1
|
Birrell SN. In Response to "Photosensitizing Drugs and Risk of Skin Cancer in Women-A Prospective Population-Based Study". PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2025; 41:e70021. [PMID: 40197773 PMCID: PMC11977301 DOI: 10.1111/phpp.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Affiliation(s)
- Stephen N. Birrell
- Senior Breast Cancer Research Fellow, Dame Roma Mitchell Research LaboratoriesUniversity of AdelaideAdelaideAustralia
| |
Collapse
|
2
|
Srivastava TP, Dhar R, Karmakar S. Looking beyond the ER, PR, and HER2: what's new in the ARsenal for combating breast cancer? Reprod Biol Endocrinol 2025; 23:9. [PMID: 39833837 PMCID: PMC11744844 DOI: 10.1186/s12958-024-01338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Breast cancer (BrCa) is a complex and heterogeneous disease with diverse molecular subtypes, leading to varied clinical outcomes and posing significant treatment challenges. The increasing global burden of BrCa, particularly in low- and middle-income countries, underscores the urgent need for more effective therapeutic strategies. The androgen receptor (AR), expressed in a substantial proportion of breast cancer cases, has emerged as a potential biomarker and therapeutic target. In breast cancer, AR exhibits diverse functions across subtypes, often interacting with other hormone receptors, thereby influencing tumor progression and treatment responses. This intricate interplay is further complicated by the presence of constitutively expressed AR splice variants (AR-Vs) that drive resistance to AR-targeting therapies through structural rearrangements in the domains and activation of aberrant signaling pathways. Although AR-targeting drugs, initially developed for prostate cancer (PCa), have shown promise in AR-positive breast cancer, significant gaps remain in understanding AR's precise functions and therapeutic potential. The systemic management of breast cancer is guided primarily by theranostic biomarkers; ER, PR, HER2, and Ki67 which also dictate the breast cancer classification. The ubiquitous expression of AR in BrCa and the emergence of AR-Vs can assist the management of disease complementing the standard of care. This article provides a comprehensive overview of AR and its splice variants in the context of breast cancer, highlighting their prognostic and predictive value across different subtypes looking beyond the conventional ER, PR, and HER2 status. This review also raises the possibility of using AR splice variants in predicting tumor aggressiveness. From the settings of developing nations, this may provide useful insight by integrating recent advances in AR-targeted therapies and exploring their translational potential, emphasizing the critical need for further research to optimize AR-based therapeutic strategies for breast cancer management.
Collapse
MESH Headings
- Humans
- Breast Neoplasms/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/therapy
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/genetics
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Female
- Receptors, Estrogen/metabolism
- Receptors, Estrogen/genetics
- Receptors, Progesterone/metabolism
- Receptors, Progesterone/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
Collapse
Affiliation(s)
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
3
|
Louw-du Toit R, Simons M, Africander D. Progestins and breast cancer hallmarks: The role of the ERK1/2 and JNK pathways in estrogen receptor positive breast cancer cells. J Steroid Biochem Mol Biol 2024; 237:106440. [PMID: 38048919 DOI: 10.1016/j.jsbmb.2023.106440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
Progestins used in hormonal contraceptives and menopausal hormone therapy (MHT) have been linked to increased breast cancer risk. Whether the association holds for all progestins is unclear and the underlying mechanisms remain poorly understood. We directly compared the effects of four progestins (medroxyprogesterone acetate (MPA), norethisterone acetate (NET-A), levonorgestrel (LNG) and drospirenone (DRSP)) to each other and the natural progestogen progesterone (P4) on selected cancer hallmarks. To provide mechanistic insight into these effects, we assessed the role of the progesterone receptor (PR), and the extracellular signal-related kinase (ERK1/2) and c-Jun N terminal (JNK) signaling pathways. We showed that the increased proliferation of the luminal T47D breast cancer cell line by P4 and all progestins, albeit to different extents, was inhibited by PR knockdown and inhibition of both the ERK1/2 and JNK pathways. While knockdown of the PR also blocked the upregulation of MKI67 and CCND1 mRNA expression by selected progestogens, only a role for the ERK1/2 pathway could be established in these effects. Similarly, only a role for the ERK1/2 pathway could be confirmed for progestogen-induced colony formation, whereas both the ERK1/2 and JNK pathways were required for cell migration in response to the three older progestins implicated in the etiology of breast cancer, MPA, NET-A and LNG. Together our results show that all the progestins elicit their effects on cell proliferation via a mechanism requiring the PR, ERK1/2 and JNK pathways. While the ERK1/2 and JNK pathways are also required for increased cell migration by the older progestins, only a role for the ERK1/2 pathway could be established in their effects on colony formation. Notably, the cytoplasmic PR was not needed for activation of the ERK1/2 pathway by the progestogens. Given that DRSP showed significantly lower proliferation than MPA and NET-A, and that it had no effect on breast cancer cell migration and colony formation, hormonal formulations containing the newer generation progestin DRSP may provide a better benefit/risk profile towards breast cancer than those containing the older generation progestins.
Collapse
Affiliation(s)
- Renate Louw-du Toit
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| | - Mishkah Simons
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| | - Donita Africander
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
4
|
Racial Disparity in Quadruple Negative Breast Cancer: Aggressive Biology and Potential Therapeutic Targeting and Prevention. Cancers (Basel) 2022; 14:cancers14184484. [PMID: 36139643 PMCID: PMC9497140 DOI: 10.3390/cancers14184484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Quadruple negative breast cancer (QNBC), a subgroup of triple negative BC, has emerged as a highly aggressive BC subtype that disproportionately afflicts and impacts Black/African-American (AA) women. In this article, we review molecular distinctions in Black/AA and White/European-American (EA) QNBC biology as well as address potential non-genetic risk factors that could be underlying this racially disparate burden. We aim to provide deeper insight and provide a framework for novel discovery of actionable therapeutic targets and identify lifestyle changes to improve outcomes for Black/AA QNBC patients. Abstract Black/African-American (AA) women, relative to their White/European-American (EA) counterparts, experience disproportionately high breast cancer mortality. Central to this survival disparity, Black/AA women have an unequal burden of aggressive breast cancer subtypes, such as triple-negative breast cancer (ER/PR-, HER2-wild type; TNBC). While TNBC has been well characterized, recent studies have identified a highly aggressive androgen receptor (AR)-negative subtype of TNBC, quadruple-negative breast cancer (ER/PR-, HER2-wildtype, AR-; QNBC). Similar to TNBC, QNBC disproportionately impacts Black/AA women and likely plays an important role in the breast cancer survival disparities experienced by Black/AA women. Here, we discuss the racial disparities of QNBC and molecular signaling pathways that may contribute to the aggressive biology of QNBC in Black/AA women. Our immediate goal is to spotlight potential prevention and therapeutic targets for Black/AA QNBC; ultimately our goal is to provide greater insight into reducing the breast cancer survival burden experienced by Black/AA women.
Collapse
|
5
|
Ho YS, Lai GY, Chan H, Chen TC, Lee WJ. JM-17 Induces G0/G1 Cell cycle arrest in human breast cancer cells through the downregulation of androgen receptors and cyclin-dependent kinase 4 protein expression. JOURNAL OF CANCER RESEARCH AND PRACTICE 2022. [DOI: 10.4103/jcrp.jcrp_11_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Gersh FL, O'Keefe JH, Lavie CJ, Henry BM. The Renin-Angiotensin-Aldosterone System in Postmenopausal Women: The Promise of Hormone Therapy. Mayo Clin Proc 2021; 96:3130-3141. [PMID: 34736778 DOI: 10.1016/j.mayocp.2021.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 07/29/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022]
Abstract
Estradiol (E2) plays an underrecognized role in modulating body-wide systems, including important interactions with the renin-angiotensin-aldosterone system (RAAS). The RAAS is an immunomodulating system that is critical for maintaining homeostasis across multiple organ systems. The diverse interactions between E2 and the RAAS help maintain cardiometabolic homeostasis, including successful physiologic responses to trauma and infectious pathogens. Estradiol deficiency (ie, menopause) results in impaired responses and increased susceptibility to infectious pathogens. Both immune and cardiometabolic function decline with reduced E2 production, in part because the RAAS becomes dysregulated by E2 deficiency, leaving RAAS predominantly in its proinflammatory state and predisposing to systemic low-grade inflammation. Estradiol deficiency and RAAS dysregulation contribute to impaired immune responses and increased incidence of cardiac hypertrophy, hypertension, atherosclerotic cardiovascular disease, arrhythmias, and heart failure. The RAAS consists of dual, counterbalancing pathways-proinflammatory and anti-inflammatory. Estradiol is a signaling agent that plays a major role in determining which RAAS pathway predominates. The proinflammatory pathway is activated early in response to infection or trauma, followed by up-regulation of the anti-inflammatory pathway, to resolve inflammation and to restore homeostasis. Estradiol influences activation of the "switch" to restore the anti-inflammatory state. The dysregulated RAAS is a primary target of current cardiovascular therapeutics focused on blocking portions of its proinflammatory pathway. However, RAAS-modifying pharmaceuticals often provide imperfect solutions to these physiologic disruptions and underscore the need for improved approaches to menopausal medicine. Estradiol therapy and optimal lifestyle practices combined with RAAS-modifying pharmaceuticals may be an ideal strategy to optimize postmenopausal health.
Collapse
Affiliation(s)
- Felice L Gersh
- University of Arizona School of Medicine, Division of Integrative Medicine, Tucson, LA
| | - James H O'Keefe
- Saint Luke's Mid America Heart Institute, University of Missouri-Kansas City, Kansas City, LA
| | - Carl J Lavie
- Ochsner Heart and Vascular Institute, Ochsner Clinical School-The University of Queensland School of Medicine, New Orleans, LA
| | - Brandon M Henry
- Cincinnati Children's Hospital, The Heart Institute, CICU, Cincinnati, OH.
| |
Collapse
|
7
|
Mohammadi H, Ashari S. Mechanistic insight into toxicity of phthalates, the involved receptors, and the role of Nrf2, NF-κB, and PI3K/AKT signaling pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35488-35527. [PMID: 34024001 DOI: 10.1007/s11356-021-14466-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
The wide use of phthalates, as phthalates are used in the manufacturing of not only plastics but also many others goods, has become a main concern in the current century because of their potency to induce deleterious effects on organism health. The toxic effects of phthalates such as reproductive toxicity, cardiotoxicity, hepatotoxicity, nephrotoxicity, teratogenicity, and tumor development have been widely indicated by previous experimental studies. Some of the important mechanisms of toxicity by phthalates are the induction and promotion of inflammation, oxidative stress, and apoptosis. Awareness of the involved molecular pathways of these mechanisms will permit the detection of exact molecular targets of phthalates to protect or treat their toxicity. Up to now, various transcription factors and signaling pathways have been associated with phthalate-induced toxicity which by influencing on nuclear surface and the expression of different genes can alter cell hemostasis. In different studies, the role of nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor-κB (NF-κB), and phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathways in processes of oxidative stress, inflammation, apoptosis, and cancer has been shown following exposure to phthalates. In the present review, we aim to survey experimental studies (in vitro and in vivo) in order to show firstly the most involved receptors and also the importance and the role of the mentioned signaling pathways in phthalate-induced toxicity, and with considering this point, the future studies can focus on these molecular targets as a strategic method to reduce environmental chemicals-induced toxicity especially phthalates toxic effects.
