1
|
Baďurová B, Nystøl K, Michalič TO, Kucháriková V, Statelová D, Nováková S, Strnádel J, Halašová E, Škovierová H. Temporal Profiling of Cellular and Molecular Processes in Osteodifferentiation of Dental Pulp Stem Cells. BIOLOGY 2025; 14:257. [PMID: 40136514 PMCID: PMC11939960 DOI: 10.3390/biology14030257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 03/27/2025]
Abstract
Based on the potential of DPSCs as the most promising candidates for bone tissue engineering, we comprehensively investigated the time-dependent cellular and molecular changes that occur during their osteodifferentiation. To analyze this area in-depth, we used both cellular and molecular approaches. Morphological changes were monitored using bright-field microscopy, while the production of mineral deposits was quantified spectrophotometrically. The expression of a key mesenchymal stem cell marker, CD90, was assessed via flow cytometry. Finally, protein-level changes in whole cells were examined by fluorescence microscopy. Our results show successful long-term osteodifferentiation of the patient's DPSCs within 25 days. In differentiated cells, mineralized extracellular matrix production gradually increased; in contrast, the expression of the specific stem cell marker CD90 significantly decreased. We observed dynamic changes in intracellular and extracellular proteins when collagen1 A1 and osteopontin appeared as earlier markers of osteogenesis, while apolipoprotein A2, bone morphogenetic protein 9, dentin sialophosphoprotein, and matrix metalloproteinase 8 were produced mainly in the late stages of this process. A decrease in actin microfilament expression indicated a reduction in cell proliferation, which could be used as another marker of osteogenic initiation. Our results suggest a coordinated process in vitro in which cells synthesize the necessary proteins and matrix components to regulate the growth of hydroxyapatite crystals and form the bone matrix.
Collapse
Affiliation(s)
- Bibiána Baďurová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (B.B.); (K.N.); (T.O.M.); (V.K.); (S.N.); (J.S.); (E.H.)
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4D, 036 01 Martin, Slovakia
| | - Kristina Nystøl
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (B.B.); (K.N.); (T.O.M.); (V.K.); (S.N.); (J.S.); (E.H.)
| | - Terézia Okajček Michalič
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (B.B.); (K.N.); (T.O.M.); (V.K.); (S.N.); (J.S.); (E.H.)
| | - Veronika Kucháriková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (B.B.); (K.N.); (T.O.M.); (V.K.); (S.N.); (J.S.); (E.H.)
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4D, 036 01 Martin, Slovakia
| | - Dagmar Statelová
- Department of Stomatology and Maxillofacial Surgery, University Hospital in Martin and JFM CU, Kollárova 2, 036 01 Martin, Slovakia;
| | - Slavomíra Nováková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (B.B.); (K.N.); (T.O.M.); (V.K.); (S.N.); (J.S.); (E.H.)
| | - Ján Strnádel
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (B.B.); (K.N.); (T.O.M.); (V.K.); (S.N.); (J.S.); (E.H.)
| | - Erika Halašová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (B.B.); (K.N.); (T.O.M.); (V.K.); (S.N.); (J.S.); (E.H.)
| | - Henrieta Škovierová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (B.B.); (K.N.); (T.O.M.); (V.K.); (S.N.); (J.S.); (E.H.)
| |
Collapse
|
2
|
Wiratnaya IGE, Ismail MD, Hasan F. Identification of potential genes associated with metastasis in osteosarcoma: an integrated bioinformatics analysis. Musculoskelet Surg 2025:10.1007/s12306-025-00891-z. [PMID: 40000579 DOI: 10.1007/s12306-025-00891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
This study aims to identify the potential genes, pathways, and tumor immune microenvironment that might be involved in the metastasis process of osteosarcoma (OS). The GEO2R tool was deployed to screen two datasets obtained from the Gene Expression Omnibus (GEO) database (GSE87624 and GSE85537). Integrated bioinformatic analyses were then performed to investigate Gene Ontology, potential pathways, protein-protein network interaction, core hub genes, genetic alterations, and immune cell infiltration. The hub gene expression levels were validated utilizing another dataset (GSE14329) and patient prognosis was validated using the GDC-TARGET OS dataset. Our analysis identified 263 differentially expressed genes (DEGs), predominantly associated with the PI3K-AKT signaling pathway. Analysis using Cytoscape based on DEGs revealed five validated core hub genes including COL6A1, MMP2, POSTN, TAGLN, and THY1. Additionally, TAGLN and THY1 have a significant association (P = 0.008) (P = 0.03) with unfavorable outcomes in osteosarcoma patients. This study unveiled that TAGLN and THY1 were associated with metastasis and poor prognosis in OS.
