1
|
Chang CY, Armstrong D, Knight JM, Gale TV, Hawley S, Wang M, Chang N, Corry DB, Kheradmand F. Sialidase fusion protein protects against influenza infection in a cigarette smoke-induced model of COPD. Mucosal Immunol 2025; 18:467-480. [PMID: 39837384 DOI: 10.1016/j.mucimm.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/20/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
First- and secondhand smokers are at an increased risk for influenza virus (IFV)-related respiratory failure and death. Despite approved influenza antiviral treatments, there is an unmet need for treatments that can improve outcomes in populations at risk for respiratory failure, including tobacco users with Chronic Obstructive Pulmonary Disease (COPD). Here we show that the sialidase fusion protein, DAS181, reduced viral burden, mitigated inflammation, and attenuated lung function loss, consistent with broad-spectrum anti-influenza responses in a mouse model of COPD and IFV-A infection. Treatment with DAS181 reprogramed the sialic acid-binding immunoglobulin-like lectins (Siglecs) in alveolar macrophages, increased expression of phagocytic marker CD169, and downregulated inhibitory Siglec-F and Siglec-H molecules. Upon reinfection, mice treated with DAS181 showed activated and protective memory response in the lungs. Collectively, we show that this sialidase fusion protein promotes a beneficial immunomodulatory reaction in the lungs, supporting a new IFV-A therapeutic option for at-risk smokers.
Collapse
Affiliation(s)
- Cheng-Yen Chang
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - John M Knight
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Max Wang
- Ansun Biopharma, San Diego, CA 92121, USA
| | | | - David B Corry
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA; Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey, Houston, TX 77030, USA.
| | - Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA; Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Tian J, Fu W, Xie Z, Wang X, Miao M, Shan F, Yu X. Methionine enkephalin(MENK) upregulated memory T cells in anti-influenza response. BMC Immunol 2023; 24:38. [PMID: 37828468 PMCID: PMC10571428 DOI: 10.1186/s12865-023-00573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
Novel prophylactic drugs and vaccination strategies for protection against influenza virus should induce specific effector T-cell immune responses in pulmonary airways and peripheral lymphoid organs. Designing approaches that promote T-cell-mediated responses and memory T-cell differentiation would strengthen host resistance to respiratory infectious diseases. The results of this study showed that pulmonary delivery of MENK via intranasal administration reduced viral titres, upregulated opioid receptor MOR and DOR, increased the proportions of T-cell subsets including CD8+ T cells, CD8+ TEM cells, NP/PA-effector CD8+ TEM cells in bronchoalveolar lavage fluid and lungs, and CD4+/CD8+ TCM cells in lymph nodes to protect mice against influenza viral challenge. Furthermore, we demonstrated that, on the 10th day of infection, the proportions of CD4+ TM and CD8+ TM cells were significantly increased, which meant that a stable TCM and TEM lineage was established in the early stage of influenza infection. Collectively, our data suggested that MENK administered intranasally, similar to the route of natural infection by influenza A virus, could exert antiviral activity through upregulating T-cell-mediated adaptive immune responses against influenza virus.
Collapse
Affiliation(s)
- Jing Tian
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, China
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, 110122, China
| | - Wenrui Fu
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, China
| | - Zifeng Xie
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, China
| | - Xiaonan Wang
- Biostax Inc., 1317 Edgewater Dr., Ste 4882, Orlando, FL, 32804, USA
| | - Miao Miao
- Biostax Inc., 1317 Edgewater Dr., Ste 4882, Orlando, FL, 32804, USA
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, 110122, China.
