Barlik
- Division of Perinatology and Women's DiseasesPoznań University of Medical Sciences Poznań Poland
- Laboratory of Molecular Biology, Division of Perinatology and Women's DiseasesPoznań University of Medical Sciences Poznań Poland
| | - Hubert Wolski
- Division of Perinatology and Women's DiseasesPoznań University of Medical Sciences Poznań Poland
- Division of Gynecology and ObstetricsPodhale Multidisciplinary Hospital Nowy Targ Poland
| | - Krzysztof Drews
- Division of Perinatology and Women's DiseasesPoznań University of Medical Sciences Poznań Poland
- Laboratory of Molecular Biology, Division of Perinatology and Women's DiseasesPoznań University of Medical Sciences Poznań Poland
| |
Collapse
|
32
|
Zeisel SH. A Conceptual Framework for Studying and Investing in Precision Nutrition. Front Genet 2019; 10:200. [PMID: 30936893 PMCID: PMC6431609 DOI: 10.3389/fgene.2019.00200] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 02/25/2019] [Indexed: 12/15/2022] Open
Abstract
Nutrients and food-derived bioactive molecules must transit complex metabolic pathways, and these pathways vary between people. Metabolic heterogeneity is caused by genetic variation, epigenetic variation, differences in microbiome composition and function, lifestyle differences and by variation in environmental exposures. This review discusses a number of these sources of metabolic heterogeneity and presents some of the research investments that will be needed to make applications of precision nutrition practical.
Collapse
Affiliation(s)
- Steven H Zeisel
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| |
Collapse
|
33
|
Choline Supplementation in Cystic Fibrosis-The Metabolic and Clinical Impact. Nutrients 2019; 11:nu11030656. [PMID: 30889905 PMCID: PMC6471815 DOI: 10.3390/nu11030656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Choline is essential for the synthesis of liver phosphatidylcholine (PC), parenchymal maintenance, bile formation, and lipoprotein assembly to secrete triglycerides. In choline deficiency, the liver accretes choline/PC at the expense of lung tissue, thereby impairing pulmonary PC homoeostasis. In cystic fibrosis (CF), exocrine pancreas insufficiency results in impaired cleavage of bile PC and subsequent fecal choline loss. In these patients, the plasma choline concentration is low and correlates with lung function. We therefore investigated the effect of choline supplementation on plasma choline/PC concentration and metabolism, lung function, and liver fat. Methods: 10 adult male CF patients were recruited (11/2014–1/2016), and orally supplemented with 3 × 1 g choline chloride for 84 (84–91) days. Pre-/post-supplementation, patients were spiked with 3.6 mg/kg [methyl-D9]choline chloride to assess choline/PC metabolism. Mass spectrometry, spirometry, and hepatic nuclear resonance spectrometry served for analysis. Results: Supplementation increased plasma choline from 4.8 (4.1–6.2) µmol/L to 10.5 (8.5–15.5) µmol/L at d84 (p < 0.01). Whereas plasma PC concentration remained unchanged, D9-labeled PC was decreased (12.2 [10.5–18.3] µmol/L vs. 17.7 [15.5–22.4] µmol/L, p < 0.01), indicating D9-tracer dilution due to higher choline pools. Supplementation increased Forced Expiratory Volume in 1 second percent of predicted (ppFEV1) from 70.0 (50.9–74.8)% to 78.3 (60.1–83.9)% (p < 0.05), and decreased liver fat from 1.58 (0.37–8.82)% to 0.84 (0.56–1.17)% (p < 0.01). Plasma choline returned to baseline concentration within 60 h. Conclusions: Choline supplementation normalized plasma choline concentration and increased choline-containing PC precursor pools in adult CF patients. Improved lung function and decreased liver fat suggest that in CF correcting choline deficiency is clinically important. Choline supplementation of CF patients should be further investigated in randomized, placebo-controlled trials.
Collapse
|
34
|
Guest NS, Horne J, Vanderhout SM, El-Sohemy A. Sport Nutrigenomics: Personalized Nutrition for Athletic Performance. Front Nutr 2019; 6:8. [PMID: 30838211 PMCID: PMC6389634 DOI: 10.3389/fnut.2019.00008] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
An individual's dietary and supplement strategies can influence markedly their physical performance. Personalized nutrition in athletic populations aims to optimize health, body composition, and exercise performance by targeting dietary recommendations to an individual's genetic profile. Sport dietitians and nutritionists have long been adept at placing additional scrutiny on the one-size-fits-all general population dietary guidelines to accommodate various sporting populations. However, generic "one-size-fits-all" recommendations still remain. Genetic differences are known to impact absorption, metabolism, uptake, utilization and excretion of nutrients and food bioactives, which ultimately affects a number of metabolic pathways. Nutrigenomics and nutrigenetics are experimental approaches that use genomic information and genetic testing technologies to examine the role of individual genetic differences in modifying an athlete's response to nutrients and other food components. Although there have been few randomized, controlled trials examining the effects of genetic variation on performance in response to an ergogenic aid, there is a growing foundation of research linking gene-diet interactions on biomarkers of nutritional status, which impact exercise and sport performance. This foundation forms the basis from which the field of sport nutrigenomics continues to develop. We review the science of genetic modifiers of various dietary factors that impact an athlete's nutritional status, body composition and, ultimately athletic performance.
