1
|
Parascandolo A, Di Tolla MF, Liguoro D, Lecce M, Misso S, Micieli F, Ambrosio MR, Cabaro S, Beguinot F, Pelagalli A, D'Esposito V, Formisano P. Human Platelet-Rich Plasma Regulates Canine Mesenchymal Stem Cell Migration through Aquaporins. Stem Cells Int 2023; 2023:8344259. [PMID: 37223543 PMCID: PMC10202607 DOI: 10.1155/2023/8344259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/25/2023] Open
Abstract
Platelet products are commonly used in regenerative medicine due to their effects on the acceleration and promotion of wound healing, reduction of bleeding, synthesis of new connective tissue, and revascularization. Furthermore, a novel approach for the treatment of damaged tissues, following trauma or other pathological damages, is represented by the use of mesenchymal stem cells (MSCs). In dogs, both platelet-rich plasma (PRP) and MSCs have been suggested to be promising options for subacute skin wounds. However, the collection of canine PRP is not always feasible. In this study, we investigated the effect of human PRP (hPRP) on canine MSCs (cMSCs). We isolated cMSCs and observed that hPRP did not modify the expression levels of the primary class of major histocompatibility complex genes. However, hPRP was able to increase cMSC viability and migration by at least 1.5-fold. hPRP treatment enhanced both Aquaporin (AQP) 1 and AQP5 protein levels, and their inhibition by tetraethylammonium chloride led to a reduction of PRP-induced migration of cMSCs. In conclusion, we have provided evidence that hPRP supports cMSC survival and may promote cell migration, at least through AQP activation. Thus, hPRP may be useful in canine tissue regeneration and repair, placing as a promising tool for veterinary therapeutic approaches.
Collapse
Affiliation(s)
- Alessia Parascandolo
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| | - Michele Francesco Di Tolla
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Domenico Liguoro
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| | - Manuela Lecce
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Saverio Misso
- Unit of Transfusion Medicine, Azienda Sanitaria Locale Caserta, Caserta, Italy
| | - Fabiana Micieli
- Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, 80137 Naples, Italy
| | - Maria Rosaria Ambrosio
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| | - Serena Cabaro
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Napoli Federico II, 80131 Naples, Italy
- Institute of Biostructures and Bioimages, National Research Council, 80145 Naples, Italy
| | - Vittoria D'Esposito
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
2
|
López JF, Mikkola A, Sarkanen JR, Kaartinen IS, Kuokkanen HO, Ylikomi T. Adipose tissue as a source of growth factors to promote wound healing: a human study of skin graft donor sites. J Wound Care 2022; 31:282-292. [DOI: 10.12968/jowc.2022.31.4.282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Objective: In the microenvironment of wound sites, naturally occurring growth factors are crucial for cell migration, opsonisation, chemotaxis, differentiation and angiogenesis. Exogenous growth factors, such as platelet-rich plasma (PRP) and adipose tissue, also improve healing. Method: In the present within-subject study, we described the effects of PRP and adipose tissue extract (ATE) on skin graft donor site wound healing in patients requiring split-thickness skin grafts. Each patient, having at least two donor sites, received both control (no growth factor) and experimental (PRP or ATE) treatments. Wounds were evaluated on days 5, 7, 10, 15, 30 and 60. Digital photography and spectral images were used to analyse haemoglobin and melanin content, and re-epithelialisation area. Pain was assessed by visual analogue scale. Scar characteristics were scored on days 30 and 60. Biomaterial samples were analysed for growth factor and protein content. Results: The study included 24 patients (18 male and six female; mean age: 59.1 years). PRP was topically applied to wounds in 11 patients (13 donor sites) and ATE in 13 patients (15 sites). ATE-treated donor sites exhibited significantly accelerated wound re-epithelialisation on days 5 and 7 compared with control sites (p=0.003 and 0.04, respectively). PRP accelerated healing on day 7 compared with control sites (p=0.001). Additionally, the application of ATE improved scar quality on days 30 and 60 (p=0.0005 and 0.02, respectively). Pain scores did not differ significantly between treatments. Conclusion: In this study, both growth factor sources stimulated wound healing. ATE is an alternative source of growth factors that promote early wound healing and improve scar quality.
