1
|
Zhou L, Wang Z, Zhong Q, Song B, Wang Y, Guan T, Liu Q. Ultra-Low-Dose UV-C Photo-stimulation Promotes Neural Stem Cells Differentiation via Presenilin 1 Mediated Notch and β-Catenin Activation. Mol Neurobiol 2024; 61:9491-9506. [PMID: 38649660 DOI: 10.1007/s12035-024-04185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Light-based photo-stimulation has demonstrated promising effects on stem cell behavior, particularly in optimizing neurogenesis. However, the precise parameters for achieving optimal results, including the wavelengths, light intensity, radiating energy, and underlying mechanisms, remain incompletely understood. In this study, we focused on utilizing ultraviolet-C (UV-C) at a specific wavelength of 254 nm, with an ultra-low dose at intensity of 330 μW/cm2 and a total energy of 594 mJ/cm2 per day over a period of seven days, to stimulate the proliferation and differentiation of mouse neural stem cells (NSCs). The results revealed that the application of ultra-low-dose UV-C yielded the most significant effect in promoting differentiation when compared to mixed ultraviolet (UV) and ultraviolet-A (UV-A) radiation at equivalent exposure levels. The mechanism exploration elucidated the role of Presenilin 1 in mediating the activation of β-catenin and Notch 1 by the UV-C treatment, both of which are key factors facilitating NSCs proliferation and differentiation. These findings introduce a novel approach employing ultra-low-dose UV-C for specifically enhancing NSC differentiation, as well as the underlying mechanism. It would contribute valuable insights into brain stimulation and neurogenesis modulation for various diseases, offering potential therapeutic avenues for further exploration.
Collapse
Affiliation(s)
- Lin Zhou
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Zihan Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qiuling Zhong
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Bing Song
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Teng Guan
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Qian Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Xiang W, Li L, Hong F, Zeng Y, Zhang J, Xie J, Shen G, Wang J, Fang Z, Qi W, Yang X, Gao G, Zhou T. N-cadherin cleavage: A critical function that induces diabetic retinopathy fibrosis via regulation of β-catenin translocation. FASEB J 2023; 37:e22878. [PMID: 36939278 DOI: 10.1096/fj.202201664rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/15/2023] [Accepted: 03/02/2023] [Indexed: 03/21/2023]
Abstract
Retinal fibrosis is a severe pathological change in the late stage of diabetic retinopathy and is also the leading cause of blindness. We have previously revealed that N-cadherin was significantly increased in type 1 and type 2 diabetic mice retinas and the fibrovascular membranes from proliferative diabetic retinopathy (PDR) patients. However, whether N-cadherin directly induces retinal fibrosis in DR and the related mechanism is unknown. Here, we investigated the pathogenic role of N-cadherin in mediating retinal fibrosis and further explored the relevant therapeutic targets. We found that the level of N-cadherin was significantly increased in PDR patients and STZ-induced diabetic mice and positively correlated with the fibrotic molecules Connective Tissue Growth Factor (CTGF) and fibronectin (FN). Moreover, intravitreal injection of N-cadherin adenovirus significantly increased the expression of FN and CTGF in normal mice retinas. Mechanistically, overexpression of N-cadherin promotes N-cadherin cleavage, and N-cadherin cleavage can further induce translocation of non-p-β-catenin in the nucleus and upregulation of fibrotic molecules. Furthermore, we found a novel N-cadherin cleavage inhibitor, pigment epithelial-derived factor (PEDF), which ameliorated the N-cadherin cleavage and subsequent retinal fibrosis in diabetic mice. Thus, our findings provide novel evidence that elevated N-cadherin level not only acts as a classic EMT maker but also plays a causative role in diabetic retinal fibrosis, and targeting N-cadherin cleavage may provide a strategy to inhibit retinal fibrosis in DR patients.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Longhui Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Fuyan Hong
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yongcheng Zeng
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jin Zhang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinye Xie
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Gang Shen
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinhong Wang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhenzhen Fang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Qi
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xia Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Guoquan Gao
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-Sen University, Guangzhou, China
| | - Ti Zhou
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- China Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
3
|
Pancho A, Mitsogiannis MD, Aerts T, Dalla Vecchia M, Ebert LK, Geenen L, Noterdaeme L, Vanlaer R, Stulens A, Hulpiau P, Staes K, Van Roy F, Dedecker P, Schermer B, Seuntjens E. Modifying PCDH19 levels affects cortical interneuron migration. Front Neurosci 2022; 16:887478. [PMID: 36389226 PMCID: PMC9642031 DOI: 10.3389/fnins.2022.887478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2023] Open
Abstract
PCDH19 is a transmembrane protein and member of the protocadherin family. It is encoded by the X-chromosome and more than 200 mutations have been linked to the neurodevelopmental PCDH-clustering epilepsy (PCDH19-CE) syndrome. A disturbed cell-cell contact that arises when random X-inactivation creates mosaic absence of PCDH19 has been proposed to cause the syndrome. Several studies have shown roles for PCDH19 in neuronal proliferation, migration, and synapse function, yet most of them have focused on cortical and hippocampal neurons. As epilepsy can also be caused by impaired interneuron migration, we studied the role of PCDH19 in cortical interneurons during embryogenesis. We show that cortical interneuron migration is affected by altering PCDH19 dosage by means of overexpression in brain slices and medial ganglionic eminence (MGE) explants. We also detect subtle defects when PCDH19 expression was reduced in MGE explants, suggesting that the dosage of PCDH19 is important for proper interneuron migration. We confirm this finding in vivo by showing a mild reduction in interneuron migration in heterozygote, but not in homozygote PCDH19 knockout animals. In addition, we provide evidence that subdomains of PCDH19 have a different impact on cell survival and interneuron migration. Intriguingly, we also observed domain-dependent differences in migration of the non-targeted cell population in explants, demonstrating a non-cell-autonomous effect of PCDH19 dosage changes. Overall, our findings suggest new roles for the extracellular and cytoplasmic domains of PCDH19 and support that cortical interneuron migration is dependent on balanced PCDH19 dosage.