Collapse
Affiliation(s)
- I G E Wiratnaya
- Department of Orthopaedic and Traumatology, Faculty of Medicine, Udayana University, Jl. Pulau Nias, Denpasar, 80113, Bali, Indonesia.
| | - M D Ismail
- Department of Orthopaedic and Traumatology, Faculty of Medicine, Udayana University, Jl. Pulau Nias, Denpasar, 80113, Bali, Indonesia
| | - F Hasan
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| |
Collapse
|
3
|
Lin TY, Huang TY, Chiu HC, Chung YY, Lin WC, Lin HY, Lee SY. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside-stimulated dental pulp stem cells-derived exosomes for wound healing and bone regeneration. J Dent Sci 2025; 20:154-163. [PMID: 39873051 PMCID: PMC11762248 DOI: 10.1016/j.jds.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Indexed: 01/30/2025] Open
Abstract
Background/purpose -2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (THSG) is a bioactive component in the Chinese herb Polygonum multiflorum, recognized for its anti-inflammatory and lipid-lowering properties. Human dental pulp stem cells (hDPSCs) have excellent capabilities in tooth regeneration, wound healing, and neural repair. The exosomes (Exo) released by hDPSCs contain bioactive molecules that influence cell proliferation, differentiation, and immune responses. Therefore, we aimed to unveil the potential of THSG-Exo and evaluate its regenerative capabilities through the in vitro experiment and rat bone defect model. Materials and methods The effects of hDPSC-derived exosomes, with or without THSG treatment, on repair and bone regeneration were evaluated through in vitro and in vivo studies. Finally, we conducted a proteomic analysis to meticulously compare the compositional contents of the two types of exosomes. Results In vitro data showed that 10 and 100 μM THSG-Exo enhanced cell proliferation and osteogenic differentiation, reducing wound size to 40 % of its original size. In our maxillary bone defect rat model, THSG-Exo significantly increased bone volume, trabecular thickness, and bone density in the bone defect area. In addition, proteomic analysis of THSG-Exo revealed diverse proteins linked to bone differentiation and tissue repair, including bone morphogenetic protein-1 (BMP-1) and tumor necrosis factor (TNF)-α-stimulated gene 6 (TNFAIP6). Our searches in functional databases revealed that THSG-Exo is involved in numerous biological pathways. Conclusion THSG-Exo enhanced cell proliferation, wound healing, and osteogenesis in vitro, while also expediting tissue repair and bone regeneration in vivo. The protein diversity of THSG-Exo contributes significant value in both basic and regenerative medicine.
Collapse
Affiliation(s)
- Tzu-Yu Lin
- Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tung-Yung Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsien-Chung Chiu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Yao-Yu Chung
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chun Lin
- Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
- Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Yang Lee
- Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Reeves J, Tournier P, Becquart P, Carton R, Tang Y, Vigilante A, Fang D, Habib SJ. Rejuvenating aged osteoprogenitors for bone repair. eLife 2024; 13:RP104068. [PMID: 39692737 DOI: 10.7554/elife.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Aging is marked by a decline in tissue regeneration, posing significant challenges to an increasingly older population. Here, we investigate age-related impairments in calvarial bone healing and introduce a novel two-part rejuvenation strategy to restore youthful repair. We demonstrate that aging negatively impacts the calvarial bone structure and its osteogenic tissues, diminishing osteoprogenitor number and function and severely impairing bone formation. Notably, increasing osteogenic cell numbers locally fails to rescue repair in aged mice, identifying the presence of intrinsic cellular deficits. Our strategy combines Wnt-mediated osteoprogenitor expansion with intermittent fasting, which leads to a striking restoration of youthful levels of bone healing. We find that intermittent fasting improves osteoprogenitor function, benefits that can be recapitulated by modulating NAD+-dependent pathways or the gut microbiota, underscoring the multifaceted nature of this intervention. Mechanistically, we identify mitochondrial dysfunction as a key component in age-related decline in osteoprogenitor function and show that both cyclical nutrient deprivation and Nicotinamide mononucleotide rejuvenate mitochondrial health, enhancing osteogenesis. These findings offer a promising therapeutic avenue for restoring youthful bone repair in aged individuals, with potential implications for rejuvenating other tissues.
Collapse
Affiliation(s)
- Joshua Reeves
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Pierre Tournier
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Pierre Becquart
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Robert Carton
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Yin Tang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Zhejiang University, Zhejiang, China
- Department of Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Alessandra Vigilante
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Dong Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Zhejiang University, Zhejiang, China
- Department of Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Shukry J Habib
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Tian N, Chen S, Han H, Jin J, Li Z. Association between triglyceride glucose index and total bone mineral density: a cross-sectional study from NHANES 2011-2018. Sci Rep 2024; 14:4208. [PMID: 38378872 PMCID: PMC10879154 DOI: 10.1038/s41598-024-54192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
The Homeostatic Model Assessment for Triglyceride Glucose Index (TyG) and its related indices, including triglyceride glucose-waist circumference (TyG-WC), triglyceride glucose-waist-to-height ratio (TyG-WHtR) and triglyceride glucose-body mass index (TyG-BMI), has emerged as a practical tool for assessing insulin resistance in metabolic disorders. However, limited studies have explored the connection between TyG, TyG-related indices and osteoporosis. This population-based study, utilizing data from the National Health and Nutrition Examination Survey 2011-2018, involved 5456 participants. Through weighted multivariate linear regression and smoothed curve fitting, a significant positive correlation was found between TyG, TyG-related indices and total bone mineral density (BMD) after adjusting for covariates [β = 0.0124, 95% CI (0.0006, 0.0242), P = 0.0390; β = 0.0004, 95% CI (0.0003, 0.0004), P < 0.0001; β = 0.0116, 95% CI (0.0076, 0.0156), P < 0.0001; β = 0.0001, 95% CI (0.0001, 0.0001), P < 0.0001]. In subgroup analysis, race stratification significantly affected the relationship between TyG and total BMD. Additionally, gender and race were both significant for TyG-related indices. Non-linear relationships and threshold effects with inflection points at 9.106, 193.9265, 4.065, and 667.5304 (TyG, TyG-BMI, TyG-WHtR, TyG-WC) were identified. Saturation phenomena were observed between TyG-BMI, TyG-WC and total BMD with saturation thresholds at 314.177 and 1022.0428. These findings contributed to understanding the association between TyG, TyG-related indices and total BMD, offering insights for osteoporosis prevention and treatment.
