1
|
Wang Z, Huang J, Feng Y, Li Z, Ge H, Wang R, Gu Y, Xiong Y, Chen B, Zhang M, Wang X, Shi Y, Shen Z, Zhan H, Du G. HBP-A Attenuates Knee Osteoarthritis Progression via MLK3/P38/HDAC4 Axis-Mediated Dual Protection of Articular Cartilage and Quadriceps. J Cell Mol Med 2025; 29:e70577. [PMID: 40318007 PMCID: PMC12049151 DOI: 10.1111/jcmm.70577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025] Open
Abstract
Knee osteoarthritis (KOA), a degenerative joint disease driven by biomechanical instability, involves cartilage degradation, muscle dysfunction, and MLK3/P38 MAPK pathway activation. Histone deacetylase 4 (HDAC4), a regulator of chondrocyte and muscle homeostasis, interacts with this pathway during disease progression. While Hyriopsis Bioactive Polysaccharide-Anodonta (HBP-A) exhibits P38 MAPK inhibitory properties in vitro, its in vivo therapeutic effects on musculoskeletal tissues remain uncharacterised. A destabilisation of the medial meniscus (DMM) mouse model was established to investigate HBP-A's therapeutic potential. Animals were randomly divided into sham-operated, DMM-induced, and HBP-A-treated groups. Following surgical induction, HBP-A (0.26 g/kg) was administered daily via oral gavage for 4 weeks. Comprehensive assessments included behavioural tests for pain sensitivity, micro-CT scanning, histological evaluation, and transmission electron microscope. Molecular mechanisms were investigated via immunohistochemical or immunofluorescence staining of MLK3, P38 MAPK, Caspase-3, and HDAC4, complemented by RT-qPCR analysis of myokine expression. HBP-A treatment significantly alleviated pain sensitivity compared to the DMM group. Structural evaluations revealed preserved subchondral bone integrity and attenuated cartilage degeneration, with histological scoring confirming reduced pathological changes. Quadriceps exhibited mitigated atrophy and restored ultrastructural organisation. Molecular profiling demonstrated suppressed MLK3/P38 MAPK pathway activation, diminished apoptotic activity, and elevated HDAC4 expression in both cartilage and quadriceps. HBP-A additionally normalised dysregulated expression of muscle-derived osteogenic factors linked to bone-cartilage crosstalk. These findings establish HBP-A as a dual-target therapeutic agent for KOA, concurrently mitigating cartilage and muscle degeneration through MLK3/P38 MAPK/HDAC4 axis modulation.
Collapse
Affiliation(s)
- Zhengming Wang
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Junyan Huang
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Yuanyuan Feng
- Department of Medical OncologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zhengyan Li
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Haiya Ge
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Rui Wang
- Department of Orthopedic SurgeryShanghai Guanghua Hospital of Integrated Traditional Chinese and Western MedicineShanghaiChina
| | - Yong Gu
- Translational Medical Innovation CenterZhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Yizhe Xiong
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Bo Chen
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Mingcai Zhang
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiang Wang
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ying Shi
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zhibi Shen
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hongsheng Zhan
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Guoqing Du
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
2
|
Silver J, Trewin AJ, Loke S, Croft L, Ziemann M, Soria M, Dillon H, Nielsen S, Lamon S, Wadley GD. Purification of mitochondria from skeletal muscle tissue for transcriptomic analyses reveals localization of nuclear-encoded noncoding RNAs. FASEB J 2024; 38:e70223. [PMID: 39625361 PMCID: PMC11613969 DOI: 10.1096/fj.202401618r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024]
Abstract
Mitochondria are central to cellular function, particularly in metabolically active tissues such as skeletal muscle. Nuclear-encoded RNAs typically localize within the nucleus and cytosol but a small population may also translocate to subcellular compartments such as mitochondria. We aimed to investigate the nuclear-encoded RNAs that localize within the mitochondria of skeletal muscle cells and tissue. Intact mitochondria were isolated via immunoprecipitation (IP) followed by enzymatic treatments (RNase-A and proteinase-K) optimized to remove transcripts located exterior to mitochondria, making it amenable for high-throughput transcriptomic sequencing. Small RNA sequencing libraries were successfully constructed from as little as 1.8 ng mitochondrial RNA input. Small RNA sequencing of mitochondria from rat myoblasts revealed the enrichment of over 200 miRNAs. Whole-transcriptome RNA sequencing of enzymatically purified mitochondria isolated by IP from skeletal muscle tissue showed a striking similarity in the degree of purity compared to mitoplast preparations which lack an outer mitochondrial membrane. In summary, we describe a novel, powerful sequencing approach applicable to animal and human tissues and cells that can facilitate the discovery of nuclear-encoded RNA transcripts localized within skeletal muscle mitochondria.
Collapse
MESH Headings
- Animals
- Rats
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/genetics
- Cell Nucleus/metabolism
- Cell Nucleus/genetics
- Transcriptome
- Gene Expression Profiling/methods
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Mitochondria/metabolism
- Mitochondria/genetics
- Male
- RNA, Nuclear/metabolism
- RNA, Nuclear/genetics
- RNA, Mitochondrial/metabolism
- RNA, Mitochondrial/genetics
- Myoblasts/metabolism
- Myoblasts/cytology
- Humans
Collapse
Affiliation(s)
- Jessica Silver
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Adam J. Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityGeelongVictoriaAustralia
- Department of Anatomy and PhysiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Stella Loke
- Genomics Centre, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Larry Croft
- Genomics Centre, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Mark Ziemann
- School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
- Burnet InstituteMelbourneVictoriaAustralia
| | - Megan Soria
- School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Hayley Dillon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityGeelongVictoriaAustralia
- Human Integrated Physiology and Sports Cardiology LaboratoryBaker Heart and Diabetes InstituteMelbourneVictoriaAustralia
| | - Søren Nielsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity ResearchRigshospitalet, University of CopenhagenCopenhagenDenmark
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Glenn D. Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
3
|
Takamura D, Iwata K, Inoue S, Hatakeyama J, Moriyama H. Circulating miR-29c, miR-195, and miR-486 Are Objective Indicators to Determine the Moderate Intensity of Resistance Exercise. Cureus 2024; 16:e76212. [PMID: 39845226 PMCID: PMC11750631 DOI: 10.7759/cureus.76212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2024] [Indexed: 01/24/2025] Open
Abstract
Background and objective Moderate exercise is important for health; however, there are variations among individuals in terms of characterizing moderate intensity and it is difficult to identify. In light of this, the purpose of this study was to identify new objective indicators to determine effective exercise intensity. Methods This study involved both human and animal experiments. After subjecting mice to exercise of effective intensity, microarray analysis of circulating microRNA expression was conducted to identify candidates for objective indicators to determine effective exercise intensity. Then, we assessed if these microRNAs were altered after aerobic or resistance exercises in humans using quantitative real-time PCR. Twelve healthy males were randomly assigned to two groups: the low-intensity exercise group (LI group) and the high-intensity exercise group (HI group) and they underwent four weeks of exercise program. Results Based on microarray analysis, 188 microRNAs were altered after aerobic exercise, and 167 microRNAs were altered after resistance exercise. Combining these findings with the data from some published reports, we selected miR-29c, miR-23b, miR-222, miR-195, miR-126, miR-133a, and miR-486 as the candidates for biomarkers to determine the effective exercise intensity. In the human study, physical performance improved after resistance exercise only in the HI group. Of the microRNAs, miR-29c, miR-195, and miR-486 increased immediately after resistance exercise only in the HI group. Fold change of miR-486 correlated with changes in knee extensor strength (r=0.744, p=0.005). Conclusions Resistance exercise at effective intensity upregulated the expression of miR-29c, miR-195, and miR-486. Hence, these microRNAs may serve as objective indicators to determine the intensity of resistance exercise. Among them, miR-486 may aid in predicting the response to resistance exercise.
Collapse
Affiliation(s)
- Daisuke Takamura
- Department of Rehabilitation, Kobe City Medical Center General Hospital, Kobe, JPN
- Department of Rehabilitation Science, Graduate School of Health Science, Kobe University, Kobe, JPN
| | - Kentaro Iwata
- Department of Rehabilitation, Kobe City Medical Center General Hospital, Kobe, JPN
| | - Shota Inoue
- Department of Rehabilitation Science, Graduate School of Health Science, Kobe University, Kobe, JPN
| | - Junpei Hatakeyama
- Department of Rehabilitation Science, Graduate School of Health Science, Kobe University, Kobe, JPN
| | - Hideki Moriyama
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Kobe, JPN
| |
Collapse
|
4
|
Lee EH, Jeong M, Park K, Lee DG, Lee EJ, Lee H, Kim AY, Ahn JW, Woo HJ, Kim S, Lim J, Kim J. Detection of miR-133a-5p Using a Molecular Beacon Probe for Investigating Postmortem Intervals. Noncoding RNA 2024; 10:58. [PMID: 39728603 DOI: 10.3390/ncrna10060058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024] Open
Abstract
Background: When a body is discovered at a crime or murder scene, it is crucial to examine the body and estimate its postmortem interval (PMI). Accurate estimation of PMI is vital for identifying suspects and providing clues to resolve the case. MicroRNAs (miRNAs or miRs) are small non-coding RNAs that remain relatively stable in the cell nucleus even after death-related changes occur. Objective: This study developed a molecular beacon probe for mmu-miR-133a-5p and assessed its use in mouse muscle tissue at temperatures of 4 °C and 21 °C to estimate the PMI. Methods: A total of 36 healthy adult male BALB/c mice were divided into 9 PMI time points (0, 2, 6, 8, and 10 days) with 3 mice per time point, and they were exposed to 4 °C and 21 °C. Next, the expression pattern of mmu-miR-133a in the skeletal muscle tissue over a 10-day PMI period was analyzed using the developed molecular beacon probe. Results: The molecular beacon (MB) probe was designed for optimal thermodynamic stability with a hairpin structure that opened in the presence of mmu-miR-133a-5p, thus separating the fluorophore from the quencher and resulting in a strong fluorescence signal at 495 nm. Fluorescence intensity increased with mmu-miR-133a-5p concentration from 1 ng/μL to 1000 ng/μL and exhibited a strong correlation (R2 = 0.9966) and a detection limit of 1 ng/μL. Subsequently, the expression level of mmu-miR-133a-5p was observed to be stable in mouse skeletal muscle tissue at both 4 °C and 21 °C. Conclusions: This user-friendly assay can complete measurements in just 30 min after RNA extraction and is suitable for point-of-care testing, and it possesses the potential to improve existing complex and time-consuming methods for PMI estimation.