| | - Xiaodong Yu
- Department of Nursing, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| |
Collapse
|
3
|
Cheon IS, Son YM, Sun J. Tissue-resident memory T cells and lung immunopathology. Immunol Rev 2023; 316:63-83. [PMID: 37014096 PMCID: PMC10524334 DOI: 10.1111/imr.13201] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Rapid reaction to microbes invading mucosal tissues is key to protect the host against disease. Respiratory tissue-resident memory T (TRM ) cells provide superior immunity against pathogen infection and/or re-infection, due to their presence at the site of pathogen entry. However, there has been emerging evidence that exuberant TRM -cell responses contribute to the development of various chronic respiratory conditions including pulmonary sequelae post-acute viral infections. In this review, we have described the characteristics of respiratory TRM cells and processes underlying their development and maintenance. We have reviewed TRM -cell protective functions against various respiratory pathogens as well as their pathological activities in chronic lung conditions including post-viral pulmonary sequelae. Furthermore, we have discussed potential mechanisms regulating the pathological activity of TRM cells and proposed therapeutic strategies to alleviate TRM -cell-mediated lung immunopathology. We hope that this review provides insights toward the development of future vaccines or interventions that can harness the superior protective abilities of TRM cells, while minimizing the potential for immunopathology, a particularly important topic in the era of coronavirus disease 2019 (COVID-19) pandemic.
Collapse
Affiliation(s)
- In Su Cheon
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea 17546
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
4
|
Longitudinal Analysis of Neutralizing Potency against SARS-CoV-2 in the Recovered Patients after Treatment with or without Favipiravir. Viruses 2022; 14:v14040670. [PMID: 35458400 PMCID: PMC9024984 DOI: 10.3390/v14040670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
The effect of treatment with favipiravir, an antiviral purine nucleoside analog, for coronavirus disease 2019 (COVID-19) on the production and duration of neutralizing antibodies for SARS-CoV-2 was explored. There were 17 age-, gender-, and body mass index-matched pairs of favipiravir treated versus control selected from a total of 99 patients recovered from moderate COVID-19. These subjects participated in the longitudinal (>6 months) analysis of (i) SARS-CoV-2 spike protein’s receptor-binding domain IgG, (ii) virus neutralization assay using authentic virus, and (iii) neutralization potency against original (WT) SARS-CoV-2 and cross-neutralization against B.1.351 (beta) variant carrying triple mutations of K417N, E484K, and N501Y. The results demonstrate that the use of favipiravir: (1) significantly accelerated the elimination of SARS-CoV-2 in the case vs. control groups (p = 0.027), (2) preserved the generation and persistence of neutralizing antibodies in the host, and (3) did not interfere the maturation of neutralizing potency of anti-SARS-CoV-2 and neutralizing breadth against SARS-CoV-2 variants. In conclusion, treatment of COVID-19 with favipiravir accelerates viral clearance and does not interfere the generation or maturation of neutralizing potency against both WT SARS-CoV-2 and its variants.
Collapse
|
5
|
Dewi IM, Cunha C, Jaeger M, Gresnigt MS, Gkountzinopoulou ME, Garishah FM, Duarte-Oliveira C, Campos CF, Vanderbeke L, Sharpe AR, Brüggemann RJ, Verweij PE, Lagrou K, Vande Velde G, de Mast Q, Joosten LA, Netea MG, van der Ven AJ, Wauters J, Carvalho A, van de Veerdonk FL. Neuraminidase and SIGLEC15 modulate the host defense against pulmonary aspergillosis. Cell Rep Med 2021; 2:100289. [PMID: 34095887 PMCID: PMC8149467 DOI: 10.1016/j.xcrm.2021.100289] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 09/01/2020] [Accepted: 04/23/2021] [Indexed: 11/30/2022]
Abstract
Influenza-associated pulmonary aspergillosis (IAPA) has been reported increasingly since the advent of use of neuraminidase (NA) inhibitors following the 2009 influenza pandemic. We hypothesize that blocking host NA modulates the immune response against Aspergillus fumigatus. We demonstrate that NA influences the host response against A. fumigatus in vitro and that oseltamivir increases the susceptibility of mice to pulmonary aspergillosis. Oseltamivir impairs the mouse splenocyte and human peripheral blood mononuclear cell (PBMC) killing capacity of A. fumigatus, and adding NA restores this defect in PBMCs. Furthermore, the sialic acid-binding receptor SIGLEC15 is upregulated in PBMCs stimulated with A. fumigatus. Silencing of SIGLEC15 decrease PBMC killing of A. fumigatus. We provide evidence that host NA activity and sialic acid recognition are important for anti-Aspergillus defense. NA inhibitors might predispose individuals with severe influenza to invasive aspergillosis. These data shed light on the pathogenesis of invasive fungal infections and may identify potential therapeutic targets.