Collapse
Affiliation(s)
- Hamidreza Mohammadi
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology/Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sorour Ashari
- Department of Toxicology/Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
8
|
Verma P, Mittal P, Singh A, Singh IK. New Entrants into Clinical Trials for Targeted Therapy of Breast Cancer: An Insight. Anticancer Agents Med Chem 2020; 19:2156-2176. [PMID: 31656157 DOI: 10.2174/1871520619666191018172926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 02/08/2023]
Abstract
Breast cancer is too complex with various different molecular alterations involved in its pathogenesis and progression. Over the decade, we have seen a surge in the development of drugs for bimolecular targets and for the signal transduction pathways involved in the treatment line of breast cancer. These drugs, either alone or in combination with conventional treatments like chemotherapy, hormone therapy and radiotherapy, will help oncologists to get a better insight and do the needful treatment. These novel therapies bring various challenges along with them, which include the dosage selection, patient selection, schedule of treatment and weighing of clinical benefits over side effects. In this review, we highlight the recently studied target molecules that have received indications in breast carcinoma, both in the localized and in an advanced state and about their inhibitors which are in clinical development which can give the immense potential to clinical care in the near future.
Collapse
Affiliation(s)
- Priyanka Verma
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Pooja Mittal
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi, 110007, India.,Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India.,Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
9
|
Friedman AE. Letter to the Editor: "Global Consensus Position Statement on the Use of Testosterone Therapy for Women". J Clin Endocrinol Metab 2020; 105:5803242. [PMID: 32160280 DOI: 10.1210/clinem/dgaa118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/05/2020] [Indexed: 02/13/2023]
|
10
|
Moore NL, Hanson AR, Ebrahimie E, Hickey TE, Tilley WD. Anti-proliferative transcriptional effects of medroxyprogesterone acetate in estrogen receptor positive breast cancer cells are predominantly mediated by the progesterone receptor. J Steroid Biochem Mol Biol 2020; 199:105548. [PMID: 31805393 DOI: 10.1016/j.jsbmb.2019.105548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/19/2019] [Indexed: 01/14/2023]
Abstract
Medroxyprogesterone acetate (MPA) is a first generation progestin that has been in clinical use for various hormonal conditions in women since the 1960s. Although developed as a progesterone receptor (PR) agonist, MPA also has strong binding affinity for other steroid receptors. This promiscuity confounds the mechanistic action of MPA in target cells that express multiple steroid receptors. This study is the first to assess the relative contribution of progesterone, androgen and glucocorticoid receptors in mediating the transcriptional activity of MPA on endogenous targets in breast cancer cells that endogenously express all three receptors at comparable levels. Gene expression profiling in estrogen receptor positive (ER+) ZR-75-1 breast cancer cells demonstrated that although the MPA-regulated transcriptome strongly overlapped with that of Progesterone (PROG), 5α-dihydrotestosterone (DHT) and Dexamethasone (DEX), it clustered most strongly with that of PROG, suggesting that MPA predominantly acts via the progesterone receptor (PR) rather than androgen receptor (AR) or glucocorticoid receptor (GR). Subsequent experiments manipulating levels of these receptors, either through specific culture conditions or with lentiviral shRNAs targeting individual receptors, also revealed a stronger contribution of PR compared to AR and GR on the expression of endogenous target genes that are either commonly regulated by all ligands or specifically regulated only by MPA. A predominant contribution of PR to MPA action in ER+ T-47D breast cancer cells was also observed, although a stronger role for AR was evident in T-47D compared to that observed in ZR-75-1 cells. Network analysis of ligand-specific and commonly regulated genes demonstrated that MPA utilises different transcription factors and signalling pathways to inhibit proliferation compared with PROG. This study reaffirms the importance of PR in mediating MPA action in an endogenous breast cancer context where multiple steroid receptors are co-expressed and has potential implications for PR-targeting therapeutic strategies in ER+ breast cancer.
Collapse
Affiliation(s)
- Nicole L Moore
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Adrienne R Hanson
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Esmaeil Ebrahimie
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
11
|
Androgen and Anti-Mullerian Hormone Concentrations at Term in Newborns and Their Mothers with and without Polycystic Ovary Syndrome. J Clin Med 2019; 8:jcm8111817. [PMID: 31683802 PMCID: PMC6912752 DOI: 10.3390/jcm8111817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 01/25/2023] Open
Abstract
Objectives: The aetiology of polycystic ovary syndrome (PCOS) is not particularly mapped; however, a complex interaction of various factors, such as genetic, environmental and intrauterine factors, can be assumed. Experimental animal studies and clinical observations support the hypothesis that developmental programming by excess intrauterine steroid is relevant. The aim of the study was to investigate whether mothers with and without PCOS exhibit different androgen and anti-Mullerian hormone (AMH) levels at the end of pregnancy and how maternal hormone levels are reflected in their offspring. Methods: Between March 2013 and December 2015, we performed a prospective cross-sectional study at the Medical University of Graz. We included 79 women with PCOS according to the ESHRE/ASRM 2003 definition and 354 women without PCOS, both with an ongoing pregnancy ≥37 + 0 weeks of gestation, who gave birth in our institution. Primary outcome parameters were the levels of maternal and neonatal androgens (testosterone, free testosterone, androstenedione) and AMH at delivery. Results: Androgen levels in female offspring of PCOS and non-PCOS women at birth did not differ, while maternal hormone levels differed significantly. Androgen levels in PCOS boys were significantly higher when compared to levels in PCOS girls. Discussion: Our findings do not support the hypothesis that maternal androgen excess contributes to elevated androgen concentrations in the female offspring. Nevertheless, the effects of the increased androgen concentrations in mothers on their offspring have to be investigated in future studies.
Collapse
|
12
|
Vasiliou SK, Diamandis EP. Androgen receptor: A promising therapeutic target in breast cancer. Crit Rev Clin Lab Sci 2019; 56:200-223. [PMID: 30821186 DOI: 10.1080/10408363.2019.1575643] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer (BCa) is the second most common cancer worldwide and the most prevalent cancer in women. The majority of BCa cases are positive (+) for the estrogen receptor (ER+, 80%) and progesterone receptor (PR+, 65%). Estrogen and progesterone hormones are known to be involved in cancer progression, and thus hormonal deprivation is used as an effective treatment for ER+PR+ BCa subtypes. However, some ER+PR+ BCa patients develop resistance to such therapies. Meanwhile, chemotherapy is the only available treatment for ER-PR- BCa tumors. Another hormone receptor known as the androgen receptor (AR) has also been found to be widely expressed in human breast carcinomas. However, the mechanisms of AR and its endogenous androgen ligands is not well-understood in BCa and its biological role in this hormone-related disease remains unclear. In this review, we aim to address the importance of the AR in BCa diagnosis and prognosis, current AR-targeting approaches in BCa, and the potential for AR-downstream molecules to serve as therapeutic targets.
Collapse
Affiliation(s)
- Stella K Vasiliou
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , Canada.,b Department of Pathology and Laboratory Medicine , Mount Sinai Hospital , Toronto , Canada
| | - Eleftherios P Diamandis
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , Canada.,b Department of Pathology and Laboratory Medicine , Mount Sinai Hospital , Toronto , Canada.,c Department of Clinical Biochemistry , University Health Network , Toronto , Canada
| |
Collapse
|
13
|
Ricciardelli C, Bianco-Miotto T, Jindal S, Butler LM, Leung S, McNeil CM, O'Toole SA, Ebrahimie E, Millar EKA, Sakko AJ, Ruiz AI, Vowler SL, Huntsman DG, Birrell SN, Sutherland RL, Palmieri C, Hickey TE, Tilley WD. The Magnitude of Androgen Receptor Positivity in Breast Cancer Is Critical for Reliable Prediction of Disease Outcome. Clin Cancer Res 2018. [PMID: 29514843 DOI: 10.1158/1078-0432.ccr-17-1199] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: Consensus is lacking regarding the androgen receptor (AR) as a prognostic marker in breast cancer. The objectives of this study were to comprehensively review the literature on AR prognostication and determine optimal criteria for AR as an independent predictor of breast cancer survival.Experimental Design: AR positivity was assessed by immunostaining in two clinically validated primary breast cancer cohorts [training cohort, n = 219; validation cohort, n = 418; 77% and 79% estrogen receptor alpha (ERα) positive, respectively]. The optimal AR cut-point was determined by ROC analysis in the training cohort and applied to both cohorts.Results: AR was an independent prognostic marker of breast cancer outcome in 22 of 46 (48%) previous studies that performed multivariate analyses. Most studies used cut-points of 1% or 10% nuclear positivity. Herein, neither 1% nor 10% cut-points were robustly prognostic. ROC analysis revealed that a higher AR cut-point (78% positivity) provided optimal sensitivity and specificity to predict breast cancer survival in the training (HR, 0.41; P = 0.015) and validation (HR, 0.50; P = 0.014) cohorts. Tenfold cross-validation confirmed the robustness of this AR cut-point. Patients with ERα-positive tumors and AR positivity ≥78% had the best survival in both cohorts (P < 0.0001). Among the combined ERα-positive cases, those with comparable or higher levels of AR (AR:ERα-positivity ratio >0.87) had the best outcomes (P < 0.0001).Conclusions: This study defines an optimal AR cut-point to reliably predict breast cancer survival. Testing this cut-point in prospective cohorts is warranted for implementation of AR as a prognostic factor in the clinical management of breast cancer. Clin Cancer Res; 24(10); 2328-41. ©2018 AACR.
Collapse
Affiliation(s)
- Carmela Ricciardelli
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Tina Bianco-Miotto
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
| | - Shalini Jindal
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Lisa M Butler
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Samuel Leung
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catriona M McNeil
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Sandra A O'Toole
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Esmaeil Ebrahimie
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Ewan K A Millar
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Andrew J Sakko
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Alexandra I Ruiz
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah L Vowler
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, United Kingdom
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Stephen N Birrell
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert L Sutherland
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Carlo Palmieri
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.,Academic Department of Medical Oncology, Clatterbridge Cancer Centre NHS Foundation Trust, Wirral, United Kingdom
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
14
|
Barton DL, Shuster LT, Dockter T, Atherton PJ, Thielen J, Birrell SN, Sood R, Griffin P, Terstriep SA, Mattar B, Lafky JM, Loprinzi CL. Systemic and local effects of vaginal dehydroepiandrosterone (DHEA): NCCTG N10C1 (Alliance). Support Care Cancer 2017; 26:1335-1343. [PMID: 29164377 DOI: 10.1007/s00520-017-3960-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Dehydroepiandrosterone (DHEA) is helpful for treating vaginal symptoms. This secondary analysis evaluated the impact of vaginal DHEA on hormone concentrations, bone turnover, and vaginal cytology in women with a cancer history. METHODS Postmenopausal women, diagnosed with breast or gynecologic cancer, were eligible if they reported at least moderate vaginal symptoms. Participants could be on tamoxifen or aromatase inhibitors (AIs). Women were randomized to 3.25 versus 6.5 mg/day of DHEA versus a plain moisturizer (PM) control. Sex steroid hormone levels, biomarkers of bone formation, vaginal pH, and maturation index were collected at baseline and 12 weeks. Analysis included independent t tests and Wilcoxon rank tests, comparing each DHEA arm with the control. RESULTS Three hundred forty-five women contributed evaluable blood and 46 contributed evaluable cytology and pH values. Circulating DHEA-S and testosterone levels were significantly increased in those on vaginal DHEA in a dose-dependent manner compared to PM. Estradiol was significantly increased in those on 6.5 mg/day DHEA but not in those on 3.25 mg/day DHEA (p < 0.05 and p = 0.05, respectively), and not in those on AIs. Biomarkers of bone formation were unchanged in all arms. Maturation of vaginal cells was 100% (3.25 mg/day), 86% (6.5 mg/day), and 64% (PM); pH decreased more in DHEA arms. CONCLUSION DHEA resulted in increased hormone concentrations, though still in the lowest half or quartile of the postmenopausal range, and provided more favorable effects on vaginal cytology, compared to PM. Estrogen concentrations in women on AIs were not changed. Further research on the benefit of vaginal DHEA is warranted in hormone-dependent cancers.