Collapse
Affiliation(s)
- Eun Hye Lee
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Mingyoung Jeong
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Kwangmin Park
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Dong Geon Lee
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Eun Ju Lee
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
- Korea Mycobacterium Resource Center (KMRC), Department of Research and Development, The Korean Institute of Tuberculosis, Osong 28158, Republic of Korea
| | - Haneul Lee
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Ah Yeoung Kim
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Jae Won Ahn
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Hyun Jun Woo
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Republic of Korea
| | - Sunghyun Kim
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Jaewon Lim
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Jungho Kim
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| |
Collapse
|
5
|
Lee EJ, Jeong M, Lee H, Je MA, Park K, Lee DG, Xuan X, Kim S, Park S, Kim J. MiR-122, miR-133a, and miR-206 as potential biomarkers for post-mortem interval estimation. Genes Genomics 2024; 46:1175-1182. [PMID: 39207675 DOI: 10.1007/s13258-024-01559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUD Accurate estimation of post-mortem interval (PMI) is crucial in forensic investigations. MicroRNAs (miRNAs or miRs) are small non-coding RNAs that remain relatively stable within the cell nucleus despite post-mortem changes. OBJECTIVE We assessed three target genes (miR-122, miR-133a, and miR-206) for PMI estimation using 72 healthy adult male BALB/c mice exposed to two different temperatures (4 and 21℃) at nine different time points over 10 days. METHODS Initially, the stability of the two reference genes (RNU6B and 5 srRNA) was evaluated using gene stability analysis tools (Delta Ct, Best Keeper, and Genorm) to select the optimal reference gene. RNU6B was found to be the most stable endogenous control. Subsequently, the expression patterns of miR-122, miR-133a, and miR-206 were analyzed within a 10-day PMI period using the heart, skeletal muscle, liver, and brain tissues. RESULTS At 4℃, miR-122 levels significantly decreased on days 8 and 10 in all tissues, with only the liver showing significant changes at 21℃. MiR-133a decreased over time in the heart, muscles, and brain, showing a dramatic decrease on days 8 and 10 in the heart and muscles at both temperatures. Although miR-206 levels decreased over time in muscles and liver at 4 ℃, these increased in the brain at 21 ℃, with no expression changes in other organs. CONCLUSION In summary, miR-122, miR-133a, and miR-206 are potential PMI markers in heart and skeletal muscle tissues.
Collapse
Affiliation(s)
- Eun Ju Lee
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Department of Research and Development, Korea Mycobacterium Resource Center (KMRC), The Korean Institute of Tuberculosis, Osong, 28158, Republic of Korea
| | - Mingyoung Jeong
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Haneul Lee
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Min-A Je
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Kwangmin Park
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Dong Geon Lee
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Xianglan Xuan
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Sunghyun Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Sunyoung Park
- School of Mechanical Engineering, Yonsei University, Seoul, 03772, Republic of Korea.
| | - Jungho Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea.
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea.
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea.
| |
Collapse
|
6
|
Lombardo M, Aiello G, Fratantonio D, Karav S, Baldelli S. Functional Role of Extracellular Vesicles in Skeletal Muscle Physiology and Sarcopenia: The Importance of Physical Exercise and Nutrition. Nutrients 2024; 16:3097. [PMID: 39339697 PMCID: PMC11435357 DOI: 10.3390/nu16183097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Extracellular vesicles (EVs) play a key role in intercellular communication by transferring miRNAs and other macromolecules between cells. Understanding how diet and exercise modulate the release and content of skeletal muscle (SM)-derived EVs could lead to novel therapeutic strategies to prevent age-related muscle decline and other chronic diseases, such as sarcopenia. This review aims to provide an overview of the role of EVs in muscle function and to explore how nutritional and physical interventions can optimise their release and function. METHODS A literature review of studies examining the impact of exercise and nutritional interventions on MS-derived EVs was conducted. Major scientific databases, including PubMed, Scopus and Web of Science, were searched using keywords such as 'extracellular vesicles', 'muscle', 'exercise', 'nutrition' and 'sarcopenia'. The selected studies included randomised controlled trials (RCTs), clinical trials and cohort studies. Data from these studies were synthesised to identify key findings related to the release of EVs, their composition and their potential role as therapeutic targets. RESULTS Dietary patterns, specific foods and supplements were found to significantly modulate EV release and composition, affecting muscle health and metabolism. Exercise-induced changes in EV content were observed after both acute and chronic interventions, with a marked impact on miRNAs and proteins related to muscle growth and inflammation. Nutritional interventions, such as the Mediterranean diet and omega-3 fatty acids, have also shown the ability to alter EV profiles, suggesting their potential to improve cardiovascular health and reduce inflammation. CONCLUSIONS EVs are emerging as critical mediators of the beneficial effects of diet and exercise on muscle health. Both exercise and nutritional interventions can modulate the release and content of MS-derived EVs, offering promising avenues for the development of novel therapeutic strategies targeting sarcopenia and other muscle diseases. Future research should focus on large-scale RCT studies with standardised methodologies to better understand the role of EVs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Gilda Aiello
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Deborah Fratantonio
- Department of Medicine and Surgery, LUM University, S.S. 100 Km 18, 70100 Casamassima, Italy
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye
| | - Sara Baldelli
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| |
Collapse
|
7
|
Folgueira C, Herrera-Melle L, López JA, Galvan-Alvarez V, Martin-Rincon M, Cuartero MI, García-Culebras A, Dumesic PA, Rodríguez E, Leiva-Vega L, León M, Porteiro B, Iglesias C, Torres JL, Hernández-Cosido L, Bonacasa C, Marcos M, Moro MÁ, Vázquez J, Calbet JAL, Spiegelman BM, Mora A, Sabio G. Remodeling p38 signaling in muscle controls locomotor activity via IL-15. SCIENCE ADVANCES 2024; 10:eadn5993. [PMID: 39141732 PMCID: PMC11323882 DOI: 10.1126/sciadv.adn5993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/10/2024] [Indexed: 08/16/2024]
Abstract
Skeletal muscle has gained recognition as an endocrine organ releasing myokines upon contraction during physical exercise. These myokines exert both local and pleiotropic health benefits, underscoring the crucial role of muscle function in countering obesity and contributing to the overall positive effects of exercise on health. Here, we found that exercise activates muscle p38γ, increasing locomotor activity through the secretion of interleukin-15 (IL-15). IL-15 signals in the motor cortex, stimulating locomotor activity. This activation of muscle p38γ, leading to an increase locomotor activity, plays a crucial role in reducing the risk of diabetes and liver steatosis, unveiling a vital muscle-brain communication pathway with profound clinical implications. The correlation between p38γ activation in human muscle during acute exercise and increased blood IL-15 levels highlights the potential therapeutic relevance of this pathway in treating obesity and metabolic diseases. These findings provide valuable insights into the molecular basis of exercise-induced myokine responses promoting physical activity.
Collapse
Affiliation(s)
- Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Juan Antonio López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria 35017, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria 35017, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - María Isabel Cuartero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Alicia García-Culebras
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Phillip A. Dumesic
- Dana Farber Cancer Institute (DFCI), Department of Cell Biology, Harvard University Medical School, Boston, MA, USA
| | - Elena Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Luis Leiva-Vega
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Marta León
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Begoña Porteiro
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Cristina Iglesias
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | | | - Lourdes Hernández-Cosido
- Bariatric Surgery Unit, Department of General Surgery, University Hospital of Salamanca, Department of Surgery, University of Salamanca, Salamanca, Spain
| | - Clara Bonacasa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Salamanca, Spain; Department of Medicine, University of Salamanca, Salamanca, Spain
| | - María Ángeles Moro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jose A. L. Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria 35017, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Bruce M. Spiegelman
- Dana Farber Cancer Institute (DFCI), Department of Cell Biology, Harvard University Medical School, Boston, MA, USA
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| |
Collapse
|
8
|
Gu S, Huang Q, Jie Y, Sun C, Wen C, Yang N. Transcriptomic and epigenomic landscapes of muscle growth during the postnatal period of broilers. J Anim Sci Biotechnol 2024; 15:91. [PMID: 38961455 PMCID: PMC11223452 DOI: 10.1186/s40104-024-01049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/12/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Broilers stand out as one of the fastest-growing livestock globally, making a substantial contribution to animal meat production. However, the molecular and epigenetic mechanisms underlying the rapid growth and development of broiler chickens are still unclear. This study aims to explore muscle development patterns and regulatory networks during the postnatal rapid growth phase of fast-growing broilers. We measured the growth performance of Cornish (CC) and White Plymouth Rock (RR) over a 42-d period. Pectoral muscle samples from both CC and RR were randomly collected at day 21 after hatching (D21) and D42 for RNA-seq and ATAC-seq library construction. RESULTS The consistent increase in body weight and pectoral muscle weight across both breeds was observed as they matured, with CC outpacing RR in terms of weight at each stage of development. Differential expression analysis identified 398 and 1,129 genes in the two dimensions of breeds and ages, respectively. A total of 75,149 ATAC-seq peaks were annotated in promoter, exon, intron and intergenic regions, with a higher number of peaks in the promoter and intronic regions. The age-biased genes and breed-biased genes of RNA-seq were combined with the ATAC-seq data for subsequent analysis. The results spotlighted the upregulation of ACTC1 and FDPS at D21, which were primarily associated with muscle structure development by gene cluster enrichment. Additionally, a noteworthy upregulation of MUSTN1, FOS and TGFB3 was spotted in broiler chickens at D42, which were involved in cell differentiation and muscle regeneration after injury, suggesting a regulatory role of muscle growth and repair. CONCLUSIONS This work provided a regulatory network of postnatal broiler chickens and revealed ACTC1 and MUSTN1 as the key responsible for muscle development and regeneration. Our findings highlight that rapid growth in broiler chickens triggers ongoing muscle damage and subsequent regeneration. These findings provide a foundation for future research to investigate the functional aspects of muscle development.
Collapse
Affiliation(s)
- Shuang Gu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China
| | - Qiang Huang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China
| | - Yuchen Jie
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Hainan, 572025, China.