Collapse
Affiliation(s)
- Anna Pancho
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuela D. Mitsogiannis
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tania Aerts
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Marco Dalla Vecchia
- Laboratory for NanoBiology, Department of Chemistry, KU Leuven, Leuven, Belgium
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Lena K. Ebert
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Lieve Geenen
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
- Laboratory of Neuroplasticity and Neuroproteomics, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lut Noterdaeme
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ria Vanlaer
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Anne Stulens
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Paco Hulpiau
- Department of Biomedical Molecular Biology, Ghent University, Inflammation Research Center, VIB, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- BioInformatics Knowledge Center (BiKC), Howest University of Applied Sciences, Bruges, Belgium
| | - Katrien Staes
- Department of Biomedical Molecular Biology, Ghent University, Inflammation Research Center, VIB, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frans Van Roy
- Department of Biomedical Molecular Biology, Ghent University, Inflammation Research Center, VIB, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Peter Dedecker
- Laboratory for NanoBiology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Eve Seuntjens
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
László ZI, Lele Z. Flying under the radar: CDH2 (N-cadherin), an important hub molecule in neurodevelopmental and neurodegenerative diseases. Front Neurosci 2022; 16:972059. [PMID: 36213737 PMCID: PMC9539934 DOI: 10.3389/fnins.2022.972059] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
CDH2 belongs to the classic cadherin family of Ca2+-dependent cell adhesion molecules with a meticulously described dual role in cell adhesion and β-catenin signaling. During CNS development, CDH2 is involved in a wide range of processes including maintenance of neuroepithelial integrity, neural tube closure (neurulation), confinement of radial glia progenitor cells (RGPCs) to the ventricular zone and maintaining their proliferation-differentiation balance, postmitotic neural precursor migration, axon guidance, synaptic development and maintenance. In the past few years, direct and indirect evidence linked CDH2 to various neurological diseases, and in this review, we summarize recent developments regarding CDH2 function and its involvement in pathological alterations of the CNS.
Collapse
Affiliation(s)
- Zsófia I. László
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Zsolt Lele
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
5
|
Pancho A, Aerts T, Mitsogiannis MD, Seuntjens E. Protocadherins at the Crossroad of Signaling Pathways. Front Mol Neurosci 2020; 13:117. [PMID: 32694982 PMCID: PMC7339444 DOI: 10.3389/fnmol.2020.00117] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
Protocadherins (Pcdhs) are cell adhesion molecules that belong to the cadherin superfamily, and are subdivided into clustered (cPcdhs) and non-clustered Pcdhs (ncPcdhs) in vertebrates. In this review, we summarize their discovery, expression mechanisms, and roles in neuronal development and cancer, thereby highlighting the context-dependent nature of their actions. We furthermore provide an extensive overview of current structural knowledge, and its implications concerning extracellular interactions between cPcdhs, ncPcdhs, and classical cadherins. Next, we survey the known molecular action mechanisms of Pcdhs, emphasizing the regulatory functions of proteolytic processing and domain shedding. In addition, we outline the importance of Pcdh intracellular domains in the regulation of downstream signaling cascades, and we describe putative Pcdh interactions with intracellular molecules including components of the WAVE complex, the Wnt pathway, and apoptotic cascades. Our overview combines molecular interaction data from different contexts, such as neural development and cancer. This comprehensive approach reveals potential common Pcdh signaling hubs, and points out future directions for research. Functional studies of such key factors within the context of neural development might yield innovative insights into the molecular etiology of Pcdh-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anna Pancho
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tania Aerts
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuela D Mitsogiannis
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Kobayashi H, Seike S, Yamaguchi M, Ueda M, Takahashi E, Okamoto K, Yamanaka H. Aeromonas sobria serine protease decreases epithelial barrier function in T84 cells and accelerates bacterial translocation across the T84 monolayer in vitro. PLoS One 2019; 14:e0221344. [PMID: 31419250 PMCID: PMC6697317 DOI: 10.1371/journal.pone.0221344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/05/2019] [Indexed: 01/26/2023] Open
Abstract
Aeromonas sobria is a pathogen causing food-borne illness. In immunocompromised patients and the elderly, A. sobria can leave the intestinal tract, and this opportunistically leads to severe extraintestinal diseases including sepsis, peritonitis, and meningitis. To cause such extraintestinal diseases, A. sobria must pass through the intestinal epithelial barrier. The mechanism of such bacterial translocation has not been established. Herein we used intestinal (T84) cultured cells to investigate the effect of A. sobria serine protease (ASP) on junctional complexes that maintain the intercellular adhesion of the intestinal epithelium. When several A. sobria strains were inoculated into T84 monolayer grown on Transwell inserts, the strain with higher ASP production largely decreased the value of transepithelial electrical resistance exhibited by the T84 monolayer and markedly caused bacterial translocation from the apical surface into the basolateral side of T84 monolayer. Further experiments revealed that ASP acts on adherens junctions (AJs) and causes the destruction of both nectin-2 and afadin, which are protein components constituting AJs. Other studies have not revealed the bacterial pathogenic factors that cause the destruction of both nectin-2 and afadin, and our present results thus provide the first report that the bacterial extracellular protease ASP affects these molecules. We speculate that the destruction of nectin-2 and afadin by the action of ASP increases the ability of A. sobria to pass through intestinal epithelial tissue and contributes to the severity of pathological conditions.
