1
|
Pan ZN, Zhang HL, Zhang KH, Ju JQ, Liu JC, Sun SC. Insufficient MIRO1 contributes to declined oocyte quality during reproductive aging. SCIENCE CHINA. LIFE SCIENCES 2025; 68:764-776. [PMID: 39815032 DOI: 10.1007/s11427-024-2700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/28/2024] [Indexed: 01/18/2025]
Abstract
Mitochondrial Rho-GTPase 1 (MIRO1) is an outer mitochondrial membrane protein which regulates mitochondrial transport and mitophagy in mitosis. In present study, we reported the crucial roles of MIRO1 in mammalian oocyte meiosis and its potential relationship with aging. We found that MIRO1 expressed in mouse and porcine oocytes, and its expression decreased in aged mice. MIRO1 deficiency caused the failure of meiotic resumption and polar body extrusion in both mouse and porcine oocytes, which could be rescued by exogenous MIRO1 supplementation. Mass spectrometry data indicated that MIRO1 associated with several cytoskeleton and cell cycle-related proteins, and MIRO1 regulated motor protein Dynein for microtubule-organizing centers (MTOCs) dynamics at germinal vesicle (GV) stage, which determined meiotic resumption. Furthermore, we found that MIRO1 regulated Aurora A and kinesin family member 11 (KIF11) for meiotic spindle assembly in oocytes. Besides, MIRO1 associated with several mitochondria-related proteins dynamic-related protein 1 (DRP1), Parkin and lysosomal-associated membrane protein 2 (LAMP2) for mitochondrial dynamics and mitophagy during oocyte meiosis. Taken together, our results suggested that MIRO1 played pivotal roles in meiotic resumption, spindle assembly and mitochondrial function in mouse and porcine oocytes, and its insufficiency might contribute to the oocyte maturation defects during aging.
Collapse
Affiliation(s)
- Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kun-Huan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing-Cai Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Purkerson MM, Amend SR, Pienta KJ. Bystanders or active players: the role of extra centrosomes as signaling hubs. Cancer Metastasis Rev 2024; 44:1. [PMID: 39570514 PMCID: PMC11582193 DOI: 10.1007/s10555-024-10224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Centrosomes serve as microtubule-organizing organelles that function in spindle pole organization, cell cycle progression, and cilia formation. A non-canonical role of centrosomes that has gained traction in recent years is the ability to act as signal transduction centers. Centrosome amplification, which includes numerical and structural aberrations of centrosomes, is a candidate hallmark of cancer. The function of centrosomes as signaling centers in cancer cells with centrosome amplification is poorly understood. Establishing a model of how cancer cells utilize centrosomes as signaling platforms will help elucidate the role of extra centrosomes in cancer cell survival and tumorigenesis. Centrosomes act in a diverse array of cellular processes, including cell migration, cell cycle progression, and proteasomal degradation. Given that cancer cells with amplified centrosomes exhibit an increased number and larger area of these signaling platforms, extra centrosomes may be acting to promote tumor development by enhancing signaling kinetics in pathways that are essential for the formation and growth of cancer. In this review, we identify the processes centrosomes are involved in as signal transduction platforms and highlight ways in which cancer cells with centrosome amplification may be taking advantage of these mechanisms.
Collapse
Affiliation(s)
- Madison M Purkerson
- Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Cancer Ecology Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Pharmacology and Molecular Sciences Program, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Sarah R Amend
- Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Ecology Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kenneth J Pienta
- Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Ecology Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Pharmacology and Molecular Sciences Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Holder J, Miles JA, Batchelor M, Popple H, Walko M, Yeung W, Kannan N, Wilson AJ, Bayliss R, Gergely F. CEP192 localises mitotic Aurora-A activity by priming its interaction with TPX2. EMBO J 2024; 43:5381-5420. [PMID: 39327527 PMCID: PMC11574021 DOI: 10.1038/s44318-024-00240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Aurora-A is an essential cell-cycle kinase with critical roles in mitotic entry and spindle dynamics. These functions require binding partners such as CEP192 and TPX2, which modulate both kinase activity and localisation of Aurora-A. Here we investigate the structure and role of the centrosomal Aurora-A:CEP192 complex in the wider molecular network. We find that CEP192 wraps around Aurora-A, occupies the binding sites for mitotic spindle-associated partners, and thus competes with them. Comparison of two different Aurora-A conformations reveals how CEP192 modifies kinase activity through the site used for TPX2-mediated activation. Deleting the Aurora-A-binding interface in CEP192 prevents centrosomal accumulation of Aurora-A, curtails its activation-loop phosphorylation, and reduces spindle-bound TPX2:Aurora-A complexes, resulting in error-prone mitosis. Thus, by supplying the pool of phosphorylated Aurora-A necessary for TPX2 binding, CEP192:Aurora-A complexes regulate spindle function. We propose an evolutionarily conserved spatial hierarchy, which protects genome integrity through fine-tuning and correctly localising Aurora-A activity.