Collapse
Affiliation(s)
- Jenny F López
- Department of Cell Biology, School of Medicine (currently Faculty of Medicine and Health Technology), Tampere University, Tampere, Finland
- Department of Plastic Surgery, Unit of Musculoskeletal Diseases, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
| | - Antti Mikkola
- Department of Plastic Surgery, Unit of Musculoskeletal Diseases, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
| | - Jertta-Riina Sarkanen
- Department of Cell Biology, School of Medicine (currently Faculty of Medicine and Health Technology), Tampere University, Tampere, Finland
- FICAM, Finnish Centre for Alternative Methods, School of Medicine, University of Tampere, Tampere, Finland
- Science Center, Pirkanmaa Hospital District, Finland
| | - Ilkka S Kaartinen
- Department of Plastic Surgery, Unit of Musculoskeletal Diseases, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
- Science Center, Pirkanmaa Hospital District, Finland
| | - Hannu O Kuokkanen
- Department of Plastic Surgery, Unit of Musculoskeletal Diseases, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
- Science Center, Pirkanmaa Hospital District, Finland
| | - Timo Ylikomi
- Department of Cell Biology, School of Medicine (currently Faculty of Medicine and Health Technology), Tampere University, Tampere, Finland
- FICAM, Finnish Centre for Alternative Methods, School of Medicine, University of Tampere, Tampere, Finland
- Science Center, Pirkanmaa Hospital District, Finland
| |
Collapse
|
3
|
Devereaux J, Dargahi N, Fraser S, Nurgali K, Kiatos D, Apostolopoulos V. Leucocyte-Rich Platelet-Rich Plasma Enhances Fibroblast and Extracellular Matrix Activity: Implications in Wound Healing. Int J Mol Sci 2020; 21:ijms21186519. [PMID: 32900003 PMCID: PMC7556022 DOI: 10.3390/ijms21186519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Platelet-rich plasma (PRP) is an autologous blood product that contains a high concentration of platelets and leucocytes, which are fundamental fibroblast proliferation agents. Literature has emerged that offers contradictory findings about leucocytes within PRP. Herein, we elucidated the effects of highly concentrated leucocytes and platelets on human fibroblasts. Methods: Leucocyte-rich, PRP (LR-PRP) and leucocyte-poor, platelet-poor plasma (LP-PPP) were compared to identify their effects on human fibroblasts, including cell proliferation, wound healing and extracellular matrix and adhesion molecule gene expressions. Results: The LR-PRP exhibited 1422.00 ± 317.21 × 103 platelets/µL and 16.36 ± 2.08 × 103 white blood cells/µL whilst the LP-PPP demonstrated lower concentrations of 55.33 ± 10.13 × 103 platelets/µL and 0.8 ± 0.02 × 103 white blood cells/µL. LR-PRP enhanced fibroblast cell proliferation and cell migration, and demonstrated either upregulation or down-regulation gene expression profile of the extracellular matrix and adhesion molecules. Conclusion: LR-PRP has a continuous stimulatory anabolic and ergogenic effect on human fibroblast cells.
Collapse
Affiliation(s)
- Jeannie Devereaux
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3011, Australia;
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia; (N.D.); (S.F.); (K.N.)
- Correspondence: (J.D.); (V.A.); Tel.: +613-83958218 (J.D.); +613-99192025 (V.A.)
| | - Narges Dargahi
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia; (N.D.); (S.F.); (K.N.)
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia; (N.D.); (S.F.); (K.N.)
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia; (N.D.); (S.F.); (K.N.)
| | - Dimitrios Kiatos
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3011, Australia;
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia; (N.D.); (S.F.); (K.N.)
- Correspondence: (J.D.); (V.A.); Tel.: +613-83958218 (J.D.); +613-99192025 (V.A.)
| |
Collapse
|
4
|
D'Esposito V, Lecce M, Marenzi G, Cabaro S, Ambrosio MR, Sammartino G, Misso S, Migliaccio T, Liguoro P, Oriente F, Fortunato L, Beguinot F, Sammartino JC, Formisano P, Gasparro R. Platelet-rich plasma counteracts detrimental effect of high-glucose concentrations on mesenchymal stem cells from Bichat fat pad. J Tissue Eng Regen Med 2020; 14:701-713. [PMID: 32174023 DOI: 10.1002/term.3032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/05/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
Diabetic patients display increased risk of periodontitis and failure in bone augmentation procedures. Mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) represent a relevant advantage in tissue repair process and regenerative medicine. We isolated MSCs from Bichat's buccal fat pad (BFP) and measured the effects of glucose and PRP on cell number and osteogenic differentiation potential. Cells were cultured in the presence of 5.5-mM glucose (low glucose [LG]) or 25-mM glucose (high glucose [HG]). BFP-MSC number was significantly lower when cells were cultured in HG compared with those in LG. Following osteogenic differentiation procedures, calcium accumulation, alkaline phosphatase activity, and expression of osteogenic markers were significantly lower in HG compared with LG. Exposure of BFP-MSC to PRP significantly increased cell number and osteogenic differentiation potential, reaching comparable levels in LG and in HG. Thus, high-glucose concentrations impair BFP-MSC growth and osteogenic differentiation. However, these detrimental effects are largely counteracted by PRP.
Collapse
Affiliation(s)
- Vittoria D'Esposito
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Manuela Lecce
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Gaetano Marenzi
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| | - Serena Cabaro
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Maria Rosaria Ambrosio
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Gilberto Sammartino
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| | - Saverio Misso
- Unit of Transfusion Medicine, ASL-CE, Caserta, Italy
| | - Teresa Migliaccio
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Pasquale Liguoro
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Francesco Oriente
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Leonzio Fortunato
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Francesco Beguinot
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | | | - Pietro Formisano
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Roberta Gasparro
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| |
Collapse
|
5
|
Barbieri A, Bimonte S, Loquercio G, Rea D, Cascella M, Anniciello A, Luciano A, Palma G, Di Costanzo G, Rosa A, Giuliano P, Arra C. The effects of the use of platelet-rich plasma gel on local recurrence in an animal model of human fibrosarcoma. Infect Agent Cancer 2019; 14:21. [PMID: 31467590 PMCID: PMC6712678 DOI: 10.1186/s13027-019-0237-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/21/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Platelet-rich-plasma (PRP) is largely used, thanks to its properties, as wound therapy after surgical resection. Several studies and clinical findings have demonstrated that the PRP can accelerate the regeneration and the repair of tissues through the action of the platelet-derived growth factors. MATERIAL AND METHODS Our study aimed to investigate the effects of PRP-gel on the rate of tumor relapse by using a mouse model of Human Fibrosarcoma (HF). The radical resection of tumors of mice was conducted under fluorescence-guidance (FGR) by using MacroFluo microscope, after a primary tumor removal with bright-light surgery (BLS). RESULTS It was found that the lesion recurrence and the tumor growth were reduced in mice treated with PRP observed in each group of treatment (50%) after 30 days from tumor excision, respect to controls (without statistical significance; p = 0.12). The histopathological and immune-histochemical analysis did not report differences in cellular morphology between the tumors of control and PRP-treated mice. CONCLUSION Our data suggest that PRP-gel, used as an adjuvant treatment for the stimulation of tissue repair and speed up recovery, can impair tumor growth and slow the tumor.
