1
|
Pan X, Ding JH, Zhao SQ, Shi HC, Miao WL, Wu FA, Sheng S, Zhou WH. Identification and functional study of detoxification-related genes in response to tolfenpyrad stress in Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105503. [PMID: 37532323 DOI: 10.1016/j.pestbp.2023.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 08/04/2023]
Abstract
Glyphodes pyloalis Walker (G. pyloalis) is a common destructive mulberry pest. Due to the long-term and frequent use of insecticides, it has developed tolerance to commonly used insecticides. Tolfenpyrad (TFP) is a novel pyrazole heterocyclic insecticide. In order to understand the TFP detoxification mechanism of G. pyloalis larvae, we first estimated the LC30 dose of TFP for 3rd instar G. pyloalis larvae. Next, we identified genes that were differentially expressed in 3rd instar G. pyloalis larvae treated with TFP compared to the control group by transcriptome sequencing. In total, 86,949,569 and 67,442,028 clean reads were obtained from TFP-treated and control G. pyloalis larvae, respectively. A total of 5588 differentially expressed genes (DEGs) were identified in TFP-treated and control G. pyloalis larvae, of which 3084 genes were upregulated and 2504 genes were downregulated. We analyzed the expression of 43 candidate detoxification enzyme genes associated with insecticide tolerance using qPCR. According to the spatiotemporal expression pattern of DEGs, we found that CYP6ABE1, CYP333A36 and GST-epsilon8 were highly expressed in the midgut, while CarEs14 was strongly expressed in haemolymph. Furthermore, we successfully knocked down these genes by RNA interference. After silencing CYP6ABE1 and CYP333A36, bioassay showed that the mortality rate of TFP-treated G. pyloalis larvae was significantly higher compared to the control group. This study provides a theoretical foundation for understanding the sensitivity of G. pyloalis to TFP and establish the basis for the effective and green management of this pest.
Collapse
Affiliation(s)
- Xin Pan
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Jian-Hao Ding
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Shuai-Qi Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Hui-Cong Shi
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Wang-Long Miao
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Fu-An Wu
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, 212100 Zhenjiang, China
| | - Sheng Sheng
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, 212100 Zhenjiang, China.
| | - Wei-Hong Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, 212100 Zhenjiang, China.
| |
Collapse
|
2
|
Li J, Jia Y, Zhang D, Li Z, Zhang S, Liu X. Molecular identification of carboxylesterase genes and their potential roles in the insecticides susceptibility of Grapholita molesta. INSECT MOLECULAR BIOLOGY 2023; 32:305-315. [PMID: 36661850 DOI: 10.1111/imb.12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/16/2023] [Indexed: 05/15/2023]
Abstract
Grapholita molesta is one of the most damaging pests worldwide in stone and pome fruits. Application of chemical pesticides is still the main method to control this pest, which results in resistance to several types of insecticides. Carboxylesterase (CarE) is one of the important enzymes involved in the detoxification metabolism and tolerance of xenobiotics and insecticides. However, the roles of CarEs in insecticides susceptibility of G. molesta are still unclear. In the present study, the enzyme activity of CarEs and the mRNA expression of six CarE genes were consistently elevated after treatment with three insecticides (emamectin benzoate, lambda-cyhalothrin, and chlorantraniliprole). According to spatio-temporal expression profiles, six CarE genes expressed differently in different developmental stages, and highly expressed in some detoxification metabolic organs. RNAi-mediated knockdown of these six CarE genes indicated that the susceptibility of G. molesta to all these three insecticides were obviously raised after GmCarE9, GmCarE14, GmCarE16, and GmCarE22 knockdown, respectively. Overall, these results demonstrated that GmCarE9, GmCarE14, GmCarE16, and GmCarE22 play a role in the susceptibility of G. molesta to emamectin benzoate, lambda-cyhalothrin, and chlorantraniliprole treatment. This study expands our understanding of CarEs in insects, that the same CarE gene could participate in the susceptibility to different insecticides.
Collapse
Affiliation(s)
- Jianying Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Yujie Jia
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Dongyue Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
3
|
Ireland D, Rabeler C, Gong T, Collins EMS. Bioactivation and detoxification of organophosphorus pesticides in freshwater planarians shares similarities with humans. Arch Toxicol 2022; 96:3233-3243. [PMID: 36173421 PMCID: PMC10729609 DOI: 10.1007/s00204-022-03387-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022]
Abstract
Organophosphorus pesticides (OPs) are a chemically diverse class of insecticides that inhibit acetylcholinesterase (AChE). Many OPs require bioactivation to their active oxon form via cytochrome P450 to effectively inhibit AChE. OP toxicity can be mitigated by detoxification reactions performed by carboxylesterase and paraoxonase. The relative extent of bioactivation to detoxification varies among individuals and between species, leading to differential susceptibility to OP toxicity. Because of these species differences, it is imperative to characterize OP metabolism in model systems used to assess OP toxicity. We have shown that the asexual freshwater planarian Dugesia japonica is a suitable model to assess OP neurotoxicity and developmental neurotoxicity via rapid, automated testing of adult and developing organisms in parallel using morphological and behavioral endpoints. D. japonica has two cholinesterase enzymes with intermediate properties between AChE and butyrylcholinesterase that are sensitive to OP inhibition. Here, we demonstrate that D. japonica contains the major OP metabolic machinery to be a relevant model for OP neurotoxicity studies. Adult and regenerating D. japonica can bioactivate chlorpyrifos and diazinon into their respective oxons. Significant AChE inhibition was only observed after in vivo metabolic activation but not when the parent OPs were directly added to planarian homogenate using the same concentrations and timing. Using biochemical assays, we found that D. japonica has both carboxylesterase (24 nmol/(min*mg protein)) and paraoxonase (60 pmol/(min*mg protein)) activity. We show that planarian carboxylesterase activity is distinct from cholinesterase activity using benzil and tacrine. These results further support the use of D. japonica for OP toxicity studies.