Collapse
Affiliation(s)
- Debra L Barton
- University of Michigan School of Nursing, 400 N. Ingalls, Room 4304, Ann Arbor, MI, 48109-5482, USA.
| | | | - Travis Dockter
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN, USA
| | - Pamela J Atherton
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN, USA
| | | | - Stephen N Birrell
- Dame Roma Mitchell Laboratories, Department of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia
| | | | - Patricia Griffin
- Southeast Clinical Oncology Research (SCOR) Consortium NCORP, Spartanburg Medical Center, Spartanburg, SC, USA
| | - Shelby A Terstriep
- Sanford NCI Community Oncology Research Program of the North Central Plains, Sanford Roger Maris Cancer Center, Fargo, ND, USA
| | - Bassam Mattar
- Wichita NCI Community Oncology Research Program, Cancer Center of Kansas, Wichita, KS, USA
| | | | | |
Collapse
|
15
|
AR Signaling in Breast Cancer. Cancers (Basel) 2017; 9:cancers9030021. [PMID: 28245550 PMCID: PMC5366816 DOI: 10.3390/cancers9030021] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/13/2017] [Accepted: 02/18/2017] [Indexed: 12/31/2022] Open
Abstract
Androgen receptor (AR, a member of the steroid hormone receptor family) status has become increasingly important as both a prognostic marker and potential therapeutic target in breast cancer. AR is expressed in up to 90% of estrogen receptor (ER) positive breast cancer, and to a lesser degree, human epidermal growth factor 2 (HER2) amplified tumors. In the former, AR signaling has been correlated with a better prognosis given its inhibitory activity in estrogen dependent disease, though conversely has also been shown to increase resistance to anti-estrogen therapies such as tamoxifen. AR blockade can mitigate this resistance, and thus serves as a potential target in ER-positive breast cancer. In HER2 amplified breast cancer, studies are somewhat conflicting, though most show either no effect or are associated with poorer survival. Much of the available data on AR signaling is in triple-negative breast cancer (TNBC), which is an aggressive disease with inferior outcomes comparative to other breast cancer subtypes. At present, there are no approved targeted therapies in TNBC, making study of the AR signaling pathway compelling. Gene expression profiling studies have also identified a luminal androgen receptor (LAR) subtype that is dependent on AR signaling in TNBC. Regardless, there seems to be an association between AR expression and improved outcomes in TNBC. Despite lower pathologic complete response (pCR) rates with neoadjuvant therapy, patients with AR-expressing TNBC have been shown to have a better prognosis than those that are AR-negative. Clinical studies targeting AR have shown somewhat promising results. In this paper we review the literature on the biology of AR in breast cancer and its prognostic and predictive roles. We also present our thoughts on therapeutic strategies.
Collapse
|
16
|
Carroll JS, Hickey TE, Tarulli GA, Williams M, Tilley WD. Deciphering the divergent roles of progestogens in breast cancer. Nat Rev Cancer 2017; 17:54-64. [PMID: 27885264 DOI: 10.1038/nrc.2016.116] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most breast cancers are driven by oestrogen receptor-α. Anti-oestrogenic drugs are the standard treatment for these breast cancers; however, treatment resistance is common, necessitating new therapeutic strategies. Recent preclinical and historical clinical studies support the use of progestogens to activate the progesterone receptor (PR) in breast cancers. However, widespread controversy exists regarding the role of progestogens in this disease, hindering the clinical implementation of PR-targeted therapies. Herein, we present and discuss data at the root of this controversy and clarify the confusion and misinterpretations that have consequently arisen. We then present our view on how progestogens may be safely and effectively used in treating breast cancer.
Collapse
Affiliation(s)
- Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Hanson Institute and School of Medicine, University of Adelaide, Adelaide SA 5005, Australia
| | - Gerard A Tarulli
- Dame Roma Mitchell Cancer Research Laboratories, Hanson Institute and School of Medicine, University of Adelaide, Adelaide SA 5005, Australia
| | - Michael Williams
- Division of Epidemiology, Department of Public Health and Preventive Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239-3098, USA
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Hanson Institute and School of Medicine, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
17
|
Lim E, Tarulli G, Portman N, Hickey TE, Tilley WD, Palmieri C. Pushing estrogen receptor around in breast cancer. Endocr Relat Cancer 2016; 23:T227-T241. [PMID: 27729416 DOI: 10.1530/erc-16-0427] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 12/21/2022]
Abstract
The estrogen receptor-α (herein called ER) is a nuclear sex steroid receptor (SSR) that is expressed in approximately 75% of breast cancers. Therapies that modulate ER action have substantially improved the survival of patients with ER-positive breast cancer, but resistance to treatment still remains a major clinical problem. Treating resistant breast cancer requires co-targeting of ER and alternate signalling pathways that contribute to resistance to improve the efficacy and benefit of currently available treatments. Emerging data have shown that other SSRs may regulate the sites at which ER binds to DNA in ways that can powerfully suppress the oncogenic activity of ER in breast cancer. This includes the progesterone receptor (PR) that was recently shown to reprogram the ER DNA binding landscape towards genes associated with a favourable outcome. Another attractive candidate is the androgen receptor (AR), which is expressed in the majority of breast cancers and inhibits growth of the normal breast and ER-positive tumours when activated by ligand. These findings have led to the initiation of breast cancer clinical trials evaluating therapies that selectively harness the ability of SSRs to 'push' ER towards anti-tumorigenic activity. Our review will focus on the established and emerging clinical evidence for activating PR or AR in ER-positive breast cancer to inhibit the tumour growth-promoting functions of ER.
Collapse
Affiliation(s)
- Elgene Lim
- Garvan Institute of Medical Research and St Vincent's HospitalUniversity of New South Wales, Sydney, New South Wales, Australia
| | - Gerard Tarulli
- Dame Roma Mitchell Cancer Research Laboratories and Adelaide Prostate Cancer Research CentreUniversity of Adelaide, Adelaide, South Australia, Australia
| | - Neil Portman
- Garvan Institute of Medical Research and St Vincent's HospitalUniversity of New South Wales, Sydney, New South Wales, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories and Adelaide Prostate Cancer Research CentreUniversity of Adelaide, Adelaide, South Australia, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories and Adelaide Prostate Cancer Research CentreUniversity of Adelaide, Adelaide, South Australia, Australia
| | - Carlo Palmieri
- Institute of Translational MedicineUniversity of Liverpool, Clatterbridge Cancer Centre, NHS Foundation Trust, and Royal Liverpool University Hospital, Liverpool, Merseyside, UK
| |
Collapse
|
18
|
Abstract
Clinical studies have shown that the androgen receptor (AR) is ubiquitously expressed in breast cancers and this could provide prognostic implication in the diagnosis and treatment of breast cancers. Data from Nurse’s Health Study on women with invasive breast cancer suggest that a significant number of tumors were AR-positive as defined by immunohistochemistry. In addition, the distribution of AR among different breast cancer subtypes varies significantly, and the biological reasons for this variation are not well understood. Despite strong histochemical evidence, the AR status is not applied for assessing pathological findings and disease outcome in clinical practice. AR antagonists are not currently used as therapy in breast cancer. This is in part due to conflicting results from early clinical trials with first generation of AR antagonists together with the complexity in breast cancer heterogeneity. In addition, role of AR in breast cancer is not fully understood. Here we will review the role of AR in different subtypes of breast cancers and elucidate its mechanisms. We will also discuss some recent interesting findings on the second generation of AR antagonists for treatment of breast cancer.
Collapse
Affiliation(s)
- Y Wu
- Department of Medicine, Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - J V Vadgama
- Department of Medicine, Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
19
|
Louw-du Toit R, Perkins MS, Snoep JL, Storbeck KH, Africander D. Fourth-Generation Progestins Inhibit 3β-Hydroxysteroid Dehydrogenase Type 2 and Modulate the Biosynthesis of Endogenous Steroids. PLoS One 2016; 11:e0164170. [PMID: 27706226 PMCID: PMC5051719 DOI: 10.1371/journal.pone.0164170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/21/2016] [Indexed: 11/30/2022] Open
Abstract
Progestins used in contraception and hormone replacement therapy are synthetic compounds designed to mimic the actions of the natural hormone progesterone and are classed into four consecutive generations. The biological actions of progestins are primarily determined by their interactions with steroid receptors, and factors such as metabolism, pharmacokinetics, bioavailability and the regulation of endogenous steroid hormone biosynthesis are often overlooked. Although some studies have investigated the effects of select progestins on a few steroidogenic enzymes, studies comparing the effects of progestins from different generations are lacking. This study therefore explored the putative modulatory effects of progestins on de novo steroid synthesis in the adrenal by comparing the effects of select progestins from the respective generations, on endogenous steroid hormone production by the H295R human adrenocortical carcinoma cell line. Ultra-performance liquid chromatography/tandem mass spectrometry analysis showed that the fourth-generation progestins, nestorone (NES), nomegestrol acetate (NoMAC) and drospirenone (DRSP), unlike the progestins selected from the first three generations, modulate the biosynthesis of several endogenous steroids. Subsequent assays performed in COS-1 cells expressing human 3βHSD2, suggest that these progestins modulate the biosynthesis of steroid hormones by inhibiting the activity of 3βHSD2. The Ki values determined for the inhibition of human 3βHSD2 by NES (9.5 ± 0.96 nM), NoMAC (29 ± 7.1 nM) and DRSP (232 ± 38 nM) were within the reported concentration ranges for the contraceptive use of these progestins in vivo. Taken together, our results suggest that newer, fourth-generation progestins may exert both positive and negative physiological effects via the modulation of endogenous steroid hormone biosynthesis.
Collapse
Affiliation(s)
- Renate Louw-du Toit
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Meghan S Perkins
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Jacky L Snoep
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Karl-Heinz Storbeck
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Donita Africander
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
20
|
Aleskandarany MA, Abduljabbar R, Ashankyty I, Elmouna A, Jerjees D, Ali S, Buluwela L, Diez-Rodriguez M, Caldas C, Green AR, Ellis IO, Rakha EA. Prognostic significance of androgen receptor expression in invasive breast cancer: transcriptomic and protein expression analysis. Breast Cancer Res Treat 2016; 159:215-27. [PMID: 27514395 DOI: 10.1007/s10549-016-3934-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 02/07/2023]
Abstract
Differential prognostic roles of Androgen Receptor (AR) have been proposed in breast cancer (BC) depending on tumour oestrogen receptor (ER) status. This study aimed to evaluate the prognostic and/or predictive significance of AR expression in invasive BC. In this study AR expression was studied on a large (n = 1141) consecutive series of early-stage (I-III) BC using tissue microarray and immunohistochemistry (IHC). AR mRNA expression was assessed in a subset of cases. The prognostic impact of AR mRNA expression was externally validated using the online BC gene expression data sets (n = 25 data sets, 4078 patients). Nuclear AR IHC expression was significantly associated with features of good prognosis including older age, smaller tumour size, lower grade and lobular histology particularly in the ER-positive tumours. AR was associated with ER-related markers GATA3, FOXa1, RERG and BEX1. Negative association was observed with HER2, p53, Ki67, TK1, CD71 and AGTR1. AR Overexpression was associated with longer survival (p < 0.001), independent of tumour size, grade, stage [p = 0.033, hazard ratio (HR) = 0.80 95 % CI = 0.64-0.98]. Similar associations were maintained in ER+ tumours in univariate and multivariate analysis (p < 0.01) both in patients with and without adjuvant endocrine or chemotherapy. AR mRNA expression showed significant association with tumour grade, molecular subtypes, and longer 10 and 15 years survival in luminal BC. In the external validation cohorts, AR gene expression data were associated with improved patients' outcome (p < 0.001, HR = 0.84, 95 % CI 0.79-0.90). AR is not only an independent prognostic factor in ER-positive luminal BC but is also expressed in ER-negative tumours. AR could act as a molecular target in patients with ER-positive disease predicting response to adjuvant therapy.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Cell Nucleus
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Neoplasm Grading
- Prognosis
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Estrogen/metabolism
- Retrospective Studies
- Survival Analysis
- Tissue Array Analysis
- Tumor Burden
Collapse
Affiliation(s)
- Mohammad A Aleskandarany
- Division of Cancer and Stem Cells, Molecular Pathology Research Unit, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK.