Collapse
Affiliation(s)
- Antonio Barbieri
- Animal Facility, Istituto Nazionale Tumori -IRCCS - Fondazione “G. Pascale”, “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori – IRCCS – “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Giovanna Loquercio
- S.S.D. Virology and Molecular Biology, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Via Mariano Semmola, 80131 , Naples, Italy
| | - Domenica Rea
- Animal Facility, Istituto Nazionale Tumori -IRCCS - Fondazione “G. Pascale”, “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Marco Cascella
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori – IRCCS – “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Annamaria Anniciello
- Division of Pathology, Istituto Nazionale Tumori - IRCCS - Fondazione “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Antonio Luciano
- Animal Facility, Istituto Nazionale Tumori -IRCCS - Fondazione “G. Pascale”, “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Giuseppe Palma
- Animal Facility, Istituto Nazionale Tumori -IRCCS - Fondazione “G. Pascale”, “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Gaetano Di Costanzo
- SSD Medicina Trasfusionale, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Azzaro Rosa
- SSD Medicina Trasfusionale, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Pasquale Giuliano
- Cirugía Plástica, Estética y Reparadora, Hospital Quironsalud Valencia, Valencia, Spain
| | - Claudio Arra
- Animal Facility, Istituto Nazionale Tumori -IRCCS - Fondazione “G. Pascale”, “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| |
Collapse
|
6
|
Devereaux J, Nurgali K, Kiatos D, Sakkal S, Apostolopoulos V. Effects of platelet-rich plasma and platelet-poor plasma on human dermal fibroblasts. Maturitas 2018; 117:34-44. [DOI: 10.1016/j.maturitas.2018.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/02/2018] [Accepted: 09/07/2018] [Indexed: 12/16/2022]
|
7
|
D'Esposito V, Passaretti F, Perruolo G, Ambrosio MR, Valentino R, Oriente F, Raciti GA, Nigro C, Miele C, Sammartino G, Beguinot F, Formisano P. Platelet-Rich Plasma Increases Growth and Motility of Adipose Tissue-Derived Mesenchymal Stem Cells and Controls Adipocyte Secretory Function. J Cell Biochem 2016; 116:2408-18. [PMID: 26012576 PMCID: PMC5042100 DOI: 10.1002/jcb.25235] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/14/2015] [Indexed: 12/12/2022]
Abstract
Adipose tissue‐derived mesenchymal stem cells (Ad‐MSC) and platelet derivatives have been used alone or in combination to achieve regeneration of injured tissues. We have tested the effect of platelet‐rich plasma (PRP) on Ad‐MSC and adipocyte function. PRP increased Ad‐MSC viability, proliferation rate and G1‐S cell cycle progression, by at least 7‐, 2‐, and 2.2‐fold, respectively, and reduced caspase 3 cleavage. Higher PRP concentrations or PRPs derived from individuals with higher platelet counts were more effective in increasing Ad‐MSC growth. PRP also accelerated cell migration by at least 1.5‐fold. However, PRP did not significantly affect mature adipocyte viability, differentiation and expression levels of PPAR‐γ and AP‐2 mRNAs, while it increased leptin production by 3.5‐fold. Interestingly, PRP treatment of mature adipocytes also enhanced the release of Interleukin (IL)‐6, IL‐8, IL‐10, Interferon‐γ, and Vascular Endothelial Growth Factor. Thus, data are consistent with a stimulatory effect of platelet derivatives on Ad‐MSC growth and motility. Moreover, PRP did not reduce mature adipocyte survival and increased the release of pro‐angiogenic factors, which may facilitate tissue regeneration processes. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. J. Cell. Biochem. 116: 2408–2418, 2015. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vittoria D'Esposito
- Department of Translational Medicine, Federico II, University of Naples, Naples, Italy
| | - Federica Passaretti
- Department of Translational Medicine, Federico II, University of Naples, Naples, Italy
| | - Giuseppe Perruolo
- Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | | | - Rossella Valentino
- Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Francesco Oriente
- Department of Translational Medicine, Federico II, University of Naples, Naples, Italy
| | - Gregory A Raciti
- Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Cecilia Nigro
- Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Claudia Miele
- Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Gilberto Sammartino
- Department of Neurosciences, Reproductive and Odonto-stomatological Sciences, Federico II University of Naples, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, Federico II, University of Naples, Naples, Italy.,Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, Federico II, University of Naples, Naples, Italy.,Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| |
Collapse
|
8
|
Moore SF, Williams CM, Brown E, Blair TA, Harper MT, Coward RJ, Poole AW, Hers I. Loss of the insulin receptor in murine megakaryocytes/platelets causes thrombocytosis and alterations in IGF signalling. Cardiovasc Res 2015; 107:9-19. [PMID: 25902782 PMCID: PMC4476412 DOI: 10.1093/cvr/cvv132] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 04/03/2015] [Indexed: 12/21/2022] Open
Abstract
Aims Patients with conditions that are associated with insulin resistance such as obesity, type 2 diabetes mellitus, and polycystic ovary syndrome have an increased risk of thrombosis and a concurrent hyperactive platelet phenotype. Our aim was to determine whether insulin resistance of megakaryocytes/platelets promotes platelet hyperactivation. Methods and results We generated a conditional mouse model where the insulin receptor (IR) was specifically knocked out in megakaryocytes/platelets and performed ex vivo platelet activation studies in wild-type (WT) and IR-deficient platelets by measuring aggregation, integrin αIIbβ3 activation, and dense and α-granule secretion. Deletion of IR resulted in an increase in platelet count and volume, and blocked the action of insulin on platelet signalling and function. Platelet aggregation, granule secretion, and integrin αIIbβ3 activation in response to the glycoprotein VI (GPVI) agonist collagen-related peptide (CRP) were significantly reduced in platelets lacking IR. This was accompanied by a reduction in the phosphorylation of effectors downstream of GPVI. Interestingly, loss of IR also resulted in a reduction in insulin-like growth factor-1 (IGF-1)- and insulin-like growth factor-2 (IGF-2)-mediated phosphorylation of IRS-1, Akt, and GSK3β and priming of CRP-mediated platelet activation. Pharmacological inhibition of IR and the IGF-1 receptor in WT platelets recapitulated the platelet phenotype of IR-deficient platelets. Conclusions Deletion of IR (i) increases platelet count and volume, (ii) does not cause platelet hyperactivity, and (iii) reduces GPVI-mediated platelet function and platelet priming by IGF-1 and IGF-2.