Collapse
Affiliation(s)
| | | | - TaiXi Gong
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | - Eva-Maria S Collins
- Department of Biology, Swarthmore College, Swarthmore, PA, USA.
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA, USA.
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Li Y, Sun H, Tian Z, Li Y, Ye X, Li R, Li X, Zheng S, Liu J, Zhang Y. Identification of key residues of carboxylesterase PxEst-6 involved in pyrethroid metabolism in Plutella xylostella (L.). JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124612. [PMID: 33338816 DOI: 10.1016/j.jhazmat.2020.124612] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The long-term and excessive use of insecticides has led to severe environmental problems and the evolution of insecticide resistance in insects. Carboxylesterases (CarEs) are important detoxification enzymes conferring insecticide resistance on insects. Herein, the detoxification process of Plutella xylostella (L.) carboxylesterase 6 (PxEst-6), one representative P. xylostella carboxylesterase, is investigated with cypermethrin, bifenthrin, cyfluthrin and λ-cyhalothrin. RT-qPCR shows that PxEst-6 is highly expressed in the midgut and cuticles of the third instar larvae. Exposure to pyrethroid insecticides resulted in PxEst-6 up-regulation in a short time. Metabolic assays indicate that PxEst-6 has the capacity to metabolize these pyrethroid insecticides. The combination of molecular docking, binding mode analyses and alanine mutations demonstrated that His451, Lys458 and Gln431 were key residues of PxEst-6 for metabolizing pyrethroids and the acetate groups derived from pyrethroids were key sites for being metabolized by PxEst-6. H451- and K458-derived hydrogen bond (H-bond) interactions with the pyrethroid acetate groups and the polar interactions with the pyrethroid acetate group provided by the Q431 sidechain were crucial to the pyrethroids' metabolism by PxEst-6. Our study contributes to revealing the reasons for pyrethroid resistance in P. xylostella, and provides a fundamental basis for the development of novel pyrethroid insecticides.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Sun
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhen Tian
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, No. 48, Yangzhou, Jiangsu 225009, China
| | - Yue Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuan Ye
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyu Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shengli Zheng
- College of Chemistry & Pharmacy, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Jiyuan Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Yin F, Ma W, Li D, Zhang X, Zhang J. Expression and kinetic analysis of carboxylesterase LmCesA1 from Locusta migratoria. Biotechnol Lett 2021; 43:995-1004. [PMID: 33511494 DOI: 10.1007/s10529-021-03086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/13/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the biochemical characterization of the carboxylesterase LmCesA1 from Locusta migratoria. RESULTS We expressed recombinant LmCesA1 in Sf9 cells by using the Bac-to-bac baculovirus expression system. Enzyme kinetic assays showed that the Km values of LmCesA1 for α-naphthyl acetate (α-NA) and β-naphthyl acetate (β-NA) were 0.08 ± 0.01 mM and 0.22 ± 0.03 mM, respectively, suggesting that LmCesA1 has a higher affinity for α-NA. LmCesA1 retained its enzymatic activity during incubations at pH 7-10 and at 10-30 °C. In an inhibition experiment, two organophosphate pesticides (malaoxon and malathion) and one pyrethroid pesticide (deltamethrin) showed different inhibition profiles against purified LmCesA1. Recombinant LmCesA1 activity was significantly inhibited by malaoxon in vitro. UPLC analysis showed that no metabolites were detected. CONCLUSIONS These results suggest that overexpression of LmCesA1 enhances malathion sequestration to confer malathion tolerance in L. migratoria.