- Department of Pathology, Faculty of Medicine, Menoufia University, Al Minufiyah, Egypt.
| | - Rezvan Abduljabbar
- Department of Oncology, Azadi Teaching Hospital, Duhok, Kurdistan, 1014 AM, Iraq
| | - Ibraheem Ashankyty
- Molecular Diagnostics and Personalised Therapeutics Unit, University of Ha'il, Ha'il, Saudi Arabia
| | - Ahmed Elmouna
- Molecular Diagnostics and Personalised Therapeutics Unit, University of Ha'il, Ha'il, Saudi Arabia
| | - Dena Jerjees
- Division of Cancer and Stem Cells, Molecular Pathology Research Unit, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Laki Buluwela
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Maria Diez-Rodriguez
- Division of Cancer and Stem Cells, Molecular Pathology Research Unit, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Carlos Caldas
- Centre for the Cambridge Experimental Cancer Medicine Centre (ECMC) and Cambridge Breast Cancer Research Unit, Cambridge, UK
| | - Andrew R Green
- Division of Cancer and Stem Cells, Molecular Pathology Research Unit, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Ian O Ellis
- Division of Cancer and Stem Cells, Molecular Pathology Research Unit, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Emad A Rakha
- Division of Cancer and Stem Cells, Molecular Pathology Research Unit, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
- Department of Pathology, Faculty of Medicine, Menoufia University, Al Minufiyah, Egypt
| |
Collapse
|
21
|
Guiu S, Charon-Barra C, Vernerey D, Fumoleau P, Campone M, Spielmann M, Roché H, Mesleard C, Arnould L, Lemonnier J, Lacroix-Triki M. Coexpression of androgen receptor and FOXA1 in nonmetastatic triple-negative breast cancer: ancillary study from PACS08 trial. Future Oncol 2016; 11:2283-97. [PMID: 26260807 DOI: 10.2217/fon.15.102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM Microarray studies identified a subgroup of molecular apocrine tumors (estrogen receptor [ER] negative/androgen receptor [AR] positive) that express luminal genes including FOXA1. FOXA1 may direct AR to sites normally occupied by ER in luminal tumors, inducing an estrogen-like gene program that stimulated proliferation. MATERIALS & METHODS Expression of AR and FOXA1 was evaluated by immunohistochemistry in 592 patients with nonmetastatic triple-negative breast cancer (TNBC). RESULTS Coexpression of AR and FOXA1 was found in 15.2% of patients. These tumors were more frequently lobular, found in older patients and exhibited a lower nuclear grade and a greater degree of node involvement. They less often exhibited lymphocytic infiltrate, pushing margins, syncytial architecture, central fibrosis or necrosis. CONCLUSION TNBC with coexpression of AR and FOXA1 seems to behave like luminal tumors with a morphological profile distinct from other TNBC. These biomarkers could be useful to identify a subgroup of TNBC and could have future therapeutic implications.
Collapse
Affiliation(s)
- Séverine Guiu
- Department of Medical Oncology, Institut du Cancer de Montpellier, 208 avenue des Apothicaires, 34298 Montpellier Cedex 5, France
| | - Céline Charon-Barra
- Department of Pathology, Georges-François Leclerc Cancer Center, 1 rue du Professeur Marion, 21000 Dijon, France
| | - Déwi Vernerey
- Methodological and Quality of Life in Oncology Unit, EA 3181, University Hospital of Besançon, 2 place Saint-Jacques, 25000 Besançon, France
| | - Pierre Fumoleau
- Department of Medical Oncology, Georges-François Leclerc Cancer Center, 1 rue du Professeur Marion, 21000 Dijon, France
| | - Mario Campone
- Department of Medical Oncology, ICO Centre René Gauducheau, boulevard Jacques Monod, 44805 Saint Herblain, France
| | - Marc Spielmann
- Department of Medical Oncology, Institut Gustave Roussy, 114 rue Edouard-Vaillant, 94800 Villejuif, France
| | - Henri Roché
- Department of Medical Oncology, Institut Claudius Régaud, 20/24 Rue du Pont Saint Pierre, 31300 Toulouse, France
| | | | - Laurent Arnould
- Department of Pathology, Georges-François Leclerc Cancer Center, 1 rue du Professeur Marion, 21000 Dijon, France
| | | | - Magali Lacroix-Triki
- Department of Pathology, Institut Claudius Régaud, 20/24 rue du Pont Saint Pierre, 31300 Toulouse, France
| |
Collapse
|
22
|
Yaghjyan L, Pettersson A, Colditz GA, Collins LC, Schnitt SJ, Beck AH, Rosner B, Vachon C, Tamimi RM. Postmenopausal mammographic breast density and subsequent breast cancer risk according to selected tissue markers. Br J Cancer 2015; 113:1104-13. [PMID: 26335607 PMCID: PMC4651128 DOI: 10.1038/bjc.2015.315] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/29/2015] [Accepted: 08/07/2015] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND This study aimed to determine if associations of pre-diagnostic percent breast density, absolute dense area, and non-dense area with subsequent breast cancer risk differ by the tumour's molecular marker status. METHODS We included 1010 postmenopausal women with breast cancer and 2077 matched controls from the Nurses' Health Study (NHS) and the Nurses' Health Study II (NHS II) cohorts. Breast density was estimated from digitised film mammograms using computer-assisted thresholding techniques. Information on breast cancer risk factors was obtained prospectively from biennial questionnaires. Polychotomous logistic regression was used to assess associations of breast density measures with tumour subtypes by the status of selected tissue markers. All tests of statistical significance were two sided. RESULTS The association of percent density with breast cancer risk appeared to be stronger in ER- as compared with ER+ tumours, but the difference did not reach statistical significance (density ⩾50% vs <10% odds ratio (OR)=3.06, 95% confidence interval (CI) 2.17-4.32 for ER+; OR=4.61, 95% CI 2.36-9.03 for ER-, Pheterogeneity=0.08). Stronger positive associations were found for absolute dense area and CK5/6- and EGFR- as compared with respective marker-positive tumours (Pheterogeneity=0.002 and 0.001, respectively). Stronger inverse associations of non-dense area with breast cancer risk were found for ER- as compared with ER+ tumours (Pheterogeneity=0.0001) and for AR+, CK5/6+, and EGFR+ as compared with respective marker-negative tumours (Pheterogeneity=0.03, 0.005, and 0.009, respectively). The associations of density measures with breast cancer did not differ by progesterone receptor and human epidermal growth factor receptor 2 status. CONCLUSIONS Breast density influences the risk of breast cancer subtypes by potentially different mechanisms.
Collapse
Affiliation(s)
- Lusine Yaghjyan
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Road, Gainesville, FL 32610, USA
| | - Andreas Pettersson
- Department of Epidemiology, Harvard School of Public Health, 181 Longwood Avenue, Boston, MA 02115, USA
- Department of Medicine Solna, Clinical Epidemiology Unit, Karolinska Institutet, 171 76 Solna, Stockholm, Sweden
| | - Graham A Colditz
- Division of Public Health Sciences, Department of Surgery, Washington University in St Louis School of Medicine, 660S. Euclid Avenue, St Louis, MO 63110, USA
- Institute for Public Health, Washington University in St Louis, St Louis, MO, USA
| | - Laura C Collins
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Stuart J Schnitt
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Andrew H Beck
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Bernard Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Celine Vachon
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Charlton 6-239, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Rulla M Tamimi
- Department of Epidemiology, Harvard School of Public Health, 181 Longwood Avenue, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
23
|
Ali A, Creevey L, Hao Y, McCartan D, O'Gaora P, Hill A, Young L, McIlroy M. Prosaposin activates the androgen receptor and potentiates resistance to endocrine treatment in breast cancer. Breast Cancer Res 2015; 17:123. [PMID: 26341737 PMCID: PMC4560928 DOI: 10.1186/s13058-015-0636-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/20/2015] [Indexed: 01/23/2023] Open
Abstract
Introduction HOX genes play vital roles in growth and development, however, atypical redeployment of these genes is often associated with steroidal adaptability in endocrine cancers. We previously identified HOXC11 to be an indicator of poor response to hormonal therapy in breast cancer. In this study we aimed to elucidate genes regulated by HOXC11 in the endocrine resistant setting. Methods RNA-sequencing paired with transcription factor motif-mapping was utilised to identify putative HOXC11 target genes in endocrine resistant breast cancer. Validation and functional evaluation of the target gene, prosaposin (PSAP), was performed in a panel of endocrine sensitive and resistant breast cancer cell lines. The clinical significance of this finding was explored in clinical cohorts at both mRNA and protein level. Results PSAP was shown to be regulated by HOXC11 in both tamoxifen and aromatase inhibitor (AI) resistant cell lines. Transcript levels of HOXC11 and PSAP correlated strongly in samples of primary breast tumours (r = 0.7692, n = 51). PSAP has previously been reported to activate androgen receptor (AR) in prostate cancer cells. In a panel of breast cancer cell lines it was shown that endocrine resistant cells exhibit innately elevated levels of AR compared to their endocrine sensitive counterparts. Here, we demonstrate that stimulation with PSAP can drive AR recruitment to a hormone response element (HRE) in AI resistant breast cancer cells. Functionally, PSAP promotes cell migration and invasion only in AI resistant cells and not in their endocrine sensitive counterparts. In a cohort of breast cancer patients (n = 34), elevated serum levels of PSAP were found to associate significantly with poor response to endocrine treatment (p = 0.04). Meta-analysis of combined PSAP and AR mRNA are indicative of poor disease-free survival in endocrine treated breast cancer patients (hazard ratio (HR): 2.2, P = 0.0003, n = 661). Conclusion The HOXC11 target gene, PSAP, is an AR activator which facilitates adaptation to a more invasive phenotype in vitro. These findings have particular relevance to the development of resistance to AI therapy which is an emerging clinical issue. PSAP is a secreted biomarker which has potential in identifying patients failing to exhibit sustained response to hormonal treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0636-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Azlena Ali
- Endocrine Oncology Research, Department of Surgery, Royal College of Surgeons in Ireland, St. Stephens Green, Dublin 2, Ireland. .,Department of Surgery, Beaumont Hospital, Dublin 9, Ireland.
| | - Laura Creevey
- Endocrine Oncology Research, Department of Surgery, Royal College of Surgeons in Ireland, St. Stephens Green, Dublin 2, Ireland.
| | - Yuan Hao
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland.
| | - Damian McCartan
- Endocrine Oncology Research, Department of Surgery, Royal College of Surgeons in Ireland, St. Stephens Green, Dublin 2, Ireland.
| | - Peadar O'Gaora
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland.
| | - Arnold Hill
- Endocrine Oncology Research, Department of Surgery, Royal College of Surgeons in Ireland, St. Stephens Green, Dublin 2, Ireland. .,Department of Surgery, Beaumont Hospital, Dublin 9, Ireland.
| | - Leonie Young
- Endocrine Oncology Research, Department of Surgery, Royal College of Surgeons in Ireland, St. Stephens Green, Dublin 2, Ireland.
| | - Marie McIlroy
- Endocrine Oncology Research, Department of Surgery, Royal College of Surgeons in Ireland, St. Stephens Green, Dublin 2, Ireland.
| |
Collapse
|
24
|
Stanczyk FZ, Bhavnani BR. Reprint of "Use of medroxyprogesterone acetate for hormone therapy in postmenopausal women: Is it safe?". J Steroid Biochem Mol Biol 2015; 153:151-9. [PMID: 26291834 DOI: 10.1016/j.jsbmb.2015.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 11/18/2013] [Indexed: 10/23/2022]
Abstract
Medroxyprogesterone acetate (MPA) has been in clinical use for over 30 years, and was generally considered to be safe until the results of long-term studies of postmenopausal hormone therapy (HT) using treatment with conjugated equine estrogens (CEE) combined with MPA and CEE alone suggested that MPA, and perhaps other progestogens, may play a role in the increased risk of breast cancer and cardiovascular diseases. This review examines critically the safety of MPA in terms of breast cancer and cardiovascular disease risk, and its effects on brain function. Research into mechanisms by which MPA might cause adverse effects in these areas, combined with the available clinical evidence, suggests a small increase in relative risk for breast cancer and stroke, and a decline in cognitive function, in older women using MPA with an estrogen for postmenopausal HT. However, short-term (less than 5 years) use of MPA with an estrogen in the years immediately after the onset of menopause for the management of vasomotor symptoms does not appear to be associated with any increased risk of these disorders.