Collapse
Affiliation(s)
- Hidetomo Kobayashi
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, Japan
| | - Soshi Seike
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, Japan
| | - Masafumi Yamaguchi
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, Japan
| | - Mitsunobu Ueda
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, Japan
| | - Eizo Takahashi
- Collaborative Research Center of Okayama University for Infectious Diseases in India, National Institute of Cholera Enteric Diseases, Kolkata, India
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases in India, National Institute of Cholera Enteric Diseases, Kolkata, India
| | - Hiroyasu Yamanaka
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
7
|
Chen Z, Zuo X, Pu L, Zhang Y, Han G, Zhang L, Wu Z, You W, Qin J, Dai X, Shen H, Wang X, Wu J. Hypomethylation-mediated activation of cancer/testis antigen KK-LC-1 facilitates hepatocellular carcinoma progression through activating the Notch1/Hes1 signalling. Cell Prolif 2019; 52:e12581. [PMID: 30895661 PMCID: PMC6536599 DOI: 10.1111/cpr.12581] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/06/2019] [Accepted: 01/13/2019] [Indexed: 12/15/2022] Open
Abstract
Objectives Kita‐Kyushu lung cancer antigen‐1 (KK‐LC‐1) is a cancer/testis antigen reactivated in several human malignancies. So far, the major focus of studies on KK‐LC‐1 has been on its potential as diagnostic biomarker and immunotherapy target. However, its biological functions and molecular mechanisms in cancer progression remain unknown. Materials and Methods Expression of KK‐LC‐1 in HCC was analysed using RT‐qPCR, Western blot and immunohistochemistry. The roles of KK‐LC‐1 on HCC progression were examined by loss‐of‐function and gain‐of‐function approaches. Pathway inhibitor DAPT was employed to confirm the regulatory effect of KK‐LC‐1 on the downstream Notch signalling. The interaction of KK‐LC‐1 with presenilin‐1 was determined by co‐immunoprecipitation. The association of CpG island methylation status with KK‐LC‐1 reactivation was evaluated by methylation‐specific PCR, bisulphite sequencing PCR and 5‐Aza‐dC treatment. Results We identified that HCC tissues exhibited increased levels of KK‐LC‐1. High KK‐LC‐1 level independently predicted poor survival outcome. KK‐LC‐1 promoted cell growth, migration, invasion and epithelial‐mesenchymal transition in vitro and in vivo. KK‐LC‐1 modulated the Notch1/Hes1 pathway to exacerbate HCC progression through physically interacting with presenilin‐1. Upregulation of KK‐LC‐1 in HCC was attributed to hypomethylated CpG islands. Conclusions This study identified that hypomethylation‐induced KK‐LC‐1 overexpression played an important role in HCC progression and independently predicted poor survival. We defined the KK‐LC‐1/presenilin‐1/Notch1/Hes1 as a novel signalling pathway that was involved in the growth and metastasis of HCC.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Xueliang Zuo
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Liyong Pu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Yao Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Guoyong Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Long Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Zhengshan Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Wei You
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Jianjie Qin
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Xinzheng Dai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Jindao Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Kim HJ, Lee WH, Kim MJ, Shin S, Jang B, Park JB, Wasco W, Buxbaum JD, Kim YS, Choi EK. Calsenilin, a Presenilin Interactor, Regulates RhoA Signaling and Neurite Outgrowth. Int J Mol Sci 2018; 19:ijms19041196. [PMID: 29652865 PMCID: PMC5979497 DOI: 10.3390/ijms19041196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 11/24/2022] Open
Abstract
Calsenilin modulates A-type potassium channels, regulates presenilin-mediated γ-secretase activity, and represses prodynorphin and c-fos genes expression. RhoA is involved in various cellular functions including proliferation, differentiation, migration, transcription, and regulation of the actin cytoskeleton. Although recent studies demonstrate that calsenilin can directly interact with RhoA and that RhoA inactivation is essential for neuritogenesis, it is uncertain whether there is a link between calsenilin and RhoA-regulated neuritogenesis. Here, we investigated the role of calsenilin in RhoA-regulated neuritogenesis using in vitro and in vivo systems. We found that calsenilin induced RhoA inactivation, which accompanied RhoA phosphorylation and the reduced phosphorylation levels of LIM kinase (LIMK) and cofilin. Interestingly, PC12 cells overexpressing either full-length (FL) or the caspase 3-derived C-terminal fragment (CTF) of calsenilin significantly inactivated RhoA through its interaction with RhoA and p190 Rho GTPase-activating protein (p190RhoGAP). In addition, cells expressing FL and the CTF of calsenilin had increased neurite outgrowth compared to cells expressing the N-terminal fragment (NTF) of calsenilin or vector alone. Moreover, Tat-C3 and Y27632 treatment significantly increased the percentage of neurite-bearing cells, neurite length, and the number of neurites in cells. Finally, calsenilin deficiency in the brains of calsenilin-knockout mice significantly interfered with RhoA inactivation. These findings suggest that calsenilin contributes to neuritogenesis through RhoA inactivation.