Collapse
Affiliation(s)
- James Holder
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jennifer A Miles
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Matthew Batchelor
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Harrison Popple
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Martin Walko
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Wayland Yeung
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Natarajan Kannan
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Andrew J Wilson
- School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| | - Fanni Gergely
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
4
|
Ma C, Xu Y, Zhang X, Shi X, Zhang Y, Luo M, Wu C, Ding Z, Xiang H, Cao Y. Melatonin mitigates PNMC-induced disruption of spindle assembly and mitochondrial function in mouse Oocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116703. [PMID: 38986335 DOI: 10.1016/j.ecoenv.2024.116703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
3-methyl-4-nitrophenol (PNMC), a degradation product of organophosphorus insecticides and a byproduct of fuel combustion, exerting endocrine-disrupting effects. However, its impact on the meiotic process of oocytes remains unclear. In the present study, we investigated the effects of PNMC on meiotic maturation of mouse oocytes in vitro and related mechanisms. Morphologically, PNMC-exposure affected germinal vesicle breakdown (GVBD) and polar body extrusion (PBE) in mouse oocytes. Proteomic analysis suggested that PNMC-exposure altered oocyte protein expression that are associated with cytoskeleton, mitochondrial function and oxidative stress. Further studies demonstrated that PNMC-exposure disrupted spindle assembly and chromosome alignment, caused sustained activation of spindle assembly checkpoint (SAC), and arrested meiosis in oocytes. Specifically, PNMC-exposure interfered with the function of microtubule organizing centers (MTOCs) by significantly reducing phosphorylated mitogen activated protein kinase (p-MAPK) expression and disrupting the localization of Pericentrin and p-Aurora A, leading to spindle assembly failure. Besides, PNMC-exposure also increased α-tubulin acetylation, decreased microtubule stability. Moreover, PNMC-exposure impaired mitochondrial function, evidenced by abnormal mitochondrial distribution, decreased mitochondrial membrane potential and ATP levels, release of Cytochrome C into the cytoplasm, and elevated ROS levels. As a result, exposure to PNMC caused DNA damage and early apoptosis in oocytes. Fortunately, melatonin was able to promote oocyte maturation by removing the excessive ROS and enhancing mitochondrial function. These results highlight the adverse effects of PNMC on meiotic maturation, and underscore the protective role of melatonin against PNMC-induced damage.
Collapse
Affiliation(s)
- Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China
| | - Yan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China
| | - Xueke Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Xuejiao Shi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Yingying Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Meijie Luo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Caiyun Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Zhiming Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, Anhui 230032, China.
| | - Huifen Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
5
|
Chen F, Zhang M, Song Z, Meng R, He J, Xu X, Deng S, Sun M, Kou Z, Lin J. Melatonin partially rescues defects induced by tranexamic acid exposure during oocyte maturation in mice. Am J Physiol Cell Physiol 2024; 327:C778-C789. [PMID: 39069826 DOI: 10.1152/ajpcell.00339.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Tranexamic acid (TXA) is widely used among young women because of its ability to whiten skin and treat menorrhagia. Nevertheless, its potential effects on oocyte maturation and quality have not yet been clearly clarified. Melatonin (MT) is an endogenous hormone released by the pineal gland and believed to protect cells from oxidative stress injury. In the present study, we used an in vitro maturation model to investigate the toxicity of TXA and the protective role of MT in mouse oocytes. Compared with the control group, the TXA-exposed group had significantly lower nuclear maturation (57.72% vs. 94.08%, P < 0.001) and early embryo cleavage rates (38.18% vs. 87.66%, P < 0.001). Further study showed that spindle organization (52.56% vs. 18.77%, P < 0.01) and chromosome alignment (33.23% vs. 16.66%, P < 0.01) were also disrupted after TXA treatment. Mechanistically, we have demonstrated that TXA induced early apoptosis of oocytes (P < 0.001) by raising the level of reactive oxygen species (P < 0.001), which was consistent with an increase in mitochondrial damage (P < 0.01). Fortunately, all these effects except the spindle defect were successfully rescued by an appropriate level of MT. Collectively, our findings indicate that MT could partially reverse TXA-induced oocyte quality deterioration in mice by effectively improving mitochondrial function and reducing oxidative stress-mediated apoptosis.NEW & NOTEWORTHY Tranexamic acid is increasingly used to whiten skin, reverse dermal damages, and treat heavy menstrual bleeding in young women. However, its potential toxicity in mammalian oocytes is still unclear. Our study revealed that tranexamic acid exposure impaired the mouse oocyte quality and subsequent embryo development. Meanwhile, melatonin has been found to exert beneficial effects in reducing tranexamic acid-induced mitochondrial dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Fei Chen
- Department of Physiology, Jining Medical University, Jining, People's Republic of China
| | - Mengyao Zhang
- Department of Physiology, Jining Medical University, Jining, People's Republic of China
| | - Zihan Song
- Department of Physiology, Jining Medical University, Jining, People's Republic of China
| | - Rui Meng
- Department of Physiology, Jining Medical University, Jining, People's Republic of China
| | - Jiayi He
- Department of Physiology, Jining Medical University, Jining, People's Republic of China
| | - Xiuli Xu
- Department of Physiology, Jining Medical University, Jining, People's Republic of China
| | - Shuwen Deng
- Department of Physiology, Jining Medical University, Jining, People's Republic of China
| | - Meng Sun
- Department of Physiology, Jining Medical University, Jining, People's Republic of China