Collapse
Affiliation(s)
- Fei Yin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
| | - Wen Ma
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
| | - Daqi Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Xueyao Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, 030006, China
| | - Jianqin Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
6
|
Su H, Gao Y, Liu Y, Li X, Liang Y, Dai X, Xu Y, Zhou Y, Wang H. Comparative transcriptome profiling reveals candidate genes related to insecticide resistance of Glyphodes pyloalis. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:57-67. [PMID: 31217039 DOI: 10.1017/s0007485319000257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glyphodes pyloalis Walker (Lepidoptera: Pyralididae) is a common pest in sericulture and has developed resistance to different insecticides. However, the mechanisms involved in insecticide resistance of G. pyloalis are poorly understood. Here, we present the first whole-transcriptome analysis of differential expression genes in insecticide-resistant and susceptible G. pyloalis. Clustering and enrichment analysis of DEGs revealed several biological pathways and enriched Gene Ontology terms were related to detoxification or insecticide resistance. Genes involved in insecticide metabolic processes, including cytochrome P450, glutathione S-transferases and carboxylesterase, were identified in the larval midgut of G. pyloalis. Among them, CYP324A19, CYP304F17, CYP6AW1, CYP6AB10, GSTs5, and AChE-like were significantly increased after propoxur treatment, while CYP324A19, CCE001c, and AChE-like were significantly induced by phoxim, suggesting that these genes were involved in insecticide metabolism. Furthermore, the sequence variation analysis identified 21 single nucleotide polymorphisms within CYP9A20, CYP6AB47, and CYP6AW1. Our findings reveal many candidate genes related to insecticide resistance of G. pyloalis. These results provide novel insights into insecticide resistance and facilitate the development of insecticides with greater specificity to G. pyloalis.
Collapse
Affiliation(s)
- H Su
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Y Gao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Y Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - X Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Y Liang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - X Dai
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Y Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Y Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - H Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Bai LS, Zhao CX, Xu JJ, Feng C, Li YQ, Dong YL, Ma ZQ. Identification and biochemical characterization of carboxylesterase 001G associated with insecticide detoxification in Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 157:69-79. [PMID: 31153479 DOI: 10.1016/j.pestbp.2019.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/03/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Carboxylesterases (CarEs) are a major class of detoxification enzymes involved in insecticide resistance in various insect species. In this study, a novel CarE 001G was isolated from the cotton bollworm Helicoverpa armigera, one of the most destructive agricultural insect pests. The open reading frame of 001G has 2244 nucleotides and putatively encodes 747 amino acid residues. The deduced CarE possessed the highly conserved catalytic triads(Ser-Glu-His) and pentapeptide motifs (Gly-X-Ser-X-Gly), suggesting 001G is biologically active. The truncated 001G was successfully expressed in Escherichia coli, and the recombinant proteins were purified and tested. The enzyme kinetic assay showed the purified proteins could catalyze two model substrates, α-naphthyl acetate and β-naphthyl acetate, with a kcat of 8.8 and 2.3 s-1, a Km of 9.6 and 16.2 μM, respectively. The inhibition study with pyrethroid, organophosphate and neonicotinoid insecticides showed different inhibition profile against the purified CarE. The HPLC assay demonstrated that the purified proteins were able to metabolize β-cypermethrin, λ-cyhalothrin and fenvalerate insecticides, exhibiting respective specific activities of 1.7, 1.4 and 0.5 nM/min/mg protein. However, the purified proteins were not able to metabolize the chlorpyrifos, parathion-methyl, paraoxon-ethyl and imidacloprid. The modeling and docking analyses consistently demonstrated that the pyrethroid molecule fits snugly into the catalytic pocket of the CarE 001G. Collectively, our results suggest that 001G may play a role in pyrethroids detoxification in H. armigera.
Collapse
Affiliation(s)
- Li-Sha Bai
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Cai-Xia Zhao
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jing-Jing Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chuan Feng
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yong-Qiang Li
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yan-Ling Dong
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhi-Qing Ma
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
8
|
Dai L, Gao H, Ye J, Fu D, Sun Y, Chen H. Isolation of CarE genes from the Chinese white pine beetle Dendroctonus armandi (Curculionidae: Scolytinae) and their response to host chemical defense. PEST MANAGEMENT SCIENCE 2019; 75:986-997. [PMID: 30204286 DOI: 10.1002/ps.5205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 08/06/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Bark beetles rely on detoxifying enzymes to resist the defensive terpenoids of their host trees. Research on carboxylesterases (CarEs) has focused on their multiple functions in the metabolic detoxification of pesticides and plant allelochemicals, drug resistance, and juvenile hormone and pheromone degradation. RESULT We identified eight new CarE genes in the Chinese white pine beetle (Dendroctonus armandi) and carried out bioinformatics analysis on the deduced full-length amino acid sequences. Differential transcript levels of CarE genes were observed between sexes; within these levels, significant differences were found among the different development stages, and between insects fed on the phloem of Pinus armandi and exposed to five stimuli [(-)-α-pinene, (-)-β-pinene, (+)-3-carene, limonene and turpentine] at 8 and 24 h. CONCLUSION Transcription levels of CarE genes suggest some relationship with the detoxification of terpenoids released by host trees. The functions of bark beetle esterase are mainly in hydrolyzing the host chemical defense and degrading odorant molecules during host selection and colonization. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lulu Dai