Collapse
Affiliation(s)
- Samantha F Moore
- School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Medical Sciences Building, Bristol BS8 1TD, UK
| | - Christopher M Williams
- School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Medical Sciences Building, Bristol BS8 1TD, UK
| | - Edward Brown
- School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Medical Sciences Building, Bristol BS8 1TD, UK
| | - Thomas A Blair
- School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Medical Sciences Building, Bristol BS8 1TD, UK
| | - Matthew T Harper
- School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Medical Sciences Building, Bristol BS8 1TD, UK
| | - Richard J Coward
- School of Clinical Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Alastair W Poole
- School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Medical Sciences Building, Bristol BS8 1TD, UK
| | - Ingeborg Hers
- School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Medical Sciences Building, Bristol BS8 1TD, UK
| |
Collapse
|
9
|
Tambella AM, Attili AR, Dini F, Palumbo Piccionello A, Vullo C, Serri E, Scrollavezza P, Dupré G. Autologous platelet gel to treat chronic decubital ulcers: a randomized, blind controlled clinical trial in dogs. Vet Surg 2014; 43:726-33. [PMID: 24484268 DOI: 10.1111/j.1532-950x.2014.12148.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 03/01/2013] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine the efficacy of topical application of the autologous platelet gel (PG) in canine chronic protracted decubital ulcers. STUDY DESIGN Prospective, randomized, blind controlled clinical trial. ANIMALS Dogs (n = 18) with bilateral chronic wounds caused by protracted decubitus ulcers. METHODS For each dog, wound side was randomized to receive either platelet gel (group PG) every 5 days for 5 dressing changes, or paraffin gauzes dressings (group C), as negative control. Wound healing and wound surfaces were compared at admission and then evaluated every 5th day, until day 25. Outcome variables were: open wound area, reduction of open wound surface compared to admission and to each preceding dressing change, time to complete epithelialization. RESULTS Significant differences in healing process were observed at day 5 and continued throughout the entire study period (P < .00001). At 25 days, mean percent reduction in wound area was 93.5% in group PG and 13.2% in group C (P < .00001). CONCLUSIONS Appropriately prepared autologous PG, an inexpensive, readily available blood derivative, applied topically results in more rapid healing of chronic non-healing decubital ulcers in dogs than those treated by use of paraffin-impregnated gauzes.
Collapse
Affiliation(s)
- Adolfo Maria Tambella
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Macerata, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Passaretti F, Tia M, D'Esposito V, De Pascale M, Del Corso M, Sepulveres R, Liguoro D, Valentino R, Beguinot F, Formisano P, Sammartino G. Growth-promoting action and growth factor release by different platelet derivatives. Platelets 2013; 25:252-6. [PMID: 23855408 DOI: 10.3109/09537104.2013.809060] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Platelet derivatives are commonly used in wound healing and tissue regeneration. Different procedures of platelet preparation may differentially affect growth factor release and cell growth. Preparation of platelet-rich fibrin (PRF) is accompanied by release of growth factors, including platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGFβ1), and several cytokines. When compared with the standard procedure for platelet-rich plasma (PRP), PRF released 2-fold less PDGF, but >15-fold and >2-fold VEGF and TGFβ1, respectively. Also, the release of several cytokines (IL-4, IL-6, IL-8, IL-10, IFNγ, MIP-1α, MIP-1β and TNFα) was significantly increased in PRF-conditioned medium (CM), compared to PRP-CM. Incubation of both human skin fibroblasts and human umbilical vein endothelial cells (HUVECs) with PRF-derived membrane (mPRF) or with PRF-CM enhanced cell proliferation by >2-fold (p<0.05). Interestingly, PRP elicited fibroblast growth at a higher extent compared to PRF. At variance, PRF effect on HUVEC growth was significantly greater than that of PRP, consistent with a higher concentration of VEGF in the PRF-CM. Thus, the procedure of PRP preparation leads to a larger release of PDGF, as a possible result of platelet degranulation, while PRF enhances the release of proangiogenic factors.