| | - Zhenyu Kou
- Department of Physiology, Jining Medical University, Jining, People's Republic of China
| | - Juan Lin
- Department of Physiology, Jining Medical University, Jining, People's Republic of China
| |
Collapse
|
6
|
Tan X, Zheng C, Zhuang Y, Jin P, Wang F. The m6A reader PRRC2A is essential for meiosis I completion during spermatogenesis. Nat Commun 2023; 14:1636. [PMID: 36964127 PMCID: PMC10039029 DOI: 10.1038/s41467-023-37252-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/08/2023] [Indexed: 03/26/2023] Open
Abstract
N6-methyladenosine (m6A) and its reader proteins YTHDC1, YTHDC2, and YTHDF2 have been shown to exert essential functions during spermatogenesis. However, much remains unknown about m6A regulation mechanisms and the functions of specific readers during the meiotic cell cycle. Here, we show that the m6A reader Proline rich coiled-coil 2A (PRRC2A) is essential for male fertility. Germ cell-specific knockout of Prrc2a causes XY asynapsis and impaired meiotic sex chromosome inactivation in late-prophase spermatocytes. Moreover, PRRC2A-null spermatocytes exhibit delayed metaphase entry, chromosome misalignment, and spindle disorganization at metaphase I and are finally arrested at this stage. Sequencing data reveal that PRRC2A decreases the RNA abundance or improves the translation efficiency of targeting transcripts. Specifically, PRRC2A recognizes spermatogonia-specific transcripts and downregulates their RNA abundance to maintain the spermatocyte expression pattern during the meiosis prophase. For genes involved in meiotic cell division, PRRC2A improves the translation efficiency of their transcripts. Further, co-immunoprecipitation data show that PRRC2A interacts with several proteins regulating mRNA metabolism or translation (YBX1, YBX2, PABPC1, FXR1, and EIF4G3). Our study reveals post-transcriptional functions of PRRC2A and demonstrates its critical role in the completion of meiosis I in spermatogenesis.
Collapse
Affiliation(s)
- Xinshui Tan
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Caihong Zheng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, 100101, China
| | - Yinghua Zhuang
- National Institute of Biological Sciences, Beijing, China
| | - Pengpeng Jin
- National Institute of Biological Sciences, Beijing, China
| | - Fengchao Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|
7
|
Zhang Y, Fan B, Li X, Tang Y, Shao J, Liu L, Ren Y, Yang Y, Xu B. Phosphorylation of adducin-1 by TPX2 promotes interpolar microtubule homeostasis and precise chromosome segregation in mouse oocytes. Cell Biosci 2022; 12:205. [PMID: 36539904 PMCID: PMC9769001 DOI: 10.1186/s13578-022-00943-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND ADD1 (adducin-1) and TPX2 (targeting protein for Xklp2) are centrosomal proteins and regulate mitotic spindle assembly. Mammalian oocytes that segregate homologous chromosomes in Meiosis I and sister chromatids in Meiosis II with a spindle lacking centrosomes are more prone to chromosome segregation errors than in mitosis. However, the regulatory mechanisms of oocyte spindle assembly and the functions of ADD1 and TPX2 in this process remain elusive. RESULT We found that the expression levels and localization of ADD1, S726 phosphorylated ADD1 (p-ADD1), and TPX2 proteins exhibited spindle assembly-dependent dynamic changes during mouse oocyte meiosis. Taxol treatment, which stabilizes the microtubule polymer and protects it from disassembly, made the signals of ADD1, p-ADD1, and TPX2 present in the microtubule organizing centers of small asters and spindles. Knockdown of approximately 60% of ADD1 protein levels destabilized interpolar microtubules in the meiotic spindle, resulting in aberrant chromosome alignment, reduced first polar body extrusion, and increased aneuploidy in metaphase II oocytes, but did not affect K-fiber homeostasis and the expression and localization of TPX2. Strikingly, TPX2 deficiency caused increased protein content of ADD1, but decreased expression and detachment of p-ADD1 from the spindle, thereby arresting mouse oocytes at the metaphase I stage with collapsed spindles. CONCLUSION Phosphorylation of ADD1 at S726 by TPX2 mediates acentriolar spindle assembly and precise chromosome segregation in mouse oocytes.
Collapse
Affiliation(s)
- Ying Zhang
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Bingfeng Fan
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Xiaoxia Li
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China ,College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Jilin, China
| | - Yu Tang
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Jing Shao
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Lixiang Liu
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Yuhe Ren
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China
| | - Yifeng Yang
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Baozeng Xu
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| |
Collapse
|
8
|
Gao W, Zhang C, Li B, Oh JS. Azoxystrobin exposure impairs meiotic maturation by disturbing spindle formation in mouse oocytes. Front Cell Dev Biol 2022; 10:1053654. [PMID: 36531942 PMCID: PMC9755494 DOI: 10.3389/fcell.2022.1053654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Fungicides are a type of pesticide used to protect plants and crops from pathogenic fungi. Azoxystrobin (AZO), a natural methoxyacrylate derived from strobilurin, is one of the most widely used fungicides in agriculture. AZO exerts its fungicidal activity by inhibiting mitochondrial respiration, but its cytotoxicity to mammalian oocytes has not been studied. In this study, we investigated the effect of AZO exposure on mouse oocyte maturation to elucidate the underlying mechanisms of its possible reproductive toxicity. We found that AZO exposure disturbed meiotic maturation by impairing spindle formation and chromosome alignment, which was associated with decreased microtubule organizing center (MTOC) integrity. Moreover, AZO exposure induced abnormal mitochondrial distribution and increased oxidative stress. The AZO-induced toxicity to oocytes was relieved by melatonin supplementation during meiotic maturation. Therefore, our results suggest that AZO exposure impairs oocyte maturation not only by increasing oxidative stress and mitochondrial dysfunction, but also by decreasing MTOC integrity and subsequent spindle formation and chromosome alignment.