- College of Forestry, Northwest A&F University, Yangling, China
| | - Haiming Gao
- College of Forestry, Northwest A&F University, Yangling, China
| | - Jiaqi Ye
- College of Forestry, Northwest A&F University, Yangling, China
| | - Danyang Fu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Yaya Sun
- College of Forestry, Northwest A&F University, Yangling, China
| | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Delannay C, Goindin D, Kellaou K, Ramdini C, Gustave J, Vega-Rúa A. Multiple insecticide resistance in Culex quinquefasciatus populations from Guadeloupe (French West Indies) and associated mechanisms. PLoS One 2018; 13:e0199615. [PMID: 29944713 PMCID: PMC6019780 DOI: 10.1371/journal.pone.0199615] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/11/2018] [Indexed: 11/18/2022] Open
Abstract
West Nile (WN) virus has been detected in Guadeloupe since 2002. Even if no WN human cases have been detected so far, mosquitoes from Culex genus especially Culex quinquefasciatus are recognized as potential WN vectors in Guadeloupe. To evaluate the impact of local vector control activities on this mosquito species we assessed the resistance levels of Cx. quinquefasciatus populations from three different sites from Guadeloupe (Abymes, Saint François and Gourbeyre) to malathion, temephos and deltamethrin. In addition, the frequencies of the L1014F kdr and the G119S ace-1 mutations were established in Cx. quinquefasciatus populations, as well as the constitutive expressions of five cytochrome P450 genes. Mosquito populations tested displayed high resistance to deltamethrin, moderate resistance to malathion (Abymes, Gourbeyre) and low resistance to temephos (Abymes et Gourbeyre). Molecular analyses revealed high frequencies of both L1014F kdr and G119S ace-1 mutations in Cx. quinquefasciatus populations, as well as overexpression of cytochrome P450 genes CYP9J45, CYP9J40 and CYP6AA7. Finally, deltamethrin resistance and knock-down rates were strongly correlated with the frequency of the resistant kdr and ace-1 alleles, as well as with CYP9J40 overexpression. These results should be taken into account to refine the current vector control strategies to prevent the appearance of Cx. quinquefasciatus-borne diseases in Guadeloupe.
Collapse
Affiliation(s)
- Christelle Delannay
- Laboratory of Medical Entomology, Environment and Health Unit, Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
| | - Daniella Goindin
- Laboratory of Medical Entomology, Environment and Health Unit, Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
| | - Kevin Kellaou
- Laboratory of Medical Entomology, Environment and Health Unit, Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
| | - Cédric Ramdini
- Vector Control Service of Grande–Terre, Regional Health Agency, Airport Zone South Raizet, Les Abymes, Guadeloupe, France
| | - Joël Gustave
- Vector Control Service of Grande–Terre, Regional Health Agency, Airport Zone South Raizet, Les Abymes, Guadeloupe, France
| | - Anubis Vega-Rúa
- Laboratory of Medical Entomology, Environment and Health Unit, Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
- * E-mail:
| |
Collapse
|
10
|
Ma M, Jia H, Cui X, Zhai N, Wang H, Guo X, Xu B. Isolation of carboxylesterase (esterase FE4) from Apis cerana cerana and its role in oxidative resistance during adverse environmental stress. Biochimie 2018; 144:85-97. [DOI: 10.1016/j.biochi.2017.10.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/25/2017] [Indexed: 01/13/2023]
|
11
|
Gong YH, Ai GM, Li M, Shi XY, Diao QY, Gao XW. Functional characterization of carboxylesterase gene mutations involved in Aphis gossypii resistance to organophosphate insecticides. INSECT MOLECULAR BIOLOGY 2017; 26:702-714. [PMID: 28799241 DOI: 10.1111/imb.12331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Carboxylesterases (CarEs) play an important role in detoxifying insecticides in insects. Over-expression and structural modification of CarEs have been implicated in the development of organophosphate (OP) insecticide resistance in insects. A previous study identified four nonsynonymous mutations (resulting in four amino acid residue substitutions) in the open reading frame of the carboxylesterase gene of resistant cotton aphids compared to the omethoate susceptible strain, which has possibly influenced the development of resistance to omethoate (a systemic OP insecticide). The current study further characterized the function of these mutations, both alone and in combination, in the hydrolysis of OP insecticides. The metabolism results suggest that the combination of four mutations, mainly existing in the laboratory-selected OP-resistant cotton aphid population, increased the OP hydrolase activity (approximately twofold) at the cost of detectable carboxylesterase activity. The functional studies of single or multiple mutations suggest the positive effect of H104R, A128V and T333P on the acquisition of OP hydrolase activity, especially the combination of H104R with A128V or T333P. K484R substitution decreased both the OP hydrolase activity and the CarE activity, indicating that this mutation primarily drives the negative effect on the acquisition of OP hydrolase activity amongst these four mutations in the resistant strain. The modelling and docking results are basically consistent with the metabolic results, which strongly suggest that the structural gene modification is the molecular basis for the OP resistance in this laboratory-selected cotton aphid strain.