Collapse
Affiliation(s)
- Hee-Jun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea.
| | - Won-Haeng Lee
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea.
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do 24252, Korea.
| | - Mo-Jong Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea.
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do 24252, Korea.
| | - Sunmee Shin
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea.
| | - Byungki Jang
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea.
| | - Jae-Bong Park
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Korea.
| | - Wilma Wasco
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea.
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Korea.
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea.
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do 24252, Korea.
| |
Collapse
|
9
|
Nadanaka S, Kinouchi H, Kitagawa H. Chondroitin sulfate-mediated N-cadherin/β-catenin signaling is associated with basal-like breast cancer cell invasion. J Biol Chem 2017; 293:444-465. [PMID: 29183998 DOI: 10.1074/jbc.m117.814509] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/20/2017] [Indexed: 12/20/2022] Open
Abstract
Tumor metastasis involves cancer cell invasion across basement membranes and interstitial tissues. The initial invasion step consists of adherence of the tumor cell to the extracellular matrix (ECM), and this binding transduces a variety of signals from the ECM to the tumor cell. Accordingly, it is critical to establish the mechanisms by which extracellular cues influence the intracellular activities that regulate tumor cell invasion. Here, we found that invasion of the basal-like breast cancer cell line BT-549 is enhanced by the ECM component chondroitin sulfates (CSs). CSs interacted with and induced proteolytic cleavage of N-cadherin in the BT-549 cells, yielding a C-terminal intracellular N-cadherin fragment that formed a complex with β-catenin. Of note, the cleavage of N-cadherin increased cytoplasmic and nuclear β-catenin levels; induced the matrix metalloproteinase 9 (MMP9) gene, a target of β-catenin nuclear signaling; and augmented the invasion potential of the cells. We also found that CS-induced N-cadherin proteolysis requires caveolae-mediated endocytosis. An inhibitor of that process, nystatin, blocked both the endocytosis and proteolytic cleavage of N-cadherin induced by CS and also suppressed BT-549 cell invasion. Knock-out of chondroitin 4-O-sulfotransferase-1 (C4ST-1), a key CS biosynthetic enzyme, suppressed activation of the N-cadherin/β-catenin pathway through N-cadherin endocytosis and significantly decreased BT-549 cell invasion. These results suggest that CSs produced by C4ST-1 might be useful therapeutic targets in the management of basal-like breast cancers.
Collapse
Affiliation(s)
- Satomi Nadanaka
- From the Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Hiroki Kinouchi
- From the Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Hiroshi Kitagawa
- From the Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| |
Collapse
|
10
|
Dursun E, Gezen-Ak D. Vitamin D receptor is present on the neuronal plasma membrane and is co-localized with amyloid precursor protein, ADAM10 or Nicastrin. PLoS One 2017; 12:e0188605. [PMID: 29176823 PMCID: PMC5703467 DOI: 10.1371/journal.pone.0188605] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
Our recent study indicated that vitamin D and its receptors are important parts of the amyloid processing pathway in neurons. Yet the role of vitamin D receptor (VDR) in amyloid pathogenesis is complex and all regulations over the production of amyloid beta cannot be explained solely with the transcriptional regulatory properties of VDR. Given that we hypothesized that VDR might exist on the neuronal plasma membrane in close proximity with amyloid precursor protein (APP) and secretase complexes. The present study primarily focused on the localization of VDR in neurons and its interaction with amyloid pathology-related proteins. The localization of VDR on neuronal membranes and its co-localization with target proteins were investigated with cell surface staining followed by immunofluorescence labelling. The FpClass was used for protein-protein interaction prediction. Our results demonstrated the localization of VDR on the neuronal plasma membrane and the co-localization of VDR and APP or ADAM10 or Nicastrin and limited co-localization of VDR and PS1. E-cadherin interaction with APP or the γ-secretase complex may involve NOTCH1, NUMB, or FHL2, according to FpClass. This suggested complex might also include VDR, which greatly contributes to Ca+2 hemostasis with its ligand vitamin D. Consequently, we suggested that VDR might be a member of this complex also with its own non-genomic action and that it can regulate the APP processing pathway in this way in neurons.
Collapse
Affiliation(s)
- Erdinç Dursun
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Duygu Gezen-Ak
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
11
|
PS1/ γ-Secretase-Mediated Cadherin Cleavage Induces β-Catenin Nuclear Translocation and Osteogenic Differentiation of Human Bone Marrow Stromal Cells. Stem Cells Int 2016; 2016:3865315. [PMID: 28053606 PMCID: PMC5178376 DOI: 10.1155/2016/3865315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/01/2016] [Indexed: 01/21/2023] Open
Abstract
Bone marrow stromal cells (BMSCs) are considered a promising tool for bone bioengineering. However, the mechanisms controlling osteoblastic commitment are still unclear. Osteogenic differentiation of BMSCs requires the activation of β-catenin signaling, classically known to be regulated by the canonical Wnt pathway. However, BMSCs treatment with canonical Wnts in vitro does not always result in osteogenic differentiation and evidence indicates that a more complex signaling pathway, involving cadherins, would be required to induce β-catenin signaling in these cells. Here we showed that Wnt3a alone did not induce TCF activation in BMSCs, maintaining the cells at a proliferative state. On the other hand, we verified that, upon BMSCs osteoinduction with dexamethasone, cadherins were cleaved by the PS1/γ-secretase complex at the plasma membrane, and this event was associated with an enhanced β-catenin translocation to the nucleus and signaling. When PS1/γ-secretase activity was inhibited, the osteogenic process was impaired. Altogether, we provide evidence that PS1/γ-secretase-mediated cadherin cleavage has as an important role in controlling β-catenin signaling during the onset of BMSCs osteogenic differentiation, as part of a complex signaling pathway responsible for cell fate decision. A comprehensive map of these pathways might contribute to the development of strategies to improve bone repair.