Collapse
Affiliation(s)
- Wen Gao
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chen Zhang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
- RNA Medicine Center, International Institutes of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bichun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jeong Su Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, South Korea
- *Correspondence: Jeong Su Oh,
| |
Collapse
|
9
|
Zhang P, Qi C, Ma Z, Wang Y, Zhang L, Hou X. Perfluorooctanoic acid exposure in vivo perturbs mitochondrial metabolic during oocyte maturation. ENVIRONMENTAL TOXICOLOGY 2022; 37:2965-2976. [PMID: 36029293 DOI: 10.1002/tox.23652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 05/23/2023]
Abstract
Perfluorooctanoic acid (PFOA), a member of a group of polyfluorinated and perfluorinated alkyl substances (PFAS), is associated with adverse pregnancy outcomes in mammals. However, the effects of in vivo exposure to PFOA on the female reproductive system and the underlying mechanisms remain unclear. In our study, we constructed a mouse model to investigate whether low-dose PFOA (1 mg/kg/day) or high-dose PFOA (5 mg/kg/day) affect meiosis maturation of oocytes and the potential mechanisms that may be associated with oocyte maturation disorder. Our results indicate that low-dose and high-dose PFOA can lead to impaired oocyte maturation, which is manifested by decreased rate of embryonic foam rupture and first polar body extrusion. Moreover, PFOA exposure harmed the mitochondrial metabolic, resulting in low levels of ATP contents, high reactive oxygen species, aberrant mitochondrial membrane potential. In addition, the proportion of DNA damage marker γ-H2AX was also significantly increased in PFOA exposure oocytes. These changes lead to abnormal arrangements of the spindle and chromosomes during oocyte maturation. In conclusion, our results for the first time illustrated that exposure to PFOA in vivo in female mice impaired the meiosis maturation of oocytes, which provided a basis for studying the mechanism of PFOA reproductive toxicity in female mammals.
Collapse
Affiliation(s)
- Pingping Zhang
- Department of Obstetrics and Gynecology,Yangzhou Maternal and Child Health Hospital Yangzhou University Yangzhou, Jiangsu, China
| | - Changyong Qi
- Animal Core Facility, Nanjing Medical University, Nanjing, China
| | - Zhinan Ma
- Department of Obstetrics and Gynecology,Yangzhou Maternal and Child Health Hospital Yangzhou University Yangzhou, Jiangsu, China
| | - Yixiong Wang
- Department of Obstetrics and Gynecology,Yangzhou Maternal and Child Health Hospital Yangzhou University Yangzhou, Jiangsu, China
| | - Lei Zhang
- Department of Obstetrics and Gynecology,Yangzhou Maternal and Child Health Hospital Yangzhou University Yangzhou, Jiangsu, China
| | - Xiaojing Hou
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Institute, Nanjing, China
| |
Collapse
|
10
|
Ho UY, Feng CWA, Yeap YY, Bain AL, Wei Z, Shohayeb B, Reichelt ME, Homer H, Khanna KK, Bowles J, Ng DCH. WDR62 is required for centriole duplication in spermatogenesis and manchette removal in spermiogenesis. Commun Biol 2021; 4:645. [PMID: 34059773 PMCID: PMC8167107 DOI: 10.1038/s42003-021-02171-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/29/2021] [Indexed: 11/24/2022] Open
Abstract
WDR62 is a scaffold protein involved in centriole duplication and spindle assembly during mitosis. Mutations in WDR62 can cause primary microcephaly and premature ovarian insufficiency. We have generated a genetrap mouse model deficient in WDR62 and characterised the developmental effects of WDR62 deficiency during meiosis in the testis. We have found that WDR62 deficiency leads to centriole underduplication in the spermatocytes due to reduced or delayed CEP63 accumulation in the pericentriolar matrix. This resulted in prolonged metaphase that led to apoptosis. Round spermatids that inherited a pair of centrioles progressed through spermiogenesis, however, manchette removal was delayed in WDR62 deficient spermatids due to delayed Katanin p80 accumulation in the manchette, thus producing misshapen spermatid heads with elongated manchettes. In mice, WDR62 deficiency resembles oligoasthenoteratospermia, a common form of subfertility in men that is characterised by low sperm counts, poor motility and abnormal morphology. Therefore, proper WDR62 function is necessary for timely spermatogenesis and spermiogenesis during male reproduction. Uda Ho et al find that loss of centriolar scaffold protein WDR62 in mouse testis leads to defects in spermatogenesis. They find that WDR62 deficiency leads to centriole underduplication in spermatocytes and delayed manchette removal in spermatids due to delayed Katanin p80 accumulation.