Collapse
Affiliation(s)
- F Passaretti
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Xue R, Hao DD, Sun JP, Li WW, Zhao MM, Li XH, Chen Y, Zhu JH, Ding YJ, Liu J, Zhu YC. Hydrogen sulfide treatment promotes glucose uptake by increasing insulin receptor sensitivity and ameliorates kidney lesions in type 2 diabetes. Antioxid Redox Signal 2013; 19:5-23. [PMID: 23293908 PMCID: PMC3676664 DOI: 10.1089/ars.2012.5024] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AIMS To examine if hydrogen sulfide (H2S) can promote glucose uptake and provide amelioration in type 2 diabetes. RESULTS Treatment with sodium hydrosulfide (NaHS, an H2S donor) increased glucose uptake in both myotubes and adipocytes. The H2S gas solution showed similar effects. The NaHS effects were blocked by an siRNA-mediated knockdown of the insulin receptor (IR). NaHS also increased phosphorylation of the IR, PI3K, and Akt. In Goto-Kakizaki (GK) diabetic rats, chronic NaHS treatment (30 μmol·kg(-1)·day(-1)) decreased fasting blood glucose, increased insulin sensitivity, and increased glucose tolerance with increased phosphorylation of PI3K and Akt in muscles. Similar insulin-sensitizing effects of NaHS treatment were also observed in Wistar rats. Moreover, glucose uptake was reduced in the cells with siRNA-mediated knockdown of the H2S-generating enzyme cystathionine γ-lyase in the presence or absence of exogenous H2S. Moreover, chronic NaHS treatment reduced oxygen species and the number of crescentic glomeruli in the kidney of GK rats. INNOVATION AND CONCLUSION This study provides the first piece of evidence for the insulin-sensitizing effect of NaHS/H2S in the both in vitro and in vivo models of insulin resistance. REBOUND TRACK: This work was rejected during a standard peer review and rescued by the Rebound Peer Review (Antoxid Redox Signal 16: 293-296, 2012) with the following serving as open reviewers: Jin-Song Bian, Samuel Dudley, Hideo Kimura, and Xian Wang.
Collapse
Affiliation(s)
- Rong Xue
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bernardi M, Albiero E, Alghisi A, Chieregato K, Lievore C, Madeo D, Rodeghiero F, Astori G. Production of human platelet lysate by use of ultrasound for ex vivo expansion of human bone marrow-derived mesenchymal stromal cells. Cytotherapy 2013; 15:920-9. [PMID: 23623274 DOI: 10.1016/j.jcyt.2013.01.219] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/08/2013] [Accepted: 01/23/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND AIMS A medium supplemented with fetal bovine serum (FBS) is of common use for the expansion of human mesenchymal stromal cells (MSCs). However, its use is discouraged by regulatory authorities because of the risk of zoonoses and immune reactions. Human platelet lysate (PL) obtained by freezing/thawing disruption of platelets has been proposed as a possible substitute of FBS. The process is time-consuming and not well standardized. A new method for obtaining PL that is based on the use of ultrasound is proposed. METHODS Platelet sonication was performed by submerging platelet-containing plastic bags in an ultrasonic bath. To evaluate platelet lysis we measured platelet-derived growth factor-AB release. PL efficiency was tested by expanding bone marrow (BM)-MSCs, measuring population doubling time, differentiation capacity and immunogenic properties. Safety was evaluated by karyotyping expanded cells. RESULTS After 30 minutes of sonication, 74% of platelet derived growth factor-AB was released. PL enhanced BM-MSC proliferation rate compared with FBS. The mean cumulative population doubling (cPD) of cells growth in PL at 10%, 7.5% and 5% was better compared with cPD obtained with 10% FBS. PD time (hours) of MSCs with PL obtained by sonication was shorter than for cPD with PL obtained by freezing/thawing (18.9 versus 17.4, P < 0.01). BM mononucleated cells expressed MSC markers and were able to differentiate into adipogenic, osteogenic and chondrogenic lineages. When BM-MSCs and T cells were co-cultured in close contact, immunosuppressive activity of BM-MSCs was maintained. Cell karyotype showed no genetic alterations. CONCLUSIONS The proposed method for the production of PL by sonication could be a safe, efficient and fast substitute of FBS, without the potential risks of FBS.