Collapse
Affiliation(s)
- Intan M.W. Dewi
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Microbiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Martin Jaeger
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mark S. Gresnigt
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoll Institute, Jena, Germany
| | | | - Fadel M. Garishah
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cláudio Duarte-Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Cláudia F. Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Lore Vanderbeke
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | | | - Roger J. Brüggemann
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Paul E. Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Katrien Lagrou
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI/Molecular Small Animal Imaging Center, Department of Imaging and Pathology, KU Leuven, Belgium
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A.B. Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Joost Wauters
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | | |
Collapse
|
6
|
Esposito S, Bianchini S, Argentiero A, Neglia C, Principi N. How does one choose the appropriate pharmacotherapy for children with lower respiratory tract infections? Expert Opin Pharmacother 2020; 21:1739-1747. [PMID: 32567405 DOI: 10.1080/14656566.2020.1781091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The definition of acute lower respiratory tract infection (LRTI) includes any infection involving the respiratory tract below the level of the larynx. In children, the most common acute LRTIs, and those with the greatest clinical relevance, are community-acquired pneumonia (CAP), bronchiolitis, bronchitis and tuberculosis (TB). The clinical relevance of LRTIs implies that they must be addressed with the most effective therapy. Antibiotics and antivirals play an essential role in this regard. AREAS COVERED In this paper, the most recent advances in the drug treatment of LRTIs in children are discussed. EXPERT OPINION Although LRTIs are extremely common and one of the most important causes of hospitalization and death in children, anti-infective therapy for these diseases remains unsatisfactory. For CAP and BR, the most important problem is the overuse and misuse of antibiotics; for BCL, the lack of drugs with demonstrated efficacy, safety and tolerability; for TB, the poor knowledge on the true efficacy and safety of the new drugs specifically planned to overcome the problem of MDR M. tuberculosis strains. There is still a long way to go for the therapy of pediatric LRTIs to be considered satisfactory.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma , Parma, Italy
| | - Sonia Bianchini
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma , Parma, Italy
| | - Alberto Argentiero
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma , Parma, Italy
| | - Cosimo Neglia
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma , Parma, Italy
| | | |
Collapse
|
7
|
Takahashi E, Sawabuchi T, Kimoto T, Sakai S, Kido H. Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 feeding enhances humoral immune responses, which are suppressed by the antiviral neuraminidase inhibitor oseltamivir in influenza A virus-infected mice. J Dairy Sci 2019; 102:9559-9569. [PMID: 31495632 DOI: 10.3168/jds.2019-16268] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022]
Abstract
Antiviral neuraminidase inhibitors, such as oseltamivir, zanamivir, and peramivir, are widely used for treatment of influenza virus infection. We reported previously that oseltamivir inhibits the viral growth cycle, ameliorates symptoms, and reduces viral antigen quantities. Suppressed viral antigen production, however, induces a reduction of acquired antiviral humoral immunity, and increases the incidence of re-infection rate in the following year. To achieve effective treatment of influenza virus infection, it is necessary to overcome these adverse effects of antiviral neuraminidase inhibitors. Feeding of yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) OLL1073R-1 is reported to have immune-stimulatory effects on influenza virus infection in mice and humans. In the present study, we assessed the