Collapse
Affiliation(s)
- Uda Y Ho
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| | - Chun-Wei Allen Feng
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Yvonne Y Yeap
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda L Bain
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Zhe Wei
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Belal Shohayeb
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Melissa E Reichelt
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Hayden Homer
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Dominic C H Ng
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
11
|
Xu Y, Xu CL, Xu ZF, Wang XJ, Liang HS, Zeng ZC, Zeng LX, Wei KN, Deng SZ, Xie SJ, Jiang J, Liu YX, Cao YK, Wang HL. Fbf1 regulates mouse oocyte meiosis by influencing Plk1. Theriogenology 2021; 164:74-83. [PMID: 33561696 DOI: 10.1016/j.theriogenology.2021.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/05/2021] [Accepted: 01/23/2021] [Indexed: 01/02/2023]
Abstract
Fas binding factor 1 (Fbf1) is one of the distal appendage proteins in the centriole, located at its distal and proximal ends. It influences the duplication and separation of centrosomes, thereby affecting the progression of the cell cycle during mitosis. However, the function of Fbf1 in meiosis has remained unclear. To explore the role of Fbf1 in the in vitro maturation of mouse oocyte, immunofluorescence staining was used to examine the Fbf1 location in the oocyte and their phenotype after protein deletion. Western blot was used to examine the protein abundance. This study showed that mouse oocytes express Fbf1 which locates at the spindle poles and around the microtubules. Through taxol and nocodazole treatment, and microinjection of siRNA, it was demonstrated that Fbf1 had an important role in the spindle assembly and chromosome separation during mouse oocyte meiosis In particular, microinjection of Fbf1-siRNA resulted in severe abnormalities in the spindle and chromosome arrangement, decreased aggregation of microtubules, disrupted the first oocyte meiosis, and the extrusion of the first polar body. Furthermore, in the Fbf1-siRNA group, there was reduced expression of Plk1 and its agglutination at the spindle poles, along with retarded chromosome segregation due to the activation of the spindle assembly checkpoint (SAC) component BubR1. These results indicate that Fbf1 may function in microtubule depolymerization and agglutination, control the microtubule dynamics, spindle assembly and chromosome arrangement and, thus, influence the mouse oocyte meiotic maturation.
Collapse
Affiliation(s)
- Ying Xu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chang-Long Xu
- The Reproductive Medical Center of Nanning Second People's Hospital, Nanning, Guangxi, 530031, China
| | - Zhong-Feng Xu
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Xin-Jie Wang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Hui-Sheng Liang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Department of Gynaecology and Obstetrics, The Affiliated Zhong-Shan Hospital of Xiamen University, Xiamen, Fujian, 361004, China
| | - Zhao-Cheng Zeng
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; College of Life Sciences, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Li-Xin Zeng
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Department of Gynaecology and Obstetrics, The Affiliated Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361102, China
| | - Kang-Na Wei
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Department of Gynaecology and Obstetrics, The Affiliated Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361102, China
| | - Shu-Zi Deng
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; College of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
| | - Shu-Juan Xie
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Department of Obstetrics and Gynecology, 900 Hospital of the Joint Logistics Team, Dongfang Affiliated Hospital of Xiamen University, Fuzhou, Fujian, 350025, China
| | - Jiang Jiang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yu-Xin Liu
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yun-Kao Cao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Hai-Long Wang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
12
|
Jo YJ, Yoon SB, Park BJ, Lee SI, Kim KJ, Kim SY, Kim M, Lee JK, Lee SY, Lee DH, Kwon T, Son Y, Lee JR, Kwon J, Kim JS. Particulate Matter Exposure During Oocyte Maturation: Cell Cycle Arrest, ROS Generation, and Early Apoptosis in Mice. Front Cell Dev Biol 2020; 8:602097. [PMID: 33324650 PMCID: PMC7726243 DOI: 10.3389/fcell.2020.602097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
Particulate matter (PM) is a general atmospheric pollutant released into the air by an anthropogenic and naturally derived mixture of substances. Current studies indicate that fine dust can result in different health defects, including endothelial dysfunction, asthma, lung cancer, cardiovascular diseases, uterine leiomyoma, deterioration in sperm quality, and overall birth impairment. However, the most prominent effects of PM10 (diameter < 10 μM) exposure on the female reproductive system, especially with respect to oocyte maturation, remain unclear. In the present study, maturing mouse oocytes were treated with PM10 and the phenotypes of the resulting toxic effects were investigated. Exposure to PM10 led to impairment of maturation capacity by inducing cell cycle arrest and blocking normal polar body extrusion during in vitro maturation and activation of fertilization of mouse oocytes. Additionally, defects in tubulin formation and DNA alignment were observed in PM10-treated oocytes during metaphase I to anaphase/telophase I transition. Moreover, PM10 induced reactive oxygen species generation, mitochondrial dysfunction, DNA damage, and early apoptosis. Taken together, these results indicate that PM10 exposure leads to a decline in oocyte quality and affects the subsequent embryonic development potential of mammalian oocytes.