Collapse
Affiliation(s)
- Y-H Gong
- Department of Entomology, China Agricultural University, Beijing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - G-M Ai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - M Li
- University of California, Riverside, CA, USA
| | - X-Y Shi
- Department of Entomology, China Agricultural University, Beijing, China
| | - Q-Y Diao
- Department of Honeybee Protection and Biosafety, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing, China
| | - X-W Gao
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Bacterial Expression and Kinetic Analysis of Carboxylesterase 001D from Helicoverpa armigera. Int J Mol Sci 2016; 17:493. [PMID: 27049381 PMCID: PMC4848949 DOI: 10.3390/ijms17040493] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 11/18/2022] Open
Abstract
Carboxylesterasesare an important class of detoxification enzymes involved in insecticide resistance in insects. A subgroup of Helicoverpa armigera esterases, known as Clade 001, was implicated in organophosphate and pyrethroid insecticide resistance due to their overabundance in resistant strains. In this work, a novel carboxylesterasegene 001D of H. armigera from China was cloned, which has an open reading frame of 1665 nucleotides encoding 554 amino acid residues. We used a series of fusion proteins to successfully express carboxylesterase 001D in Escherichia coli. Three different fusion proteins were generated and tested. The enzyme kinetic assay towards 1-naphthyl acetate showed all three purified fusion proteins are active with a Kcat between 0.35 and 2.29 s−1, and a Km between 7.61 and 19.72 μM. The HPLC assay showed all three purified fusion proteins had low but measurable hydrolase activity towards β-cypermethrin and fenvalerate insecticides (specific activities ranging from 0.13 to 0.67 μM·min−1·(μM−1·protein)). The enzyme was stable up to 40 °C and at pH 6.0–11.0. The results imply that carboxylesterase 001D is involved in detoxification, and this moderate insecticide hydrolysis may suggest that overexpression of the gene to enhance insecticide sequestration is necessary to allow carboxylesterases to confer resistance to these insecticides in H. armigera.
Collapse
|
13
|
Cui F, Li MX, Chang HJ, Mao Y, Zhang HY, Lu LX, Yan SG, Lang ML, Liu L, Qiao CL. Carboxylesterase-mediated insecticide resistance: Quantitative increase induces broader metabolic resistance than qualitative change. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 121:88-96. [PMID: 26047115 DOI: 10.1016/j.pestbp.2014.12.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/13/2014] [Accepted: 12/15/2014] [Indexed: 05/27/2023]
Abstract
Carboxylesterases are mainly involved in the mediation of metabolic resistance of many insects to organophosphate (OP) insecticides. Carboxylesterases underwent two divergent evolutionary events: (1) quantitative mechanism characterized by the overproduction of carboxylesterase protein; and (2) qualitative mechanism caused by changes in enzymatic properties because of mutation from glycine/alanine to aspartate at the 151 site (G/A151D) or from tryptophan to leucine at the 271 site (W271L), following the numbering of Drosophila melanogaster AChE. Qualitative mechanism has been observed in few species. However, whether this carboxylesterase mutation mechanism is prevalent in insects remains unclear. In this study, wild-type, G/A151D and W271L mutant carboxylesterases from Culex pipiens and Aphis gossypii were subjected to germline transformation and then transferred to D. melanogaster. These germlines were ubiquitously expressed as induced by tub-Gal4. In carboxylesterase activity assay, the introduced mutant carboxylesterase did not enhance the overall carboxylesterase activity of flies. This result indicated that G/A151D or W271L mutation disrupted the original activities of the enzyme. Less than 1.5-fold OP resistance was only observed in flies expressing A. gossypii mutant carboxylesterases compared with those expressing A. gossypii wild-type carboxylesterase. However, transgenic flies universally showed low resistance to OP insecticides compared with non-transgenic flies. The flies expressing A. gossypii W271L mutant esterase exhibited 1.5-fold resistance to deltamethrin, a pyrethroid insecticide compared with non-transgenic flies. The present transgenic Drosophila system potentially showed that a quantitative increase in carboxylesterases induced broader resistance of insects to insecticides than a qualitative change.