Collapse
Affiliation(s)
- Ningsheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No.23, Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu Province, People's Republic of China
| | - Shuai Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No.23, Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu Province, People's Republic of China
| | - Huawei Han
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No.23, Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu Province, People's Republic of China
| | - Jie Jin
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No.23, Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu Province, People's Republic of China
| | - Zhiwei Li
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No.23, Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu Province, People's Republic of China.
| |
Collapse
|
6
|
Bezerra AF, Alves JPM, Fernandes CCL, Cavalcanti CM, Silva MRL, Conde AJH, Tetaping GM, Ferreira ACA, Melo LM, Rodrigues APR, Rondina D. Dyslipidemia induced by lipid diet in late gestation donor impact on growth kinetics and in vitro potential differentiation of umbilical cord Wharton's Jelly mesenchymal stem cells in goats. Vet Res Commun 2022; 46:1259-1270. [PMID: 36125693 DOI: 10.1007/s11259-022-09995-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
Mesenchymal stem cells (MSC) from the umbilical cord (UC) have several attractive properties for clinical use. This study aimed to verify the impact of a lipid-rich diet during late gestation of donor goats on the growth and differentiation of MSCs from UC. From the 100th day of pregnancy to delivery, 22 goats were grouped based on their diet into the donor-lipid (DLD; n = 11) and donor-baseline (DBD; n = 11) diet groups. Diets were isonitrogenous and isoenergetic, differing in fat content (2.8% vs. 6.3% on a dry matter basis). Wharton's jelly (WJ) fragments were cultured. After primary culture, samples of WJ-MSCs were characterized by the expression of CD90, CD73, CD34, CD45, CD105, and Fas genes, mitochondrial activity using MitoTracker (MT) fluorescence probe, and growth kinetics. Population doubling time (PDT) was also determined. WJ-MSCs were differentiated into chondrocytes, adipocytes and osteocytes, and the mineralized area and adipocytes were determined. The lipid diet significantly increased triglyceride and cholesterol levels during pregnancy. The DLD group showed sub-expression of the CD90 gene, a high MT intensity, and a low proliferation rate at the end of the subculture. The mean PDT was 83.9 ± 1.3 h. Mineralized area and lipid droplet stain intensity from osteogenic and adipogenic differentiations, respectively, were greater in DLD. We conclude that in donor goats, dietary dyslipidemia during late pregnancy affects the ability of UC-derived MSCs to express their developmental potential in vitro, thus limiting their possible use for therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | - Camila Muniz Cavalcanti
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza, CE, 60.714.903, Brazil
| | | | | | - Gildas Mbemya Tetaping
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza, CE, 60.714.903, Brazil
| | | | - Luciana Magalhães Melo
- School of Veterinary Medicine, Centro Universitario Fametro (UNIFAMETRO), Fortaleza, CE, 60010-470, Brazil
| | | | - Davide Rondina
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza, CE, 60.714.903, Brazil.
| |
Collapse
|
7
|
Ma C, Yang C, Xie T, Dai W, Ma J. Meta-Analysis of Mechanism of Influence of CRY2 on the Differentiation of Mouse Osteoblast through the Regulation of Wnt/ Β-Catenin Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3727165. [PMID: 36046448 PMCID: PMC9420604 DOI: 10.1155/2022/3727165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022]
Abstract
Noncoding RNAs were discovered to control a variety of developmental mechanisms, including osteogenesis. According to emerging evidence, cryptochrome circadian-regulating (CRY) proteins have emerged as essential controllers of osteoblast differentiation. The linked processes, on the other hand, are still unknown. The specific process that underpins osteoblast differentiation and proliferation is yet unknown. This research gives a meta-analysis of CRY2's impact on mouse osteoblast differentiation via the control of the WNT/β-catenin signaling pathways. Western blot and quantitative real-time PCR were used to identify Cry2 expression levels, components in the osteoblast-associated signaling pathway, and osteoblast transcription markers. The osteogenic condition was measured utilizing alkaline phosphatase (ALP) and alizarin red (AR) staining, whereas cell growth rates were measured using CCK8 assays. An ectopic bone formation experiment was used to determine the osteogenic potential of osteoblasts. Cry2 stimulates the osteogenic development of mouse osteoblasts through canonical Wnt/β-catenin signaling, according to the findings.