Collapse
Affiliation(s)
- Yu-Jin Jo
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Seung-Bin Yoon
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Byoung-Jin Park
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Sang Il Lee
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Ki Jin Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Se-Yong Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Minseong Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Jun-Ki Lee
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Sang-Yong Lee
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Dong-Ho Lee
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Taeho Kwon
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Yeonghoon Son
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Ja-Rang Lee
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Jeongwoo Kwon
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| |
Collapse
|
13
|
Niazi Y, Thomsen H, Smolkova B, Vodickova L, Vodenkova S, Kroupa M, Vymetalkova V, Kazimirova A, Barancokova M, Volkovova K, Staruchova M, Hoffmann P, Nöthen MM, Dusinska M, Musak L, Vodicka P, Hemminki K, Försti A. Impact of genetic polymorphisms in kinetochore and spindle assembly genes on chromosomal aberration frequency in healthy humans. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 858-860:503253. [PMID: 33198934 DOI: 10.1016/j.mrgentox.2020.503253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/24/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Genomic instability is a characteristic of a majority of human malignancies. Chromosomal instability is a common form of genomic instability that can be caused by defects in mitotic checkpoint genes. Chromosomal aberrations in peripheral blood are also indicative of genotoxic exposure and potential cancer risk. We evaluated associations between inherited genetic variants in 33 mitotic checkpoint genes and the frequency of chromosomal aberrations (CAs) in the presence and absence of environmental genotoxic exposure. Associations with both chromosome and chromatid type of aberrations were evaluated in two cohorts of healthy individuals, namely an exposed and a reference group consisting of 607 and 866 individuals, respectively. Binary logistic and linear regression analyses were performed for the association studies. Bonferroni-corrected significant p-value was 5 × 10-4 for 99 tests based on the number of analyzed genes and phenotypes. In the reference group the most prominent associations were found with variants in CCNB1, a master regulator of mitosis, and in genes involved in kinetochore function, including CENPH and TEX14, whereas in the exposed group the main association was found with variants in TTK, also an important gene in kinetochore function. How the identified variants may affect the fidelity of mitotic checkpoint remains to be investigated, however, the present study suggests that genetic variation may partly explain interindividual variation in the formation of CAs.
Collapse
Affiliation(s)
- Yasmeen Niazi
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Hauke Thomsen
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany; GeneWerk GmbH, Im Neuenheimer Feld 582, 6910, Heidelberg, Germany
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505, Bratislava, Slovakia
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605, Pilsen, Czech Republic
| | - Soňa Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605, Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Alena Kazimirova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03, Bratislava, Slovakia
| | - Magdalena Barancokova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03, Bratislava, Slovakia
| | - Katarina Volkovova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03, Bratislava, Slovakia
| | - Marta Staruchova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03, Bratislava, Slovakia
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn School of Medicine and University of Bonn, D-53127, Bonn, Germany; Division of Medical Genetics, Department of Biomedicine, University of Basel, 4003, Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn School of Medicine and University of Bonn, D-53127, Bonn, Germany
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2007, Kjeller, Norway
| | - Ludovit Musak
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Malá Hora(4D), 03601, Martin, Slovakia
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605, Pilsen, Czech Republic
| | - Kari Hemminki
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605, Pilsen, Czech Republic; Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
| | - Asta Försti
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
14
|
Little TM, Jordan PW. PLK1 is required for chromosome compaction and microtubule organization in mouse oocytes. Mol Biol Cell 2020; 31:1206-1217. [PMID: 32267211 PMCID: PMC7353151 DOI: 10.1091/mbc.e19-12-0701] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/29/2022] Open
Abstract
Errors during meiotic resumption in oocytes can result in chromosome missegregation and infertility. Several cell cycle kinases have been linked with roles in coordinating events during meiotic resumption, including polo-like kinases (PLKs). Mammals express four kinase-proficient PLKs (PLK1-4). Previous studies assessing the role of PLK1 have relied on RNA knockdown and kinase inhibition approaches, as Plk1 null mutations are embryonically lethal. To further assess the roles of PLK1 during meiotic resumption, we developed a Plk1 conditional knockout (cKO) mouse to specifically mutate Plk1 in oocytes. Despite normal oocyte numbers and follicle maturation, Plk1 cKO mice were infertile. From analysis of meiotic resumption, Plk1 cKO oocytes underwent nuclear envelope breakdown with the same timing as control oocytes. However, Plk1 cKO oocytes failed to form compact bivalent chromosomes, and localization of cohesin and condensin were defective. Furthermore, Plk1 cKO oocytes either failed to organize α-tubulin or developed an abnormally small bipolar spindle. These abnormalities were attributed to aberrant release of the microtubule organizing center (MTOC) linker protein, C-NAP1, and the failure to recruit MTOC components and liquid-like spindle domain (LISD) factors. Ultimately, these defects result in meiosis I arrest before homologous chromosome segregation.
Collapse
Affiliation(s)
- Tara M. Little
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Philip W. Jordan
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
15
|
So C, Seres KB, Steyer AM, Mönnich E, Clift D, Pejkovska A, Möbius W, Schuh M. A liquid-like spindle domain promotes acentrosomal spindle assembly in mammalian oocytes. Science 2020; 364:364/6447/eaat9557. [PMID: 31249032 DOI: 10.1126/science.aat9557] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/02/2019] [Indexed: 12/22/2022]
Abstract
Mammalian oocytes segregate chromosomes with a microtubule spindle that lacks centrosomes, but the mechanisms by which acentrosomal spindles are organized and function are largely unclear. In this study, we identify a conserved subcellular structure in mammalian oocytes that forms by phase separation. This structure, which we term the liquid-like meiotic spindle domain (LISD), permeates the spindle poles and forms dynamic protrusions that extend well beyond the spindle. The LISD selectively concentrates multiple microtubule regulatory factors and allows them to diffuse rapidly within the spindle volume. Disruption of the LISD via different means disperses these factors and leads to severe spindle assembly defects. Our data suggest a model whereby the LISD promotes meiotic spindle assembly by serving as a reservoir that sequesters and mobilizes microtubule regulatory factors in proximity to spindle microtubules.