| |
Collapse
|
9
|
Livshits G, Kalinkovich A. Restoration of epigenetic impairment in the skeletal muscle and chronic inflammation resolution as a therapeutic approach in sarcopenia. Ageing Res Rev 2024; 96:102267. [PMID: 38462046 DOI: 10.1016/j.arr.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Sarcopenia is an age-associated loss of skeletal muscle mass, strength, and function, accompanied by severe adverse health outcomes, such as falls and fractures, functional decline, high health costs, and mortality. Hence, its prevention and treatment have become increasingly urgent. However, despite the wide prevalence and extensive research on sarcopenia, no FDA-approved disease-modifying drugs exist. This is probably due to a poor understanding of the mechanisms underlying its pathophysiology. Recent evidence demonstrate that sarcopenia development is characterized by two key elements: (i) epigenetic dysregulation of multiple molecular pathways associated with sarcopenia pathogenesis, such as protein remodeling, insulin resistance, mitochondria impairments, and (ii) the creation of a systemic, chronic, low-grade inflammation (SCLGI). In this review, we focus on the epigenetic regulators that have been implicated in skeletal muscle deterioration, their individual roles, and possible crosstalk. We also discuss epidrugs, which are the pharmaceuticals with the potential to restore the epigenetic mechanisms deregulated in sarcopenia. In addition, we discuss the mechanisms underlying failed SCLGI resolution in sarcopenia and the potential application of pro-resolving molecules, comprising specialized pro-resolving mediators (SPMs) and their stable mimetics and receptor agonists. These compounds, as well as epidrugs, reveal beneficial effects in preclinical studies related to sarcopenia. Based on these encouraging observations, we propose the combination of epidrugs with SCLI-resolving agents as a new therapeutic approach for sarcopenia that can effectively attenuate of its manifestations.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
10
|
Lautaoja-Kivipelto JH, Karvinen S, Korhonen TM, O'Connell TM, Tiirola M, Hulmi JJ, Pekkala S. Interaction of the C2C12 myotube contractions and glucose availability on transcriptome and extracellular vesicle microRNAs. Am J Physiol Cell Physiol 2024; 326:C348-C361. [PMID: 38047306 PMCID: PMC11192488 DOI: 10.1152/ajpcell.00401.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/26/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Exercise-like electrical pulse stimulation (EL-EPS) of myotubes mimics many key physiological changes induced by in vivo exercise. Besides enabling intracellular research, EL-EPS allows to study secreted factors, including muscle-specific microRNAs (myomiRs) carried in extracellular vesicles (EVs). These factors can participate in contraction-induced intercellular cross talk and may mediate the health benefits of exercise. However, the current knowledge of these responses, especially under variable nutritional conditions, is limited. We investigated the effects of EL-EPS on C2C12 myotube transcriptome in high- and low-glucose conditions by messenger RNA sequencing, while the expression of EV-carried miRNAs was analyzed by small RNA sequencing and RT-qPCR. We show that higher glucose availability augmented contraction-induced transcriptional changes and that the majority of the differentially expressed genes were upregulated. Furthermore, based on the pathway analyses, processes related to contractility and cytokine/inflammatory responses were upregulated. In addition, we report that EL-EPS increased packing of miR-1-3p into EVs independent of glucose availability. Together our findings suggest that in vitro EL-EPS is a usable tool not only to study contraction-induced intracellular mechanisms but also extracellular responses. The distinct transcriptional changes observed under variable nutritional conditions emphasize the importance of careful consideration of media composition in future exercise-mimicking studies.NEW & NOTEWORTHY The present study examined for the first time the effects of exercise-like electrical pulse stimulation administered under distinct nutritional conditions on 1) the transcriptome of the C2C12 myotubes and 2) their media containing extracellular vesicle-carried microRNAs. We report that higher glucose availability augmented transcriptional responses related especially to contractility and cytokine/inflammatory pathways. Agreeing with in vivo studies, we show that the packing of exercise-responsive miR-1-3p was increased in the extracellular vesicles in response to myotube contractions.
Collapse
Affiliation(s)
- Juulia H Lautaoja-Kivipelto
- Faculty of Sport and Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
- Faculty of Medicine, Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
| | - Sira Karvinen
- Faculty of Sport and Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Tia-Marje Korhonen
- Faculty of Sport and Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Thomas M O'Connell
- Department of Otolaryngology, Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Marja Tiirola
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Juha J Hulmi
- Faculty of Sport and Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Satu Pekkala
- Faculty of Sport and Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
11
|
Long YF, Chow SKH, Cui C, Wong RMY, Zhang N, Qin L, Law SW, Cheung WH. Does exercise influence skeletal muscle by modulating mitochondrial functions via regulating MicroRNAs? A systematic review. Ageing Res Rev 2023; 91:102048. [PMID: 37652311 DOI: 10.1016/j.arr.2023.102048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Sarcopenia is the accelerated loss of muscle mass, strength and function. Mitochondrial dysfunction was related to the progression of sarcopenia; meanwhile, microRNAs were regarded as core roles in regulating mitochondrial function. Physical exercise is a well-accepted approach to attenuate sarcopenia, yet very few studies depict the molecular mechanisms. The aim of this systematic review is to explore the potential relationships among physical exercise, mitochondrial function, and microRNAs, which may give new insight for retarding sarcopenia. METHODS A systematic literature search was performed in PubMed, Embase and Web of Science. The keywords were combined as "(microRNA OR miR) AND mitochondri* AND muscle AND exercise" and searched in all fields. PRISMA guidelines were followed. Information was extracted from the included studies for review. RESULTS In this review, 18 preclinical studies and 5 clinical studies were included. Most of the included studies suggested that effective physical exercise had positive effects on mitochondrial functions by regulating microRNAs. The results showed that 12 microRNAs improved mitochondrial functions, while 18 microRNAs suppressed them. Meanwhile, the results showed that 5 microRNAs improved muscle performance. CONCLUSIONS This systematic review provides an up-to-date sequential overview and highlights the potential relationship among exercise, mitochondrial function, and microRNAs in muscle. Meanwhile, evidence revealed that physical exercise can improve muscle performance by up-regulating mitochondrial functions, especially mitochondrial biogenesis, through modulating microRNAs.
Collapse
Affiliation(s)
- Yu-Feng Long
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon Kwoon-Ho Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China; Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA.
| | - Can Cui
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald Man Yeung Wong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ning Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China; Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sheung-Wai Law
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China; Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China; Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Su Y, Gao X, Wang Y, Li X, Zhang W, Zhao J. Astragalus polysaccharide promotes sheep satellite cell differentiation by regulating miR-133a through the MAPK/ERK signaling pathway. Int J Biol Macromol 2023; 239:124351. [PMID: 37023880 DOI: 10.1016/j.ijbiomac.2023.124351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Astragalus polysaccharide (APS) possesses extensive biological activities, pharmacological effects, and anti-fatigue function. MiR-133a is a specifically expressed miRNA in skeletal muscle that participates in the regulation of myoblast proliferation and differentiation. However, little is known about the role of APS in the development of sheep skeletal muscle. In this study, we aimed to investigate the underlying mechanism of APS and miR-133a on the differentiation of sheep skeletal muscle satellite cells (SMSCs) and the regulatory relationship between APS and miR-133a. The results suggested that APS plays a positive regulatory role in the proliferation and differentiation of sheep SMSCs. Moreover, miR-133a significantly promotes SMSC differentiation and the activity of the MAPK/ERK signaling pathway. Importantly, we found that APS function requires the mediation of miR-133a in the differentiation of sheep SMSCs. Taken together, our results indicate that APS accelerates SMSC differentiation by regulating miR-133a via the MAPK/ERK signaling pathway in sheep.
Collapse
Affiliation(s)
- Yuan Su
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Xuyang Gao
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Yu Wang
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Xuying Li
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Weipeng Zhang
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Junxing Zhao
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
| |
Collapse
|
13
|
Beilerli A, Kudriashov V, Sufianov A, Kostin A, Begliarzade S, Ilyasova T, Liang Y, Mukhamedzyanov A, Beylerli O. Regulation and mechanism of action of miRNAs on insulin resistance in skeletal muscles. Noncoding RNA Res 2023; 8:218-223. [PMID: 36860209 PMCID: PMC9969252 DOI: 10.1016/j.ncrna.2023.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The term "insulin resistance" is commonly understood as a decrease in the response of insulin-sensitive tissues to insulin at its sufficient concentration, leading to chronic compensatory hyperinsulinemia. Type 2 diabetes mellitus is based on mechanisms consisting in the development of resistance to insulin in target cells (hepatocytes, adipocytes, skeletal muscle cells), resulting in the termination of an adequate response of these tissues to interaction with insulin. Since in healthy people 75-80% of glucose is utilized by skeletal muscle, it is more likely that the main cause of insulin resistance is impaired insulin-stimulated glucose utilization by skeletal muscle. With insulin resistance, skeletal muscles do not respond to insulin at its normal concentration, thereby determining an increase in glucose levels and a compensatory increase in insulin production in response to this. Despite many years of studying diabetes mellitus (DM) and insulin resistance, the molecular genetic basis for the development of these pathological conditions is still the subject of numerous studies. Recent studies point to the involvement of microRNAs (miRNAs) as dynamic modifiers in the pathogenesis of various diseases. MiRNAs are a separate class of RNA molecules that play a key role in the post-transcriptional regulation of gene expression. Recent studies have shown that miRNAs dysregulation in DM is closely related to miRNAs regulatory abilities in skeletal muscle insulin resistance. This gave grounds to consider an increase or decrease in the expression of individual microRNAs in muscle tissue and consider them as new biomarkers for diagnosing and monitoring insulin resistance and promising directions for targeted therapy. This review presents the results of scientific studies examining the role of miRNAs in skeletal muscle insulin resistance.
Collapse
Affiliation(s)
- Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | | | - Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrey Kostin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia, Moscow, Russia
| | - Sema Begliarzade
- Republican Clinical Perinatal Center, Ufa, Republic of Bashkortostan, 450106, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | | | - Ozal Beylerli
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Corresponding author. Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation.
| |
Collapse
|
14
|
Nicotinamide Mononucleotide Administration Prevents Doxorubicin-Induced Cardiotoxicity and Loss in Physical Activity in Mice. Cells 2022; 12:cells12010108. [PMID: 36611902 PMCID: PMC9818647 DOI: 10.3390/cells12010108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
Doxorubicin (Doxo) is a widely used antineoplastic drug with limited clinical application due to its deleterious dose-related side effects. We investigated whether nicotinamide mononucleotide (NMN) could protect against Doxo-induced cardiotoxicity and physical dysfunction in vivo. To assess the short- and long-term toxicity, two Doxo regimens were tested, acute and chronic. In the acute study, C57BL6/J (B6) mice were injected intraperitoneally (i.p.) once with Doxo (20 mg/kg) and NMN (180 mg/kg/day, i.p.) was administered daily for five days before and after the Doxo injection. In the chronic study, B6 mice received a cumulative dose of 20 mg/kg Doxo administered in fractionated doses for five days. NMN (500 mg/kg/day) was supplied in the mice's drinking water beginning five days before the first injection of Doxo and continuing for 60 days after. We found that NMN significantly increased tissue levels of NAD+ and its metabolites and improved survival and bodyweight loss in both experimental models. In addition, NMN protected against Doxo-induced cardiotoxicity and loss of physical function in acute and chronic studies, respectively. In the heart, NMN prevented Doxo-induced transcriptomic changes related to mitochondrial function, apoptosis, oxidative stress, inflammation and p53, and promyelocytic leukemia nuclear body pathways. Overall, our results suggest that NMN could prevent Doxo-induced toxicity in heart and skeletal muscle.
Collapse
|
15
|
miR-133a-A Potential Target for Improving Cardiac Mitochondrial Health and Regeneration After Injury. J Cardiovasc Pharmacol 2022; 80:187-193. [PMID: 35500168 DOI: 10.1097/fjc.0000000000001279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/01/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The various roles of muscle secretory factors and myokines have been well studied, but in recent decades, the role of myocyte-specific microRNAs (myomiRs) has gained momentum. These myomiRs are known to play regulatory roles in muscle health in general, both skeletal muscle and cardiac muscle. In this review, we have focused on the significance of a myomiR termed miR-133a in cardiovascular health. The available literature supports the claim that miR-133a could be helpful in the healing process of muscle tissue after injury. The protective function could be due to its regulatory effect on muscle or stem cell mitochondrial function. In this review, we have shed light on the protective mechanisms offered by miR-133a. Most of the beneficial effects are due to the presence of miR-133a in circulation or tissue-specific expression. We have also reviewed the potential mechanisms by which miR-133a could interact with cell surface receptors and also transcriptional mechanisms by which they offer cardioprotection and regeneration. Understanding these mechanisms will help in finding an ideal strategy to repair cardiac tissue after injury.