Collapse
Affiliation(s)
- Chao Ma
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Chaojian Yang
- Ningxia Medical University, Yinchuan, Ningxia, China
| | - Tong Xie
- Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wenjuan Dai
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Jun Ma
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| |
Collapse
|
8
|
Khoshnood N, Shahrezaee MH, Shahrezaee M, Zamanian A. Three‐dimensional
bioprinting of tragacanth/hydroxyapaptite modified alginate bioinks for bone tissue engineering with tunable printability and bioactivity. J Appl Polym Sci 2022. [DOI: 10.1002/app.52833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Negin Khoshnood
- Biomaterials Research Group Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC) Tehran Iran
| | | | - Mostafa Shahrezaee
- Department of Orthopedic Surgery, School of Medicine AJA University of Medical Science Tehran Iran
| | - Ali Zamanian
- Biomaterials Research Group Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC) Tehran Iran
| |
Collapse
|
9
|
Gingiva-Derived Mesenchymal Stem Cells Attenuate Imiquimod- (IMQ-) Induced Murine Psoriasis-Like Skin Inflammation. Stem Cells Int 2022; 2022:6544514. [PMID: 35813890 PMCID: PMC9262573 DOI: 10.1155/2022/6544514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/28/2021] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Human gingiva-derived mesenchymal stem cells (GMSCs) are isolated from the gingival propria with promising regenerative, immunomodulatory, and anti-inflammatory properties. Recently, several studies, including ours, have found that GMSCs have the therapeutic potentials of nerve regeneration and skin disorders in various types such as the cell itself, cell-free conditioned medium, or extracellular vesicles (EVs). However, the mechanobiological behavior of GMSCs is closely related to the culture conditions. Therefore, the purpose of this study was to evaluate the function of human GMSCs on imiquimod- (IMQ-) induced murine psoriasis-like skin inflammation in two-dimensional (2D) and three-dimensional (3D) culture conditions. Here, we isolated and characterized GMSCs in 2D and 3D culture conditions and found that GMSCs in 2D and 3D infusion can significantly ameliorate the IMQ-induced murine psoriasis-like skin inflammation, reduce the levels of Th1- and Th17-related cytokines IFN-γ, TNF-α, IL-6, IL-17A, IL-17F, IL-21, and IL-22, and upregulate the percentage of spleen CD25+CD3+ T cells while downregulate the percentage of spleen IL-17+CD3+ T cells. In summary, our novel findings reveal that GMSCs in 2D and 3D infusion may possess therapeutic effects in the treatment of psoriasis.
Collapse
|
10
|
Damerau A, Kirchner M, Pfeiffenberger M, Ehlers L, Do Nguyen DH, Mertins P, Bartek B, Maleitzke T, Palmowski Y, Hardt S, Winkler T, Buttgereit F, Gaber T. Metabolic reprogramming of synovial fibroblasts in osteoarthritis by inhibition of pathologically overexpressed pyruvate dehydrogenase kinases. Metab Eng 2022; 72:116-132. [DOI: 10.1016/j.ymben.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
|
11
|
Integrated bioinformatics analysis reveals novel key biomarkers and potential candidate small molecule drugs in gestational diabetes mellitus. Biosci Rep 2021; 41:228450. [PMID: 33890634 PMCID: PMC8145272 DOI: 10.1042/bsr20210617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is the metabolic disorder that appears during pregnancy. The current investigation aimed to identify central differentially expressed genes (DEGs) in GDM. The transcription profiling by array data (E-MTAB-6418) was obtained from the ArrayExpress database. The DEGs between GDM samples and non-GDM samples were analyzed. Functional enrichment analysis were performed using ToppGene. Then we constructed the protein–protein interaction (PPI) network of DEGs by the Search Tool for the Retrieval of Interacting Genes database (STRING) and module analysis was performed. Subsequently, we constructed the miRNA–hub gene network and TF–hub gene regulatory network. The validation of hub genes was performed through receiver operating characteristic curve (ROC). Finally, the candidate small molecules as potential drugs to treat GDM were predicted by using molecular docking. Through transcription profiling by array data, a total of 869 DEGs were detected including 439 up-regulated and 430 down-regulated genes. Functional enrichment analysis showed these DEGs were mainly enriched in reproduction, cell adhesion, cell surface interactions at the vascular wall and extracellular matrix organization. Ten genes, HSP90AA1, EGFR, RPS13, RBX1, PAK1, FYN, ABL1, SMAD3, STAT3 and PRKCA were associated with GDM, according to ROC analysis. Finally, the most significant small molecules were predicted based on molecular docking. This investigation identified hub genes, signal pathways and therapeutic agents, which might help us, enhance our understanding of the mechanisms of GDM and find some novel therapeutic agents for GDM.
Collapse
|
12
|
Delineating the heterogeneity of matrix-directed differentiation toward soft and stiff tissue lineages via single-cell profiling. Proc Natl Acad Sci U S A 2021; 118:2016322118. [PMID: 33941688 PMCID: PMC8126831 DOI: 10.1073/pnas.2016322118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The clinical utility of mesenchymal stromal/stem cells (MSCs) in mediating immunosuppressive effects and supporting regenerative processes is broadly established. However, the inherent heterogeneity of MSCs compromises its biomedical efficacy and reproducibility. To study how cellular variation affects fate decision-making processes, we perform single-cell RNA sequencing at multiple time points during bipotential matrix-directed differentiation toward soft- and stiff tissue lineages. In this manner, we identify distinctive MSC subpopulations that are characterized by their multipotent differentiation capacity and mechanosensitivity. Also, whole-genome screening highlights TPM1 as a potent mechanotransducer of matrix signals and regulator of cell differentiation. Thus, by introducing single-cell methodologies into mechanobiology, we delineate the complexity of adult stem cell responses to extracellular cues in tissue regeneration and immunomodulation. Mesenchymal stromal/stem cells (MSCs) form a heterogeneous population of multipotent progenitors that contribute to tissue regeneration and homeostasis. MSCs assess extracellular elasticity by probing resistance to applied forces via adhesion, cytoskeletal, and nuclear mechanotransducers that direct differentiation toward soft or stiff tissue lineages. Even under controlled culture conditions, MSC differentiation exhibits substantial cell-to-cell variation that remains poorly characterized. By single-cell transcriptional profiling of nonconditioned, matrix-conditioned, and early differentiating cells, we identified distinct MSC subpopulations with distinct mechanosensitivities, differentiation capacities, and cell cycling. We show that soft matrices support adipogenesis of multipotent cells and early endochondral ossification of nonadipogenic cells, whereas intramembranous ossification and preosteoblast proliferation are directed by stiff matrices. Using diffusion pseudotime mapping, we outline hierarchical matrix-directed differentiation and perform whole-genome screening of mechanoresponsive genes. Specifically, top-ranked tropomyosin-1 is highly sensitive to stiffness cues both at RNA and protein levels, and changes in TPM1 expression determine the differentiation toward soft versus stiff tissue lineage. Consistent with actin stress fiber stabilization, tropomyosin-1 overexpression maintains YAP1 nuclear localization, activates YAP1 target genes, and directs osteogenic differentiation. Knockdown of tropomyosin-1 reversed YAP1 nuclear localization consistent with relaxation of cellular contractility, suppressed osteogenesis, activated early endochondral ossification genes after 3 d of culture in induction medium, and facilitated adipogenic differentiation after 1 wk. Our results delineate cell-to-cell variation of matrix-directed MSC differentiation and highlight tropomyosin-mediated matrix sensing.