Collapse
Affiliation(s)
- Martina Bernardi
- Advanced Cellular Therapy Laboratory, Department of Cellular Therapy and Hematology, San Bortolo Hospital, Vicenza, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Platelet gel in cutaneous radiation dermatitis. Support Care Cancer 2012; 21:287-93. [DOI: 10.1007/s00520-012-1635-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/14/2012] [Indexed: 10/27/2022]
|
14
|
Noda S, Asano Y, Akamata K, Aozasa N, Taniguchi T, Takahashi T, Ichimura Y, Toyama T, Sumida H, Yanaba K, Tada Y, Sugaya M, Kadono T, Sato S. Constitutive activation of c-Abl/protein kinase C-δ/Fli1 pathway in dermal fibroblasts derived from patients with localized scleroderma. Br J Dermatol 2012; 167:1098-105. [PMID: 22591006 DOI: 10.1111/j.1365-2133.2012.11055.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND A noncanonical pathway of transforming growth factor-β signalling, the c-Abl/protein kinase C-δ (PKC-δ)/Friend leukemia virus integration 1 (Fli1) axis, is a powerful regulator of collagen synthesis in dermal fibroblasts. OBJECTIVES To investigate the significance of the c-Abl/PKC-δ/Fli1 pathway for the establishment of the profibrotic phenotype in lesional dermal fibroblasts from patients with localized scleroderma (LSc). METHODS The activation status of the c-Abl/PKC-δ/Fli1 pathway was evaluated by immunoblotting and chromatin immunoprecipitation using cultured dermal fibroblasts from patients with LSc and closely matched healthy controls and by immunostaining on skin sections. The effects of a platelet-derived growth factor receptor inhibitor AG1296 and gene silencing of c-Abl on the expression levels of type I collagen were evaluated by immunoblotting. RESULTS The phosphorylation levels of Fli1 at threonine 312 were increased, while the total Fli1 levels and the binding of Fli1 to the COL1A2 promoter were decreased, in cultured LSc fibroblasts compared with cultured normal fibroblasts. Furthermore, in cultured LSc fibroblasts, the expression levels of c-Abl were elevated compared with cultured normal fibroblasts and PKC-δ was preferentially localized in the nucleus. These findings were also confirmed in vivo by immunohistochemistry using skin sections. Moreover, gene silencing of c-Abl, but not AG1296, significantly suppressed the expression of type I collagen in cultured LSc fibroblasts. CONCLUSIONS Constitutive activation of the c-Abl/PKC-δ/Fli1 pathway at least partially contributes to the establishment of the profibrotic phenotype in LSc dermal fibroblasts, which provides a novel molecular basis to explain the efficacy of imatinib against skin sclerosis in a certain subset of LSc.
Collapse
Affiliation(s)
- S Noda
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Buonomo R, Giacco F, Vasaturo A, Caserta S, Guido S, Pagliara V, Garbi C, Mansueto G, Cassese A, Perruolo G, Oriente F, Miele C, Beguinot F, Formisano P. PED/PEA-15 controls fibroblast motility and wound closure by ERK1/2-dependent mechanisms. J Cell Physiol 2012; 227:2106-16. [PMID: 21780113 PMCID: PMC3306794 DOI: 10.1002/jcp.22944] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell migration is dependent on the control of signaling events that play significant roles in creating contractile force and in contributing to wound closure. We evaluated wound closure in fibroblasts from mice overexpressing (TgPED) or lacking ped/pea-15 (KO), a gene overexpressed in patients with type 2 diabetes. Cultured skin fibroblasts isolated from TgPED mice showed a significant reduction in the ability to recolonize wounded area during scratch assay, compared to control fibroblasts. This difference was observed both in the absence and in the presence of mytomicin C, an inhibitor of mitosis. In time-lapse experiments, TgPED fibroblasts displayed about twofold lower velocity and diffusion coefficient, as compared to controls. These changes were accompanied by reduced spreading and decreased formation of stress fibers and focal adhesion plaques. At the molecular level, TgPED fibroblasts displayed decreased RhoA activation and increased abundance of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2). Inhibition of ERK1/2 activity by PD98059 restored RhoA activation, cytoskeleton organization and cell motility, and almost completely rescued wound closure of TgPED fibroblasts. Interestingly, skin fibroblasts isolated from KO mice displayed an increased wound closure ability. In vivo, healing of dorsal wounds was delayed in TgPED and accelerated in KO mice. Thus, PED/PEA-15 may affect fibroblast motility by a mechanism, at least in part, mediated by ERK1/2. J. Cell. Physiol. 227: 2106–2116, 2012. © 2011 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Roberta Buonomo
- Department of Cellular and Molecular Biology and Pathology, Federico II University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gentile P, Orlandi A, Scioli MG, Di Pasquali C, Bocchini I, Curcio CB, Floris M, Fiaschetti V, Floris R, Cervell V. A comparative translational study: the combined use of enhanced stromal vascular fraction and platelet-rich plasma improves fat grafting maintenance in breast reconstruction. Stem Cells Transl Med 2012; 1:341-351. [PMID: 23197813 PMCID: PMC3659694 DOI: 10.5966/sctm.2011-0065] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/05/2012] [Indexed: 12/18/2022] Open
Abstract
The use of autologous fat grafting is ideal in breast reconstruction. However, published data on long-term outcomes and instrumental results of fat grafting to the breast are lacking. The purpose of this study was to review the authors' experience of fat grafting, evaluating the effects related to the use of enhanced stromal vascular fraction (e-SVF) and fat grafting with platelet-rich plasma (PRP) in the maintenance of fat volume in breast reconstruction, comparing the results with a control group. Twenty-three patients aged 19-60 years affected by breast soft tissue defects were analyzed at the Plastic and Reconstructive Department of the University of Rome Tor Vergata. Ten patients were treated with SVF-enhanced autologous fat grafts, and 13 patients were treated with fat grafting + platelet-rich plasma. The patients in the control group (n = 10) were treated with centrifuged fat grafting injection according to Coleman's procedure. The patients treated with SVF-enhanced autologous fat grafts showed a 63% maintenance of the contour restoring and of three-dimensional volume after 1 year compared with the patients of the control group treated with centrifuged fat graft, who showed a 39% maintenance. In those patients who were treated with fat grafting and PRP, we observed a 69% maintenance of contour restoring and of three-dimensional volume after 1 year. As reported, the use of either e-SVF or PRP mixed with fat grafting produced an improvement in maintenance of breast volume in patients affected by breast soft tissue defect.