Collapse
|
16
|
Li J, Wang Z, Li C, Song Y, Wang Y, Bo H, Zhang Y. Impact of Exercise and Aging on Mitochondrial Homeostasis in Skeletal Muscle: Roles of ROS and Epigenetics. Cells 2022; 11:cells11132086. [PMID: 35805170 PMCID: PMC9266156 DOI: 10.3390/cells11132086] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Aging causes degenerative changes such as epigenetic changes and mitochondrial dysfunction in skeletal muscle. Exercise can upregulate muscle mitochondrial homeostasis and enhance antioxidant capacity and represents an effective treatment to prevent muscle aging. Epigenetic changes such as DNA methylation, histone posttranslational modifications, and microRNA expression are involved in the regulation of exercise-induced adaptive changes in muscle mitochondria. Reactive oxygen species (ROS) play an important role in signaling molecules in exercise-induced muscle mitochondrial health benefits, and strong evidence emphasizes that exercise-induced ROS can regulate gene expression via epigenetic mechanisms. The majority of mitochondrial proteins are imported into mitochondria from the cytosol, so mitochondrial homeostasis is regulated by nuclear epigenetic mechanisms. Exercise can reverse aging-induced changes in myokine expression by modulating epigenetic mechanisms. In this review, we provide an overview of the role of exercise-generated ROS in the regulation of mitochondrial homeostasis mediated by epigenetic mechanisms. In addition, the potential epigenetic mechanisms involved in exercise-induced myokine expression are reviewed.
Collapse
Affiliation(s)
- Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Zhe Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Can Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Yu Song
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Yan Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Hai Bo
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
- Department of Military Training Medicines, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
- Correspondence: (H.B.); (Y.Z.)
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
- Correspondence: (H.B.); (Y.Z.)
| |
Collapse
|
17
|
Dos Santos JAC, Veras ASC, Batista VRG, Tavares MEA, Correia RR, Suggett CB, Teixeira GR. Physical exercise and the functions of microRNAs. Life Sci 2022; 304:120723. [PMID: 35718233 DOI: 10.1016/j.lfs.2022.120723] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
MicroRNAs (miRNAs) control RNA translation and are a class of small, tissue-specific, non-protein-coding RNAs that maintain cellular homeostasis through negative gene regulation. Maintenance of the physiological environment depends on the proper control of miRNA expression, as these molecules influence almost all genetic pathways, from the cell cycle checkpoint to cell proliferation and apoptosis, with a wide range of target genes. Dysregulation of the expression of miRNAs is correlated with several types of diseases, acting as regulators of cardiovascular functions, myogenesis, adipogenesis, osteogenesis, hepatic lipogenesis, and important brain functions. miRNAs can be modulated by environmental factors or external stimuli, such as physical exercise, and can eventually induce specific and adjusted changes in the transcriptional response. Physical exercise is used as a preventive and non-pharmacological treatment for many diseases. It is well established that physical exercise promotes various benefits in the human body such as muscle hypertrophy, mental health improvement, cellular apoptosis, weight loss, and inhibition of cell proliferation. This review highlights the current knowledge on the main miRNAs altered by exercise in the skeletal muscle, cardiac muscle, bone, adipose tissue, liver, brain, and body fluids. In addition, knowing the modifications induced by miRNAs and relating them to the results of prescribed physical exercise with different protocols and intensities can serve as markers of physical adaptation to training and responses to the effects of physical exercise for some types of chronic diseases. This narrative review consists of randomized exercise training experiments with humans and/or animals, combined with analyses of miRNA modulation.
Collapse
Affiliation(s)
| | - Allice Santos Cruz Veras
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | | | - Maria Eduarda Almeida Tavares
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Rafael Ribeiro Correia
- Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Cara Beth Suggett
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Giovana Rampazzo Teixeira
- Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| |
Collapse
|
18
|
Multi-omics research in sarcopenia: Current progress and future prospects. Ageing Res Rev 2022; 76:101576. [PMID: 35104630 DOI: 10.1016/j.arr.2022.101576] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/13/2021] [Accepted: 01/26/2022] [Indexed: 12/17/2022]
Abstract
Sarcopenia is a systemic disease with progressive and generalized skeletal muscle dysfunction defined by age-related low muscle mass, high content of muscle slow fibers, and low muscle function. Muscle phenotypes and sarcopenia risk are heritable; however, the genetic architecture and molecular mechanisms underlying sarcopenia remain largely unclear. In recent years, significant progress has been made in determining susceptibility loci using genome-wide association studies. In addition, recent advances in omics techniques, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, offer new opportunities to identify novel targets to help us understand the pathophysiology of sarcopenia. However, each individual technology cannot capture the entire view of the biological complexity of this disorder, while integrative multi-omics analyses may be able to reveal new insights. Here, we review the latest findings of multi-omics studies for sarcopenia and provide an in-depth summary of our current understanding of sarcopenia pathogenesis. Leveraging multi-omics data could give us a holistic understanding of sarcopenia etiology that may lead to new clinical applications. This review offers guidance and recommendations for fundamental research, innovative perspectives, and preventative and therapeutic interventions for sarcopenia.
Collapse
|
19
|
The effects of aerobic exercise on blood plasma microRNA level in healthy adults: a systematic review and meta-analysis. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-022-00914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Jiang Y, Ghias K, Gupta S, Gupta A. MicroRNAs as Potential Biomarkers for Exercise-Based Cancer Rehabilitation in Cancer Survivors. Life (Basel) 2021; 11:1439. [PMID: 34947970 PMCID: PMC8707107 DOI: 10.3390/life11121439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Expression and functions of microRNAs (miRNAs) have been widely investigated in cancer treatment-induced complications and as a response to physical activity, respectively, but few studies focus on the application of miRNAs as biomarkers in exercise-based cancer rehabilitation. Research has shown that certain miRNA expression is altered substantially due to tissue damage caused by cancer treatment and chronic inflammation. MiRNAs are released from the damaged tissue and can be easily detected in blood plasma. Levels of the miRNA present in peripheral circulation can therefore be used to measure the extent of tissue damage. Moreover, damage to tissues such as cardiac and skeletal muscle significantly affects the individual's health-related fitness, which can be determined using physiologic functional assessments. These physiologic parameters are a measure of tissue health and function and can therefore be correlated with the levels of circulating miRNAs. In this paper, we reviewed miRNAs whose expression is altered during cancer treatment and may correlate to physiological, physical, and psychological changes that significantly impact the quality of life of cancer survivors and their role in response to physical activity. We aim to identify potential miRNAs that can not only be used for monitoring changes that occur in health-related fitness during cancer treatment but can also be used to evaluate response to exercise-based rehabilitation and monitor individual progress through the rehabilitation programme.
Collapse
Affiliation(s)
| | | | | | - Ananya Gupta
- Department of Physiology, National University of Ireland, H91 TK33 Galway, Ireland; (Y.J.); (K.G.); (S.G.)
| |
Collapse
|
21
|
Dicer-mediated miRNA processing is not involved in controlling muscle mass during muscle atrophy. Sci Rep 2021; 11:19361. [PMID: 34588544 PMCID: PMC8481297 DOI: 10.1038/s41598-021-98545-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022] Open
Abstract
Muscle atrophy occurs in a variety of physiological and pathological conditions. Specific molecular networks that govern protein synthesis and degradation play important roles in controlling muscle mass under diverse catabolic states. MicroRNAs (miRNAs) were previously found to be regulators of protein synthesis and degradation, and their expressions in skeletal muscle were altered in muscle wasting conditions. However, functional roles of miRNAs in muscle atrophy are poorly understood. In this study, we generated tamoxifen-inducible Dicer knockout (iDicer KO) mice and subjected them to 2 weeks of single hindlimb denervation. The expression of Dicer mRNA was significantly reduced in muscle of the iDicer KO mice compared to that of WT mice. The loss of Dicer moderately reduced levels of muscle-enriched miRNAs, miR-1, miR-133a and miR-206 in both innervated and denervated muscles of the iDicer KO mice. We also found that the extent of denervation-induced muscle atrophy as well as changes of signaling molecules related to protein synthesis/degradation pathways in the iDicer KO mice were comparable to these in WT mice. Taken together, Dicer knockout in adult skeletal muscle did not affect denervation-induced muscle atrophy.
Collapse
|
22
|
MicroRNA-128 inhibits mitochondrial biogenesis and function via targeting PGC1α and NDUFS4. Mitochondrion 2021; 60:160-169. [PMID: 34384932 DOI: 10.1016/j.mito.2021.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 01/25/2023]
Abstract
The size and morphology of mitochondria are very heterogeneous and correlates well with their healthy functioning. In many pathological conditions, mitochondrial morphology is altered due to impaired mitochondrial dynamics (a collective term for mitochondrial fusion and fission) and dysfunction. The current study aimed at identifying the role of microRNA-128 (miR-128) in regulating mitochondrial biogenesis. Previously, peroxisome proliferator activator receptor γ coactivator 1α (PGC1α) has been shown to co-activate key intermediates of mitochondrial biogenesis, function, and dynamics; however, the upstream regulatory network remains largely unknown. We, herein using in silico analysis followed by in vitro experiments in C2C12 myoblasts, showed that miR-128 reduces mitochondrial biogenesis by directly targeting PGC1α. The expression of downstream genes, nuclear respiratory factors 1 and 2 (NRF1 and NRF2, respectively), and mitochondrial transcription factor A (TFAM) were decreased in C2C12 myoblasts upon overexpression of miR-128. Also, miR-128 is shown to promote mitochondrial dysfunction by directly targeting NADH Dehydrogenase (Ubiquinone) Fe-S Protein 4 (NDUFS4). The mitochondrial dynamics and morphology were impaired post miR-128 overexpression, as revealed by downregulation of fusion proteins (mitofusin1 and 2, i.e., MFN1 and MFN2, respectively) and upregulation of fission protein (dynamin-related protein 1, i.e., DRP1). Conversely, inhibition of miR-128 expression improved mitochondrial biogenesis, function, and dynamics, as evidenced by increased mitochondrial mass and ATP production after antimiR-128 treatment. Our findings reveal that inhibition of miR-128 can be a new potential target for reversing the effects of metabolic disorders of skeletal muscle as observed during many pathophysiological conditions such as obesity and type II diabetes.