Collapse
Affiliation(s)
- Frank Z Stanczyk
- Department of Obstetrics and Gynecology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA.
| | - Bhagu R Bhavnani
- Department of Obstetrics and Gynecology, University of Toronto and The Keenan Research Center of Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ont., Canada M5B 1W8
| |
Collapse
|
25
|
Sébillot A, Damdimopoulou P, Ogino Y, Spirhanzlova P, Miyagawa S, Du Pasquier D, Mouatassim N, Iguchi T, Lemkine GF, Demeneix BA, Tindall AJ. Rapid fluorescent detection of (anti)androgens with spiggin-gfp medaka. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10919-10928. [PMID: 25171099 DOI: 10.1021/es5030977] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Widespread environmental antiandrogen contamination has been associated with negative impacts on biodiversity and human health. In particular, many pesticides are antiandrogenic, creating a need for robust and sensitive environmental monitoring. Our aim was to develop a sensitive and specific transgenic medaka (Oryzias latipes) model bearing an androgen responsive fluorescent reporter construct for whole organism-based environmental screening of pro- and antiandrogens. We analyzed the 5' regions of the androgen responsive three-spined stickleback (Gasterosteus aculeatus) spiggin genes in silico, revealing conserved blocks of sequence harboring androgen response elements. Identified putative promoters were cloned upstream of GFP. Germinal transgenesis with spg1-gfp led to stable medaka lines. GFP induction was exclusive to the kidney, the site of spiggin protein production in sticklebacks. Significant GFP expression was induced by three or four-day androgen treatment of newly hatched fry, but not by estrogens, mineralocorticoids, glucocorticoids or progestogens. The model responded dose-dependently to androgens, with highest sensitivity to 17MT (1.5 μg/L). In addition to flutamide, the biocides fenitrothion, vinclozolin and linuron significantly inhibited 17MT-induced GFP induction, validating the model for detection of antiandrogens. The spg1-gfp medaka model provides a sensitive, specific, and physiologically pertinent biosensor system for analyzing environmental androgen activity.
Collapse
|
26
|
Louw-du Toit R, Hapgood JP, Africander D. Medroxyprogesterone acetate differentially regulates interleukin (IL)-12 and IL-10 in a human ectocervical epithelial cell line in a glucocorticoid receptor (GR)-dependent manner. J Biol Chem 2014; 289:31136-49. [PMID: 25202013 DOI: 10.1074/jbc.m114.587311] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Medroxyprogesterone acetate (MPA), designed to mimic the actions of the endogenous hormone progesterone (P4), is extensively used by women as a contraceptive and in hormone replacement therapy. However, little is known about the steroid receptor-mediated molecular mechanisms of action of MPA in the female genital tract. In this study, we investigated the regulation of the pro-inflammatory cytokine, interleukin (IL)-12, and the anti-inflammatory cytokine IL-10, by MPA versus P4, in an in vitro cell culture model of the female ectocervical environment. This study shows that P4 and MPA significantly increase the expression of the IL-12p40 and IL-12p35 genes, whereas IL-10 gene expression is suppressed in a dose-dependent manner. Moreover, these effects were abrogated when reducing the glucocorticoid receptor (GR) levels with siRNA. Using a combination of chromatin immunoprecipitation (ChIP), siRNA, and re-ChIP assays, we show that recruitment of the P4- and MPA-bound GR to the IL-12p40 promoter requires CCAAT enhancer-binding protein (C/EBP)-β and nuclear factor κB (NFκB), although recruitment to the IL-10 promoter requires signal transducer and activator of transcription (STAT)-3. These results suggest that both P4 and MPA may modulate inflammation in the ectocervix via this genomic mechanism.
Collapse
Affiliation(s)
- Renate Louw-du Toit
- From the Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602 and
| | - Janet P Hapgood
- the Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7700, South Africa
| | - Donita Africander
- From the Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602 and
| |
Collapse
|
27
|
Africander DJ, Storbeck KH, Hapgood JP. A comparative study of the androgenic properties of progesterone and the progestins, medroxyprogesterone acetate (MPA) and norethisterone acetate (NET-A). J Steroid Biochem Mol Biol 2014; 143:404-15. [PMID: 24861265 DOI: 10.1016/j.jsbmb.2014.05.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 05/11/2014] [Accepted: 05/14/2014] [Indexed: 01/21/2023]
Abstract
The importance of investigating the molecular mechanism of action of medroxyprogesterone acetate (MPA) and norethisterone acetate (NET-A), two clinically important progestins used in hormone therapy (HT), has been highlighted by clinical evidence showing that MPA and norethisterone (NET) increase the risk of the development of breast cancer in HRT users, and that MPA may increase susceptibility to- and transmission of HIV-1. The aim of this study was to compare the molecular mechanisms of action of MPA, NET-A and progesterone (Prog) via the androgen receptor (AR) in a cell line model that can minimize confounding factors such as the presence of other steroid receptors. This study is the first to determine accurate apparent Ki values for Prog, MPA and NET-A toward the human AR in COS-1 cells. The results reveal that these ligands have a similar binding affinity for the AR to that of the natural androgen 5α-dihydrotestosterone (DHT) (Ki's for DHT, Prog, MPA and NET-A are 29.4, 36.6, 19.4 and 21.9 nM, respectively). Moreover, in both transactivation and transrepression transcriptional assays we demonstrate that, unlike Prog, MPA and NET-A are efficacious AR agonists, with activities comparable to DHT. One of the most novel findings of our study is that NET-A, like DHT, induces the ligand-dependent interaction between the NH2- and COOH-terminal domains (N/C-interaction) of the AR independent of promoter-context, while MPA does not induce the N/C interaction on a classical ARE and does so only weakly on an AR-selective ARE. This suggests that MPA and NET-A may exert differential promoter-specific actions via the AR in vivo. Consistent with this, molecular modeling suggests that MPA and NET-A induce subtle differences in the structure of the AR ligand binding domain. Taken together, the results from this study suggest that unlike Prog, both MPA and NET-A used in hormonal therapy are likely to compete with DHT and exert significant and promoter-specific off-target transcriptional effects via the AR, possibly contributing to some of the observed side-effects with the clinical use of MPA and NET-A.
Collapse
Affiliation(s)
- Donita J Africander
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| | - Karl-Heinz Storbeck
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Janet P Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| |
Collapse
|
28
|
Stanczyk FZ, Bhavnani BR. Use of medroxyprogesterone acetate for hormone therapy in postmenopausal women: is it safe? J Steroid Biochem Mol Biol 2014; 142:30-8. [PMID: 24291402 DOI: 10.1016/j.jsbmb.2013.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
Medroxyprogesterone acetate (MPA) has been in clinical use for over 30 years, and was generally considered to be safe until the results of long-term studies of postmenopausal hormone therapy (HT) using treatment with conjugated equine estrogens (CEE) combined with MPA and CEE alone suggested that MPA, and perhaps other progestogens, may play a role in the increased risk of breast cancer and cardiovascular diseases. This review examines critically the safety of MPA in terms of breast cancer and cardiovascular disease risk, and its effects on brain function. Research into mechanisms by which MPA might cause adverse effects in these areas, combined with the available clinical evidence, suggests a small increase in relative risk for breast cancer and stroke, and a decline in cognitive function, in older women using MPA with an estrogen for postmenopausal HT. However, short-term (less than 5 years) use of MPA with an estrogen in the years immediately after the onset of menopause for the management of vasomotor symptoms does not appear to be associated with any increased risk of these disorders.
Collapse
Affiliation(s)
- Frank Z Stanczyk
- Department of Obstetrics and Gynecology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA.
| | - Bhagu R Bhavnani
- Department of Obstetrics and Gynecology, University of Toronto and The Keenan Research Center of Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ont., Canada M5B 1W8
| |
Collapse
|
29
|
Madeira KP, Daltoé RD, Sirtoli GM, Carvalho AA, Rangel LBA, Silva IV. Estrogen receptor alpha (ERS1) SNPs c454-397T>C (PvuII) and c454-351A>G (XbaI) are risk biomarkers for breast cancer development. Mol Biol Rep 2014; 41:5459-66. [DOI: 10.1007/s11033-014-3419-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/16/2014] [Indexed: 01/23/2023]
|
30
|
Abstract
BACKGROUND Understanding the physiology of pregnancy enables effective management of pregnancy complications that could otherwise be life threatening for both mother and fetus. A functional uterus (i) retains the fetus in utero during pregnancy without initiating stretch-induced contractions and (ii) is able to dilate the cervix and contract the myometrium at term to deliver the fetus. The onset of labour is associated with successful cervical remodelling and contraction of myometrium, arising from concomitant activation of uterine immune and endocrine systems. A large body of evidence suggests that actions of local steroid hormones may drive changes occurring in the uterine microenvironment at term. Although there have been a number of studies considering the potential role(s) played by progesterone and estrogen at the time of parturition, the bio-availability and effects of androgens during pregnancy have received less scrutiny. The aim of this review is to highlight potential roles of androgens in the biology of pregnancy and parturition. METHODS A review of published literature was performed to address (i) androgen concentrations, including biosynthesis and clearance, in maternal and fetal compartments throughout gestation, (ii) associations of androgen concentrations with adverse pregnancy outcomes, (iii) the role of androgens in the physiology of cervical remodelling and finally (iv) the role of androgens in the physiology of myometrial function including any impact on contractility. RESULTS Some, but not all, androgens increase throughout gestation in maternal circulation. The effects of this increase are not fully understood; however, evidence suggests that increased androgens might regulate key processes during pregnancy and parturition. For example, androgens are believed to be critical for cervical remodelling at term, in particular cervical ripening, via regulation of cervical collagen fibril organization. Additionally, a number of studies highlight potential roles for androgens in myometrial relaxation via non-genomic, AR-independent pathways critical for the pregnancy reaching term. Understanding of the molecular events leading to myometrial relaxation is an important step towards development of novel targeted tocolytic drugs. CONCLUSIONS The increase in androgen levels throughout gestation is likely to be important for establishment and maintenance of pregnancy and initiation of parturition. Further investigation of the underlying mechanisms of androgen action on cervical remodelling and myometrial contractility is needed. The insights gained may facilitate the development of new therapeutic approaches to manage pregnancy complications such as preterm birth.