Collapse
|
13
|
Woeller CF, Lim SA, Roztocil E, Yee M, Beier EE, Puzas JE, O'Reilly MA. Neonatal hyperoxia impairs adipogenesis of bone marrow-derived mesenchymal stem cells and fat accumulation in adult mice. Free Radic Biol Med 2021; 167:287-298. [PMID: 33757863 PMCID: PMC8096722 DOI: 10.1016/j.freeradbiomed.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
Preterm birth is a risk factor for growth failure and development of respiratory disease in children and young adults. Their early exposure to oxygen may contribute to lung disease because adult mice exposed to hyperoxia as neonates display reduced lung function, changes in the host response to respiratory viral infections, and develop pulmonary hypertension and heart failure that shortens their lifespan. Here, we provide new evidence that neonatal hyperoxia also impairs growth by inhibiting fat accumulation. Failure to accumulate fat may reflect a systemic defect in adipogenic potential of stem cells because bone marrow-derived mesenchymal cells (BMSCs) isolated from the mice grew slower and were more oxidized compared to controls. They also displayed reduced capacity to accumulate lipid and differentiate into adipocytes. BMSCs from adult mice exposed to neonatal hyperoxia express lower levels of peroxisome proliferator-activated receptor gamma (PPARγ), a transcription factor that drives adipocyte differentiation. The defect in adipogenesis was rescued by expressing PPARγ in these cells. These findings reveal early life exposure to high levels of oxygen may suppresses fat accumulation and impair adipogenic differentiation upstream of PPARγ signaling, thus potentially contributing to growth failure seen in people born preterm.
Collapse
Affiliation(s)
- Collynn F Woeller
- Departments of Ophthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
| | - Sydney A Lim
- Departments of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Elisa Roztocil
- Departments of Ophthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Min Yee
- Departments of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Eric E Beier
- Departments of Orthopaedics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - J Edward Puzas
- Departments of Orthopaedics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Michael A O'Reilly
- Departments of Ophthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA; Departments of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
14
|
Imerb N, Thonusin C, Chattipakorn N, Chattipakorn SC. Aging, obese-insulin resistance, and bone remodeling. Mech Ageing Dev 2020; 191:111335. [DOI: 10.1016/j.mad.2020.111335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/14/2020] [Indexed: 02/08/2023]
|
15
|
KATİCA M, TEPEKOY F. The effect of Calcitriol 1,25 (OH)2 - D3 on osteoblast-like cell proliferation during in vitro cultivation. MEHMET AKIF ERSOY ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2020. [DOI: 10.24880/maeuvfd.653000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
16
|
Yang J, Zhan XZ, Malola J, Li ZY, Pawar JS, Zhang HT, Zha ZG. The multiple roles of Thy-1 in cell differentiation and regeneration. Differentiation 2020; 113:38-48. [PMID: 32403041 DOI: 10.1016/j.diff.2020.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 11/17/2022]
Abstract
Thy-1 is a 25-37 kDa glycophosphatidylinositol (GPI)-anchored cell surface protein that was discovered more than 50 years ago. Recent findings have suggested that Thy-1 is expressed on thymocytes, mesenchymal stem cells (MSCs), cancer stem cells, hematopoietic stem cells, fibroblasts, myofibroblasts, endothelial cells, neuronal smooth muscle cells, and pan T cells. Thy-1 plays vital roles in cell migration, adhesion, differentiation, transdifferentiation, apoptosis, mechanotransduction, and cell division, which in turn are involved in tumor development, pulmonary fibrosis, neurite outgrowth, and T cell activation. Studies have increasingly indicated a significant role of Thy-1 in cell differentiation and regeneration. However, despite recent research, many questions remain regarding the roles of Thy-1 in cell differentiation and regeneration. This review aimed to summarize the roles of Thy-1 in cell differentiation and regeneration. Furthermore, since Thy-1 is an outer leaflet membrane protein anchored by GPI, we attempted to address how Thy-1 regulates intracellular pathways through cis and trans signals. Due to the complexity and mystery surrounding the issue, we also summarized the Thy-1-related pathways in different biological processes, and this might provide novel insights in the field of cell differentiation and regeneration.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Xiao-Zhen Zhan
- Department of Stomatology, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jonathan Malola
- College of Pharmacy, Purdue University, West Lafayette, 47906, IN, USA
| | - Zhen-Yan Li
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jogendra Singh Pawar
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, 47906, IN, USA
| | - Huan-Tian Zhang
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Zhen-Gang Zha
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
17
|
Induced osteogenic differentiation of human smooth muscle cells as a model of vascular calcification. Sci Rep 2020; 10:5951. [PMID: 32249802 PMCID: PMC7136202 DOI: 10.1038/s41598-020-62568-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/14/2020] [Indexed: 01/09/2023] Open
Abstract