effect of feeding L. bulgaricus OLL1073R-1 yogurt cultures (YC) on local and systemic humoral immune responses, which were suppressed by oseltamivir treatment, in mice infected with influenza A virus. Yogurt culture (1.14 × 108 cfu/0.4 mL per mouse per day) or sterile water (vehicle) was administered by intragastric gavage for 35 d. At d 22, influenza A virus/Puerto Rico/8/34 (H1N1) (PR8; 0.5 pfu/15 μL per mouse) was instilled intranasally, followed immediately by oral administration of oseltamivir (50 μg/100 μL per mouse, twice daily) or 5% methylcellulose (100 μL/mouse) as a vehicle for 13 d. Titers of anti-PR8-specific IgG and IgA in serum and mucosal secretory IgA (S-IgA) and IgG in bronchoalveolar lavage fluid (BALF) were analyzed by ELISA at 14 d after infection. Oseltamivir significantly suppressed the induction of anti-PR8-specific IgG and IgA in serum and S-IgA and IgG in BALF after infection. Feeding YC mildly but significantly stimulated production of PR8-specific IgA in serum, S-IgA in BALF, and IgG in serum without changing the IgG2a:IgG1 ratio. We analyzed the neutralizing activities against PR8 in serum and BALF and found that oseltamivir also reduced protective immunity, and YC feeding abrogated this effect. The immune-stimulatory tendency of YC on anti-PR8-specific IgA and IgG titers in serum and BALF was also detected in mice re-infected with PR8, but the effect was insignificant, unlike the effect of YC in the initial infection.
Collapse
Affiliation(s)
- E Takahashi
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, 3-15-18, Kuramoto-cho, Tokushima-city, Tokushima, 770-8503, Japan
| | - T Sawabuchi
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, 3-15-18, Kuramoto-cho, Tokushima-city, Tokushima, 770-8503, Japan
| | - T Kimoto
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, 3-15-18, Kuramoto-cho, Tokushima-city, Tokushima, 770-8503, Japan
| | - S Sakai
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, 3-15-18, Kuramoto-cho, Tokushima-city, Tokushima, 770-8503, Japan
| | - H Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, 3-15-18, Kuramoto-cho, Tokushima-city, Tokushima, 770-8503, Japan.
| |
Collapse
|
8
|
Jungo C, Russmann S, Benden C, Schuurmans MM. Use of oseltamivir in lung transplant recipients with suspected or proven influenza infection: a 1-year observational study of outcomes and safety. Antivir Ther 2019; 24:495-503. [PMID: 31172978 DOI: 10.3851/imp3320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Influenza virus infections in lung transplant recipients (LTRs) have an increased risk of unfavourable outcomes. Early initiation of treatment is associated with improved outcomes. In clinical practice, empirical oseltamivir treatment is therefore commonly started prior to diagnostic microbiological confirmation. There is limited data on the patient characteristics, outcomes and safety of this practice. This study investigated outcomes and safety of this pre-emptive treatment strategy using oseltamivir. METHODS Descriptive analysis of LTRs who received oseltamivir for ≥2 days for suspected influenza infection between July 2011 and June 2012. Analyses were based on data from electronic medical records and our standardized LTR database with prospective documentation of clinical information including medication, laboratory and radiological results, outcomes and adverse events. RESULTS We included 133 patients with a total of 261 oseltamivir treatment episodes (87.4% as outpatients). Median duration of oseltamivir treatment was 4 days (range 2 to 67) and 98.5% had concomitant antibiotic pharmacotherapy. Indications for oseltamivir included acute respiratory infection (66.7%), non-distinctive inflammatory reaction (51.3%) and influenza-like illness (2.7%). Influenza virus infection was confirmed by PCR in only 7%. Rhinovirus was the most frequent pathogen detected (14.9%). We discovered a wide range of adverse events but none occurred in >5%, and most were mild and of questionable causal relationship to oseltamivir administration. CONCLUSIONS This non-controlled retrospective analysis suggests that the pre-emptive use of oseltamivir for respiratory tract infections pending microbiological results is safe in LTRs.