Collapse
Affiliation(s)
- Sofia Makieva
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom and Tommy's Centre for Maternal and Fetal Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | - Philippa T K Saunders
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom and
| | - Jane E Norman
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom and Tommy's Centre for Maternal and Fetal Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
31
|
Thike AA, Yong-Zheng Chong L, Cheok PY, Li HH, Wai-Cheong Yip G, Huat Bay B, Tse GMK, Iqbal J, Tan PH. Loss of androgen receptor expression predicts early recurrence in triple-negative and basal-like breast cancer. Mod Pathol 2014; 27:352-60. [PMID: 23929266 DOI: 10.1038/modpathol.2013.145] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 01/24/2023]
Abstract
Treatment of triple-negative invasive breast cancers, defined by the absence of estrogen and progesterone receptors and c-erbB2 expression, remains challenging. Androgen receptor, a member of the nuclear receptor superfamily that is involved in signaling pathways regulating cell proliferation, has been implicated in breast tumorigenesis. We immunohistochemically examined the expression of androgen receptor, basal markers (CK14, 34βE12) and EGFR in 699 triple-negative invasive breast cancers in tissue microarrays using the streptavidin-biotin method, and correlated the findings with clinical outcome. Positive androgen receptor expression was defined as staining of 1% or more of tumor cell nuclei. Survival outcomes were estimated with the Kaplan-Meier method and compared between groups with log-rank statistics. Cox proportional hazards models were used to determine the effect of androgen receptor on survival outcomes. Immunohistochemical positivity was observed in 38% of tumors, with the proportion of stained tumor cells ranging from 1 to 95% (mean 29%, median 10%). Androgen receptor expression was inversely associated with histologic grade and mitotic score. CK14, 34βE12 and EGFR confirmed 85% of cases to be basal-like, without significant association of basal-like phenotype with androgen receptor expression. Disease-free survival was significantly better in androgen receptor-positive triple-negative breast cancer, with a trend for improved overall survival. Decreased recurrence likelihood in both triple-negative and basal-like tumors (hazard ratio, 0.704; 95% confidence intervals, 0.498-0.994; P=0.0464; and hazard ratio, 0.675; 95% confidence intervals, 0.468-0.974; P=0.0355, respectively) was noted within 5 years of diagnosis but not thereafter. Our study suggests that loss of androgen receptor in triple-negative breast cancers augurs a worse prognosis, including those with basal-like features. More work in elucidating its relationship with mechanisms of progression, as well as trials of targeted treatment for androgen receptor-expressing triple-negative tumors, needs to be performed.
Collapse
Affiliation(s)
- Aye Aye Thike
- 1] Department of Pathology, Singapore General Hospital, Singapore, Singapore [2] Department of Clinical Research, Singapore General Hospital, Singapore, Singapore [3] Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore [4] Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China
| | - Luke Yong-Zheng Chong
- 1] Department of Pathology, Singapore General Hospital, Singapore, Singapore [2] Department of Clinical Research, Singapore General Hospital, Singapore, Singapore [3] Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore [4] Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China
| | - Poh Yian Cheok
- Department of Clinical Research, Singapore General Hospital, Singapore, Singapore
| | - Hui Hua Li
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - George Wai-Cheong Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Boon Huat Bay
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China
| | - Gary Man-Kit Tse
- 1] Department of Pathology, Singapore General Hospital, Singapore, Singapore [2] Department of Clinical Research, Singapore General Hospital, Singapore, Singapore [3] Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore [4] Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China
| | - Jabed Iqbal
- 1] Department of Pathology, Singapore General Hospital, Singapore, Singapore [2] Department of Clinical Research, Singapore General Hospital, Singapore, Singapore [3] Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore [4] Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China
| | - Puay Hoon Tan
- 1] Department of Pathology, Singapore General Hospital, Singapore, Singapore [2] Department of Clinical Research, Singapore General Hospital, Singapore, Singapore [3] Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore [4] Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
Hagan CR, Lange CA. Molecular determinants of context-dependent progesterone receptor action in breast cancer. BMC Med 2014; 12:32. [PMID: 24552158 PMCID: PMC3929904 DOI: 10.1186/1741-7015-12-32] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/21/2014] [Indexed: 12/22/2022] Open
Abstract
The ovarian steroid hormone, progesterone, and its nuclear receptor, the progesterone receptor, are implicated in the progression of breast cancer. Clinical trial data on the effects of hormone replacement therapy underscore the importance of understanding how progestins influence breast cancer growth. The progesterone receptor regulation of distinct target genes is mediated by complex interactions between the progesterone receptor and other regulatory factors that determine the context-dependent transcriptional action of the progesterone receptor. These interactions often lead to post-translational modifications to the progesterone receptor that can dramatically alter receptor function, both in the normal mammary gland and in breast cancer. This review highlights the molecular components that regulate progesterone receptor transcriptional action and describes how a better understanding of the complex interactions between the progesterone receptor and other regulatory factors may be critical to enhancing the clinical efficacy of anti-progestins for use in the treatment of breast cancer.
Collapse
Affiliation(s)
| | - Carol A Lange
- Department of Medicine (Hematology, Oncology, and Transplantation) and the Department of Pharmacology, University of Minnesota, Masonic Cancer Center, 420 Delaware St SE, MMC 806, Minneapolis, MN 55455, USA.
| |
Collapse
|
33
|
Bianco-Miotto T, Trotta AP, Need EF, Lee AMC, Ochnik AM, Giorgio L, Leach DA, Swinstead EE, O'Loughlin MA, Newman MR, Birrell SN, Butler LM, Harris JM, Buchanan G. Molecular and structural basis of androgen receptor responses to dihydrotestosterone, medroxyprogesterone acetate and Δ(4)-tibolone. Mol Cell Endocrinol 2014; 382:899-908. [PMID: 24239616 DOI: 10.1016/j.mce.2013.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 10/16/2013] [Accepted: 11/06/2013] [Indexed: 01/29/2023]
Abstract
Medroxyprogesterone acetate (MPA) has widely been used in hormone replacement therapy (HRT), and is associated with an increased risk of breast cancer, possibly due to disruption of androgen receptor (AR) signaling. In contrast, the synthetic HRT Tibolone does not increase breast density, and is rapidly metabolized to estrogenic 3α-OH-tibolone and 3β-OH-tibolone, and a delta-4 isomer (Δ(4)-TIB) that has both androgenic and progestagenic properties. Here, we show that 5α-dihydrotestosterone (DHT) and Δ(4)-TIB, but not MPA, stabilize AR protein levels, initiate specific AR intramolecular interactions critical for AR transcriptional regulation, and increase proliferation of AR positive MDA-MB-453 breast cancer cells. Structural modeling and molecular dynamic simulation indicate that Δ(4)-TIB induces a more stable AR structure than does DHT, and MPA a less stable one. Microarray expression analyses confirms that the molecular actions of Δ(4)-TIB more closely resembles DHT in breast cancer cells than either ligand does to MPA.
Collapse
Affiliation(s)
- Tina Bianco-Miotto
- Dame Roma Mitchell Cancer Research Laboratories, The University of Adelaide and Hanson Institute, Australia
| | - Andrew P Trotta
- Dame Roma Mitchell Cancer Research Laboratories, The University of Adelaide and Hanson Institute, Australia; Cancer Biology Group, Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Australia
| | - Eleanor F Need
- Cancer Biology Group, Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Australia
| | - Alice M C Lee
- Dame Roma Mitchell Cancer Research Laboratories, The University of Adelaide and Hanson Institute, Australia
| | - Aleksandra M Ochnik
- Dame Roma Mitchell Cancer Research Laboratories, The University of Adelaide and Hanson Institute, Australia
| | - Lauren Giorgio
- Cancer Biology Group, Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Australia
| | - Damien A Leach
- Cancer Biology Group, Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Australia
| | - Erin E Swinstead
- Cancer Biology Group, Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Australia
| | - Melissa A O'Loughlin
- Cancer Biology Group, Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Australia
| | - Michelle R Newman
- Dame Roma Mitchell Cancer Research Laboratories, The University of Adelaide and Hanson Institute, Australia
| | - Stephen N Birrell
- Department of Surgery, Flinders Medical Centre, Bedford Park, Adelaide, SA, Australia
| | - Lisa M Butler
- Dame Roma Mitchell Cancer Research Laboratories, The University of Adelaide and Hanson Institute, Australia
| | - Jonathan M Harris
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | - Grant Buchanan
- Dame Roma Mitchell Cancer Research Laboratories, The University of Adelaide and Hanson Institute, Australia; Cancer Biology Group, Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Australia.
| |
Collapse
|
34
|
Antiandrogenic actions of medroxyprogesterone acetate on epithelial cells within normal human breast tissues cultured ex vivo. Menopause 2014; 21:79-88. [DOI: 10.1097/gme.0b013e3182936ef4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Kayahan M, İdiz UO, Gucin Z, Erözgen F, Memmi N, Müslümanoğlu M. Cinical Significance of Androgen Receptor, CK-5/6, KI-67 and Molecular Subtypes in Breast Cancer. THE JOURNAL OF BREAST HEALTH 2014; 10:201-208. [PMID: 28331672 DOI: 10.5152/tjbh.2014.1777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/02/2014] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To detect the relationship between molecular subtypes of breast cancer with expressions of androgen receptor, cytokeratin 5/6 (CK5/6)and Ki-67. MATERIALS AND METHODS Expressions of androgen receptor, CK-5/6 and Ki-67 were determined by immunohistochemistry in paraffin-embedded sections obtained from 86 invasive breast cancer cases of stages I/IIa/IIb in 4 molecular subtypes. Patients treated for recurrent disease and locally advanced disease were excluded. RESULTS Forty one luminal A cases, ie. positive estrogen receptor(ER) and/or progesteron receptor (PR) with negative epidermal growth factor receptor (HER2), 14 luminal B, ie. positive ER and/or PR and positive HER2, 14 HER2-enriched (HER2+), ie. negative ER and PR with positive HER2, and 17 triple negative (negative ER and PR and HER2) invasive breast cancers were included. Mean follow-up was 17.46±11.70 mo. Androgen receptor-negativity and CK5/6-positivity were significantly more common in HER2+ and triple negative groups. Ki-67 and histological grade were higher in HER2+ group, significantly. Two deaths were triple negative (P=0.04). Androgen receptor-negativity, CK5/6 and Ki-67 status did not affect survival or systemic metastases, significantly. All groups had local recurrences. Local recurrence was significantly associated with androgen receptor-negativity in luminal A and high Ki-67 value in HER2+ groups. Systemic metastases were significantly more common in triple negative and HER2+ groups. CONCLUSION Molecular subtypes of breast cancer are prognostic and predictive. Androgen receptor is expressed more commonly in luminal subtypes with better prognosis and androgen receptor negativity is associated with development of local recurrence in luminal A cancers.
Collapse
Affiliation(s)
- Münire Kayahan
- Department of General Surgery, Bezmialem Vakif University Faculty of Medicine, İstanbul, Turkey
| | - Ufuk Oğuz İdiz
- Department of General Surgery, Bezmialem Vakif University Faculty of Medicine, İstanbul, Turkey
| | - Zuhal Gucin
- Department of Pathology, Bezmialem Vakif University Faculty of Medicine, İstanbul, Turkey
| | - Fazilet Erözgen
- Department of General Surgery, Haseki Training and Research Hospital, İstanbul, Turkey
| | - Naim Memmi
- Department of General Surgery, Bezmialem Vakif University Faculty of Medicine, İstanbul, Turkey
| | - Mahmut Müslümanoğlu
- Department of General Surgery, Bezmialem Vakif University Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
36
|
Androgens and the androgen receptor (AR). Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
37
|
Davis J, Khan G, Martin MB, Hilakivi-Clarke L. Effects of maternal dietary exposure to cadmium during pregnancy on mammary cancer risk among female offspring. J Carcinog 2013; 12:11. [PMID: 23858299 PMCID: PMC3709380 DOI: 10.4103/1477-3163.114219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/16/2013] [Indexed: 11/18/2022] Open
Abstract
Background: Since heavy metal cadmium is an endocrine disrupting chemical, we investigated whether maternal exposure to cadmium during the pregnancy alters mammary tumorigenesis among female offspring. Methods: From gestation day 10 to day 19, pregnant rat dams were fed modified American Institute of Nutrition (AIN93G) diet containing 39% energy from fat (baseline diet), or the baseline diet containing moderate (75 μg/kg of feed) or high (150 μg/kg) cadmium levels. Some dams were injected with 10 μg 17β-estradiol (E2) daily between gestation days 10 and 19. Results: Rats exposed to a moderate cadmium dose in utero were heavier and exhibited accelerated puberty onset. Both moderate and high cadmium dose led to increased circulating testosterone levels and reduced the expression of androgen receptor in the mammary gland. The moderate cadmium dose mimicked the effects of in utero E2 exposure on mammary gland morphology and increased both the number of terminal end buds and pre-malignant hyperplastic alveolar nodules (HANs), but in contrast to the E2, it did not increase 7, 12-dimethylbenz (a) anthracene-induced mammary tumorigenesis. Conclusions: The effects of in utero cadmium exposure were dependent on the dose given to pregnant dams: Moderate, but not high, cadmium dose mimicked some of the effects seen in the in utero E2 exposed rats, such as increased HANs in the mammary gland.