Collapse
|
23
|
Telles GD, Libardi CA, Conceição MS, Vechin FC, Lixandrão ME, DE Andrade ALL, Guedes DN, Ugrinowitsch C, Camera DM. Time Course of Skeletal Muscle miRNA Expression after Resistance, High-Intensity Interval, and Concurrent Exercise. Med Sci Sports Exerc 2021; 53:1708-1718. [PMID: 33731656 DOI: 10.1249/mss.0000000000002632] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Exercise-induced microRNA (miRNA) expression has been implicated in the regulation of skeletal muscle plasticity. However, the specificity and acute time course in miRNA expression after divergent exercise modes are unknown. In a randomized crossover design, we compared the acute expression profile of eight skeletal muscle miRNAs previously reported to be involved in skeletal muscle development, growth, and maintenance after a bout of either resistance exercise (RE), high-intensity interval exercise (HIIE), and concurrent resistance and high-intensity interval exercises (CE). METHODS Nine untrained young men (23.9 ± 2.8 yr, 70.1 ± 14.9 kg, 177.2 ± 3.0 cm, 41.4 ± 5.2 mL·kg-1·min-1) underwent a counterbalanced crossover design in which they performed bouts of RE (2 × 10 repetitions maximum 45° leg press and leg extension exercises), HIEE (12 × 1-min sprints at V˙O2peak with 1-min rest intervals between sprints), and CE (RE followed by HIIE), separated by 1 wk. Vastus lateralis biopsies were harvested immediately before (Pre) and immediately (0 h), 4 h, and 8 h after each exercise bout. RESULTS There were similar increases (main effect of time; P < 0.05) in miR-1-3p, miR-133a-3p, miR-133b, miR-181a-3p, and miR-486 expression at 8 h from Pre with all exercise modes. Besides a main effect of time, miR-23a-3p and miR-206 presented a main effect of condition with lower expression after HIIE compared with RE and CE. CONCLUSIONS Select miRNAs (miR-1-3p, miR-133a-3p, miR-133b, miR-23a-3p, miR-181a-3p, miR-206, miR-486) do not exhibit an expression specificity in the acute recovery period after a single bout of RE, HIIE, or CE in skeletal muscle. Our data also indicate that RE has a higher effect on the expression of miR-23a-3p and miR-206 than HIIE. As upregulation of these miRNAs seems to be confined to the 8-h period after exercise, this may subsequently affect the expression patterns of target mRNAs forming the basis of exercise-induced adaptive responses.
Collapse
Affiliation(s)
- Guilherme Defante Telles
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo, São Paulo, BRAZIL
| | - Cleiton Augusto Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos-UFSCar, São Carlos, São Paulo, BRAZIL
| | - Miguel Soares Conceição
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo, São Paulo, BRAZIL
| | - Felipe Cassaro Vechin
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo, São Paulo, BRAZIL
| | - Manoel Emílio Lixandrão
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo, São Paulo, BRAZIL
| | | | | | - Carlos Ugrinowitsch
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo, São Paulo, BRAZIL
| | - Donny Michael Camera
- Department of Health and Medical Sciences, Swinburne University, Melbourne, Victoria, AUSTRALIA
| |
Collapse
|
24
|
Giagnorio E, Malacarne C, Mantegazza R, Bonanno S, Marcuzzo S. MyomiRs and their multifaceted regulatory roles in muscle homeostasis and amyotrophic lateral sclerosis. J Cell Sci 2021; 134:269129. [PMID: 34137441 DOI: 10.1242/jcs.258349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of both upper and lower motor neurons (MNs). The main clinical features of ALS are motor function impairment, progressive muscle weakness, muscle atrophy and, ultimately, paralysis. Intrinsic skeletal muscle deterioration plays a crucial role in the disease and contributes to ALS progression. Currently, there are no effective treatments for ALS, highlighting the need to obtain a deeper understanding of the molecular events underlying degeneration of both MNs and muscle tissue, with the aim of developing successful therapies. Muscle tissue is enriched in a group of microRNAs called myomiRs, which are effective regulators of muscle homeostasis, plasticity and myogenesis in both physiological and pathological conditions. After providing an overview of ALS pathophysiology, with a focus on the role of skeletal muscle, we review the current literature on myomiR network dysregulation as a contributing factor to myogenic perturbations and muscle atrophy in ALS. We argue that, in view of their critical regulatory function at the interface between MNs and skeletal muscle fiber, myomiRs are worthy of further investigation as potential molecular targets of therapeutic strategies to improve ALS symptoms and counteract disease progression.
Collapse
Affiliation(s)
- Eleonora Giagnorio
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy.,PhD program in Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Claudia Malacarne
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy.,PhD program in Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Renato Mantegazza
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Silvia Bonanno
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Stefania Marcuzzo
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| |
Collapse
|
25
|
Zhang GQ, Wang SQ, Chen Y, Fu LY, Xu YN, Li L, Tao L, Shen XC. MicroRNAs Regulating Mitochondrial Function in Cardiac Diseases. Front Pharmacol 2021; 12:663322. [PMID: 34122082 PMCID: PMC8194257 DOI: 10.3389/fphar.2021.663322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are the key organelles that supply cellular energy. As the most active organ in the body, the energy required to maintain the mechanical function of the heart requires a high quantity of high-quality mitochondria in cardiomyocytes. MicroRNAs (miRNAs) are single-stranded noncoding RNAs, approximately 22 nt in length, which play key roles in mediating post-transcriptional gene silencing. Numerous studies have confirmed that miRNAs can participate in the occurrence and development of cardiac diseases by regulating mitochondrial function-related genes and signaling pathways. Therefore, elucidating the crosstalk that occurs between miRNAs and mitochondria is important for the prevention and treatment of cardiac diseases. In this review, we discuss the biogenesis of miRNAs, the miRNA-mediated regulation of major genes involved in the maintenance of mitochondrial function, and the effects of miRNAs on mitochondrial function in cardiac diseases in order to provide a theoretical basis for the clinical prevention and treatment of cardiac disease and the development of new drugs.
Collapse
Affiliation(s)
- Guang-Qiong Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Sheng-Quan Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Yan Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Ling-Yun Fu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Yi-Ni Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Ling Li
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Xiang-Chun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| |
Collapse
|
26
|
In vivo partial reprogramming of myofibers promotes muscle regeneration by remodeling the stem cell niche. Nat Commun 2021; 12:3094. [PMID: 34035273 PMCID: PMC8149870 DOI: 10.1038/s41467-021-23353-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 04/22/2021] [Indexed: 01/09/2023] Open
Abstract
Short-term, systemic expression of the Yamanaka reprogramming factors (Oct-3/4, Sox2, Klf4 and c-Myc [OSKM]) has been shown to rejuvenate aging cells and promote tissue regeneration in vivo. However, the mechanisms by which OSKM promotes tissue regeneration are unknown. In this work, we focus on a specific tissue and demonstrate that local expression of OSKM, specifically in myofibers, induces the activation of muscle stem cells or satellite cells (SCs), which accelerates muscle regeneration in young mice. In contrast, expressing OSKM directly in SCs does not improve muscle regeneration. Mechanistically, expressing OSKM in myofibers regulates the expression of genes important for the SC microenvironment, including upregulation of p21, which in turn downregulates Wnt4. This is critical because Wnt4 is secreted by myofibers to maintain SC quiescence. Thus, short-term induction of the Yamanaka factors in myofibers may promote tissue regeneration by modifying the stem cell niche. Short term systemic expression of the reprogramming factors Oct-3/4, Sox2, Klf4, c-Myc (OSKM) rejuvenates aging cells and promotes tissue regeneration. Here the authors show that myofiber-specific expression of OSKM accelerates muscle regeneration by reducing secretion of muscle stem cell quiescence promoting Wnt4.
Collapse
|
27
|
Ke L, Li Q, Song J, Jiao W, Ji A, Chen T, Pan H, Song Y. The mitochondrial biogenesis signaling pathway is a potential therapeutic target for myasthenia gravis via energy metabolism (Review). Exp Ther Med 2021; 22:702. [PMID: 34007311 PMCID: PMC8120506 DOI: 10.3892/etm.2021.10134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Myasthenia gravis (MG) is an autoantibody-mediated autoimmune disease that is characterized by muscle weakness and fatigue. Traditional treatments for MG target the neuromuscular junction (NMJ) or the immune system. However, the efficacy of such treatments is limited, and novel therapeutic options for MG are urgently required. In the current review, a new therapeutic strategy is proposed based on the mitochondrial biogenesis and energy metabolism pathway, as stimulating mitochondrial biogenesis and the energy metabolism might alleviate myasthenia gravis. A number of cellular sensors of the energy metabolism were investigated, including AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1). AMPK and SIRT1 are sensors that regulate cellular energy homeostasis and maintain energy metabolism by balancing anabolism and catabolism. Peroxisome proliferator-activated receptor γ coactivator 1α and its downstream transcription factors nuclear respiratory factors 1, nuclear respiratory factors 2, and transcription factor A are key sensors of mitochondrial biogenesis, which can restore mitochondrial DNA and produce new mitochondria. These processes help to control muscle contraction and relieve the symptoms of MG, including muscle weakness caused by dysfunctional NMJ transmission. Therefore, the present review provides evidence for the therapeutic potential of targeting mitochondrial biogenesis for the treatment of MG.
Collapse
Affiliation(s)
- Lingling Ke
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Qing Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jingwei Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Wei Jiao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Aidong Ji
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yafang Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
28
|
Torma F, Bakonyi P, Regdon Z, Gombos Z, Jokai M, Babszki G, Fridvalszki M, Virág L, Naito H, Iftikhar Bukhari S, Radak Z. Blood flow restriction during the resting periods of high-intensity resistance training does not alter performance but decreases MIR-1 and MIR-133A levels in human skeletal muscle. SPORTS MEDICINE AND HEALTH SCIENCE 2021; 3:40-45. [PMID: 35782677 PMCID: PMC9219274 DOI: 10.1016/j.smhs.2021.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Ferenc Torma
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Peter Bakonyi
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Hungary
| | - Zoltan Gombos
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Matyas Jokai
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Gergely Babszki
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Marcell Fridvalszki
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Laszló Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Hungary
| | - Hisashi Naito
- Department of Exercise Physiology, Graduate School of Health and Sports Science & Medicine, Juntendo University, Japan
| | | | - Zsolt Radak
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
- Faculty of Sport Sciences, Waseda University, Japan
- Corresponding author. Research Center for Molecular Exercise Science, University of Physical Education, Alkotas u. 44, Budapest, H-1123, Hungary.
| |
Collapse
|
29
|
Hurtado E, Núñez-Álvarez Y, Muñoz M, Gutiérrez-Caballero C, Casas J, Pendás AM, Peinado MA, Suelves M. HDAC11 is a novel regulator of fatty acid oxidative metabolism in skeletal muscle. FEBS J 2021; 288:902-919. [PMID: 32563202 DOI: 10.1111/febs.15456] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/14/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022]
Abstract
Skeletal muscle is the largest tissue in mammalian organisms and is a key determinant of basal metabolic rate and whole-body energy metabolism. Histone deacetylase 11 (HDAC11) is the only member of the class IV subfamily of HDACs, and it is highly expressed in skeletal muscle, but its role in skeletal muscle physiology has never been investigated. Here, we describe for the first time the consequences of HDAC11 genetic deficiency in skeletal muscle, which results in the improvement of muscle function enhancing fatigue resistance and muscle strength. Loss of HDAC11 had no obvious impact on skeletal muscle structure but increased the number of oxidative myofibers by promoting a glycolytic-to-oxidative muscle fiber switch. Unexpectedly, HDAC11 was localized in muscle mitochondria and its deficiency enhanced mitochondrial content. In particular, we showed that HDAC11 depletion increased mitochondrial fatty acid β-oxidation through activating the AMP-activated protein kinase-acetyl-CoA carboxylase pathway and reducing acylcarnitine levels in vivo, thus providing a mechanistic explanation for the improved muscle strength and fatigue resistance. Overall, our data reveal a unique role of HDAC11 in the maintenance of muscle fiber-type balance and the mitochondrial lipid oxidation. These findings shed light on the mechanisms governing muscle metabolism and may have implications for chronic muscle metabolic disease management.