Vascular calcification is a severe pathological event in the manifestation of atherosclerosis. Pathogenic triggers mediating osteogenic differentiation of arterial smooth muscle cells (SMC) in humans remain insufficiently understood and are to a large extent investigated in animal models or cells derived thereof. Here, we describe an in vitro model based on SMC derived from healthy and diseased humans that allows to comprehensively investigate vascular calcification mechanisms. Comparing the impact of the commonly used SMC culture media VascuLife, DMEM, and M199, cells were characterised by immunofluorescence, flow cytometry, qPCR, and regarding their contractility and proliferative capacity. Irrespective of the arterial origin, the clinical background and the expansion medium used, all cells expressed typical molecular SMC marker while contractility varied between donors. Interestingly, the ability to induce an osteogenic differentiation strongly depended on the culture medium, with only SMC cultured in DMEM depositing calcified matrix upon osteogenic stimulation, which correlated with increased alkaline phosphatase activity, increased inorganic phosphate level and upregulation of osteogenic gene markers. Our optimized model is suitable for donor-oriented as well as broader screening of potential pathogenic mediators triggering vascular calcification. Translational studies aiming to identify and to evaluate therapeutic targets in a personalized fashion would be feasible.
Collapse
|
18
|
Sun Q, Nakata H, Yamamoto M, Kasugai S, Kuroda S. Comparison of gingiva-derived and bone marrow mesenchymal stem cells for osteogenesis. J Cell Mol Med 2019; 23:7592-7601. [PMID: 31657140 PMCID: PMC6815943 DOI: 10.1111/jcmm.14632] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 07/15/2019] [Accepted: 08/06/2019] [Indexed: 01/01/2023] Open
Abstract
Presently, bone marrow is considered as a prime source of mesenchymal stem cells; however, there are some drawbacks and limitations. Compared with other mesenchymal stem cell (MSC) sources, gingiva-derived mesenchymal stem cells (GMSCs) are abundant and easy to obtain through minimally invasive cell isolation techniques. In this study, MSCs derived from gingiva and bone marrow were isolated and cultured from mice. GMSCs were characterized by osteogenic, adipogenic and chondrogenic differentiation, and flow cytometry. Compared with bone marrow MSCs (BMSCs), the proliferation capacity was judged by CCK-8 proliferation assay. Osteogenic differentiation was assessed by ALP staining, ALP assay and Alizarin red staining. RT-qPCR was performed for ALP, OCN, OSX and Runx2. The results indicated that GMSCs showed higher proliferative capacity than BMSCs. GMSCs turned more positive for ALP and formed a more number of mineralized nodules than BMSCs after osteogenic induction. RT-qPCR revealed that the expression of ALP, OCN, OSX and Runx2 was significantly increased in the GMSCs compared with that in BMSCs. Moreover, it was found that the number of CD90-positive cells in GMSCs elevated more than that of BMSCs during osteogenic induction. Taking these results together, it was indicated that GMSCs might be a promising source in the future bone tissue engineering.
Collapse
Affiliation(s)
- Quan Sun
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Medical and Dental Sciences Track, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Hidemi Nakata
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Medical and Dental Sciences Track, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Maiko Yamamoto
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Medical and Dental Sciences Track, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Shohei Kasugai
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Medical and Dental Sciences Track, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Shinji Kuroda
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Medical and Dental Sciences Track, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
19
|
Picke AK, Campbell GM, Blüher M, Krügel U, Schmidt FN, Tsourdi E, Winzer M, Rauner M, Vukicevic V, Busse B, Salbach-Hirsch J, Tuckermann JP, Simon JC, Anderegg U, Hofbauer LC, Saalbach A. Thy-1 (CD90) promotes bone formation and protects against obesity. Sci Transl Med 2019; 10:10/453/eaao6806. [PMID: 30089635 DOI: 10.1126/scitranslmed.aao6806] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/02/2018] [Accepted: 06/15/2018] [Indexed: 12/19/2022]
Abstract
Osteoporosis and obesity result from disturbed osteogenic and adipogenic differentiation and present emerging challenges for our aging society. Because of the regulatory role of Thy-1 in mesenchyme-derived fibroblasts, we investigated the impact of Thy-1 expression on mesenchymal stem cell (MSC) fate between osteogenic and adipogenic differentiation and consequences for bone formation and adipose tissue development in vivo. MSCs from Thy-1-deficient mice have decreased osteoblast differentiation and increased adipogenic differentiation compared to MSCs from wild-type mice. Consistently, Thy-1-deficient mice exhibited decreased bone volume and bone formation rate with elevated cortical porosity, resulting in lower bone strength. In parallel, body weight, subcutaneous/epigonadal fat mass, and bone fat volume were increased. Thy-1 deficiency was accompanied by reduced expression of specific Wnt ligands with simultaneous increase of the Wnt inhibitors sclerostin and dickkopf-1 and an altered responsiveness to Wnt. We demonstrated that disturbed bone remodeling in osteoporosis and dysregulated adipose tissue accumulation in patients with obesity were mirrored by reduced serum Thy-1 concentrations. Our findings provide new insights into the mutual regulation of bone formation and obesity and open new perspectives to monitor and to interfere with the dysregulated balance of adipogenesis and osteogenesis in obesity and osteoporosis.