Collapse
Affiliation(s)
- Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Mei-Xia Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hai-Jing Chang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Department of Molecular Biology and Bioinformatics, College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| | - Yun Mao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Han-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Xia Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuai-Guo Yan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Ming-Lin Lang
- Department of Molecular Biology and Bioinformatics, College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| | - Li Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chuan-Ling Qiao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
14
|
Gong YH, Yu XR, Shang QL, Shi XY, Gao XW. Oral delivery mediated RNA interference of a carboxylesterase gene results in reduced resistance to organophosphorus insecticides in the cotton Aphid, Aphis gossypii Glover. PLoS One 2014; 9:e102823. [PMID: 25140535 PMCID: PMC4139272 DOI: 10.1371/journal.pone.0102823] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 06/21/2014] [Indexed: 11/25/2022] Open
Abstract
Background RNA interference (RNAi) is an effective tool to examine the function of individual genes. Carboxylesterases (CarE, EC 3.1.1.1) are known to play significant roles in the metabolism of xenobiotic compounds in many insect species. Previous studies in our laboratory found that CarE expression was up-regulated in Aphis gossypii (Glover) (Hemiptera: Aphididae) adults of both omethoate and malathion resistant strains, indicating the potential involvement of CarE in organophosphorus (OP) insecticide resistance. Functional analysis (RNAi) is therefore warranted to investigate the role of CarE in A. gossypii to OPs resistance. Result CarE expression in omethoate resistant individuals of Aphis gossypii was dramatically suppressed following ingestion of dsRNA-CarE. The highest knockdown efficiency (33%) was observed at 72 h after feeding when dsRNA-CarE concentration was 100 ng/µL. The CarE activities from the CarE knockdown aphids were consistent with the correspondingly significant reduction in CarE expression. The CarE activity in the individuals of control aphids was concentrated in the range of 650–900 mOD/per/min, while in the individuals of dsRNA-CarE-fed aphids, the CarE activity was concentrated in the range of 500–800 mOD/per/min. In vitro inhibition experiments also demonstrated that total CarE activity in the CarE knockdown aphids decreased significantly as compared to control aphids. Bioassay results of aphids fed dsRNA-CarE indicated that suppression of CarE expression increased susceptibility to omethoate in individuals of the resistant aphid strains. Conclusion The results of this study not only suggest that ingestion of dsRNA through artificial diet could be exploited for functional genomic studies in cotton aphids, but also indicate that CarE can be considered as a major target of organophosphorus insecticide (OPs) resistance in A. gossypii. Further, our results suggest that the CarE would be a propitious target for OPs resistant aphid control, and insect-resistant transgenic plants may be obtained through plant RNAi-mediated silencing of insect CarE expression.
Collapse
Affiliation(s)
- You-Hui Gong
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xin-Rui Yu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Qing-Li Shang
- College of Plant Science and Technology, Jilin University, Changchun, China
| | - Xue-yan Shi
- Department of Entomology, China Agricultural University, Beijing, China
- * E-mail: (XYS); (XWG)
| | - Xi-Wu Gao
- Department of Entomology, China Agricultural University, Beijing, China
- * E-mail: (XYS); (XWG)
| |
Collapse
|
15
|
Yang XQ, Liu JY, Li XC, Chen MH, Zhang YL. Key Amino Acid Associated with Acephate Detoxification by Cydia pomonella Carboxylesterase Based on Molecular Dynamics with Alanine Scanning and Site-Directed Mutagenesis. J Chem Inf Model 2014; 54:1356-70. [DOI: 10.1021/ci500159q] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | - Xian Chun Li
- Department
of Entomology, The University of Arizona, Tucson, Arizona 85721, United States
| | | | | |
Collapse
|
16
|
Poupardin R, Srisukontarat W, Yunta C, Ranson H. Identification of carboxylesterase genes implicated in temephos resistance in the dengue vector Aedes aegypti. PLoS Negl Trop Dis 2014; 8:e2743. [PMID: 24651719 PMCID: PMC3961196 DOI: 10.1371/journal.pntd.0002743] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/31/2014] [Indexed: 01/31/2023] Open
Abstract
Background Thailand is currently experiencing one of its worst dengue outbreaks in decades. As in most countries where this disease is endemic, dengue control in Thailand is largely reliant on the use of insecticides targeting both immature and adult stages of the Aedes mosquito, with the organophosphate insecticide, temephos, being the insecticide of choice for attacking the mosquito larvae. Resistance to temephos was first detected in Aedes aegypti larvae in Thailand approximately 25 years ago but the mechanism responsible for this resistance has not been determined. Principal Findings Bioassays on Ae. aegypti larvae from Thailand detected temephos resistance ratios ranging from 3.5 fold in Chiang Mai to nearly 10 fold in Nakhon Sawan (NS) province. Synergist and biochemical assays suggested a role for increased carboxylesterase (CCE) activities in conferring temephos resistance in the NS population and microarray analysis revealed that the CCE gene, CCEae3a, was upregulated more than 60 fold in the NS population compared to the susceptible population. Upregulation of CCEae3a was shown to be partially due to gene duplication. Another CCE gene, CCEae6a, was also highly regulated in both comparisons. Sequencing and in silico structure prediction of CCEae3a showed that several amino acid polymorphisms in the NS population may also play a role in the increased resistance phenotype. Significance Carboxylesterases have previously been implicated in conferring temephos resistance in Ae aegypti but the specific member(s) of this family responsible for this phenotype have not been identified. The identification of a strong candidate is an important step in the development of new molecular diagnostic tools for management of temephos resistant populations and thus improved control of dengue. Temephos is the most important insecticide used in larviciding campaigns to reduce the risk of dengue transmission. This organophosphate insecticide has been in use for over 50 years and resistance to this chemical has been reported in Aedes aegypti populations from Latin America, the Caribbean and from Asia. In other insect species, organophosphate resistance is typically associated with mutations in the target site, acetylcholinesterase, that decrease the insect's sensitivity to the insecticide, or increases in the activity of one or more carboxylesterase enzymes, either by overproduction and/or amino acid substitutions, that reduce the amount of insecticide reaching the target site. Neither of these mechanisms has been previously characterised at the molecular level in dengue vectors. Here we identify an Ae aegypti carboxylesterase gene with expression levels and amino acid sequence polymorphisms correlating with temephos resistance in Thailand. This is a key step in the development of tools to manage resistance in this mosquito species.