Collapse
Affiliation(s)
- Chun So
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - K Bianka Seres
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.,Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.,Bourn Hall Clinic, Cambridge CB23 2TN, UK
| | - Anna M Steyer
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.,Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany
| | - Eike Mönnich
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Dean Clift
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Anastasija Pejkovska
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.,Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany. .,Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
16
|
Severance AL, Midic U, Latham KE. Genotypic divergence in mouse oocyte transcriptomes: possible pathways to hybrid vigor impacting fertility and embryogenesis. Physiol Genomics 2019; 52:96-109. [PMID: 31869285 DOI: 10.1152/physiolgenomics.00078.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
What causes hybrid vigor phenotypes in mammalian oocytes and preimplantation embryos? Answering this question should provide new insight into determinants of oocyte and embryo quality and infertility. Hybrid vigor could arise through a variety of mechanisms, many of which must operate through posttranscriptional mechanisms affecting oocyte mRNA accumulation, stability, translation, and degradation. The differential regulation of such mRNAs may impact essential pathways and functions within the oocyte. We conducted in-depth transcriptome comparisons of immature and mature oocytes of C57BL/6J and DBA/2J inbred strains and C57BL/6J × DBA/2J F1 (BDF1) hybrid oocytes with RNA sequencing, combined with novel computational methods of analysis. We observed extensive differences in mRNA expression and regulation between parental inbred strains and between inbred and hybrid genotypes, including mRNAs encoding proposed markers of oocyte quality. Unique BDF1 oocyte characteristics arise through a combination of additive dominance and incomplete dominance features in the transcriptome, with a lesser degree of transgressive mRNA expression. Special features of the BDF1 transcriptome most prominently relate to histone expression, mitochondrial function, and oxidative phosphorylation. The study reveals the major underlying mechanisms that contribute to superior properties of hybrid oocytes in a mouse model.
Collapse
Affiliation(s)
- Ashley L Severance
- Genetics Graduate Program, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Uros Midic
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan.,Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Keith E Latham
- Genetics Graduate Program, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan.,Department of Animal Science, Michigan State University, East Lansing, Michigan.,Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
17
|
Joukov V, De Nicolo A. The Centrosome and the Primary Cilium: The Yin and Yang of a Hybrid Organelle. Cells 2019; 8:E701. [PMID: 31295970 PMCID: PMC6678760 DOI: 10.3390/cells8070701] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/27/2022] Open
Abstract
Centrosomes and primary cilia are usually considered as distinct organelles, although both are assembled with the same evolutionary conserved, microtubule-based templates, the centrioles. Centrosomes serve as major microtubule- and actin cytoskeleton-organizing centers and are involved in a variety of intracellular processes, whereas primary cilia receive and transduce environmental signals to elicit cellular and organismal responses. Understanding the functional relationship between centrosomes and primary cilia is important because defects in both structures have been implicated in various diseases, including cancer. Here, we discuss evidence that the animal centrosome evolved, with the transition to complex multicellularity, as a hybrid organelle comprised of the two distinct, but intertwined, structural-functional modules: the centriole/primary cilium module and the pericentriolar material/centrosome module. The evolution of the former module may have been caused by the expanding cellular diversification and intercommunication, whereas that of the latter module may have been driven by the increasing complexity of mitosis and the requirement for maintaining cell polarity, individuation, and adhesion. Through its unique ability to serve both as a plasma membrane-associated primary cilium organizer and a juxtanuclear microtubule-organizing center, the animal centrosome has become an ideal integrator of extracellular and intracellular signals with the cytoskeleton and a switch between the non-cell autonomous and the cell-autonomous signaling modes. In light of this hypothesis, we discuss centrosome dynamics during cell proliferation, migration, and differentiation and propose a model of centrosome-driven microtubule assembly in mitotic and interphase cells. In addition, we outline the evolutionary benefits of the animal centrosome and highlight the hierarchy and modularity of the centrosome biogenesis networks.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia.