Collapse
Affiliation(s)
- Erica Hurtado
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Can Ruti Campus, Badalona, Spain
| | - Yaiza Núñez-Álvarez
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Can Ruti Campus, Badalona, Spain
| | - Mar Muñoz
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Can Ruti Campus, Badalona, Spain
| | | | - Josefina Casas
- Institute of Advanced Chemistry of Catalonia, Barcelona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre, Madrid, Spain
| | - Alberto M Pendás
- Institute of Cellular and Molecular Biology of Cancer, Salamanca, Spain
| | - Miguel A Peinado
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Can Ruti Campus, Badalona, Spain
| | - Mònica Suelves
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Can Ruti Campus, Badalona, Spain
| |
Collapse
|
30
|
Xie WQ, Men C, He M, Li YS, Lv S. The Effect of MicroRNA-Mediated Exercise on Delaying Sarcopenia in Elderly Individuals. Dose Response 2020; 18:1559325820974543. [PMID: 33293908 PMCID: PMC7705785 DOI: 10.1177/1559325820974543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 11/24/2022] Open
Abstract
Sarcopenia is often regarded as an early sign of weakness and is the core element
of muscle weakness in elderly individuals. Sarcopenia is closely related to the
reduction of exercise, and elderly individuals often suffer from decreased
muscle mass and function due to a lack of exercise. At present, studies have
confirmed that resistance and aerobic exercise are related to muscle mass,
strength and fiber type and to the activation and proliferation of muscle stem
cells (MuSCs). Increasing evidence shows that microRNAs (miRNAs) play an
important role in exercise-related changes in the quantity, composition and
function of skeletal muscle. At the cellular level, miRNAs have been shown to
regulate the proliferation and differentiation of muscle cells. In addition,
miRNAs are related to the composition and transformation of muscle fibers and
involved in the transition of MuSCs from the resting state to the activated
state. Therefore, exercise may delay sarcopenia in elderly individuals by
regulating miRNAs in skeletal muscle. In future miRNA-focused treatment
strategies, these studies will provide valuable information for the formulation
of exercise methods and will provide useful and targeted exercise programs for
elderly individuals with sarcopenia.
Collapse
Affiliation(s)
- Wen-Qing Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chen Men
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Miao He
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Sheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan Lv
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
31
|
Nutrition and microRNAs: Novel Insights to Fight Sarcopenia. Antioxidants (Basel) 2020; 9:antiox9100951. [PMID: 33023202 PMCID: PMC7601022 DOI: 10.3390/antiox9100951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Sarcopenia is a progressive age-related loss of skeletal muscle mass and strength, which may result in increased physical frailty and a higher risk of adverse events. Low-grade systemic inflammation, loss of muscle protein homeostasis, mitochondrial dysfunction, and reduced number and function of satellite cells seem to be the key points for the induction of muscle wasting, contributing to the pathophysiological mechanisms of sarcopenia. While a range of genetic, hormonal, and environmental factors has been reported to contribute to the onset of sarcopenia, dietary interventions targeting protein or antioxidant intake may have a positive effect in increasing muscle mass and strength, regulating protein homeostasis, oxidative reaction, and cell autophagy, thus providing a cellular lifespan extension. MicroRNAs (miRNAs) are endogenous small non-coding RNAs, which control gene expression in different tissues. In skeletal muscle, a range of miRNAs, named myomiRNAs, are involved in many physiological processes, such as growth, development, and maintenance of muscle mass and function. This review aims to present and to discuss some of the most relevant molecular mechanisms related to the pathophysiological effect of sarcopenia. Besides, we explored the role of nutrition as a possible way to counteract the loss of muscle mass and function associated with ageing, with special attention paid to nutrient-dependent miRNAs regulation. This review will provide important information to better understand sarcopenia and, thus, to facilitate research and therapeutic strategies to counteract the pathophysiological effect of ageing.
Collapse
|
32
|
Sullivan BP, Weiss JA, Nie Y, Garner RT, Drohan CJ, Kuang S, Stout J, Gavin TP. Skeletal muscle IGF-1 is lower at rest and after resistance exercise in humans with obesity. Eur J Appl Physiol 2020; 120:2835-2846. [DOI: 10.1007/s00421-020-04509-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/19/2020] [Indexed: 12/25/2022]
|
33
|
Torma F, Gombos Z, Jokai M, Berkes I, Takeda M, Mimura T, Radak Z, Gyori F. The roles of microRNA in redox metabolism and exercise-mediated adaptation. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:405-414. [PMID: 32780693 PMCID: PMC7498669 DOI: 10.1016/j.jshs.2020.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/03/2020] [Accepted: 02/10/2020] [Indexed: 05/10/2023]
Abstract
MicroRNAs (miRs) are small regulatory RNA transcripts capable of post-transcriptional silencing of mRNA messages by entering a cellular bimolecular apparatus called RNA-induced silencing complex. miRs are involved in the regulation of cellular processes producing, eliminating or repairing the damage caused by reactive oxygen species, and they are active players in redox homeostasis. Increased mitochondrial biogenesis, function and hypertrophy of skeletal muscle are important adaptive responses to regular exercise. In the present review, we highlight some of the redox-sensitive regulatory roles of miRs.
Collapse
Affiliation(s)
- Ferenc Torma
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest 1123, Hungary
| | - Zoltan Gombos
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest 1123, Hungary
| | - Matyas Jokai
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest 1123, Hungary
| | - Istvan Berkes
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest 1123, Hungary
| | - Masaki Takeda
- Faculty of Health and Sports Science, Doshisha University, Kyotanabe 610-0394, Japan
| | - Tatsuya Mimura
- Faculty of Sport and Health Sciences, Osaka Sangyo University, Osaka 573-1004, Japan
| | - Zsolt Radak
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest 1123, Hungary; Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan; Institute of Physical Education and Sport Science, JGYPK, University of Szeged, Szeged 6726, Hungary.
| | - Ferenc Gyori
- Institute of Physical Education and Sport Science, JGYPK, University of Szeged, Szeged 6726, Hungary
| |
Collapse
|
34
|
Uray K, Major E, Lontay B. MicroRNA Regulatory Pathways in the Control of the Actin-Myosin Cytoskeleton. Cells 2020; 9:E1649. [PMID: 32660059 PMCID: PMC7408560 DOI: 10.3390/cells9071649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are key modulators of post-transcriptional gene regulation in a plethora of processes, including actin-myosin cytoskeleton dynamics. Recent evidence points to the widespread effects of miRNAs on actin-myosin cytoskeleton dynamics, either directly on the expression of actin and myosin genes or indirectly on the diverse signaling cascades modulating cytoskeletal arrangement. Furthermore, studies from various human models indicate that miRNAs contribute to the development of various human disorders. The potentially huge impact of miRNA-based mechanisms on cytoskeletal elements is just starting to be recognized. In this review, we summarize recent knowledge about the importance of microRNA modulation of the actin-myosin cytoskeleton affecting physiological processes, including cardiovascular function, hematopoiesis, podocyte physiology, and osteogenesis.
Collapse
Affiliation(s)
- Karen Uray
- Correspondence: (K.U.); (B.L.); Tel.: +36-52-412345 (K.U. & B.L.)
| | | | - Beata Lontay
- Correspondence: (K.U.); (B.L.); Tel.: +36-52-412345 (K.U. & B.L.)
| |
Collapse
|
35
|
Mitochondrial MicroRNAs in Aging and Neurodegenerative Diseases. Cells 2020; 9:cells9061345. [PMID: 32481587 PMCID: PMC7349858 DOI: 10.3390/cells9061345] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of several biological processes, such as cell growth, cell proliferation, embryonic development, tissue differentiation, and apoptosis. Currently, over 2000 mammalian miRNAs have been reported to regulate these biological processes. A subset of microRNAs was found to be localized to human mitochondria (mitomiRs). Through years of research, over 400 mitomiRs have been shown to modulate the translational activity of the mitochondrial genome. While miRNAs have been studied for years, the function of mitomiRs and their role in neurodegenerative pathologies is not known. The purpose of our article is to highlight recent findings that relate mitomiRs to neurodegenerative diseases, including Alzheimer’s, Parkinson’s, and Huntington’s. We also discuss the involvement of mitomiRs in regulating the mitochondrial genome in age-related neurodegenerative diseases.
Collapse
|
36
|
Yin J, Qian Z, Chen Y, Li Y, Zhou X. MicroRNA regulatory networks in the pathogenesis of sarcopenia. J Cell Mol Med 2020; 24:4900-4912. [PMID: 32281300 PMCID: PMC7205827 DOI: 10.1111/jcmm.15197] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is an age‐related disease characterized by disturbed homeostasis of skeletal muscle, leading to a decline in muscle mass and function. Loss of muscle mass and strength leads to falls and fracture, and is often accompanied by other geriatric diseases, including osteoporosis, frailty and cachexia, resulting in a general decrease in quality of life and an increase in mortality. Although the underlying mechanisms of sarcopenia are still not completely understood, there has been a marked improvement in the understanding of the pathophysiological changes leading to sarcopenia in recent years. The role of microRNAs (miRNAs), especially, has been clearer in skeletal muscle development and homeostasis. miRNAs form part of a gene regulatory network and have numerous activities in many biological processes. Intervention based on miRNAs may develop into an innovative treatment strategy to conquer sarcopenia. This review is divided into three sections: firstly, the latest understanding of the pathogenesis of sarcopenia is summarized; secondly, increasing evidence for the involvement of miRNAs in the regulation of muscle quantity or quality and muscle homeostasis is highlighted; and thirdly, the possibilities and limitations of miRNAs as a treatment for sarcopenia are explored.
Collapse
Affiliation(s)
- Jiayu Yin
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiyuan Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqi Chen
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
37
|
Swenson S, Blum K, McLaughlin T, Gold MS, Thanos PK. The therapeutic potential of exercise for neuropsychiatric diseases: A review. J Neurol Sci 2020; 412:116763. [PMID: 32305746 DOI: 10.1016/j.jns.2020.116763] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/14/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Exercise is known to have a myriad of health benefits. There is much to be learned from the effects of exercise and its potential for prevention, attenuation and treatment of multiple neuropsychiatric diseases and behavioral disorders. Furthermore, recent data and research on exercise benefits with respect to major health crises, such as, that of opioid and general substance use disorders, make it very important to better understand and review the mechanisms of exercise and how it could be utilized for effective treatments or adjunct treatments for these diseases. In addition, mechanisms, epigenetics and sex differences are examined and discussed in terms of future research implications.
Collapse
Affiliation(s)
- Sabrina Swenson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kenneth Blum
- Western Univesity Health Sciences, Graduate College, Pomona, CA, USA
| | | | - Mark S Gold
- Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA; Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
38
|
Dimauro I, Paronetto MP, Caporossi D. Exercise, redox homeostasis and the epigenetic landscape. Redox Biol 2020; 35:101477. [PMID: 32127290 PMCID: PMC7284912 DOI: 10.1016/j.redox.2020.101477] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023] Open
Abstract
Physical exercise represents one of the strongest physiological stimuli capable to induce functional and structural modifications in all biological systems. Indeed, beside the traditional genetic mechanisms, physical exercise can modulate gene expression through epigenetic modifications, namely DNA methylation, post-translational histone modification and non-coding RNA transcripts. Initially considered as merely damaging molecules, it is now well recognized that both reactive oxygen (ROS) and nitrogen species (RNS) produced under voluntary exercise play an important role as regulatory mediators in signaling processes. While robust scientific evidences highlight the role of exercise-associated redox modifications in modulating gene expression through the genetic machinery, the understanding of their specific impact on epigenomic profile is still at an early stage. This review will provide an overview of the role of ROS and RNS in modulating the epigenetic landscape in the context of exercise-related adaptations. Physical exercise can modulate gene expression through epigenetic modifications. Epigenetic regulation of ROS/RNS generating, sensing and neutralizing enzymes can impact the cellular levels of ROS and RNS. ROS might act as modulators of epigenetic machinery, interfering with DNA methylation, hPTMs and ncRNAs expression. Redox homeostasis might hold a relevant role in the epigenetic landscape modulating exercise-related adaptations.