Collapse
Affiliation(s)
- Nanci S Guest
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Nutrigenomix Inc., Toronto, ON, Canada
| | - Justine Horne
- Department of Health and Rehabilitation Sciences, University of Western Ontario, London, ON, Canada
| | - Shelley M Vanderhout
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Nutrigenomix Inc., Toronto, ON, Canada
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Nutrigenomix Inc., Toronto, ON, Canada
| |
Collapse
|
35
|
Hedtke V, Bakovic M. Choline transport for phospholipid synthesis: An emerging role of choline transporter-like protein 1. Exp Biol Med (Maywood) 2019; 244:655-662. [PMID: 30776907 DOI: 10.1177/1535370219830997] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
IMPACT STATEMENT This review will provide a summary of recent advances in choline transport research and highlight important novel areas of focus in the field.
Collapse
Affiliation(s)
- Vera Hedtke
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
36
|
Dietary Choline Intake: Current State of Knowledge Across the Life Cycle. Nutrients 2018; 10:nu10101513. [PMID: 30332744 PMCID: PMC6213596 DOI: 10.3390/nu10101513] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/10/2018] [Accepted: 10/13/2018] [Indexed: 12/13/2022] Open
Abstract
Choline, an essential dietary nutrient for humans, is required for the synthesis of the neurotransmitter, acetylcholine, the methyl group donor, betaine, and phospholipids; and therefore, choline is involved in a broad range of critical physiological functions across all stages of the life cycle. The current dietary recommendations for choline have been established as Adequate Intakes (AIs) for total choline; however, dietary choline is present in multiple different forms that are both water-soluble (e.g., free choline, phosphocholine, and glycerophosphocholine) and lipid-soluble (e.g., phosphatidylcholine and sphingomyelin). Interestingly, the different dietary choline forms consumed during infancy differ from those in adulthood. This can be explained by the primary food source, where the majority of choline present in human milk is in the water-soluble form, versus lipid-soluble forms for foods consumed later on. This review summarizes the current knowledge on dietary recommendations and assessment methods, and dietary choline intake from food sources across the life cycle.
Collapse
|
37
|
Choline and choline-related nutrients in regular and preterm infant growth. Eur J Nutr 2018; 58:931-945. [PMID: 30298207 DOI: 10.1007/s00394-018-1834-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/22/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Choline is an essential nutrient, with increased requirements during development. It forms the headgroup of phosphatidylcholine and sphingomyelin in all membranes and many secretions. Phosphatidylcholine is linked to cell signaling as a phosphocholine donor to synthesize sphingomyelin from ceramide, a trigger of apoptosis, and is the major carrier of arachidonic and docosahexaenoic acid in plasma. Acetylcholine is important for neurodevelopment and the placental storage form for fetal choline supply. Betaine, a choline metabolite, functions as osmolyte and methyl donor. Their concentrations are all tightly regulated in tissues. CLINCAL IMPACT During the fetal growth spurt at 24-34-week postmenstrual age, plasma choline is higher than beyond 34 weeks, and threefold higher than in pregnant women [45 (36-60) µmol/L vs. 14 (10-17) µmol/L]. The rapid decrease in plasma choline after premature birth suggests an untimely reduction in choline supply, as cellular uptake is proportional to plasma concentration. Supply via breast milk, with phosphocholine and α-glycerophosphocholine as its major choline components, does not prevent such postnatal decrease. Moreover, high amounts of liver PC are secreted via bile, causing rapid hepatic choline turnover via the enterohepatic cycle, and deficiency in case of pancreatic phospholipase A2 deficiency or intestinal resection. Choline deficiency causes hepatic damage and choline accretion at the expense of the lungs and other tissues. CONCLUSION Choline deficiency may contribute to the impaired lean body mass growth and pulmonary and neurocognitive development of preterm infants despite adequate macronutrient supply and weight gain. In this context, a reconsideration of current recommendations for choline supply to preterm infants is required.