Collapse
Affiliation(s)
- Rodolphe Poupardin
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| | - Wannaporn Srisukontarat
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Cristina Yunta
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
17
|
Cantagalli LB, Lopes DA, Stuchi ALPB, Colla Ruvolo Takasusuki MC. LEAF-CUTTING ANTS Acromyrmex niger SMITH, 1858 (HYMENOPTERA; FORMICIDAE) USED AS BIOINDICATORS OF AGROTOXICS RESIDUES. ACTA BIOLÓGICA COLOMBIANA 2013. [DOI: 10.15446/abc.v19n2.38343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
18
|
Organophosphate and pyrethroid hydrolase activities of mutant Esterases from the cotton bollworm Helicoverpa armigera. PLoS One 2013; 8:e77685. [PMID: 24204917 PMCID: PMC3812244 DOI: 10.1371/journal.pone.0077685] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022] Open
Abstract
Two mutations have been found in five closely related insect esterases (from four higher Diptera and a hymenopteran) which each confer organophosphate (OP) hydrolase activity on the enzyme and OP resistance on the insect. One mutation converts a Glycine to an Aspartate, and the other converts a Tryptophan to a Leucine in the enzymes’ active site. One of the dipteran enzymes with the Leucine mutation also shows enhanced activity against pyrethroids. Introduction of the two mutations in vitro into eight esterases from six other widely separated insect groups has also been reported to increase substantially the OP hydrolase activity of most of them. These data suggest that the two mutations could contribute to OP, and possibly pyrethroid, resistance in a variety of insects. We therefore introduced them in vitro into eight Helicoverpa armigera esterases from a clade that has already been implicated in OP and pyrethroid resistance. We found that they do not generally enhance either OP or pyrethroid hydrolysis in these esterases but the Aspartate mutation did increase OP hydrolysis in one enzyme by about 14 fold and the Leucine mutation caused a 4–6 fold increase in activity (more in one case) of another three against some of the most insecticidal isomers of fenvalerate and cypermethrin. The Aspartate enzyme and one of the Leucine enzymes occur in regions of the H. armigera esterase isozyme profile that have been previously implicated in OP and pyrethroid resistance, respectively.
Collapse
|
19
|
Yang X, Zhang Y. Effect of temperature and sorbitol in improving the solubility of carboxylesterases protein CpCE-1 from Cydia pomonella and biochemical characterization. Appl Microbiol Biotechnol 2013; 97:10423-33. [DOI: 10.1007/s00253-013-5236-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/09/2013] [Indexed: 11/29/2022]
|
20
|
Grisales N, Poupardin R, Gomez S, Fonseca-Gonzalez I, Ranson H, Lenhart A. Temephos resistance in Aedes aegypti in Colombia compromises dengue vector control. PLoS Negl Trop Dis 2013; 7:e2438. [PMID: 24069492 PMCID: PMC3777894 DOI: 10.1371/journal.pntd.0002438] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/10/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Control and prevention of dengue relies heavily on the application of insecticides to control dengue vector mosquitoes. In Colombia, application of the larvicide temephos to the aquatic breeding sites of Aedes aegypti is a key part of the dengue control strategy. Resistance to temephos was recently detected in the dengue-endemic city of Cucuta, leading to questions about its efficacy as a control tool. Here, we characterize the underlying mechanisms and estimate the operational impact of this resistance. METHODOLOGY/PRINCIPAL FINDINGS Larval bioassays of Ae. aegypti larvae from Cucuta determined the temephos LC50 to be 0.066 ppm (95% CI 0.06-0.074), approximately 15× higher than the value obtained from a susceptible laboratory colony. The efficacy of the field dose of temephos at killing this resistant Cucuta population was greatly reduced, with mortality rates <80% two weeks after application and <50% after 4 weeks. Neither biochemical assays nor partial sequencing of the ace-1 gene implicated target site resistance as the primary resistance mechanism. Synergism assays and microarray analysis suggested that metabolic mechanisms were most likely responsible for the temephos resistance. Interestingly, although the greatest synergism was observed with the carboxylesterase inhibitor, DEF, the primary candidate genes from the microarray analysis, and confirmed by quantitative PCR, were cytochrome P450 oxidases, notably CYP6N12, CYP6F3 and CYP6M11. CONCLUSIONS/SIGNIFICANCE In Colombia, resistance to temephos in Ae. aegypti compromises the duration of its effect as a vector control tool. Several candidate genes potentially responsible for metabolic resistance to temephos were identified. Given the limited number of insecticides that are approved for vector control, future chemical-based control strategies should take into account the mechanisms underlying the resistance to discern which insecticides would likely lead to the greatest control efficacy while minimizing further selection of resistant phenotypes.