Collapse
Affiliation(s)
- Jennifer Davis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA ; Tumor Biology Graduate Program, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
38
|
Postmenopausal breast cancer, androgens, and aromatase inhibitors. Breast Cancer Res Treat 2013; 139:1-11. [PMID: 23572296 DOI: 10.1007/s10549-013-2505-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/25/2013] [Indexed: 02/06/2023]
Abstract
Recent data can help to better define the long debated relationship between androgens and breast cancer (BC) after menopause. We reviewed the available literature data on: the origin of androgens after menopause, the association between circulating androgens and BC incidence and recurrence, the relationship between circulating and intratumoral hormones, the prognostic significance of the presence of androgen receptors (ARs) in the different BC subtypes, the androgen effect on BC cell lines, and the relationship between androgens and aromatase inhibitors. Epidemiological, clinical, and preclinical data on the role of androgens and of ARs on estrogen receptor (ER)-negative BC are somewhat controversial. However, most preclinical studies suggest that activated ARs, when present, have a proliferative effect, particularly in HER2 expressing cell lines, due to the cross-talk between AR and HER2 pathways. As regards ER-positive BC, epidemiological studies associate androgen levels with increased incidence and risk of recurrences, whilst clinical studies associate the AR positivity with a better prognosis. Preclinical studies suggest that the action of androgens is bidirectional: mainly proliferative, because circulating androgens are the precursors of estrogens, but also anti-proliferative, because AR activation restrains ER activity. The relative increase of androgenic action that follows the blocking of androgen aromatization into estrogens by aromatase inhibitors (AIs), could contribute to their therapeutic efficacy in AR-positive cases. Available data, although defining a complex picture, suggest that circulating androgen levels are clinically relevant, particularly when AIs are used.
Collapse
|
39
|
Stanczyk FZ, Hapgood JP, Winer S, Mishell DR. Progestogens used in postmenopausal hormone therapy: differences in their pharmacological properties, intracellular actions, and clinical effects. Endocr Rev 2013; 34:171-208. [PMID: 23238854 PMCID: PMC3610676 DOI: 10.1210/er.2012-1008] [Citation(s) in RCA: 306] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The safety of progestogens as a class has come under increased scrutiny after the publication of data from the Women's Health Initiative trial, particularly with respect to breast cancer and cardiovascular disease risk, despite the fact that only one progestogen, medroxyprogesterone acetate, was used in this study. Inconsistency in nomenclature has also caused confusion between synthetic progestogens, defined here by the term progestin, and natural progesterone. Although all progestogens by definition have progestational activity, they also have a divergent range of other properties that can translate to very different clinical effects. Endometrial protection is the primary reason for prescribing a progestogen concomitantly with postmenopausal estrogen therapy in women with a uterus, but several progestogens are known to have a range of other potentially beneficial effects, for example on the nervous and cardiovascular systems. Because women remain suspicious of the progestogen component of postmenopausal hormone therapy in the light of the Women's Health Initiative trial, practitioners should not ignore the potential benefits to their patients of some progestogens by considering them to be a single pharmacological class. There is a lack of understanding of the differences between progestins and progesterone and between individual progestins differing in their effects on the cardiovascular and nervous systems, the breast, and bone. This review elucidates the differences between the substantial number of individual progestogens employed in postmenopausal hormone therapy, including both progestins and progesterone. We conclude that these differences in chemical structure, metabolism, pharmacokinetics, affinity, potency, and efficacy via steroid receptors, intracellular action, and biological and clinical effects confirm the absence of a class effect of progestogens.
Collapse
Affiliation(s)
- Frank Z Stanczyk
- Department of Obstetrics and Gynecology, University of Southern California Keck School of Medicine, Livingston Research Building, 1321 North Mission Road, Room 201, Los Angeles, California 90033, USA.
| | | | | | | |
Collapse
|
40
|
Moore NL, Buchanan G, Harris JM, Selth LA, Bianco-Miotto T, Hanson AR, Birrell SN, Butler LM, Hickey TE, Tilley WD. An androgen receptor mutation in the MDA-MB-453 cell line model of molecular apocrine breast cancer compromises receptor activity. Endocr Relat Cancer 2012; 19:599-613. [PMID: 22719059 DOI: 10.1530/erc-12-0065] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent evidence indicates that the estrogen receptor-α-negative, androgen receptor (AR)-positive molecular apocrine subtype of breast cancer is driven by AR signaling. The MDA-MB-453 cell line is the prototypical model of this breast cancer subtype; its proliferation is stimulated by androgens such as 5α-dihydrotestosterone (DHT) but inhibited by the progestin medroxyprogesterone acetate (MPA) via AR-mediated mechanisms. We report here that the AR gene in MDA-MB-453 cells contains a G-T transversion in exon 7, resulting in a receptor variant with a glutamine to histidine substitution at amino acid 865 (Q865H) in the ligand binding domain. Compared with wild-type AR, the Q865H variant exhibited reduced sensitivity to DHT and MPA in transactivation assays in MDA-MB-453 and PC-3 cells but did not respond to non-androgenic ligands or receptor antagonists. Ligand binding, molecular modeling, mammalian two-hybrid and immunoblot assays revealed effects of the Q865H mutation on ligand dissociation, AR intramolecular interactions, and receptor stability. Microarray expression profiling demonstrated that DHT and MPA regulate distinct transcriptional programs in MDA-MB-453 cells. Gene Set Enrichment Analysis revealed that DHT- but not MPA-regulated genes were associated with estrogen-responsive transcriptomes from MCF-7 cells and the Wnt signaling pathway. These findings suggest that the divergent proliferative responses of MDA-MB-453 cells to DHT and MPA result from the different genetic programs elicited by these two ligands through the AR-Q865H variant. This work highlights the necessity to characterize additional models of molecular apocrine breast cancer to determine the precise role of AR signaling in this breast cancer subtype.
Collapse
Affiliation(s)
- Nicole L Moore
- Dame Roma Mitchell Cancer Research Laboratories, Discipline of Medicine, The University of Adelaide and Hanson Institute, PO Box 14, Rundle Mall, Adelaide, South Australia 5000, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hickey TE, Robinson JLL, Carroll JS, Tilley WD. Minireview: The androgen receptor in breast tissues: growth inhibitor, tumor suppressor, oncogene? Mol Endocrinol 2012; 26:1252-67. [PMID: 22745190 DOI: 10.1210/me.2012-1107] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Androgen receptor (AR) signaling exerts an antiestrogenic, growth-inhibitory influence in normal breast tissue, and this role may be sustained in estrogen receptor α (ERα)-positive luminal breast cancers. Conversely, AR signaling may promote growth of a subset of ERα-negative, AR-positive breast cancers with a molecular apocrine phenotype. Understanding the molecular mechanisms whereby androgens can elicit distinct gene expression programs and opposing proliferative responses in these two breast cancer phenotypes is critical to the development of new therapeutic strategies to target the AR in breast cancer.
Collapse
Affiliation(s)
- T E Hickey
- Dame Roma Mitchell Cancer Research Laboratory, School of Medicine, Hanson Institute and University of Adelaide, Adelaide SA 5000, Australia
| | | | | | | |
Collapse
|
42
|
Moore NL, Hickey TE, Butler LM, Tilley WD. Multiple nuclear receptor signaling pathways mediate the actions of synthetic progestins in target cells. Mol Cell Endocrinol 2012; 357:60-70. [PMID: 21945474 DOI: 10.1016/j.mce.2011.09.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 08/30/2011] [Accepted: 09/11/2011] [Indexed: 11/21/2022]
Abstract
Synthetic progestins are used clinically to treat a variety of women's health issues. Although progestins are designed to signal through the progesterone receptor (PR) to elicit specific pharmacological effects, they can also variably bind to and influence the activity of other nuclear receptors within target tissues, particularly the androgen and glucocorticoid receptors and, in some cases, they regulate mineralocorticoid and estrogen receptors. This article reviews current knowledge on progestin cross-talk to nuclear receptors other than PR, their resultant effect on receptor function in different in vitro models and the potential consequences of this activity for breast, ovarian and endometrial cancer. The impact of cell and tissue context, assay type, steroid metabolism and hormonal milieu in determining progestin-mediated activity are also presented. Collectively this review highlights the complexity of progestin action and the need for consideration of multiple mechanisms that act in concert to influence their ultimate biological activity.
Collapse
Affiliation(s)
- Nicole L Moore
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, Hanson Institute, Adelaide, South Australia 5000, Australia
| | | | | | | |
Collapse
|
43
|
Lundin KB, Henningson M, Hietala M, Ingvar C, Rose C, Jernström H. Androgen receptor genotypes predict response to endocrine treatment in breast cancer patients. Br J Cancer 2011; 105:1676-83. [PMID: 22033271 PMCID: PMC3242599 DOI: 10.1038/bjc.2011.441] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The androgen receptor (AR) is frequently expressed in breast cancers. The AR genotype may affect disease-free survival and response to endocrine therapy. METHODS In all, 634 women undergoing breast cancer surgery between 2002 and 2008 were followed until 30 June 2010. Six haplotype-tagging single-nucleotide polymorphisms in the AR, and the resulting AR diplotypes, were examined in relation to breast cancer patient characteristics, tumour characteristics, disease-free survival, and response to endocrine treatment. RESULTS Five common AR diplotypes were found. Seventeen rare variants were combined into a composite group. The resulting six AR diplotype groups were clustered into two subgroups, groups A (n=128) and B (n=499), with three diplotypes in each. Patients in group B had larger total breast volume (P=0.024), higher body mass index (BMI) (P=0.050), more axillary lymph node involvement (P(trend)=0.020), and higher histological grade (P(trend)=0.031). There were 59 breast cancer events in the 569 patients with invasive cancers and no preoperative treatment. Patients in group B also had shorter disease-free survival (P=0.037) than patients in group A. Among patients in group B with oestrogen receptor α positive tumours, tamoxifen (TAM) treatment was associated with longer disease-free survival (P=0.008), while treatment with aromatase inhibitors (AIs) was not (P=0.94). Response to endocrine treatment could not be predicted based on BMI, suggesting that the effect of AR diplotypes went beyond that of a higher BMI. CONCLUSION A marker for a group of patients who responded to TAM, but not to AIs, was identified. If this finding is confirmed, AR genotyping may provide useful information for selection of endocrine treatment of breast cancer patients.