Collapse
|
38
|
Romano KA, Rey FE. Is maternal microbial metabolism an early-life determinant of health? Lab Anim (NY) 2018; 47:239-243. [PMID: 30143761 DOI: 10.1038/s41684-018-0129-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
Mounting evidence suggests that environmental stress experienced in utero (for example, maternal nutritional deficits) establishes a predisposition in the newborn to the development of chronic diseases later in life. This concept is often referred to as the "fetal origins hypothesis" or "developmental origins of health and disease". Since its first proposal, epigenetics has emerged as an underlying mechanism explaining how environmental cues become gestationally "encoded". Many of the enzymes that impart and maintain epigenetic modifications are highly sensitive to nutrient availability, which can be influenced by the metabolic activities of the intestinal microbiota. Therefore, the maternal microbiome has the potential to influence epigenetics in utero and modulate offspring's long-term health trajectories. Here we summarize the current understanding of the interactions that occur between the maternal gut microbiome and the essential nutrient choline, that is not only required for fetal development and epigenetic regulation but is also a growth substrate for some microbes. Bacteria able to metabolize choline benefit from the presence of this nutrient and compete with the host for its access, which under extreme conditions may elicit signatures of choline deficiency. Another consequence of bacterial choline metabolism is the accumulation of the pro-inflammatory, pro-thrombotic metabolite trimethylamine-N-oxide (TMAO). Finally, we discuss how these different facets of microbial choline metabolism may influence infant development and health trajectories via epigenetic mechanisms and more broadly place a call to action to better understand how maternal microbial metabolism can shape their offspring's propensity to chronic disease development later in life.
Collapse
Affiliation(s)
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
39
|
Wiedeman AM, Chau CMY, Grunau RE, McCarthy D, Yurko-Mauro K, Dyer RA, Innis SM, Devlin AM. Plasma Betaine Is Positively Associated with Developmental Outcomes in Healthy Toddlers at Age 2 Years Who Are Not Meeting the Recommended Adequate Intake for Dietary Choline. J Nutr 2018; 148:1309-1314. [PMID: 29986040 DOI: 10.1093/jn/nxy108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/03/2018] [Indexed: 01/06/2023] Open
Abstract
Background Choline is an important nutrient during development. However, there are limited data on dietary choline intake and status in toddlers and the relation to neurodevelopmental outcomes. Objective This study assessed dietary choline intake and status in healthy toddlers at ages 1 and 2 y and determined the relation to neurodevelopmental outcomes. Methods This is a secondary analysis of data from healthy toddlers enrolled in a double-blind, randomized controlled trial of long-chain polyunsaturated fatty acid supplementation between ages 1 and 2 y. Dietary intakes of betaine and choline were estimated by 3-d food records; plasma free choline, betaine, and dimethylglycine were quantified by liquid chromatography-tandem mass spectrometry. Developmental outcomes were assessed at age 2 y with the use of the Bayley Scales of Infant and Toddler Development, 3rd edition (Bayley-III), Cognitive and Language composites, and the Beery-Buktenica Developmental Test of Visual-Motor Integration (Beery-VMI). Results The mean ± SD daily intake for total choline at age 1 y was 174 ± 56.2 mg/d and increased (P < 0.001) to 205 ± 67.5 mg/d at age 2 y. At ages 1 and 2 y, 71.8% and 55.8%, respectively, of toddlers did not meet the recommended 200-mg/d Adequate Intake (AI) for dietary choline. At age 1 y, mean ± SD plasma free choline, betaine, and dimethylglycine concentrations were 10.4 ± 3.3, 41.1 ± 15.4, and 4.1 ± 1.9 µmol/L, respectively. Plasma free choline (8.5 ± 2.3 µmol/L) and dimethylglycine (3.2 ± 1.3 µmol/L) concentrations were lower (P < 0.001) at age 2 y. Plasma betaine concentrations were positively associated with the Beery-VMI (β = 0.270; 95% CI: 0.026, 0.513; P = 0.03) at age 2 y. Conclusions These findings suggest that most toddlers are not meeting the recommended AI for dietary choline and that higher plasma betaine concentrations are associated with better visual-motor development at age 2 y. Further work is required to investigate choline metabolism and its role in neurodevelopment in toddlers. The trial is registered at clinicaltrials.gov as NCT01263912.