Collapse
Affiliation(s)
- Pietro Gentile
- Plastic and Reconstructive Surgery Department, University of Rome, Tor Vergata, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zandim BM, Souza MVD, Magalhães PC, Benjamin LDA, Maia L, Oliveira ACD, Pinto JDO, Ribeiro Júnior JI. Platelet activation: ultrastructure and morphometry in platelet-rich plasma of horses. PESQUISA VETERINARIA BRASILEIRA 2012. [DOI: 10.1590/s0100-736x2012000100014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study was conducted to investigate the activation ability of the platelet-rich plasma (PRP) by pharmacological agents, as well as to verify the need or not of this activation for therapeutic use. The PRP was obtained from four healthy crossbred geldings aged 13 to 16 years (15±1years), and was processed for observation and quantification of the platelet morphology by using the transmission electron microscopy. All PRP samples were activated with 10% calcium chloride (CaCl2) solution, pure bovine thrombin or associated with CaCl2. The control (pure PRP) was not pharmacologically activated. In the pure PRP samples, 49% of the platelets were classified as state of activation uncertain, 41% as resting, 9% as fully activated and 1% as irreversibly damaged. Treatment with 10% CaCl2 provided a distribution of 54% platelets in state of activation uncertain, 24% as fully activated, 20% as resting, and 2% as irreversibly damaged. The platelet morphology of the bovine thrombin treated samples did not fit into classification adopted, as showing irregular shape with emission of large filamentous pseudopods, appearance of ruptured and whole granules in the remaining cytoplasm and extracellular environment. There was effect of the treatment on the platelet morphology (P=0.03). The 10% CaCl2 is an adequate platelet-activating agent. However, in cases the use of PRP under its liquid form is necessary, the use of pure PRP is recommended, since besides presenting an adequate percentage of fully activated platelets it also has significant amount of the resting type, which can be activated by substances found in the injured tissue.
Collapse
|
18
|
Autologous Biologic Treatment for Equine Musculoskeletal Injuries: Platelet-Rich Plasma and IL-1 Receptor Antagonist Protein. Vet Clin North Am Equine Pract 2011; 27:275-98. [DOI: 10.1016/j.cveq.2011.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
19
|
New method to produce hemocomponents for regenerative use from peripheral blood: integration among platelet growth factors monocytes and stem cells. Transfus Apher Sci 2011; 42:117-24. [PMID: 20227343 DOI: 10.1016/j.transci.2010.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have shown the importance of monocytes/macrophageses and of CD34+ progenitors in tissue regeneration processes. These cells, obtained generally from bone marrow, are seen in damaged tissue. We have studied a method to collect from the peripheral blood, using a cell separator and without stimulation of the patient/donor, a leukocyte platelet concentrated hemocomponent (CLP) for regenerative use which contains platelets, monocytes/macrophages, fibrinogen and CD34+ cells. We appraised the composition and cell functionality of the final hemocomponent during production and cryoconservation. The results show a positive increase in concentration values, in comparison with the pre-collection, of the cells that were involved in regeneration; i.e. the platelets, monocytes and CD34+ cells. These concentrations were also maintained at an effective level during cryoconservation of the hemocomponent. The CLP also demonstrated positive clonogenic potential in culture, showing that the CD34+ progenitors involved in CFU formation are functional in the fresh and thawed product. In brief we have shown that it is possible to produce, in a simple way, a hemocomponent for regenerative use that is standardized, reliable, and is economically feasible.
Collapse
|
20
|
Textor JA, Norris JW, Tablin F. Effects of preparation method, shear force, and exposure to collagen on release of growth factors from equine platelet-rich plasma. Am J Vet Res 2011; 72:271-8. [PMID: 21281204 DOI: 10.2460/ajvr.72.2.271] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To test the hypotheses that preparation method, exposure to shear force, and exposure to collagen affect the release of growth factors from equine platelet-rich plasma (PRP). SAMPLE POPULATION PRP obtained from 6 horses. PROCEDURES PRP was prepared via 2 preparation methods (tube and automated) and subjected to 6 treatment conditions (resting, detergent, exposure to shear via 21- and 25-gauge needles, and exposure to collagen [10 and 20 μg/mL]). Concentrations of platelet-derived growth factor, isoform BB (PDGF-BB); transforming growth factor β, isoform 1 (TGFβ₁); and insulin-like growth factor, isoform 1 (IGF-1) were quantified by use of ELISAs. Statistical analysis was conducted via repeated-measures ANOVA. RESULTS Platelet numbers were significantly higher in tube-prepared PRP than in automated-prepared PRP Growth factor concentrations did not differ significantly between preparation methods. Mean PDGF-BB concentration ranged from 134 to 7,157 pg/mL, mean TGFβ₁ concentration ranged from 1,153 to 22,677 pg/mL, and mean IGF-1 concentration ranged from 150 to 280 ng/mL. Shear force did not affect growth factor concentrations. Dose-dependent increases in PDGF-BB and TGFβ₁ were detected in response to collagen, but equalled only 10% of the estimated total platelet content. Concentrations of IGF-1 were not significantly different among treatments and negative or positive control treatments. Serum concentrations of PDGF-BB and TGFβ₁ exceeded concentrations in PRP for most treatment conditions. CONCLUSIONS AND CLINICAL RELEVANCE Release of growth factors from equine PRP was negligible as a result of the injection process alone. Investigation of platelet-activation protocols is warranted to potentially enhance PRP treatment efficacy in horses.