Collapse
Affiliation(s)
- Christoph Jungo
- Divisions of Pulmonology, University Hospital, Zurich, Switzerland
| | - Stefan Russmann
- Clinical Pharmacology and Toxicology University Hospital, Zurich, Switzerland
| | - Christian Benden
- Divisions of Pulmonology, University Hospital, Zurich, Switzerland.,Department of Research and Education, University of Zurich, Zurich, Switzerland
| | - Macé M Schuurmans
- Divisions of Pulmonology, University Hospital, Zurich, Switzerland.,Department of Research and Education, University of Zurich, Zurich, Switzerland.,Pulmonology, Department of Internal Medicine, Cantonal Hospital, Winterthur, Switzerland
| |
Collapse
|
9
|
Abstract
INTRODUCTION Influenza continues to be a major public health concern. Antivirals play an important role in limiting the burden of disease and preventing infection and/or transmission. The developments of such agents are heavily dependent on pre-clinical evaluation where animal models are used to answer questions that cannot be easily addressed in human clinical trials. There are numerous animal models available to study the potential benefits of influenza antivirals but each animal model has its own pros and cons. Areas covered: In this review, the authors describe the advantages and disadvantages of using mice, ferrets, guinea pigs, cotton rats, golden hamsters and non-human primates to evaluate influenza therapeutics. Expert opinion: Animals used for evaluating influenza therapeutics differ in their susceptibility to influenza virus infection, their ability to display clinical signs of illness following viral infection and in their practical requirements such as housing. Therefore, defining the scientific question being asked and the data output required will assist in selecting the most appropriate animal model.
Collapse
Affiliation(s)
- Edin J Mifsud
- a WHO Collaborating Centre for Reference and Research on Influenza , VIDRL, Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| | - Celeste Mk Tai
- a WHO Collaborating Centre for Reference and Research on Influenza , VIDRL, Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| | - Aeron C Hurt
- a WHO Collaborating Centre for Reference and Research on Influenza , VIDRL, Peter Doherty Institute for Infection and Immunity , Melbourne , Australia.,b Department of Microbiology and Immunology , University of Melbourne , Melbourne , Victoria , Australia
| |
Collapse
|
10
|
Cao P, Wang Z, Yan AWC, McVernon J, Xu J, Heffernan JM, Kedzierska K, McCaw JM. On the Role of CD8 + T Cells in Determining Recovery Time from Influenza Virus Infection. Front Immunol 2016; 7:611. [PMID: 28066421 PMCID: PMC5167728 DOI: 10.3389/fimmu.2016.00611] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/02/2016] [Indexed: 01/02/2023] Open
Abstract
Myriad experiments have identified an important role for CD8+ T cell response mechanisms in determining recovery from influenza A virus infection. Animal models of influenza infection further implicate multiple elements of the immune response in defining the dynamical characteristics of viral infection. To date, influenza virus models, while capturing particular aspects of the natural infection history, have been unable to reproduce the full gamut of observed viral kinetic behavior in a single coherent framework. Here, we introduce a mathematical model of influenza viral dynamics incorporating innate, humoral, and cellular immune components and explore its properties with a particular emphasis on the role of cellular immunity. Calibrated against a range of murine data, our model is capable of recapitulating observed viral kinetics from a multitude of experiments. Importantly, the model predicts a robust exponential relationship between the level of effector CD8+ T cells and recovery time, whereby recovery time rapidly decreases to a fixed minimum recovery time with an increasing level of effector CD8+ T cells. We find support for this relationship in recent clinical data from influenza A (H7N9) hospitalized patients. The exponential relationship implies that people with a lower level of naive CD8+ T cells may receive significantly more benefit from induction of additional effector CD8+ T cells arising from immunological memory, itself established through either previous viral infection or T cell-based vaccines.