Collapse
Affiliation(s)
- Alejandra M Wiedeman
- Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, Canada
| | - Cecil M Y Chau
- Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, Canada
| | - Ruth E Grunau
- Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, Canada
| | | | | | - Roger A Dyer
- Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, Canada
| | - Sheila M Innis
- Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, Canada
| | - Angela M Devlin
- Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, Canada
| |
Collapse
|
40
|
Jacobson SW, Carter RC, Molteno CD, Meintjes EM, Senekal M, Lindinger NM, Dodge NC, Zeisel SH, Duggan CP, Jacobson JL. Feasibility and Acceptability of Maternal Choline Supplementation in Heavy Drinking Pregnant Women: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Alcohol Clin Exp Res 2018; 42:1315-1326. [PMID: 29750366 PMCID: PMC6028314 DOI: 10.1111/acer.13768] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Choline, an essential nutrient, serves as a methyl-group donor for DNA methylation and is a constituent of the neurotransmitter acetylcholine and a precursor to major components of cell membranes. Findings from animal studies suggest that choline supplementation during pregnancy can mitigate adverse effects of prenatal alcohol exposure on growth and neurocognitive function. We conducted a randomized, double-blind exploratory trial to examine feasibility and acceptability of a choline supplementation intervention during pregnancy. METHODS Seventy heavy drinkers, recruited in mid-pregnancy, were randomly assigned to receive a daily oral dose of 2 g of choline or a placebo from time of enrollment until delivery. Each dose consisted of an individually wrapped packet of powder that, when mixed with water, produced a sweet tasting grape-flavored drink. Adherence was assessed by collecting used and unused drink packets on a monthly basis and tabulating the number used. Side effects were assessed in monthly interviews. Blood samples obtained at enrollment and at 4 and 12 weeks after randomization were assayed for plasma choline concentration. RESULTS Adherence was good-to-excellent (median doses taken = 74.0%; interquartile range = 53.9 to 88.7%) and was not related to a range of sociodemographic characteristics or to alcohol consumption ascertained using a timeline follow-back interview. By 4 weeks, plasma choline concentrations were significantly higher in the choline supplementation than the placebo arm, and this group difference continued to be evident at 12 weeks. The only side effect was a small increase in nausea/dyspepsia. No effects were seen for diarrhea, vomiting, muscle stiffness, blood pressure, or body odor changes. CONCLUSIONS This study demonstrated that a choline supplementation program with very heavy drinkers during pregnancy is feasible even among highly disadvantaged, poorly educated women. The broad acceptability of this intervention is indicated by our finding that adherence was not related to maternal education, intellectual function, depression, nutritional status, or alcohol use.
Collapse
Affiliation(s)
- Sandra W. Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - R. Colin Carter
- Division of Pediatric Emergency Medicine, Morgan Stanley Children’s Hospital of New York, and Institute for Human Nutrition, Columbia University Medical Center, New York, New York, USA
| | - Christopher D. Molteno
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ernesta M. Meintjes
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- MRC/UCT Medical Imaging Research Unit, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Marjanne Senekal
- Division of Nutrition, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nadine M. Lindinger
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Neil C. Dodge
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Steven H. Zeisel
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Christopher P. Duggan
- Center for Nutrition, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph L. Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
41
|
Jacobson SW, Carter RC, Molteno CD, Stanton ME, Herbert J, Lindinger NM, Lewis CE, Dodge NC, Hoyme HE, Zeisel SH, Meintjes EM, Duggan CP, Jacobson JL. Efficacy of Maternal Choline Supplementation During Pregnancy in Mitigating Adverse Effects of Prenatal Alcohol Exposure on Growth and Cognitive Function: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Alcohol Clin Exp Res 2018; 42:1327-1341. [PMID: 29750367 PMCID: PMC6028282 DOI: 10.1111/acer.13769] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/02/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND We recently demonstrated the acceptability and feasibility of a randomized, double-blind choline supplementation intervention for heavy drinking women during pregnancy. In this study, we report our results relating to the efficacy of this intervention in mitigating adverse effects of prenatal alcohol exposure (PAE) on infant growth and cognitive function. METHODS Sixty-nine Cape Coloured (mixed ancestry) heavy drinkers in Cape Town, South Africa, recruited in mid-pregnancy, were randomly assigned to receive a daily oral dose of either 2 g of choline or placebo from time of enrollment until delivery. Each dose consisted of an individually wrapped packet of powder that, when mixed with water, produced a sweet tasting grape-flavored drink. The primary outcome, eyeblink conditioning (EBC), was assessed at 6.5 months. Somatic growth was measured at birth, 6.5, and 12 months, recognition memory and processing speed on the Fagan Test of Infant Intelligence, at 6.5 and 12 months. RESULTS Infants born to choline-treated mothers were more likely to meet criterion for conditioning on EBC than the placebo group. Moreover, within the choline arm, degree of maternal adherence to the supplementation protocol strongly predicted EBC performance. Both groups were small at birth, but choline-treated infants showed considerable catch-up growth in weight and head circumference at 6.5 and 12 months. At 12 months, the infants in the choline treatment arm had higher novelty preference scores, indicating better visual recognition memory. CONCLUSIONS This exploratory study is the first to provide evidence that a high dose of choline administered early in pregnancy can mitigate adverse effects of heavy PAE on EBC, postnatal growth, and cognition in human infants. These findings are consistent with studies of alcohol-exposed animals that have demonstrated beneficial effects of choline supplementation on classical conditioning, learning, and memory.