Collapse
Affiliation(s)
- Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Maria Paola Paronetto
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy; Laboratory of Cellular and Molecular Neurobiology, IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, Rome, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy.
| |
Collapse
|
39
|
Wei P, Xie Y, Abel PW, Huang Y, Ma Q, Li L, Hao J, Wolff DW, Wei T, Tu Y. Transforming growth factor (TGF)-β1-induced miR-133a inhibits myofibroblast differentiation and pulmonary fibrosis. Cell Death Dis 2019; 10:670. [PMID: 31511493 PMCID: PMC6739313 DOI: 10.1038/s41419-019-1873-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/15/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
Abstract
Transforming growth factor (TGF)-β1, a main profibrogenic cytokine in the progression of idiopathic pulmonary fibrosis (IPF), induces differentiation of pulmonary fibroblasts to myofibroblasts that produce high levels of collagen, leading to concomitantly loss of lung elasticity and function. Recent studies implicate the importance of microRNAs (miRNAs) in IPF but their regulation and individual pathological roles remain largely unknown. We used both RNA sequencing and quantitative RT-PCR strategies to systematically study TGF-β1-induced alternations of miRNAs in human lung fibroblasts (HFL). Our data show that miR-133a was significantly upregulated by TGF-β1 in a time- and concentration-dependent manner. Surprisingly, miR-133a inhibits TGF-β1-induced myofibroblast differentiation whereas miR-133a inhibitor enhances TGF-β1-induced myofibroblast differentiation. Interestingly, quantitative proteomics analysis indicates that miR-133a attenuates myofibroblast differentiation via targeting multiple components of TGF-β1 profibrogenic pathways. Western blot analysis confirmed that miR-133a down-regulates TGF-β1-induced expression of classic myofibroblast differentiation markers such as ɑ-smooth muscle actin (ɑ-SMA), connective tissue growth factor (CTGF) and collagens. miRNA Target Searcher analysis and luciferase reporter assays indicate that TGF-β receptor 1, CTGF and collagen type 1-alpha1 (Col1a1) are direct targets of miR-133a. More importantly, miR-133a gene transferred into lung tissues ameliorated bleomycin-induced pulmonary fibrosis in mice. Together, our study identified TGF-β1-induced miR-133a as an anti-fibrotic factor. It functions as a feed-back negative regulator of TGF-β1 profibrogenic pathways. Thus, manipulations of miR-133a expression may provide a new therapeutic strategy to halt and perhaps even partially reverse the progression of IPF.
Collapse
Affiliation(s)
- Peng Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, 68178, USA
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Xie
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Peter W Abel
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Yapei Huang
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Qin Ma
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Linghai Li
- Department of Anesthesiology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Junfeng Hao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dennis W Wolff
- Kansas City University of Medicine and Biosciences-Joplin, Joplin, MO, 64804, USA
| | - Taotao Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yaping Tu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, 68178, USA.
| |
Collapse
|
40
|
Solfest JS, Nie Y, Weiss JA, Garner RT, Kuang S, Stout J, Gavin TP. Effects of acute aerobic and concurrent exercise on skeletal muscle metabolic enzymes in untrained men. SPORT SCIENCES FOR HEALTH 2019. [DOI: 10.1007/s11332-019-00547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Nie Y, Sato Y, Garner RT, Kargl C, Wang C, Kuang S, Gilpin CJ, Gavin TP. Skeletal muscle-derived exosomes regulate endothelial cell functions via reactive oxygen species-activated nuclear factor-κB signalling. Exp Physiol 2019; 104:1262-1273. [PMID: 31115069 DOI: 10.1113/ep087396] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 05/21/2019] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the central question of this study? Capillary rarefaction is found in diabetic and aged muscle, whereas exercise increases skeletal muscle angiogenesis. The association implies a crosstalk between muscle cells and endothelial cells. The underlying mechanisms mediating the crosstalk between these cells remains to be elucidated fully. What is the main finding and its importance? Endothelial cell functions are regulated by skeletal muscle cell-derived exosomes via a vascular endothelial growth factor-independent pathway. This study reveals a new mechanism mediating the crosstalk between skeletal muscle cells and endothelial cells. ABSTRACT Loss of skeletal muscle capillarization, known as capillary rarefaction, is found in type 2 diabetes, chronic heart failure and healthy ageing and is associated with impaired delivery of substrates to the muscle. However, the interaction and communication of skeletal muscle with endothelial cells in the regulation of capillaries surrounding the muscle remains elusive. Exosomes are a type of secreted extracellular vesicle containing mRNAs, proteins and, especially, microRNAs that exert paracrine and endocrine effects. In this study, we investigated whether skeletal muscle-derived exosomes (SkM-Exo) regulate the endothelial cell functions of angiogenesis. We demonstrated that C2C12 myotube-derived exosomes improved endothelial cell functions, assessed by the proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs), which were increased by 20, 23 and 40%, respectively, after SkM-Exo exposure. The SkM-Exo failed to activate HUVEC vascular endothelial growth factor (VEGF) signalling. The SkM-Exo increased HUVEC reactive oxygen species and activated the nuclear factor-κB pathway, suggesting that SkM-Exo-induced angiogenesis was mediated by a VEGF-independent pathway. In addition, several angiogenic microRNAs were packaged in SkM-Exo, with miR-130a being particularly enriched and successfully transferred from SkM-Exo to HUVECs. Delivery of miRNAs into endothelial cells might explain the enhancement of reactive oxygen species production and angiogenesis by SkM-Exo. The potential angiogenic effect of SkM-Exo could provide an effective therapy for promoting skeletal muscle angiogenesis in diseases characterized by capillary rarefaction or inadequate angiogenesis.
Collapse
Affiliation(s)
- Yaohui Nie
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, 47907.,Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, Indiana, 47907.,Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Yoriko Sato
- Department of United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ron T Garner
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, 47907.,Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, Indiana, 47907
| | - Christopher Kargl
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, 47907.,Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, Indiana, 47907
| | - Chao Wang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Christopher J Gilpin
- Agricultural Research and Graduate Education, Purdue University, West Lafayette, Indiana, USA
| | - Timothy P Gavin
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, 47907.,Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, Indiana, 47907
| |
Collapse
|
42
|
Liu X, Gong J, Wang L, Hou X, Gao H, Yan H, Zhao F, Zhang L, Wang L. Genome-Wide Profiling of the Microrna Transcriptome Regulatory Network to Identify Putative Candidate Genes Associated with Backfat Deposition in Pigs. Animals (Basel) 2019; 9:ani9060313. [PMID: 31159441 PMCID: PMC6617047 DOI: 10.3390/ani9060313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Backfat thickness is an important characteristic in pig breeding. In this study, the key microRNAs (miRNAs) and genes associated with pig backfat deposition were detected and characterized using RNA sequencing between adipose tissues of high-backfat and low-backfat pigs. Strong candidate mRNA‒miRNA interaction pairs were identified to affect backfat deposition through the regulation of target genes by miRNAs. These results provide novel insights into the backfat deposition mechanism in pigs. Abstract Backfat deposition is strongly related to carcass traits, growth rate, feed conversion rate, and reproductive performance in pig production. To understand the molecular mechanisms underlying porcine backfat thickness phenotypes, transcriptome and miRNA profiling of backfat from high-backfat thickness and low-backfat thickness pigs were performed by RNA sequencing. Twenty genes encoding for miRNAs and 126 genes encoding for protein-coding genes were found to be differentially expressed between the two libraries. After integrative analysis of DEMs targets and DEGs, a total of 33 mRNA‒miRNA interaction pairs were identified, and the regulatory networks of these pairs were determined. Among these genes, five (AQP9, DKK3, GLYCTK, GLIPR1, and DUSP2) related to fat deposition were found to be strong candidate genes, and mir-31-5p/AQP9 and mir-31-5p/GLIPR1 may play important roles in fat deposition. Additionally, potential adipogenesis-related genes and miRNAs were identified. These findings improve the current understanding of the molecular genetic mechanisms of subcutaneous fat deposition in pigs and provide a foundation for further studies.
Collapse
Affiliation(s)
- Xin Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jianfei Gong
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Ligang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xinhua Hou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hongmei Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hua Yan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fuping Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Longchao Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
43
|
Melo L, Hagar A. How to train a mouse-methodological issues in pre-clinical exercise oncology. Am J Cancer Res 2019; 9:1246-1253. [PMID: 31285956 PMCID: PMC6610064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023] Open
Abstract
We point at several challenges that current exercise oncology rodent models face, which call their human-relevance into question: the vast majority of pre-clinical studies in exercise oncology treat "physical exercise" as a primitive concept without further analysis or qualification, and their results are based on dosages that no human can endure. The lack of analysis and qualification together with the dosage mismatch conceal the fact that rodents do not run like humans. Consequently, while these pre-clinical studies may yield insights into potential biological mechanisms underlying the systemic effects of physical exercise on cancer, the applicability of this knowledge to preventive interventions in healthy humans and the ability to translate it to practical therapies in the critically ill remain limited. We propose an alternative exercise rodent model that has better chances of meeting these challenges.
Collapse
Affiliation(s)
- Luma Melo
- Department of Environmental Health, School of Public Health, Indiana UniversityBloomington, IN 47405, USA
- Department of History & Philosophy of Science & Medicine, Indiana UniversityBloomington, IN, USA
| | - Amit Hagar
- Department of Environmental Health, School of Public Health, Indiana UniversityBloomington, IN 47405, USA
- Department of Intelligent Systems Engineering, Indiana UniversityBloomington, IN, USA
- Department of History & Philosophy of Science & Medicine, Indiana UniversityBloomington, IN, USA
| |
Collapse
|
44
|
Goh Q, Song T, Petrany MJ, Cramer AA, Sun C, Sadayappan S, Lee SJ, Millay DP. Myonuclear accretion is a determinant of exercise-induced remodeling in skeletal muscle. eLife 2019; 8:44876. [PMID: 31012848 PMCID: PMC6497442 DOI: 10.7554/elife.44876] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/22/2019] [Indexed: 01/03/2023] Open
Abstract
Skeletal muscle adapts to external stimuli such as increased work. Muscle progenitors (MPs) control muscle repair due to severe damage, but the role of MP fusion and associated myonuclear accretion during exercise are unclear. While we previously demonstrated that MP fusion is required for growth using a supra-physiological model (Goh and Millay, 2017), questions remained about the need for myonuclear accrual during muscle adaptation in a physiological setting. Here, we developed an 8 week high-intensity interval training (HIIT) protocol and assessed the importance of MP fusion. In 8 month-old mice, HIIT led to progressive myonuclear accretion throughout the protocol, and functional muscle hypertrophy. Abrogation of MP fusion at the onset of HIIT resulted in exercise intolerance and fibrosis. In contrast, ablation of MP fusion 4 weeks into HIIT, preserved exercise tolerance but attenuated hypertrophy. We conclude that myonuclear accretion is required for different facets of exercise-induced adaptive responses, impacting both muscle repair and hypertrophic growth.