Collapse
Affiliation(s)
- K B Lundin
- Department of Oncology, Clinical Sciences, Lund University, Barngatan 2B, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
44
|
Peters AA, Ingman WV, Tilley WD, Butler LM. Differential effects of exogenous androgen and an androgen receptor antagonist in the peri- and postpubertal murine mammary gland. Endocrinology 2011; 152:3728-37. [PMID: 21846805 DOI: 10.1210/en.2011-1133] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is emerging evidence that androgens inhibit proliferation of normal and malignant breast epithelial cells, but the actions of androgens in normal mammary gland morphogenesis are not well understood. In this study, we investigated whether development of the murine mammary gland could be altered by stimulating or suppressing androgen receptor (AR) signaling in vivo. Intact virgin female mice aged 5 wk (midpuberty) or 12 wk (postpuberty) were implanted with slow-release pellets containing either placebo, 5α-dihydrotestosterone (1.5 mg) or the AR antagonist flutamide (60 mg). Treatment with 5α-dihydrotestosterone from midpuberty to 12 wk of age-retarded ductal extension by 40% (P = 0.007), but treatment from 12-21 wk had no significant effect on gland morphology. In contrast, inhibition of AR signaling with flutamide from midpuberty had no effect on the mammary gland, but flutamide treatment from 12-21 wk increased ductal branching (P = 0.004) and proliferation (P = 0.03) of breast epithelial cells. The increased proliferation in flutamide-treated mice was not correlated with serum estradiol levels or estrogen receptor-α (ERα) expression. In control mice, the frequency and intensity of AR immunostaining in mammary epithelial cells was significantly increased in the 12- to 21-wk treatment group compared with the 5- to 12-wk group (P < 0.001). In contrast, no change in ERα occurred, resulting in a marked increase in the AR to ERα ratio from 0.56 (±0.12) to 1.47 (±0.10). Our findings indicate that androgen signaling influences development and structure of the adult mammary gland and that homeostasis between estrogen and androgen signaling in mature glands is critical to constrain the proliferative effects of estradiol.
Collapse
Affiliation(s)
- A A Peters
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, Hanson Institute, P.O. Box 14 Rundle Mall, Adelaide, South Australia 5000, Australia
| | | | | | | |
Collapse
|
45
|
Buchanan G, Need EF, Barrett JM, Bianco-Miotto T, Thompson VC, Butler LM, Marshall VR, Tilley WD, Coetzee GA. Corepressor effect on androgen receptor activity varies with the length of the CAG encoded polyglutamine repeat and is dependent on receptor/corepressor ratio in prostate cancer cells. Mol Cell Endocrinol 2011; 342:20-31. [PMID: 21664238 PMCID: PMC3314496 DOI: 10.1016/j.mce.2011.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/12/2011] [Accepted: 05/09/2011] [Indexed: 01/01/2023]
Abstract
The response of prostate cells to androgens reflects a combination of androgen receptor (AR) transactivation and transrepression, but how these two processes differ mechanistically and influence prostate cancer risk and disease outcome remain elusive. Given recent interest in targeting AR transrepressive processes, a better understanding of AR/corepressor interaction and responses is warranted. Here, we used transactivation and interaction assays with wild-type and mutant ARs, and deletion AR fragments, to dissect the relationship between AR and the corepressor, silencing mediator for retinoic acid and thyroid hormone receptors (SMRT). We additionally tested how these processes are influenced by AR agonist and antagonist ligands, as well as by variation in the polyglutamine tract in the AR amino terminal domain (NTD), which is encoded by a polymorphic CAG repeat in the gene. SMRT was recruited to the AR ligand binding domain by agonist ligand, and as determined by the effect of strategic mutations in activation function 2 (AF-2), requires a precise conformation of that domain. A distinct region of SMRT also mediated interaction with the AR-NTD via the transactivation unit 5 (TAU5; residues 315-538) region. The degree to which SMRT was able to repress AR increased from 17% to 56% as the AR polyglutamine repeat length was increased from 9 to 42 residues, but critically this effect could be abolished by increasing the SMRT:AR molar ratio. These data suggest that the extent to which the CAG encoded polyglutamine repeat influences AR activity represents a balance between corepressor and coactivator occupancy of the same ligand-dependent and independent AR interaction surfaces. Changes in the homeostatic relationship of AR to these molecules, including SMRT, may explain the variable penetrance of the CAG repeat and the loss of AR signaling flexibility in prostate cancer progression.
Collapse
Affiliation(s)
- Grant Buchanan
- Department of Preventive Medicine, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 2011; 121:2750-67. [PMID: 21633166 PMCID: PMC3127435 DOI: 10.1172/jci45014] [Citation(s) in RCA: 3936] [Impact Index Per Article: 281.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 04/06/2011] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly diverse group of cancers, and subtyping is necessary to better identify molecular-based therapies. In this study, we analyzed gene expression (GE) profiles from 21 breast cancer data sets and identified 587 TNBC cases. Cluster analysis identified 6 TNBC subtypes displaying unique GE and ontologies, including 2 basal-like (BL1 and BL2), an immunomodulatory (IM), a mesenchymal (M), a mesenchymal stem-like (MSL), and a luminal androgen receptor (LAR) subtype. Further, GE analysis allowed us to identify TNBC cell line models representative of these subtypes. Predicted "driver" signaling pathways were pharmacologically targeted in these cell line models as proof of concept that analysis of distinct GE signatures can inform therapy selection. BL1 and BL2 subtypes had higher expression of cell cycle and DNA damage response genes, and representative cell lines preferentially responded to cisplatin. M and MSL subtypes were enriched in GE for epithelial-mesenchymal transition, and growth factor pathways and cell models responded to NVP-BEZ235 (a PI3K/mTOR inhibitor) and dasatinib (an abl/src inhibitor). The LAR subtype includes patients with decreased relapse-free survival and was characterized by androgen receptor (AR) signaling. LAR cell lines were uniquely sensitive to bicalutamide (an AR antagonist). These data may be useful in biomarker selection, drug discovery, and clinical trial design that will enable alignment of TNBC patients to appropriate targeted therapies.
Collapse
Affiliation(s)
- Brian D. Lehmann
- Department of Biochemistry, Department of Biostatistics,
Department of Pathology, and Department of Radiation
Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine,
Nashville, Tennessee, USA
| | - Joshua A. Bauer
- Department of Biochemistry, Department of Biostatistics,
Department of Pathology, and Department of Radiation
Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine,
Nashville, Tennessee, USA
| | - Xi Chen
- Department of Biochemistry, Department of Biostatistics,
Department of Pathology, and Department of Radiation
Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine,
Nashville, Tennessee, USA
| | - Melinda E. Sanders
- Department of Biochemistry, Department of Biostatistics,
Department of Pathology, and Department of Radiation
Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine,
Nashville, Tennessee, USA
| | - A. Bapsi Chakravarthy
- Department of Biochemistry, Department of Biostatistics,
Department of Pathology, and Department of Radiation
Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine,
Nashville, Tennessee, USA
| | - Yu Shyr
- Department of Biochemistry, Department of Biostatistics,
Department of Pathology, and Department of Radiation
Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine,
Nashville, Tennessee, USA
| | - Jennifer A. Pietenpol
- Department of Biochemistry, Department of Biostatistics,
Department of Pathology, and Department of Radiation
Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine,
Nashville, Tennessee, USA
| |
Collapse
|
47
|
Africander D, Verhoog N, Hapgood JP. Molecular mechanisms of steroid receptor-mediated actions by synthetic progestins used in HRT and contraception. Steroids 2011; 76:636-52. [PMID: 21414337 DOI: 10.1016/j.steroids.2011.03.001] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 03/02/2011] [Accepted: 03/06/2011] [Indexed: 01/01/2023]
Abstract
Synthetic progestins are used by millions of women as contraceptives and in hormone replacement therapy (HRT), although their molecular mechanisms of action are not well understood. The importance of investigating these mechanisms, as compared to those of progesterone, has been highlighted by clinical evidence showing that medroxyprogesterone acetate (MPA), a first generation progestin, increases the risk of breast cancer and coronary heart disease in HRT users. A diverse range of later generation progestins with varying structures and pharmacological properties is available for therapeutic use and it is becoming clear that different progestins elicit beneficial and adverse effects to different extents. These differences in biological activity are likely to be due to many factors including variations in dose, metabolism, pharmacokinetics, bioavailability, and regulation of, and/or binding, to serum-binding proteins and steroidogenic enzymes. Since the intracellular effects on gene expression and cell signaling of steroids are mediated via intracellular steroid receptors, differential actions via the progesterone and other steroid receptors and their isoforms, are likely to be the major cause of differential intracellular actions of progestins. Since many progestins bind not only to the progesterone receptor, but also to the glucocorticoid, androgen, mineralocorticoid, and possibly the estrogen receptors, it is plausible that synthetic progestins exert therapeutic actions as well as side-effects via some of these receptors. Here we review the molecular mechanisms of intracellular actions of old (MPA, norethisterone, levonorgestrel, gestodene) vs. new (drospirenone, dienogest, trimegestone) generation progestins, via steroid receptors.
Collapse
Affiliation(s)
- Donita Africander
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | | | | |
Collapse
|
48
|
Marino M, Masella R, Bulzomi P, Campesi I, Malorni W, Franconi F. Nutrition and human health from a sex-gender perspective. Mol Aspects Med 2011; 32:1-70. [PMID: 21356234 DOI: 10.1016/j.mam.2011.02.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/25/2011] [Accepted: 02/18/2011] [Indexed: 02/07/2023]
Abstract
Nutrition exerts a life-long impact on human health, and the interaction between nutrition and health has been known for centuries. The recent literature has suggested that nutrition could differently influence the health of male and female individuals. Until the last decade of the 20th century, research on women has been neglected, and the results obtained in men have been directly translated to women in both the medicine and nutrition fields. Consequently, most modern guidelines are based on studies predominantly conducted on men. However, there are many sex-gender differences that are the result of multifactorial inputs, including gene repertoires, sex steroid hormones, and environmental factors (e.g., food components). The effects of these different inputs in male and female physiology will be different in different periods of ontogenetic development as well as during pregnancy and the ovarian cycle in females, which are also age dependent. As a result, different strategies have evolved to maintain male and female body homeostasis, which, in turn, implies that there are important differences in the bioavailability, metabolism, distribution, and elimination of foods and beverages in males and females. This article will review some of these differences underlying the impact of food components on the risk of developing diseases from a sex-gender perspective.
Collapse
Affiliation(s)
- Maria Marino
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Traish AM, Fetten K, Miner M, Hansen ML, Guay A. Testosterone and risk of breast cancer: appraisal of existing evidence. Horm Mol Biol Clin Investig 2010; 2:177-90. [PMID: 25961191 DOI: 10.1515/hmbci.2010.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 03/08/2010] [Indexed: 11/15/2022]
Abstract
The objective of this review was to examine data from preclinical, clinical and epidemiological studies to evaluate if testosterone (T) poses increased risk of breast cancer in women. Appraisal of the existing literature produced several lines of evidence arguing against increased breast cancer risk with T. These include: (i) Data from breast tumor cell lines treated with androgens did not corroborate the notion that T increases breast cancer risk. On the contrary, androgens appear to be protective, as they inhibit tumor cell growth. (ii) Many of the epidemiological studies claiming an association between T and breast cancer did not adjust for estrogen levels. Studies adjusted for estrogen levels reported no association between T and breast cancer. (iii) Data from clinical studies with exogenous androgen treatment of women with endocrine and sexual disorders did not show any increase in incidence of breast cancer. (iv) Women afflicted with polycystic ovary disease, who exhibit high levels of androgens do not show increased risk of breast cancer compared to the general population. (v) Female to male transsexuals, who receive supraphysiological doses of T for long time periods prior to surgical procedures, do not report increased risk of breast cancer. (vi) Finally, women with hormone responsive primary breast cancer are treated with aromatase inhibitors, which block conversion of androgens to estrogens, thus elevating androgen levels. These women do not experience increased incidence of contralateral breast cancer nor do they experience increased tumor growth. In conclusion, the evidence available strongly suggests that T does not increase breast cancer risk in women.
Collapse
|