Collapse
|
12
|
Hsu CC, Huang SF, Wang JS, Chu WK, Nien JE, Chen WS, Chow SE. Interplay of N-Cadherin and matrix metalloproteinase 9 enhances human nasopharyngeal carcinoma cell invasion. BMC Cancer 2016; 16:800. [PMID: 27737648 PMCID: PMC5064931 DOI: 10.1186/s12885-016-2846-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND N-cadherin is a trans-membrane adhesion molecule associated with advanced carcinoma progression and poor prognosis. The effect of N-cadherin on matrix metalloproteinase 9 (MMP-9) regulation is implicated in human nasopharyngeal carcinoma (NPC) cell invasion. METHODS AND RESULTS Exposure of NPC cells to phorbol-12-myristate-13-acetate (PMA) or macrophage conditioned media (CM) upregulated MMP-9 and N-cadherin cleavage, which resulted in NPC cell invasion. MMP-9 cleaved the extracellular domain of N-cadherin, which was further cleaved by γ-secretase with PMA or macrophage-CM treatment. The extracellular cleavage of N-cadherin was inhibited with treatment with an MMP inhibitor and MMP-9 siRNA, whereas the intracellular cleavage of N-cadherin was inhibited by treatment with a γ-secretase inhibitor (γI), which resulted in enhanced accumulation of N-cadherin C-terminal fragment (CTF1, ~40 kDa). CTF2/N-cad (CTF2), a product of the γ-secretase cleavage of N-cadherin, was released and translocated into the nuclear compartment in PMA-treated cells. Moreover, CTF2 enhanced the effect of PMA-mediated MMP-9 gene expression as assessed by treatment with γI or overexpression with exogenous CTF2. Additionally, siRNA silencing of N-cadherin decreased PMA-mediated MMP-9 expression and cell invasion. The outside-in signaling effect of MMP-9 in macrophage CM- or PMA-treated cell cultures significantly enhanced NPC cell invasion via N-cadherin cleavage. CONCLUSION Extracellular and intracellular cleavage of N-cadherin might be involved in elevated MMP-9 expression enhancing tumor cell invasion. Furthermore, N-cadherin-affected tumor progression might be via enhanced MMP-9 signaling in a cross-talk regulatory mechanism. N-cadherin might contribute to the invasive characteristics of carcinoma cells by upregulating MMP-9, thereby leading to increased aggressive metastasis.
Collapse
Affiliation(s)
- Chih-Chin Hsu
- Department of Physical Medicine and Rehabilitation, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shiang-Fu Huang
- Department of Otolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Jong-Shyan Wang
- Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Wing-Keung Chu
- Department of Physiology, Chang Gung University, Taoyuan, Taiwan
| | - Ju-En Nien
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Shan Chen
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Er Chow
- Department of Otolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Nature Science, Center for General Studies, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
13
|
Pham K, Miksovska J. Molecular insight of DREAM and presenilin 1 C-terminal fragment interactions. FEBS Lett 2016; 590:1114-22. [PMID: 27009418 DOI: 10.1002/1873-3468.12156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/24/2016] [Accepted: 03/21/2016] [Indexed: 12/21/2022]
Abstract
Interactions between downstream regulatory element antagonist modulator (DREAM) and presenilin 1 (PS1) are related to numerous neuronal processes. We demonstrate that association of PS1 carboxyl peptide (residues 445-467, HL9) with DREAM is calcium dependent and stabilized by a cluster of three aromatic residues: F462 and F465 from PS1 and F252 from DREAM. Additional stabilization is provided by residues in a loop connecting α helices 7 and 8 in DREAM and residues of PS1, namely cation-π interactions between R200 in DREAM and F465 in PS1 and the salt bridges formed by R207 in DREAM and D450 and D458 in PS1.