| | | |
Collapse
|
18
|
Jin Z, Suk N, Kim N. TP53BP1 regulates chromosome alignment and spindle bipolarity in mouse oocytes. Mol Reprod Dev 2019; 86:1126-1137. [DOI: 10.1002/mrd.23228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/01/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Zhe‐Long Jin
- Department of Animal SciencesChungbuk National UniversityCheongju Korea
| | - Namgoong Suk
- Department of Animal SciencesChungbuk National UniversityCheongju Korea
| | - Nam‐Hyung Kim
- Department of Animal SciencesChungbuk National UniversityCheongju Korea
| |
Collapse
|
19
|
Namgoong S, Kim NH. Meiotic spindle formation in mammalian oocytes: implications for human infertility. Biol Reprod 2019; 98:153-161. [PMID: 29342242 DOI: 10.1093/biolre/iox145] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022] Open
Abstract
In the final stage of oogenesis, mammalian oocytes generate a meiotic spindle and undergo chromosome segregation to yield an egg that is ready for fertilization. Herein, we describe the recent advances in understanding the mechanisms controlling formation of the meiotic spindle in metaphase I (MI) and metaphase II (MII) in mammalian oocytes, and focus on the differences between mouse and human oocytes. Unlike mitotic cells, mammalian oocytes lack typical centrosomes that consist of two centrioles and the surrounding pericentriolar matrix proteins, which serve as microtubule-organizing centers (MTOCs) in most somatic cells. Instead, oocytes rely on different mechanisms for the formation of microtubules in MI spindles. Two different mechanisms have been described for MI spindle formation in mammalian oocytes. Chromosome-mediated microtubule formation, including RAN-mediated spindle formation and chromosomal passenger complex-mediated spindle elongation, controls the growth of microtubules from chromatin, while acentriolar MTOC-mediated microtubule formation contributes to spindle formation. Mouse oocytes utilize both chromatin- and MTOC-mediated pathways for microtubule formation. The existence of both pathways may provide a fail-safe mechanism to ensure high fidelity of chromosome segregation during meiosis. Unlike mouse oocytes, human oocytes considered unsuitable for clinical in vitro fertilization procedures, lack MTOCs; this may explain why meiosis in human oocytes is often error-prone. Understanding the mechanisms of MI/MII spindle formation, spindle assembly checkpoint, and chromosome segregation, in mammalian oocytes, will provide valuable insights into the molecular mechanisms of human infertility.
Collapse
Affiliation(s)
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheong-Ju, Chungbuk, Republic of Korea
| |
Collapse
|
20
|
Kim Y, Lee I, Jo Y, Kim N, Namgoong S. Acentriolar microtubule organization centers and Ran‐mediated microtubule formation pathways are both required in porcine oocytes. Mol Reprod Dev 2019; 86:972-983. [DOI: 10.1002/mrd.23172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/01/2019] [Accepted: 04/29/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Yong‐Han Kim
- Department of Animal SciencesChungbuk National University Cheong‐Ju Chungcheongbuk‐do Republic of Korea
| | - In‐Won Lee
- Department of Animal SciencesChungbuk National University Cheong‐Ju Chungcheongbuk‐do Republic of Korea
| | - Yu‐Jin Jo
- Department of Animal SciencesChungbuk National University Cheong‐Ju Chungcheongbuk‐do Republic of Korea
| | - Nam‐Hyung Kim
- Department of Animal SciencesChungbuk National University Cheong‐Ju Chungcheongbuk‐do Republic of Korea
| | - Suk Namgoong
- Department of Animal SciencesChungbuk National University Cheong‐Ju Chungcheongbuk‐do Republic of Korea
| |
Collapse
|
21
|
Abstract
Mitosis is controlled by reversible protein phosphorylation involving specific kinases and phosphatases. A handful of major mitotic protein kinases, such as the cyclin B-CDK1 complex, the Aurora kinases, and Polo-like kinase 1 (PLK1), cooperatively regulate distinct mitotic processes. Research has identified proteins and mechanisms that integrate these kinases into signaling cascades that guide essential mitotic events. These findings have important implications for our understanding of the mechanisms of mitotic regulation and may advance the development of novel antimitotic drugs. We review collected evidence that in vertebrates, the Aurora kinases serve as catalytic subunits of distinct complexes formed with the four scaffold proteins Bora, CEP192, INCENP, and TPX2, which we deem "core" Aurora cofactors. These complexes and the Aurora-PLK1 cascades organized by Bora, CEP192, and INCENP control crucial aspects of mitosis and all pathways of spindle assembly. We compare the mechanisms of Aurora activation in relation to the different spindle assembly pathways and draw a functional analogy between the CEP192 complex and the chromosomal passenger complex that may reflect the coevolution of centrosomes, kinetochores, and the actomyosin cleavage apparatus. We also analyze the roles and mechanisms of Aurora-PLK1 signaling in the cell and centrosome cycles and in the DNA damage response.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russian Federation.
| | | |
Collapse
|
22
|
Animal Female Meiosis: The Challenges of Eliminating Centrosomes. Cells 2018; 7:cells7070073. [PMID: 29996518 PMCID: PMC6071224 DOI: 10.3390/cells7070073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 01/02/2023] Open
Abstract
Sexual reproduction requires the generation of gametes, which are highly specialised for fertilisation. Female reproductive cells, oocytes, grow up to large sizes when they accumulate energy stocks and store proteins as well as mRNAs to enable rapid cell divisions after fertilisation. At the same time, metazoan oocytes eliminate their centrosomes, i.e., major microtubule-organizing centres (MTOCs), during or right after the long growth phases. Centrosome elimination poses two key questions: first, how can the centrosome be re-established after fertilisation? In general, metazoan oocytes exploit sperm components, i.e., the basal body of the sperm flagellum, as a platform to reinitiate centrosome production. Second, how do most metazoan oocytes manage to build up meiotic spindles without centrosomes? Oocytes have evolved mechanisms to assemble bipolar spindles solely around their chromosomes without the guidance of pre-formed MTOCs. Female animal meiosis involves microtubule nucleation and organisation into bipolar microtubule arrays in regulated self-assembly under the control of the Ran system and nuclear transport receptors. This review summarises our current understanding of the molecular mechanism underlying self-assembly of meiotic spindles, its spatio-temporal regulation, and the key players governing this process in animal oocytes.
Collapse
|