Collapse
Affiliation(s)
- Pengxing Cao
- School of Mathematics and Statistics, The University of Melbourne , Melbourne, VIC , Australia
| | - Zhongfang Wang
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia; Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ada W C Yan
- School of Mathematics and Statistics, The University of Melbourne , Melbourne, VIC , Australia
| | - Jodie McVernon
- Doherty Epidemiology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; Modelling and Simulation, Infection and Immunity Theme, Murdoch Childrens Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Institutes of Biomedical Sciences, Fudan University , Shanghai , China
| | - Jane M Heffernan
- Modelling Infection and Immunity Lab, Centre for Disease Modelling, York Institute for Health Research, Mathematics and Statistics, York University , Toronto, ON , Canada
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital , Melbourne, VIC , Australia
| | - James M McCaw
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; Modelling and Simulation, Infection and Immunity Theme, Murdoch Childrens Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Wang Z, Kedzierski L, Nuessing S, Chua BYL, Quiñones-Parra SM, Huber VC, Jackson DC, Thomas PG, Kedzierska K. Establishment of memory CD8+ T cells with live attenuated influenza virus across different vaccination doses. J Gen Virol 2016; 97:3205-3214. [PMID: 27902386 DOI: 10.1099/jgv.0.000651] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
FluMist has been used in children and adults for more than 10 years. As pre-existing CD8+ T cell memory pools can provide heterologous immunity against distinct influenza viruses, it is important to understand influenza-specific CD8+ T cell responses elicited by different live attenuated influenza virus (LAIV) regimens. In this study, we immunized mice intranasally with two different doses of live-attenuated PR8 virus (PR8 ts, H1N1), low and high, and then assessed protective efficacy by challenging animals with heterosubtypic X31-H3N2 virus at 6 weeks post-vaccination. Different LAIV doses elicited influenza-specific CD8+ T cell responses in lungs and spleen, but unexpectedly not in bronchoalveolar lavage. Interestingly, the immunodominance hierarchy at the acute phase after immunization varied depending on the LAIV dose; however, these differences disappeared at 6 weeks post-vaccination, resulting in generation of comparable CD8+ T cell memory pools. After vaccination with either dose, sufficient numbers of specific CD8+ T cells were generated for recall and protection of mice against heterosubtypic H1N1→H3N2 challenge. As a result, immunized mice displayed reduced weight loss, diminished inflammatory responses and lower viral titres in lungs, when compared to unvaccinated animals. Interestingly, the higher dose led to enhanced viral clearance on day 5 post-challenge, though this was not associated with increased CD8+ T cell responses, but with higher levels of non-neutralizing antibodies against the priming virus. Our study suggests that, while different LAIV doses result in distinct immune profiles, even a low dose produces sufficient protective CD8+ T cell memory against challenge infection, though the high dose results in more rapid viral clearance and reduced inflammation.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- CD8-Positive T-Lymphocytes/immunology
- Humans
- Immunologic Memory
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Lung/virology
- Mice
- Mice, Inbred C57BL
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
Collapse
Affiliation(s)
- Zhongfang Wang
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Simone Nuessing
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Brendon Yew Loong Chua
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Sergio M Quiñones-Parra
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Victor C Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - David C Jackson
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| |
Collapse
|
12
|
Abstract
Oseltamivir is recommended for the treatment and prophylaxis of influenza in persons at higher risk for influenza complications such as individuals with diabetes, neuropsychiatric illnesses, and respiratory, cardiac, renal, hepatic or haematological diseases. However, a recent Cochrane review reported that reduction of antibody production, renal disorders, hyperglycaemia, psychiatric disorders, and QT prolongation may be related to oseltamivir use. The underlying mechanisms are reviewed. There is decisive evidence that administration of a clinically compatible dose of oseltamivir in mice challenged by a respiratory syncytial virus (RSV) that lacks a neuraminidase gene showed symptom-relieving effects and inhibition of viral clearance. These effects were accompanied by decreased level of T cell surface sialoglycosphingolipid (ganglioside) GM1 that is regulated by the endogenous neuraminidase in response to viral challenge. Clinical and non-clinical evidence supports the view that the usual dose of oseltamivir suppresses pro-inflammatory cytokines such as interferon-gamma, interleukin-6, and tumour necrosis factor-alpha almost completely with partial suppression of viral shedding in human influenza virus infection experiment. Animal toxicity tests support the clinical evidence with regard to renal and cardiac disorders (bradycardia and QT prolongation) and do not disprove the metabolic effect. Reduction of antibody production and cytokine induction and renal, metabolic, cardiac, and prolonged psychiatric disorders after oseltamivir use may be related to inhibition of the host’s endogenous neuraminidase. While the usual clinical dose of zanamivir may not have this effect, a higher dose or prolonged administration of zanamivir and other neuraminidase inhibitors may induce similar delayed reactions, including reduction of the antibody and/or cytokine production.