Collapse
Affiliation(s)
- Khoa Pham
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| |
Collapse
|
14
|
Li P, Lin X, Zhang JR, Li Y, Lu J, Huang FC, Zheng CH, Xie JW, Wang JB, Huang CM. The expression of presenilin 1 enhances carcinogenesis and metastasis in gastric cancer. Oncotarget 2016; 7:10650-10662. [PMID: 26872378 PMCID: PMC4891148 DOI: 10.18632/oncotarget.7298] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/19/2016] [Indexed: 12/12/2022] Open
Abstract
Presenilin 1 (PS-1, encoded by PSEN1) is a part of the gamma- (γ-) secretase complex. Mutations in PSEN1 cause the majority of cases of familial Alzheimer's disease (FAD). Although in recent years PS-1 has been implicated as a tumor enhancer in various cancers, nothing is known regarding its role in gastric cancer (GC). In the present study, we investigate the role and clinical significance of PS-1 in GC. We observed that PS-1 was significantly upregulated and amplified in GC tissues and cell lines, and its aberrant expression was positively correlated with lymph node metastasis and with poor overall survival. Furthermore, PS-1 promoted tumor invasion and metastasis of GC both in vitro and vivo without affecting the proliferation of GC cells (MGC-803 and MKN-45). The results of treatment with the γ-secretase inhibitor DAPT were consistent with the outcomes of PS-1 silencing. PS-1/γ-secretase cleaves E-cadherin and releases its bound protein partner, β-catenin, from the actin cytoskeleton, thereby allowing it to translocate into the nucleus and to activate the TCF/LEF-1 transcriptional activator, which may promote GC invasion and metastasis.In conclusion, PS-1 promotes invasion and metastasis in GC and may represent a novel prognostic biomarker and potential therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Xi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Jun-Rong Zhang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Yun Li
- Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Fei-Chao Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| |
Collapse
|
15
|
Baranger K, Marchalant Y, Bonnet AE, Crouzin N, Carrete A, Paumier JM, Py NA, Bernard A, Bauer C, Charrat E, Moschke K, Seiki M, Vignes M, Lichtenthaler SF, Checler F, Khrestchatisky M, Rivera S. MT5-MMP is a new pro-amyloidogenic proteinase that promotes amyloid pathology and cognitive decline in a transgenic mouse model of Alzheimer's disease. Cell Mol Life Sci 2016; 73:217-36. [PMID: 26202697 PMCID: PMC4700096 DOI: 10.1007/s00018-015-1992-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 01/22/2023]
Abstract
Membrane-type 5-matrix metalloproteinase (MT5-MMP) is a proteinase mainly expressed in the nervous system with emerging roles in brain pathophysiology. The implication of MT5-MMP in Alzheimer's disease (AD), notably its interplay with the amyloidogenic process, remains elusive. Accordingly, we crossed the genetically engineered 5xFAD mouse model of AD with MT5-MMP-deficient mice and examined the impact of MT5-MMP deficiency in bigenic 5xFAD/MT5-MMP(-/-) mice. At early stages (4 months) of the pathology, the levels of amyloid beta peptide (Aβ) and its amyloid precursor protein (APP) C-terminal fragment C99 were largely reduced in the cortex and hippocampus of 5xFAD/MT5-MMP(-/-), compared to 5xFAD mice. Reduced amyloidosis in bigenic mice was concomitant with decreased glial reactivity and interleukin-1β (IL-1β) levels, and the preservation of long-term potentiation (LTP) and spatial learning, without changes in the activity of α-, β- and γ-secretases. The positive impact of MT5-MMP deficiency was still noticeable at 16 months of age, as illustrated by reduced amyloid burden and gliosis, and a better preservation of the cortical neuronal network and synaptophysin levels in bigenic mice. MT5-MMP expressed in HEKswe cells colocalized and co-immunoprecipitated with APP and significantly increased the levels of Aβ and C99. MT5-MMP also promoted the release of a soluble APP fragment of 95 kDa (sAPP95) in HEKswe cells. sAPP95 levels were significantly reduced in brain homogenates of 5xFAD/MT5-MMP(-/-) mice, supporting altogether the idea that MT5-MMP influences APP processing. MT5-MMP emerges as a new pro-amyloidogenic regulator of APP metabolism, whose deficiency alleviates amyloid pathology, neuroinflammation and cognitive decline.
Collapse
Affiliation(s)
- Kévin Baranger
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Yannick Marchalant
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
- Psychology Department, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Amandine E Bonnet
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Nadine Crouzin
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Alex Carrete
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | | | - Nathalie A Py
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Anne Bernard
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Charlotte Bauer
- Labex DistAlz, IPMC UMR 7275 CNRS-UNS, 06560, Valbonne, France
| | - Eliane Charrat
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Katrin Moschke
- German Center for Neurodegenerative Diseases (DZNE) and Neuroproteomics, Munich, Germany
- Klinikum rechts der Isar, and Institute for Advanced Study, Technische Universität München (TUM), 81675, Munich, Germany
| | - Mothoharu Seiki
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Michel Vignes
- UMR5247 IBMM CNRS University of Montpellier 1 and University of Montpellier 2, 34095, Montepellier, France
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE) and Neuroproteomics, Munich, Germany
- Klinikum rechts der Isar, and Institute for Advanced Study, Technische Universität München (TUM), 81675, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 80336, Munich, Germany
| | | | | | - Santiago Rivera
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France.