Collapse
Affiliation(s)
- Nelson Grisales
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Grupo de Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Medellín, Colombia
| | - Rodolphe Poupardin
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Santiago Gomez
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | | | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Audrey Lenhart
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
21
|
Cui F, Lin Z, Wang H, Liu S, Chang H, Reeck G, Qiao C, Raymond M, Kang L. Two single mutations commonly cause qualitative change of nonspecific carboxylesterases in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:1-8. [PMID: 20888910 DOI: 10.1016/j.ibmb.2010.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 09/08/2010] [Accepted: 09/10/2010] [Indexed: 05/29/2023]
Abstract
Carboxylesterases provide key mechanisms of resistance to insecticides, particularly organophosphates (OPs), in insects. One resistance mechanism is a qualitative change in the properties of a carboxylesterase. Two mutant forms, G151D and W271L, have been observed, mostly in dipteran species, to affect substrate specificity of enzymes. But whether these two single mutations can commonly change character of insect carboxylesterases is unknown. In our study carboxylesterase genes from seven insects distributed among four orders were cloned, mutated at position 151 or 271 and expressed in Escherichia coli. The kinetics of the purified recombinant proteins was examined towards an artificial carboxylester and two OP insecticides. The G/A151D and W271L mutation significantly reduced carboxylesterase activity in 87.5% and 100% cases, respectively, and at the same time conferred OP hydrolase activities in 62.5% and 87.5% cases, respectively. Thus, the change at position 271 is more effective to influence substrate specificity than that at position 151. These results may suggest that these two mutations have the potential to cause insecticide resistance broadly in insects.
Collapse
Affiliation(s)
- Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ouyang A, Yang ST. A two-stage perfusion fibrous bed bioreactor system for mass production of embryonic stem cells. Expert Opin Biol Ther 2008; 8:895-909. [PMID: 18549321 DOI: 10.1517/14712598.8.7.895] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Embryonic stem cells (ESCs) have unlimited proliferation potential and can differentiate into all cell and tissue types, and thus are ideal sources for cell therapy and drug screening. Current supplies of ESCs are limited by the available cell sources and inefficient culture methods that grow ESCs on surfaces coated with expensive extracellular matrix (ECM) proteins and in media containing expensive growth factors. OBJECTIVE To meet the demand for ESCs, it is necessary to develop an economical process for their mass production. METHODS We review the latest development in in vitro ESC culture and introduce a two-stage perfusion bioreactor system that uses 3-D fibrous matrices and conditioned media for production of ESCs. RESULTS/CONCLUSION The two-stage process can produce billions of ESCs in a small bioreactor without using ECM proteins and growth factors, and is promising for further scale-up for clinical applications.
Collapse
Affiliation(s)
- Anli Ouyang
- Eli Lilly and Company, Bioprocess Research and Development, Lilly Corporate Center, DC 3945, Indianapolis, IN 46285, USA
| | | |
Collapse
|
23
|
Legler PM, Kumaran D, Swaminathan S, Studier FW, Millard CB. Structural characterization and reversal of the natural organophosphate resistance of a D-type esterase, Saccharomyces cerevisiae S-formylglutathione hydrolase. Biochemistry 2008; 47:9592-601. [PMID: 18707125 DOI: 10.1021/bi8010016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Saccharomyces cerevisiae expresses a 67.8 kDa homodimeric serine thioesterase, S-formylglutathione hydrolase (SFGH), that is 39.9% identical with human esterase D. Both enzymes possess significant carboxylesterase and S-formylglutathione thioesterase activity but are unusually resistant to organophosphate (OP) inhibitors. We determined the X-ray crystal structure of yeast (y) SFGH to 2.3 A resolution by multiwavelength anomalous dispersion and used the structure to guide site-specific mutagenesis experiments addressing substrate and inhibitor reactivity. Our results demonstrate a steric mechanism of OP resistance mediated by a single indole ring (W197) located in an enzyme "acyl pocket". The W197I substitution enhances ySFGH reactivity with paraoxon by >1000-fold ( k i (W197I) = 16 +/- 2 mM (-1) h (-1)), thereby overcoming natural OP resistance. W197I increases the rate of OP inhibition under pseudo-first-order conditions but does not accelerate OP hydrolysis. The structure of the paraoxon-inhibited W197I variant was determined by molecular replacement (2.2 A); it revealed a stabilized sulfenic acid at Cys60. Wild-type (WT) ySFGH is inhibited by thiol reactive compounds and is sensitive to oxidation; thus, the cysteine sulfenic acid may play a role in the regulation of a "D-type" esterase. The structure of the W197I variant is the first reported cysteine sulfenic acid in a serine esterase. We constructed five Cys60/W197I variants and show that introducing a positive charge near the oxyanion hole, W197I/C60R or W197I/C60K, results in a further enhancement of the rates of phosphorylation with paraoxon ( k i = 42 or 80 mM (-1) h (-1), respectively) but does not affect the dephosphorylation of the enzyme. We also characterized three histidine substitutions near the oxyanion hole, G57H, L58H, and M162H, which significantly decrease esterase activity.
Collapse
Affiliation(s)
- Patricia M Legler
- Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA
| | | | | | | | | |
Collapse
|