Collapse
Affiliation(s)
- Sandra W. Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - R. Colin Carter
- Division of Pediatric Emergency Medicine, Morgan Stanley Children’s Hospital of New York, and Institute for Human Nutrition, Columbia University Medical Center, New York, New York, USA
| | - Christopher D. Molteno
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mark E. Stanton
- Department of Psychology, University of Delaware, Newark, Delaware, USA
| | - Jane Herbert
- Department of Psychology, University of Wollongong, New South Wales, Australia
| | - Nadine M. Lindinger
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Catherine E. Lewis
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Neil C. Dodge
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - H. Eugene Hoyme
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota; College of Medicine, University of Arizona, Tucson, Arizona
| | - Steven. H. Zeisel
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Ernesta M. Meintjes
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- MRC/UCT Medical Imaging Research Unit, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Christopher P. Duggan
- Center for Nutrition, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph L. Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
42
|
Dietary Cholesterol and the Lack of Evidence in Cardiovascular Disease. Nutrients 2018; 10:nu10060780. [PMID: 29914176 PMCID: PMC6024687 DOI: 10.3390/nu10060780] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/09/2018] [Accepted: 06/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States. For years, dietary cholesterol was implicated in increasing blood cholesterol levels leading to the elevated risk of CVD. To date, extensive research did not show evidence to support a role of dietary cholesterol in the development of CVD. As a result, the 2015–2020 Dietary Guidelines for Americans removed the recommendations of restricting dietary cholesterol to 300 mg/day. This review summarizes the current literature regarding dietary cholesterol intake and CVD. It is worth noting that most foods that are rich in cholesterol are also high in saturated fatty acids and thus may increase the risk of CVD due to the saturated fatty acid content. The exceptions are eggs and shrimp. Considering that eggs are affordable and nutrient-dense food items, containing high-quality protein with minimal saturated fatty acids (1.56 gm/egg) and are rich in several micronutrients including vitamins and minerals, it would be worthwhile to include eggs in moderation as a part of a healthy eating pattern. This recommendation is particularly relevant when individual’s intakes of nutrients are suboptimal, or with limited income and food access, and to help ensure dietary intake of sufficient nutrients in growing children and older adults.
Collapse
|
43
|
Mudd AT, Getty CM, Dilger RN. Maternal Dietary Choline Status Influences Brain Gray and White Matter Development in Young Pigs. Curr Dev Nutr 2018; 2:nzy015. [PMID: 29955727 PMCID: PMC6007439 DOI: 10.1093/cdn/nzy015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/06/2018] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Choline is an essential nutrient that is pivotal to proper brain development. Research in animal models suggests that perinatal choline deficiency influences neuron development in the hippocampus and cortex, yet these observations require invasive techniques. OBJECTIVE This study aimed to characterize the effects of perinatal choline deficiency on gray and white matter development with the use of noninvasive neuroimaging techniques in young pigs. METHODS During the last 64 d of the 114-d gestation period Yorkshire sows were provided with a choline-sufficient (CS) or choline-deficient (CD) diet, analyzed to contain 1214 mg or 483 mg total choline/kg diet, respectively. Upon farrowing, pigs (Sus scrofa domesticus) were allowed colostrum consumption for ≤48 h, were further stratified into postnatal treatment groups, and were provided either CS or CD milk replacers, analyzed to contain 1591 or 518 mg total choline/kg diet, respectively, for 28 d. At 30 d of age, pigs were subjected to MRI procedures to assess brain development. Gray and white matter development was assessed through voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) to assess the effects of prenatal and postnatal dietary choline status. RESULTS VBM analysis indicated that prenatally CS pigs exhibited increased (P < 0.01) gray matter in the left and right cortex compared with prenatally CD pigs. Analysis of white matter indicated that prenatally CS pigs exhibited increased (P < 0.01) white matter in the internal capsule, putamen-globus pallidus, and right cortex compared with prenatally CD pigs. No postnatal effects (P > 0.05) of choline status were noted for VBM analyses of gray and white matter. TBSS also showed no significant effects (P > 0.05) of prenatal or postnatal choline status for diffusion values along white matter tracts. CONCLUSIONS Observations from this study suggest that prenatal choline deficiency results in altered cortical gray matter and reduced white matter in the internal capsule and putamen of young pigs. With the use of noninvasive neuroimaging techniques, results from our study indicate that prenatal choline deficiency greatly alters gray and white matter development in pigs, thereby providing a translational assessment that may be used in clinical populations.