Collapse
Affiliation(s)
- Ann-Kristin Picke
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden 01307, Germany
| | - Graeme M Campbell
- Institute of Biomechanics, Hamburg University of Technology, 21073 Hamburg, Germany
| | | | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, UL, 04103 Leipzig, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Elena Tsourdi
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden 01307, Germany
| | - Maria Winzer
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden 01307, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden 01307, Germany
| | - Vladimir Vukicevic
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, UL, 04103 Leipzig, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Juliane Salbach-Hirsch
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden 01307, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany
| | - Jan C Simon
- Department of Dermatology, Venereology and Allergology of Medical Faculty of Leipzig University, 04103 Leipzig, Germany
| | - Ulf Anderegg
- Department of Dermatology, Venereology and Allergology of Medical Faculty of Leipzig University, 04103 Leipzig, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden 01307, Germany
| | - Anja Saalbach
- Department of Dermatology, Venereology and Allergology of Medical Faculty of Leipzig University, 04103 Leipzig, Germany.
| |
Collapse
|
20
|
Banerjee T, Calvi LM, Becker MW, Liesveld JL. Flaming and fanning: The Spectrum of inflammatory influences in myelodysplastic syndromes. Blood Rev 2019; 36:57-69. [PMID: 31036385 PMCID: PMC6711159 DOI: 10.1016/j.blre.2019.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/11/2019] [Accepted: 04/16/2019] [Indexed: 12/22/2022]
Abstract
The myelodysplastic syndromes (MDS) represent neoplasms derived from the expansion of mutated clonal hematopoietic cells which often demonstrate aberrant differentiation potential with resultant cytopenias and a propensity to evolve into acute myelogenous leukemia. While multiple mutations have been identified which may serve as drivers of the MDS clone, there is accumulating evidence that MDS clones and subclones are subject to modulation by the marrow microenvironment and its inflammatory milieu. There is also a strong link between autoimmune disorders and MDS. In this review, we examine the role of inflammatory cytokines, toll like receptors, pyroptosis, stromal cells, and cellular inflammatory mediators in MDS initiation, propagation, and progression. These contributions in a background of mutational, epigenetic, and aging changes in the marrow are also reviewed. Such inflammatory mediators may be subject to therapeutic agents which will enhance suppression of the MDS clone with potential to improve therapeutic outcomes in this disease which is usually incurable in aged patients not eligible for stem cell transplantation.
Collapse
Affiliation(s)
- Titas Banerjee
- Department of Medicine, University of Rochester, Rochester, NY, USA.
| | - Laura M Calvi
- Division of Endocrinology and Metabolism, Department of Medicine, and the James P Wilmot Cancer Institute, USA.
| | - Michael W Becker
- Division of Hematology/Oncology, Department of Medicine, James P Wilmot Cancer Institute, USA.
| | - Jane L Liesveld
- Division of Hematology/Oncology, Department of Medicine, James P Wilmot Cancer Institute, USA.
| |
Collapse
|
21
|
Noda S, Kawashima N, Yamamoto M, Hashimoto K, Nara K, Sekiya I, Okiji T. Effect of cell culture density on dental pulp-derived mesenchymal stem cells with reference to osteogenic differentiation. Sci Rep 2019; 9:5430. [PMID: 30931957 PMCID: PMC6443725 DOI: 10.1038/s41598-019-41741-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/11/2019] [Indexed: 01/09/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are a good source for tissue regeneration, however, the number of DPSCs in the pulp tissue is limited. Cell propagation is essential for tissue engineering using DPSCs and the cell culture conditions may affect the properties of DPSCs. The purpose of this study was to analyze the effect of cell culture condition, especially dense culture condition, on the property and differentiation pathway of DPSCs. We cultured DPSCs under sparse (sDPSCs; 5 × 103 cells/cm2) or dense (dDPSCs; 1 × 105 cells/cm2) conditions for 4 days and compared their properties. The populations of CD73+ and CD105+ cells were significantly decreased in dDPSCs. Both groups showed multi-differentiation potential, but mineralized nodule formation was enhanced in dDPSCs. The phosphorylation of focal adhesion kinase (FAK) and phosphoinositide 3-kinase (PI3K) proteins was promoted in dDPSCs, and alkaline phosphatase (ALP) mRNA expression in dDPSCs was abolished in the presence of pan-PI3K and FAK inhibitors. dDPSCs implanted into mouse bone cavities induced more mineralized tissue formation than sDPSCs and control. These findings indicate that dense culture conditions modified the properties of DPSCs and gave rise to osteogenic-lineage commitment via integrin signaling and suggest that dense culture conditions favor the propagation of DPSCs to be used for mineralized tissue regeneration.