Collapse
Affiliation(s)
- Rokuro Hama
- a Non-Profit Organization, Japan Institute of Pharmacovigilance , Osaka , Japan
| |
Collapse
|
13
|
Oh DY, Hurt AC. Using the Ferret as an Animal Model for Investigating Influenza Antiviral Effectiveness. Front Microbiol 2016; 7:80. [PMID: 26870031 PMCID: PMC4740393 DOI: 10.3389/fmicb.2016.00080] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/18/2016] [Indexed: 01/12/2023] Open
Abstract
The concern of the emergence of a pandemic influenza virus has sparked an increased effort toward the development and testing of novel influenza antivirals. Central to this is the animal model of influenza infection, which has played an important role in understanding treatment effectiveness and the effect of antivirals on host immune responses. Among the different animal models of influenza, ferrets can be considered the most suitable for antiviral studies as they display most of the human-like symptoms following influenza infections, they can be infected with human influenza virus without prior viral adaptation and have the ability to transmit influenza virus efficiently between one another. However, an accurate assessment of the effectiveness of an antiviral treatment in ferrets is dependent on three major experimental considerations encompassing firstly, the volume and titer of virus, and the route of viral inoculation. Secondly, the route and dose of drug administration, and lastly, the different methods used to assess clinical symptoms, viral shedding kinetics and host immune responses in the ferrets. A good understanding of these areas is necessary to achieve data that can accurately inform the human use of influenza antivirals. In this review, we discuss the current progress and the challenges faced in these three major areas when using the ferret model to measure influenza antiviral effectiveness.
Collapse
Affiliation(s)
- Ding Y Oh
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, MelbourneVIC, Australia; School of Applied and Biomedical Sciences, Federation University Australia, GippslandVIC, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, MelbourneVIC, Australia; Melbourne School of Population and Global Health, University of Melbourne, ParkvilleVIC, Australia
| |
Collapse
|
14
|
Esposito S, Principi N. Oseltamivir for influenza infection in children: risks and benefits. Expert Rev Respir Med 2015; 10:79-87. [PMID: 26616633 DOI: 10.1586/17476348.2016.1126182] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Influenza is a common disease affecting many children each year. In a number of cases, particularly in children <2 years old and in those with severe chronic underlying disease, influenza can be complicated by lower respiratory tract infections, acute otitis media, rhinosinusitis, febrile seizures, dehydration or encephalopathy. Oseltamivir is the influenza virus drug that is most commonly studied in children for both the treatment and prevention of influenza. To avoid the risk that children with mild influenza or patients suffering from different viral infections receive oseltamivir, oseltamivir treatment should be recommended only in severe influenza cases, especially if confirmed by reliable laboratory tests. However, therapy must be initiated considering the risk of complications and the presence of severe clinical manifestations at age- and weight-appropriate doses. Because the vaccine remains the best option for preventing influenza and its complications, prophylaxis using oseltamivir should only be considered in select patients.
Collapse
Affiliation(s)
- Susanna Esposito
- a Paediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation , Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| | - Nicola Principi
- a Paediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation , Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| |
Collapse
|