Collapse
Affiliation(s)
- Austin T Mudd
- Piglet Nutrition and Cognition Laboratory
- Neuroscience Program
| | - Caitlyn M Getty
- Piglet Nutrition and Cognition Laboratory
- Division of Nutrition Sciences
- College of Veterinary Medicine
| | - Ryan N Dilger
- Piglet Nutrition and Cognition Laboratory
- Neuroscience Program
- Division of Nutrition Sciences
- Beckman Institute for Advanced Science and Technology
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL
| |
Collapse
|
44
|
Gadda G, Yuan H. Substitutions of S101 decrease proton and hydride transfers in the oxidation of betaine aldehyde by choline oxidase. Arch Biochem Biophys 2017; 634:76-82. [PMID: 29029877 DOI: 10.1016/j.abb.2017.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 11/25/2022]
Abstract
Choline oxidase oxidizes choline to glycine betaine, with two flavin-mediated reactions to convert the alcohol substrate to the carbon acid product. Proton abstraction from choline or hydrated betaine aldehyde in the wild-type enzyme occurs in the mixing time of the stopped-flow spectrophotometer, thereby precluding a mechanistic investigation. Mutagenesis of S101 rendered the proton transfer reaction amenable to study. Here, we have investigated the aldehyde oxidation reaction catalyzed by the mutant enzymes using steady-state and rapid kinetics with betaine aldehyde. Stopped-flow traces for the reductive half-reaction of the S101T/V/C variants were biphasic, corresponding to the reactions of proton abstraction and hydride transfer. In contrast, the S101A enzyme yielded monophasic traces like wild-type choline oxidase. The rate constants for proton transfer in the S101T/C/V variants decreased logarithmically with increasing hydrophobicity of residue 101, indicating a behavior different from that seen previously with choline for which no correlation was determined. The rate constants for hydride transfer also showed a logarithmic decrease with increasing hydrophobicity at position 101, which was similar to previous results with choline as a substrate for the enzyme. Thus, the hydrophilic character of S101 is necessary not only for efficient hydride transfer but also for the proton abstraction reaction.
Collapse
Affiliation(s)
- Giovanni Gadda
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302-3965, United States; Department of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302-3965, United States; Center for Biotechnology and Drug Design, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302-3965, United States.
| | - Hongling Yuan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302-3965, United States
| |
Collapse
|
45
|
Ganz AB, Klatt KC, Caudill MA. Common Genetic Variants Alter Metabolism and Influence Dietary Choline Requirements. Nutrients 2017; 9:E837. [PMID: 28777294 PMCID: PMC5579630 DOI: 10.3390/nu9080837] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/22/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022] Open
Abstract
Nutrient needs, including those of the essential nutrient choline, are a population wide distribution. Adequate Intake (AI) recommendations for dietary choline (put forth by the National Academies of Medicine to aid individuals and groups in dietary assessment and planning) are grouped to account for the recognized unique needs associated with age, biological sex, and reproductive status (i.e., pregnancy or lactation). Established and emerging evidence supports the notion that common genetic variants are additional factors that substantially influence nutrient requirements. This review summarizes the genetic factors that influence choline requirements and metabolism in conditions of nutrient deprivation, as well as conditions of nutrient adequacy, across biological sexes and reproductive states. Overall, consistent and strong associative evidence demonstrates that common genetic variants in choline and folate pathway enzymes impact the metabolic handling of choline and the risk of nutrient inadequacy across varied dietary contexts. The studies characterized in this review also highlight the substantial promise of incorporating common genetic variants into choline intake recommendations to more precisely target the unique nutrient needs of these subgroups within the broader population. Additional studies are warranted to facilitate the translation of this evidence to nutrigenetics-based dietary approaches.