Collapse
Affiliation(s)
- Qingnian Goh
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Taejeong Song
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Michael J Petrany
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Alyssa Aw Cramer
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Chengyi Sun
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Se-Jin Lee
- The Jackson Laboratory, Farmington, United States.,Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| |
Collapse
|
45
|
Sannicandro AJ, Soriano-Arroquia A, Goljanek-Whysall K. Micro(RNA)-managing muscle wasting. J Appl Physiol (1985) 2019; 127:619-632. [PMID: 30991011 DOI: 10.1152/japplphysiol.00961.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Progressive skeletal muscle wasting is a natural consequence of aging and is common in chronic and acute diseases. Loss of skeletal muscle mass and function (strength) often leads to frailty, decreased independence, and increased risk of hospitalization. Despite progress made in our understanding of the mechanisms underlying muscle wasting, there is still no treatment available, with exercise training and dietary supplementation improving, but not restoring, muscle mass and/or function. There has been slow progress in developing novel therapies for muscle wasting, either during aging or disease, partially due to the complex nature of processes underlying muscle loss. The mechanisms of muscle wasting are multifactorial, with a combination of factors underlying age- and disease-related functional muscle decline. These factors include well-characterized changes in muscle such as changes in protein turnover and more recently described mechanisms such as autophagy or satellite cell senescence. Advances in transcriptomics and other high-throughput approaches have highlighted significant deregulation of skeletal muscle gene and protein levels during aging and disease. These changes are regulated at different levels, including posttranscriptional gene expression regulation by microRNAs. microRNAs, potent regulators of gene expression, modulate many processes in muscle, and microRNA-based interventions have been recently suggested as a promising new therapeutic strategy against alterations in muscle homeostasis. Here, we review recent developments in understanding the aging-associated mechanisms of muscle wasting and explore potential microRNA-based therapeutic avenues.
Collapse
Affiliation(s)
- Anthony J Sannicandro
- Department of Physiology, School of Medicine, National University of Ireland, Galway, Ireland
| | - Ana Soriano-Arroquia
- Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom
| | - Katarzyna Goljanek-Whysall
- Department of Physiology, School of Medicine, National University of Ireland, Galway, Ireland.,Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom
| |
Collapse
|
46
|
Loss of microRNA-23-27-24 clusters in skeletal muscle is not influential in skeletal muscle development and exercise-induced muscle adaptation. Sci Rep 2019; 9:1092. [PMID: 30705375 PMCID: PMC6355808 DOI: 10.1038/s41598-018-37765-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/06/2018] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs are small regulatory noncoding RNAs that repress gene expression at the posttranscriptional level. Previous studies have reported that the expression of miR-23, miR-27, and miR-24, driven from two miR-23–27–24 clusters, is altered by various pathophysiological conditions. However, their functions in skeletal muscle have not been clarified. To define the roles of the miR-23–27–24 clusters in skeletal muscle, we generated double-knockout (dKO) mice muscle-specifically lacking the miR-23–27–24 clusters. The dKO mice were viable and showed normal growth. The contractile and metabolic features of the muscles, represented by the expression of the myosin heavy chain and the oxidative markers PGC1-α and COX IV, were not altered in the dKO mice compared with wild-type mice. The dKO mice showed increased cross-sectional areas of the oxidative fibers. However, this dKO did not induce functional changes in the muscles. The dKO mice also showed normal adaptation to voluntary wheel running for 4 weeks, including the glycolytic-to-oxidative fiber type switch, and increases in mitochondrial markers, succinate dehydrogenase activity, and angiogenesis. In conclusion, our data demonstrate that the miR-23–27–24 clusters have subtle effects on skeletal muscle development and endurance-exercise-induced muscle adaptation.
Collapse
|
47
|
De Paepe B. Sporadic Inclusion Body Myositis: An Acquired Mitochondrial Disease with Extras. Biomolecules 2019; 9:biom9010015. [PMID: 30621041 PMCID: PMC6359202 DOI: 10.3390/biom9010015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
The sporadic form of inclusion body myositis (IBM) is the most common late-onset myopathy. Its complex pathogenesis includes degenerative, inflammatory and mitochondrial aspects. However, which of those mechanisms are cause and which effect, as well as their interrelations, remain partly obscured to this day. In this review the nature of the mitochondrial dysregulation in IBM muscle is explored and comparison is made with other muscle disorders. Mitochondrial alterations in IBM are evidenced by histological and serum biomarkers. Muscular mitochondrial dynamics is disturbed, with deregulated organelle fusion leading to subsequent morphological alterations and muscle displays abnormal mitophagy. The tissue increases mitochondrial content in an attempt to compensate dysfunction, yet mitochondrial DNA (mtDNA) alterations and mild mtDNA depletion are also present. Oxidative phosphorylation defects have repeatedly been shown, most notably a reduction in complex IV activities and levels of mitokines and regulatory RNAs are perturbed. Based on the cumulating evidence of mitochondrial abnormality as a disease contributor, it is therefore warranted to regard IBM as a mitochondrial disease, offering a feasible therapeutic target to be developed for this yet untreatable condition.
Collapse
Affiliation(s)
- Boel De Paepe
- Neuromuscular Reference Centre, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| |
Collapse
|
48
|
Hor YY, Ooi CH, Khoo BY, Choi SB, Seeni A, Shamsuddin S, Oon CE, Ong KL, Jeong WS, Liong MT. Lactobacillus Strains Alleviated Aging Symptoms and Aging-Induced Metabolic Disorders in Aged Rats. J Med Food 2018; 22:1-13. [PMID: 30592688 DOI: 10.1089/jmf.2018.4229] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aging is an inevitable and ubiquitous progress that affects all living organisms. A total of 18 strains of lactic acid bacteria (LAB) were evaluated on the activation of adenosine monophosphate-activated protein kinase (AMPK), an intracellular energy sensor mediating lifespan extension. The cell-free supernatant (CFS) of Lactobacillus fermentum DR9 (LF-DR9), Lactobacillus paracasei OFS 0291 (LP-0291), and Lactobacillus helveticus OFS 1515 (LH-1515) showed the highest activation of AMPK and was further evaluated. The phosphorylation of AMPK by these three LAB strains was more evident in U2OS and C2C12 cells, compared to the other cell lines and control (P < .05). Using premature senescent Sprague-Dawley rats induced by D-galactose (D-gal), the administration of LAB (10 log CFU/rat/day) for 12 weeks prevented the shortening of telomere length in D-gal-treated rats compared to the untreated control (P < .05). LF-DR9 lowered gene expression of p53, a known senescent biomarker, in gastrocnemius muscle and tibia compared to the control. The selected LAB strains also enhanced lipid, renal, and liver profile of rats, suggesting added potential of the strains in preventing aging-induced metabolic diseases. Strain LP-0291 and LH-1515 showed ability to adhere to mucin, no antibiotic resistance, tolerated and proliferated under gastric and intestinal simulated conditions, and inhibited the growth of pathogens Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis, comparable to commercial probiotic LF-DR9 and Lactobacillus sakei Probio 65. This study provided an insight into the potential of LAB for exhibiting antisenescence effects, with potentials as new medicinal foods for targeted antiaging therapies.
Collapse
Affiliation(s)
- Yan-Yan Hor
- 1 Division of Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
- 2 USM-RIKEN International Centre for Aging Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| | - Cheong-Hwa Ooi
- 3 Cluster of Lifestyle Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Boon-Yin Khoo
- 4 Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Sy-Bing Choi
- 5 School of Data Sciences, Perdana University, MARDI Complex, Selangor, Malaysia
| | - Azman Seeni
- 3 Cluster of Lifestyle Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Shaharum Shamsuddin
- 2 USM-RIKEN International Centre for Aging Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
- 6 Division of Biomedicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Chern-Ein Oon
- 4 Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Kee-Leong Ong
- 7 Clinical Nutrition Intl (M) Sdn. Bhd., Selangor, Malaysia
| | - Woo-Sik Jeong
- 8 Department of Food and Life Sciences, Inje University, Gimhae, Korea
| | - Min-Tze Liong
- 1 Division of Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
- 2 USM-RIKEN International Centre for Aging Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
49
|
Oikawa S, Lee M, Motohashi N, Maeda S, Akimoto T. An inducible knockout of Dicer in adult mice does not affect endurance exercise-induced muscle adaptation. Am J Physiol Cell Physiol 2018; 316:C285-C292. [PMID: 30540495 DOI: 10.1152/ajpcell.00278.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The contractile and metabolic properties of adult skeletal muscle change in response to endurance exercise. The mechanisms of transcriptional regulation in exercise-induced skeletal muscle adaptation, including fiber-type switching and mitochondrial biogenesis, have been investigated intensively, whereas the role of microRNA (miRNA)-mediated posttranscriptional gene regulation is less well understood. We used tamoxifen-inducible Dicer1 knockout (iDicer KO) mice to reduce the global expression of miRNAs in adult skeletal muscle and subjected these mice to 2 wk of voluntary wheel running. Dicer mRNA expression was completely depleted in fast-twitch plantaris muscle after tamoxifen injection. However, several muscle-enriched miRNAs, including miR-1 and miR-133a, were reduced by only 30-50% in both the slow and fast muscles. The endurance exercise-induced changes that occurred for many parameters (i.e., fast-to-slow fiber-type switch and increases in succinate dehydrogenase, respiratory chain complex II, and citrate synthase activity) in wild type (WT) also occurred in the iDicer KO mice. Protein expression of myosin heavy chain IIa, peroxisome proliferator-activated receptor-γ coactivator-1α, and cytochrome c complex IV was also increased in the iDicer KO mice by the voluntary running. Furthermore, there was no significant difference in oxygen consumption rate in the isolated mitochondria between the WT and iDicer KO mice. These data indicate that muscle-enriched miRNAs were detectable even after 4 wk of tamoxifen treatment and there was no apparent specific endurance-exercise-induced muscle phenotype in the iDicer KO mice.
Collapse
Affiliation(s)
- Satoshi Oikawa
- Graduate School of Comprehensive Human Science, University of Tsukuba , Tsukuba , Japan
| | - Minjung Lee
- Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Norio Motohashi
- Department of Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology , Tokyo , Japan
| | - Seiji Maeda
- Faculty of Health and Sport Sciences, University of Tsukuba , Tsukuba , Japan
| | - Takayuki Akimoto
- Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan.,Laboratory of Muscle Biology, Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| |
Collapse
|
50
|
Saini SK, Kalaiarasan P, Singh RK, Manvati S, Bamezai R. MicroRNA (hsa-miR-19b-2-5p) targets key mitochondrial biogenesis genes-a bioinformatics analysis. Mitochondrion 2018; 43:30-36. [DOI: 10.1016/j.mito.2018.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 01/06/2023]
|