| |
Collapse
|
16
|
Pham K, Dhulipala G, Gonzalez WG, Gerstman BS, Regmi C, Chapagain PP, Miksovska J. Ca2+ and Mg2+ modulate conformational dynamics and stability of downstream regulatory element antagonist modulator. Protein Sci 2015; 24:741-51. [PMID: 25627705 DOI: 10.1002/pro.2646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/25/2015] [Indexed: 11/09/2022]
Abstract
Downstream Regulatory Element Antagonist Modulator (DREAM) belongs to the family of neuronal calcium sensors (NCS) that transduce the intracellular changes in Ca(2+) concentration into a variety of responses including gene expression, regulation of Kv channel activity, and calcium homeostasis. Despite the significant sequence and structural similarities with other NCS members, DREAM shows several features unique among NCS such as formation of a tetramer in the apo-state, and interactions with various intracellular biomacromolecules including DNA, presenilin, Kv channels, and calmodulin. Here we use spectroscopic techniques in combination with molecular dynamics simulation to study conformational changes induced by Ca(2+) /Mg(2+) association to DREAM. Our data indicate a minor impact of Ca(2+) association on the overall structure of the N- and C-terminal domains, although Ca(2+) binding decreases the conformational heterogeneity as evident from the decrease in the fluorescence lifetime distribution in the Ca(2+) bound forms of the protein. Time-resolved fluorescence data indicate that Ca(2+) binding triggers a conformational transition that is characterized by more efficient quenching of Trp residue. The unfolding of DREAM occurs through an partially unfolded intermediate that is stabilized by Ca(2+) association to EF-hand 3 and EF-hand 4. The native state is stabilized with respect to the partially unfolded state only in the presence of both Ca(2+) and Mg(2+) suggesting that, under physiological conditions, Ca(2+) free DREAM exhibits a high conformational flexibility that may facilitate its physiological functions.
Collapse
Affiliation(s)
- Khoa Pham
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199
| | | | | | | | | | | | | |
Collapse
|
17
|
Analysis of Presenilin 1 and 2 interacting proteins in mouse cerebral cortex during development. Int J Dev Neurosci 2014; 38:138-46. [DOI: 10.1016/j.ijdevneu.2014.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/05/2014] [Accepted: 08/26/2014] [Indexed: 01/14/2023] Open
|
18
|
Nava P, Kamekura R, Nusrat A. Cleavage of transmembrane junction proteins and their role in regulating epithelial homeostasis. Tissue Barriers 2014; 1:e24783. [PMID: 24665393 PMCID: PMC3879235 DOI: 10.4161/tisb.24783] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/19/2013] [Accepted: 04/23/2013] [Indexed: 02/07/2023] Open
Abstract
Epithelial tissues form a selective barrier that separates the external environment from the internal tissue milieu. Single epithelial cells are densely packed and associate via distinct intercellular junctions. Intercellular junction proteins not only control barrier properties of the epithelium but also play an important role in regulating epithelial homeostasis that encompasses cell proliferation, migration, differentiation and regulated shedding. Recent studies have revealed that several proteases target epithelial junction proteins during physiological maturation as well as in pathologic states such as inflammation and cancer. This review discusses mechanisms and biological consequences of transmembrane junction protein cleavage. The influence of junction protein cleavage products on pathogenesis of inflammation and cancer is discussed.
Collapse
Affiliation(s)
- Porfirio Nava
- Epithelial Pathobiology and Mucosal Inflammation Research Unit; Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA ; Department of Physiology; Biophysics and Neurosciences; Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV); México DF, Mexico
| | - Ryuta Kamekura
- Epithelial Pathobiology and Mucosal Inflammation Research Unit; Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| | - Asma Nusrat
- Epithelial Pathobiology and Mucosal Inflammation Research Unit; Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| |
Collapse
|
19
|
Application of ANS fluorescent probes to identify hydrophobic sites on the surface of DREAM. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1472-80. [PMID: 24854592 DOI: 10.1016/j.bbapap.2014.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/01/2014] [Accepted: 05/12/2014] [Indexed: 11/23/2022]
Abstract
DREAM (calsenilin or KChIP-3) is a calcium sensor involved in regulation of diverse physiological processes by interactions with multiple intracellular partners including DNA, Kv4 channels, and presenilin, however the detailed mechanism of the recognition of the intracellular partners remains unclear. To identify the surface hydrophobic surfaces on apo and Ca(2+)DREAM as a possible interaction sites for target proteins and/or specific regulators of DREAM function the binding interactions of 1,8-ANS and 2,6-ANS with DREAM were characterized by fluorescence and docking studies. Emission intensity of ANS-DREAM complexes increases upon Ca(2+) association which is consistent with an overall decrease in surface polarity. The dissociation constants for ANS binding to apoDREAM and Ca(2+)DREAM were determined to be 195±20μM and 62±4μM, respectively. Fluorescence lifetime measurements indicate that two ANS molecules bind in two independent binding sites on DREAM monomer. One site is near the exiting helix of EF-4 and the second site is located in the hydrophobic crevice between EF-3 and EF-4. 1,8-ANS displacement studies using arachidonic acid demonstrate that the hydrophobic crevice between EF-3 and EF-4 serves as a binding site for fatty acids that modulate functional properties of Kv4 channel:KChIP complexes. Thus, the C-terminal hydrophobic crevice may be involved in DREAM interactions with small hydrophobic ligands as well as other intracellular proteins.