Collapse
Affiliation(s)
- Ariel B Ganz
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Kevin C Klatt
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
46
|
Transport of long-chain polyunsaturated fatty acids in preterm infant plasma is dominated by phosphatidylcholine. Eur J Nutr 2017. [DOI: 10.1007/s00394-017-1484-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Roe AJ, Zhang S, Bhadelia RA, Johnson EJ, Lichtenstein AH, Rogers GT, Rosenberg IH, Smith CE, Zeisel SH, Scott TM. Choline and its metabolites are differently associated with cardiometabolic risk factors, history of cardiovascular disease, and MRI-documented cerebrovascular disease in older adults. Am J Clin Nutr 2017; 105:1283-1290. [PMID: 28356272 PMCID: PMC5445668 DOI: 10.3945/ajcn.116.137158] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 02/27/2017] [Indexed: 12/25/2022] Open
Abstract
Background: There is a potential role of choline in cardiovascular and cerebrovascular disease through its involvement in lipid and one-carbon metabolism.Objective: We evaluated the associations of plasma choline and choline-related compounds with cardiometabolic risk factors, history of cardiovascular disease, and cerebrovascular pathology.Design: A cross-sectional subset of the Nutrition, Aging, and Memory in Elders cohort who had undergone MRI of the brain (n = 296; mean ± SD age: 73 ± 8.1 y) was assessed. Plasma concentrations of free choline, betaine, and phosphatidylcholine were measured with the use of liquid-chromatography-stable-isotope dilution-multiple-reaction monitoring-mass spectrometry. A volumetric analysis of MRI was used to determine the cerebrovascular pathology (white-matter hyperintensities and small- and large-vessel infarcts). Multiple linear and logistic regression models were used to examine relations of plasma measures with cardiometabolic risk factors, history of cardiovascular disease, and radiologic evidence of cerebrovascular pathology.Results: Higher concentrations of plasma choline were associated with an unfavorable cardiometabolic risk-factor profile [lower high-density lipoprotein (HDL) cholesterol, higher total homocysteine, and higher body mass index (BMI)] and greater odds of large-vessel cerebral vascular disease or history of cardiovascular disease but lower odds of small-vessel cerebral vascular disease. Conversely, higher concentrations of plasma betaine were associated with a favorable cardiometabolic risk-factor profile [lower low-density lipoprotein (LDL) cholesterol and triglycerides] and lower odds of diabetes. Higher concentrations of plasma phosphatidylcholine were associated with characteristics of both a favorable cardiometabolic risk-factor profile (higher HDL cholesterol, lower BMI, lower C-reactive protein, lower waist circumference, and lower odds of hypertension and diabetes) and an unfavorable profile (higher LDL cholesterol and triglycerides).Conclusion: Choline and its metabolites have differential associations with cardiometabolic risk factors and subtypes of vascular disease, thereby suggesting differing roles in the pathogenesis of cardiovascular and cerebral large-vessel disease compared with that of small-vessel disease.
Collapse
Affiliation(s)
- Annie J Roe
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Shucha Zhang
- Nutrition Research Institute at the University of North Carolina Chapel Hill, Kannapolis, NC
| | - Rafeeque A Bhadelia
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; and
| | - Elizabeth J Johnson
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Alice H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Gail T Rogers
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Irwin H Rosenberg
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Caren E Smith
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Steven H Zeisel
- Nutrition Research Institute at the University of North Carolina Chapel Hill, Kannapolis, NC
| | - Tammy M Scott
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA;
| |
Collapse
|
48
|
Guo Y, Hwang LD, Li J, Eades J, Yu CW, Mansfield C, Burdick-Will A, Chang X, Chen Y, Duke FF, Zhang J, Fakharzadeh S, Fennessey P, Keating BJ, Jiang H, Hakonarson H, Reed DR, Preti G. Genetic analysis of impaired trimethylamine metabolism using whole exome sequencing. BMC MEDICAL GENETICS 2017; 18:11. [PMID: 28196478 PMCID: PMC5310055 DOI: 10.1186/s12881-017-0369-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/17/2017] [Indexed: 12/27/2022]
Abstract
Background Trimethylaminuria (TMAU) is a genetic disorder whereby people cannot convert trimethylamine (TMA) to its oxidized form (TMAO), a process that requires the liver enzyme FMO3. Loss-of-function variants in the FMO3 gene are a known cause of TMAU. In addition to the inability to metabolize TMA precursors like choline, patients often emit a characteristic odor because while TMAO is odorless, TMA has a fishy smell. The Monell Chemical Senses Center is a research institute with a program to evaluate people with odor complaints for TMAU. Methods Here we evaluated ten subjects by (1) odor evaluation by a trained sensory panel, (2) analysis of their urine concentration of TMA relative to TMAO before and after choline ingestion, and (3) whole exome sequencing as well as subsequent variant analysis of all ten samples to investigate the genetics of TMAU. Results While all subjects reported they often emitted a fish-like odor, none had this malodor during sensory evaluation. However, all were impaired in their ability to produce >90% TMAO/TMA in their urine and thus met the criteria for TMAU. To probe for genetic causes, the exome of each subject was sequenced, and variants were filtered by genes with a known (FMO3) or expected effect on TMA metabolism function (other oxidoreductases). We filtered the remaining variants by allele frequency and predicated functional effects. We identified one subject that had a rare loss-of-function FMO3 variant and six with more common decreased-function variants. In other oxidoreductases genes, five subjects had four novel rare single-nucleotide polymorphisms as well as one rare insertion/deletion. Novel in this context means no investigators have previously linked these variants to TMAU although they are in dbSNP. Conclusions Thus, variants in genes other than FMO3 may cause TMAU and the genetic variants identified here serve as a starting point for future studies of impaired TMA metabolism. Electronic supplementary material The online version of this article (doi:10.1186/s12881-017-0369-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yiran Guo
- Center for Applied Genomics, the Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Res Cntr, Ste 1016H, Philadelphia, PA, 19104, USA.