Collapse
Affiliation(s)
- Jamie A Textor
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA.
| | | | | |
Collapse
|
21
|
Leucocyte-platelet haemocomponents for topical use: regenerative potentiality. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 108:209-11. [PMID: 21107961 DOI: 10.1007/978-3-211-99370-5_32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Wider and wider is the interest in different clinical ambits in the application of haemocomponents produced from peripheral blood for regenerative purposes. These are mainly made up of concentrated platelets capable of releasing locally growth factor (GF) that stimulates tissue regeneration. Our group has devised a method to produce a new leucocyte-platelet haemocomponent enriched in fibrinogen that integrates the GF stimulus with the presence of cells involved in the regenerative processes: monocytes and stem cells. The use of the cell separator to collect these haemocomponents from peripheral blood has allowed us to realize a safe standardized product, with good regenerative potentiality and reasonable costs. This is obtained by modifying some parameters of separation, and without cell manipulation.
Collapse
|
22
|
Mazzucco L, Borzini P, Gope R. Platelet-Derived Factors Involved in Tissue Repair—From Signal to Function. Transfus Med Rev 2010; 24:218-34. [DOI: 10.1016/j.tmrv.2010.03.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Schallmoser K, Strunk D. Preparation of pooled human platelet lysate (pHPL) as an efficient supplement for animal serum-free human stem cell cultures. J Vis Exp 2009:1523. [PMID: 19881465 DOI: 10.3791/1523] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Platelet derived growth factors have been shown to stimulate cell proliferation efficiently in vivo(1,2) and in vitro. This effect has been reported for mesenchymal stromal cells (MSCs), fibroblasts and endothelial colony-forming cells with platelets activated by thrombin(3-5) or lysed by freeze/thaw cycles(6-14) before the platelet releasate is added to the cell culture medium. The trophic effect of platelet derived growth factors has already been tested in several trials for tissue engineering and regenerative therapy.(1,15-17) Varying efficiency is considered to be at least in part due to individually divergent concentrations of growth factors(18,19) and a current lack of standardized protocols for platelet preparation.(15,16) This protocol presents a practicable procedure to generate a pool of human platelet lysate (pHPL) derived from routinely produced platelet rich plasma (PRP) of forty to fifty single blood donations. By several freeze/thaw cycles the platelet membranes are damaged and growth factors are efficiently released into the plasma. Finally, the platelet fragments are removed by centrifugation to avoid extensive aggregate formation and deplete potential antigens. The implementation of pHPL into standard culture protocols represents a promising tool for further development of cell therapeutics propagated in an animal protein-free system.
Collapse
|
24
|
Naldini A, Morena E, Fimiani M, Campoccia G, Fossombroni V, Carraro F. The effects of autologous platelet gel on inflammatory cytokine response in human peripheral blood mononuclear cells. Platelets 2009; 19:268-74. [DOI: 10.1080/09537100801947426] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Yabanoglu S, Akkiki M, Seguelas MH, Mialet-Perez J, Parini A, Pizzinat N. Platelet derived serotonin drives the activation of rat cardiac fibroblasts by 5-HT2A receptors. J Mol Cell Cardiol 2009; 46:518-25. [DOI: 10.1016/j.yjmcc.2008.12.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 12/24/2008] [Accepted: 12/25/2008] [Indexed: 02/06/2023]
|
26
|
Bibliography. Current world literature. Growth and development. Curr Opin Endocrinol Diabetes Obes 2008; 15:79-101. [PMID: 18185067 DOI: 10.1097/med.0b013e3282f4f084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
|
28
|
Affiliation(s)
- Alan T Nurden
- Centre de Référence des Pathologies Plaquettaires, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, 33600 Pessac, France.
| |
Collapse
|
29
|
Ide T, Kitajima Y, Miyoshi A, Ohtsuka T, Mitsuno M, Ohtaka K, Miyazaki K. The hypoxic environment in tumor-stromal cells accelerates pancreatic cancer progression via the activation of paracrine hepatocyte growth factor/c-Met signaling. Ann Surg Oncol 2007; 14:2600-7. [PMID: 17534684 DOI: 10.1245/s10434-007-9435-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 04/05/2007] [Indexed: 12/26/2022]
Abstract
BACKGROUND Pancreatic cancer is one of the representative solid tumors, in which the hypoxic microenvironment plays a crucial role in malignant progression. We previously demonstrated that tumor-stromal interaction under hypoxia enhances the invasiveness of pancreatic cancer cells through hepatocyte growth factor (HGF)/c-Met signaling. METHODS We investigated the immunohistochemical expression of hypoxia inducible factor-1alpha (HIF-1alpha) c-Met, and HGF in both cancer and stromal cells using 41 pancreatic cancer tissue specimens, and tried to identify any correlations with the clinical features and survival. RESULTS Positive staining for HIF-1alpha was observed in both pancreatic cancer and the surrounding stromal cells in more than 30% of the cases, and it significantly correlated with lymph node metastasis (P < .05). A significant correlation was observed between the expression of HIF-1alpha and HGF in stromal cells (P < .05). In addition, the c-Met expression in cancer cells was found to significantly correlate with the HGF expression in not only cancer but also stromal cells. The disease-free survival rates of the patients with HIF-1alpha in cancer, stromal, c-Met in cancer, and an HGF expression in stromal cells was significantly worse than those without such expressions (P < .05). CONCLUSIONS These data suggest that the HGF/c-Met signaling via HIF-1alpha ?may therefore negatively affect the prognosis in patients with pancreatic cancer, and targeting tumor stroma under hypoxia might thus be potentially useful as a novel therapy for this cancer.
Collapse
Affiliation(s)
- Takao Ide
- Department of Surgery, Saga University Faculty of Medicine, Saga, Japan
| | | | | | | | | | | | | |
Collapse
|