Collapse
|
20
|
Fernandez-Banet J, Lee NP, Chan KT, Gao H, Liu X, Sung WK, Tan W, Fan ST, Poon RT, Li S, Ching K, Rejto PA, Mao M, Kan Z. Decoding complex patterns of genomic rearrangement in hepatocellular carcinoma. Genomics 2014; 103:189-203. [DOI: 10.1016/j.ygeno.2014.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 01/11/2014] [Accepted: 01/11/2014] [Indexed: 12/21/2022]
|
21
|
Lekva T, Berg JP, Heck A, Lyngvi Fougner S, Olstad OK, Ringstad G, Bollerslev J, Ueland T. Attenuated RORC expression in the presence of EMT progression in somatotroph adenomas following treatment with somatostatin analogs is associated with poor clinical recovery. PLoS One 2013; 8:e66927. [PMID: 23825587 PMCID: PMC3692554 DOI: 10.1371/journal.pone.0066927] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 05/13/2013] [Indexed: 12/02/2022] Open
Abstract
Somatostatin analogs (SA) have been established as the first line medical treatment for acromegaly, but following long-term treatment, SA normalizes GH and IGF-I levels in only 40–60% of patients. The epithelial marker E-cadherin plays a crucial role in the epithelial mesenchymal transition (EMT) and is associated with a poor response to SA treatment. We hypothesized that the characterization of transcripts regulated by SA in somatotroph adenomas with high and low E-cadherin expression may identify signaling pathways and mediators that can explain the poor response to SA treatment. We performed a microarray analysis of sixteen adenomas with different levels of E-cadherin and SA treatment to identify regulated transcripts. Candidate transcripts were further explored in vivo in sixty-five adenomas, and interactions between SA treatment and EMT progression on mRNA expression profiles and associations with clinical recovery were assessed. Finally, the effects of SA treatment on adenoma cells in vitro from acromegalic patients were determined. Microarray analysis of selected adenomas with differential E-cadherin expression, as a marker of EMT progression, identified 172 genes that displayed differential expression that was dependent on SA treatment. The validation of selected candidates in the entire cohort identified 9 transcripts that showed an interaction between E-cadherin expression and SA treatment. Further analysis of the impact of these genes suggests that attenuated RORC expression in somatotroph adenomas is associated with increased tumor size and a blunted clinical response. Our study indicates that attenuated RORC may be involved in the poor clinical response to SA treatment in patients with acromegaly.
Collapse
Affiliation(s)
- Tove Lekva
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Gael B, Georgakopoulos A, Robakis NK. Cellular mechanisms of γ-secretase substrate selection, processing and toxicity. Prog Neurobiol 2012; 98:166-75. [PMID: 22622135 PMCID: PMC3404154 DOI: 10.1016/j.pneurobio.2012.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/12/2012] [Accepted: 05/08/2012] [Indexed: 01/04/2023]
Abstract
Presenilins (PSs) are catalytic components of the γ-secretase proteolytic complexes that produce Aβ and cell signaling peptides. γ-Secretase substrates are mostly membrane-bound peptides derived following proteolytic cleavage of the extracellular domain of type I transmembrane proteins. Recent work reveals that γ-secretase substrate processing is regulated by proteins termed γ-secretase substrate recruiting factors (γSSRFs) that bridge substrates to γ-secretase complexes. These factors constitute novel targets for pharmacological control of specific γ-secretase products, such as Aβ and signaling peptides. PS familial Alzheimer's disease (FAD) mutants cause a loss of γ-secretase cleavage function at epsilon sites of substrates thus inhibiting production of cell signaling peptides while promoting accumulation of uncleaved toxic substrates. Importantly, γ-secretase inhibitors may cause toxicity in vivo by similar mechanisms. Here we review novel mechanisms that control γ-secretase substrate selection and cleavage and examine their relevance to AD.
Collapse
Affiliation(s)
- Barthet Gael
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Anastasios Georgakopoulos
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Nikolaos K. Robakis
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
23
|
Kerrigan TL, Daniel J W, Regan PL, Cho K. The role of neuronal calcium sensors in balancing synaptic plasticity and synaptic dysfunction. Front Mol Neurosci 2012; 5:57. [PMID: 22586365 PMCID: PMC3343381 DOI: 10.3389/fnmol.2012.00057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 03/07/2012] [Indexed: 11/13/2022] Open
Abstract
Neuronal calcium sensors (NCS) readily bind calcium and undergo conformational changes enabling them to interact and regulate specific target molecules. These interactions lead to dynamic alterations in protein trafficking that significantly impact upon synaptic function. Emerging evidence suggests that NCS and alterations in Ca(2+) mobilization modulate glutamate receptor trafficking, subsequently determining the expression of different forms of synaptic plasticity. In this review, we aim to discuss the functional relevance of NCS in protein trafficking and their emerging role in synaptic plasticity. Their significance within the concept of "translational neuroscience" will also be highlighted, by assessing their potential as key molecules in neurodegeneration.
Collapse
Affiliation(s)
- Talitha L Kerrigan
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
24
|
Burgoyne RD, Haynes LP. Understanding the physiological roles of the neuronal calcium sensor proteins. Mol Brain 2012; 5:2. [PMID: 22269068 PMCID: PMC3271974 DOI: 10.1186/1756-6606-5-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/23/2012] [Indexed: 01/22/2023] Open
Abstract
Calcium signalling plays a crucial role in the control of neuronal function and plasticity. Changes in neuronal Ca2+ concentration are detected by Ca2+-binding proteins that can interact with and regulate target proteins to modify their function. Members of the neuronal calcium sensor (NCS) protein family have multiple non-redundant roles in the nervous system. Here we review recent advances in the understanding of the physiological roles of the NCS proteins and the molecular basis for their specificity.
Collapse
Affiliation(s)
- Robert D Burgoyne
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | | |
Collapse
|
25
|
Yamaguchi Y, Saito K, Matsuno T, Takeda K, Hino M. Effects of ZSET1446/ST101 on Cognitive Deficits and Amyloid ^|^beta; Deposition in the Senescence Accelerated Prone Mouse Brain. J Pharmacol Sci 2012; 119:160-6. [DOI: 10.1254/jphs.12036fp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|