| | - Liang-Dar Hwang
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | | | - Jason Eades
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | - Chung Wen Yu
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | - Corrine Mansfield
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | | | - Xiao Chang
- Center for Applied Genomics, the Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Res Cntr, Ste 1016H, Philadelphia, PA, 19104, USA
| | | | - Fujiko F Duke
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | | | - Steven Fakharzadeh
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paul Fennessey
- University of Colorado Health Sciences Center, Denver, CO, USA
| | - Brendan J Keating
- Center for Applied Genomics, the Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Res Cntr, Ste 1016H, Philadelphia, PA, 19104, USA
| | - Hui Jiang
- BGI-Shenzhen, Shenzhen, 518083, China.,Shenzhen Key Laboratory of Genomics, Shenzhen, 518083, China.,The Guangdong Enterprise Key Laboratory of Human Disease Genomics, Shenzhen, 518083, China
| | - Hakon Hakonarson
- Center for Applied Genomics, the Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Res Cntr, Ste 1016H, Philadelphia, PA, 19104, USA
| | - Danielle R Reed
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA.
| | - George Preti
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
49
|
van der Veen JN, Lingrell S, Gao X, Takawale A, Kassiri Z, Vance DE, Jacobs RL. Fenofibrate, but not ezetimibe, prevents fatty liver disease in mice lacking phosphatidylethanolamine N-methyltransferase. J Lipid Res 2017; 58:656-667. [PMID: 28159867 PMCID: PMC5392742 DOI: 10.1194/jlr.m070631] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 02/01/2017] [Indexed: 01/24/2023] Open
Abstract
Mice lacking phosphatidylethanolamine N-methyltransferase (PEMT) are protected from high-fat diet (HFD)-induced obesity and insulin resistance. However, these mice develop severe nonalcoholic fatty liver disease (NAFLD) when fed the HFD, which is mainly due to inadequate secretion of VLDL particles. Our aim was to prevent NAFLD development in mice lacking PEMT. We treated Pemt−/− mice with either ezetimibe or fenofibrate to see if either could ameliorate liver disease in these mice. Ezetimibe treatment did not reduce fat accumulation in Pemt−/− livers, nor did it reduce markers for hepatic inflammation or fibrosis. Fenofibrate, conversely, completely prevented the development of NAFLD in Pemt−/− mice: hepatic lipid levels, as well as markers of endoplasmic reticulum stress, inflammation, and fibrosis, in fenofibrate-treated Pemt−/− mice were similar to those in Pemt+/+ mice. Importantly, Pemt−/− mice were still protected against HFD-induced obesity and insulin resistance. Moreover, fenofibrate partially reversed hepatic steatosis and fibrosis in Pemt−/− mice when treatment was initiated after NAFLD had already been established. Increasing hepatic fatty acid oxidation can compensate for the lower VLDL-triacylglycerol secretion rate and prevent/reverse fatty liver disease in mice lacking PEMT.
Collapse
Affiliation(s)
- Jelske N van der Veen
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Susanne Lingrell
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xia Gao
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Abhijit Takawale
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Dennis E Vance
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
50
|
Genetic Variation in Choline-Metabolizing Enzymes Alters Choline Metabolism in Young Women Consuming Choline Intakes Meeting Current Recommendations. Int J Mol Sci 2017; 18:ijms18020252. [PMID: 28134761 PMCID: PMC5343788 DOI: 10.3390/ijms18020252] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 12/22/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in choline metabolizing genes are associated with disease risk and greater susceptibility to organ dysfunction under conditions of dietary choline restriction. However, the underlying metabolic signatures of these variants are not well characterized and it is unknown whether genotypic differences persist at recommended choline intakes. Thus, we sought to determine if common genetic risk factors alter choline dynamics in pregnant, lactating, and non-pregnant women consuming choline intakes meeting and exceeding current recommendations. Women (n = 75) consumed 480 or 930 mg choline/day (22% as a metabolic tracer, choline-d9) for 10–12 weeks in a controlled feeding study. Genotyping was performed for eight variant SNPs and genetic differences in metabolic flux and partitioning of plasma choline metabolites were evaluated using stable isotope methodology. CHKA rs10791957, CHDH rs9001, CHDH rs12676, PEMT rs4646343, PEMT rs7946, FMO3 rs2266782, SLC44A1 rs7873937, and SLC44A1 rs3199966 altered the use of choline as a methyl donor; CHDH rs9001 and BHMT rs3733890 altered the partitioning of dietary choline between betaine and phosphatidylcholine synthesis via the cytidine diphosphate (CDP)-choline pathway; and CHKA rs10791957, CHDH rs12676, PEMT rs4646343, PEMT rs7946 and SLC44A1 rs7873937 altered the distribution of dietary choline between the CDP-choline and phosphatidylethanolamine N-methyltransferase (PEMT) denovo pathway. Such metabolic differences may contribute to disease pathogenesis and prognosis over the long-term.
Collapse
|