Collapse
Affiliation(s)
- Sonoko Noda
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Nobuyuki Kawashima
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Mioko Yamamoto
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Kentaro Hashimoto
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Keisuke Nara
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takashi Okiji
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| |
Collapse
|
22
|
Flores EM, Woeller CF, Falsetta ML, Susiarjo M, Phipps RP. Thy1 (CD90) expression is regulated by DNA methylation during adipogenesis. FASEB J 2019; 33:3353-3363. [PMID: 30376360 PMCID: PMC6404567 DOI: 10.1096/fj.201801481r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/09/2018] [Indexed: 12/23/2022]
Abstract
The obesity epidemic is developing into the most costly health problem facing the world. Obesity, characterized by excessive adipogenesis and enlarged adipocytes, promotes morbidities, such as diabetes, cardiovascular disease, and cancer. Regulation of adipogenesis is critical to our understanding of how fat cell formation causes obesity and associated health problems. Thy1 (also called CD90), a widely used stem cell marker, blocks adipogenesis and reduces lipid accumulation. Thy1-knockout mice are prone to diet-induced obesity. Although the importance of Thy1 in adipogenesis and obesity is now evident, how its expression is regulated is not. We hypothesized that DNA methylation has a role in promoting adipogenesis and affects Thy1 expression. Using the methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-dC), we investigated whether DNA methylation alters Thy1 expression during adipogenesis in both mouse 3T3-L1 preadipocytes and mouse mesenchymal stem cells. Thy1 protein and mRNA levels were decreased dramatically during adipogenesis. However, 5-aza-dC treatment prevented that phenomenon. Methylation-sensitive pyrosequencing analysis showed that CpG sites at the Thy1 locus have increased methylation during adipogenesis, as well as increased methylation in adipose tissue from diet-induced obese mice. These new findings highlight the potential role of Thy1 and DNA methylation in adipogenesis and obesity.-Flores, E. M., Woeller, C. F., Falsetta, M. L., Susiarjo, M., Phipps, R. P. Thy1 (CD90) expression is regulated by DNA methylation during adipogenesis.
Collapse
Affiliation(s)
- E’Lissa M. Flores
- Clinical and Translational Science Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Collynn F. Woeller
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
| | - Megan L. Falsetta
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
| | - Richard P. Phipps
- Clinical and Translational Science Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
23
|
Saalbach A, Anderegg U. Thy‐1: more than a marker for mesenchymal stromal cells. FASEB J 2019; 33:6689-6696. [DOI: 10.1096/fj.201802224r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Anja Saalbach
- Department of Dermatology, Venerology, and AllergologyFaculty of MedicineLeipzig UniversityLeipzigGermany
| | - Ulf Anderegg
- Department of Dermatology, Venerology, and AllergologyFaculty of MedicineLeipzig UniversityLeipzigGermany
| |
Collapse
|
24
|
Picke AK, Campbell GM, Schmidt FN, Busse B, Rauner M, Simon JC, Anderegg U, Hofbauer LC, Saalbach A. Thy-1 Deficiency Augments Bone Loss in Obesity by Affecting Bone Formation and Resorption. Front Cell Dev Biol 2018; 6:127. [PMID: 30333974 PMCID: PMC6176687 DOI: 10.3389/fcell.2018.00127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/13/2018] [Indexed: 12/30/2022] Open
Abstract
Healthy bone remodeling results from a balanced bone formation and bone resorption realized by bone-forming osteoblasts and bone-resorbing osteoclasts, respectively. Recently, Thy-1 (CD90) was identified as positive regulator of osteoblast differentiation and activation, thus, promoting bone formation while concurrently inhibiting adipogenesis and obesity in mice. Additionally, Thy-1 did not affect bone resorption. An obesity-related co-morbidity that is increasing in prevalence is a disturbed bone formation resulting in an increased fracture risk. The underlying mechanisms of obesity-induced bone alterations are not yet fully elucidated and therefore therapy options for efficient bone-anabolic treatments are limited. Therefore, we investigated the impact of Thy-1 on bone metabolism under obese conditions. Indeed, high fat diet (HFD) induced obese mice lacking Thy-1 (Thy-1−/−) showed increased body fat mass compared to wildtype (WT) mice while bone mass (−38%) and formation (−57%) were decreased as shown by micro-computed tomography (μCT) measurement, histological analysis, and fourier-transform infrared spectroscopy (FTIR). Interestingly, under obese conditions, lack of Thy-1 affected both osteoblast and osteoclast function. Number (−30%) and activity of osteoblasts were decreased in obese Thy-1−/− mice while osteoclast number (+39%) and activity were increased. Facilitated bone marrow fat accumulation (+56%) in obese Thy-1−/− mice compared to obese WT mice was associated with upregulated tumor necrosis factor α (Tnfα, +46%) and colony stimulating factor 1 receptor (Csf1r) expression, strong promoters of osteoclast differentiation. Moreover, lack of Thy-1 was accompanied by a reduction of osteoprotegerin (Tnfrsf11b) expression (−36%), an inhibitor of osteoclast differentiation. Altered Tnfα, Csf1r, and Tnfrsf11b expression might be responsible for elevated osteoclast activity in obese Thy-1-deficient mice. In summary, our findings show that lack of Thy-1 promotes obesity under HFD conditions while concurrently decreasing bone mass and formation. Mechanistic studies revealed that under obese conditions lack of Thy-1 impairs both bone formation and bone resorption.
Collapse
Affiliation(s)
- Ann-Kristin Picke
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.,Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Graeme M Campbell
- Institute of Biomechanics, TUHH Hamburg University of Technology, Hamburg, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center, Hamburg, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Jan C Simon
- Department of Dermatology, Venerology, and Allergology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Ulf Anderegg
- Department of Dermatology, Venerology, and Allergology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Anja Saalbach
- Department of Dermatology, Venerology, and Allergology, Medical Faculty, Leipzig University, Leipzig, Germany
| |
Collapse
|