1
|
Liu Y, Lyu D, Yao Y, Cui J, Liu J, Bai Z, Zhao Z, Li Y, Lu B, Dong K, Pan X. The comprehensive potential of AQP1 as a tumor biomarker: evidence from kidney neoplasm cohorts, cell experiments and pan-cancer analysis. Hum Genomics 2025; 19:15. [PMID: 39988693 PMCID: PMC11849320 DOI: 10.1186/s40246-025-00726-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/12/2025] [Indexed: 02/25/2025] Open
Abstract
Aquaporin1 (AQP1) facilitates water transport. Its ability to be a biomarker at the pan-cancer level remains uninvestigated. We performed immunohistochemical staining on tissues from 370 individuals with kidney neoplasms to measure AQP1 expression. We utilized Kaplan-Meier survival analysis, Chi-square tests, and multivariate Cox regression analyses to assess the prognostic relevance of AQP1 expression. In the pan-cancer context, we explored AQP1's competing endogenous RNAs network, protein-protein interactions, genomic changes, gene set enrichment analysis (GSEA), the correlation of AQP1 expression with survival outcomes, drug sensitivity, drug molecular docking, tumor purity and immunity. AQP1 shRNA expressing 786-O cells were established. Cell proliferation was assessed by Cell Counting Kit-8 and colony formation. Transwell migration, invasion, and cell scratch assays were conducted. In our study, AQP1 expression was an independent protective factor for OS and PFS in renal cancer patients. AQP1 expression significantly correlated with survival outcomes in renal cancers, LGG, SARC, HNSC and UVM. PI-103 sensitivity was related to AQP1 expression and had potential binding cite with AQP1 protein. Knockdown of AQP1 reduced cell proliferation, migration and invasion. Our study uncovered AQP1 as a biomarker for favorable survival outcomes in renal cancers. Furthermore, the bioinformatic analysis promoted its implication in pan-cancer scope.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- BGI research, BGI-Hangzhou, Hangzhou, 310012, China
| | - Donghao Lyu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuntao Yao
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- BGI research, BGI-Hangzhou, Hangzhou, 310012, China
| | - Jinming Cui
- Ulink College of Shanghai, Shanghai, 201615, China
| | - Jiangui Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zikuan Bai
- Shanghai YK Pao School, Shanghai, 201620, China
| | - Zihui Zhao
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuanan Li
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Bingnan Lu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Keqin Dong
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Department of urology, Chinese PLA general hospital of central theater command, Wuhan, 430061, China.
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Edamana S, Login FH, Riishede A, Dam VS, Kirkegaard T, Nejsum LN. The water channels aquaporin-1 and aquaporin-3 interact with and affect the cell polarity protein Scribble in 3D in vitro models of breast cancer. Am J Physiol Cell Physiol 2024; 327:C1323-C1334. [PMID: 39279492 DOI: 10.1152/ajpcell.00094.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
Cellular changes in carcinomas include alterations in cell proliferation, cell migration, cell-cell adhesion, and cellular polarity. In vitro studies have revealed that the water channels, aquaporin-1 (AQP1) and AQP3, can influence cell migration and cell-cell adhesion. Of note, we previously showed that AQP1 overexpression reduced levels of cell-cell adhesion proteins, whereas AQP3 increased levels when overexpressed in normal epithelial cells. Expression of AQP1 and AQP3 in breast carcinoma is associated with lymph node metastasis, recurrence, and poor survival of patients with breast cancer. In this study, we investigated if AQP1 and AQP3 affected cell polarity in breast cancer by studying the relationship between the major polarity protein Scribble and AQP1 and AQP3. In breast cancer tissue samples, the protein expression of AQP1, AQP3, and Scribble did not show an obvious correlation. However, in a GST pull-down assay, AQP1 and AQP3 interacted with Scribble. AQP1 overexpression reduced the size of 3D spheroids as well as reduced Scribble levels at cell-cell contacts, whereas AQP3 overexpression showed no significant change in spheroid size compared with control, AQP3 overexpression also reduced Scribble levels at cell-cell contacts. Of note, AQP1 overexpression increased cell migration and induced cell detachment and dissemination from migrating breast cancer cell sheets, whereas AQP3 overexpression did not. Thus, AQP1 and AQP3 differentially affect 3D-grown breast cancer spheroids, and especially AQP1 may contribute to cancer development and spread via negatively affecting cellular junctions and cell polarity proteins as well as increasing cell migration and cell detachment.NEW & NOTEWORTHY Overexpression of the water channels aquaporin-1 and aquaporin-3 reduced levels of the key polarity protein Scribble at cell-cell junctions, suggesting potential implications in breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Sarannya Edamana
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Andreas Riishede
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Vibeke S Dam
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Teresa Kirkegaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Venneri M, Vezzi V, Di Mise A, Ranieri M, Centrone M, Tamma G, Nejsum LN, Valenti G. Novel signalling pathways in nephrogenic syndrome of inappropriate antidiuresis: functional implication of site-specific AQP2 phosphorylation. J Physiol 2024; 602:3169-3189. [PMID: 36823952 DOI: 10.1113/jp284039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is a rare X-linked disease caused by gain-of-function mutations of arginine vasopressin receptor 2 (V2R). Patients with NSIAD are characterized by the inability to excrete a free water load and by inappropriately increased urinary osmolality despite very low levels of plasma vasopressin, resulting in euvolaemic hyponatraemia. To dissect the signalling downstream V2R constitutively active variants, Flp-In T-REx Madin-Darby canine kidney (FTM) cells, stably transfected with V2R mutants (R137L, R137C and F229V) and AQP2-wt or non-phosphorylatable AQP2-S269A/AQP2-S256A, were used as cellular models. All three activating V2R mutations presented constitutive plasma membrane expression of AQP2-wt and significantly higher basal water permeability. In addition, V2R-R137L/C showed significantly higher activity of Rho-associated kinase (ROCK), a serine/threonine kinase previously suggested to be involved in S269-AQP2 phosphorylation downstream of these V2R mutants. Interestingly, FTM cells expressing V2R-R137L/C mutants and AQP2-S269A showed a significant reduction in AQP2 membrane abundance and a significant reduction in ROCK activity, indicating the crucial importance of S269-AQP2 phosphorylation in the gain-of-function phenotype. Conversely, V2R-R137L/C mutants retained the gain-of-function phenotype when AQP2-S256A was co-expressed. In contrast, cells expressing the F229V mutant and the non-phosphorylatable AQP2-S256A had a significant reduction in AQP2 membrane abundance along with a significant reduction in basal osmotic water permeability, indicating a crucial role of Ser256 for this mutant. These data indicate that the constitutive AQP2 trafficking associated with the gain-of-function V2R-R137L/C mutants causing NSIAD is protein kinase A independent and requires an intact Ser269 in AQP2 under the control of ROCK phosphorylation. KEY POINTS: Nephrogenic syndrome of inappropriate antidiuresis is caused by two constitutively active variant phenotypes of AVPR2, one sensitive to vaptans (V2R-F229V) and the other vaptan resistant (V2R-R137C/L). In renal cells, all three activating arginine vasopressin receptor 2 (V2R) variants display constitutive AQP2 plasma membrane expression and high basal water permeability. In cells expressing V2R-R137L/C mutants, disruption of the AQP2-S269 phosphorylation site caused the loss of the gain-of-function phenotype, which, in contrast, was retained in V2R-F229V-expressing cells. Cells expressing the V2R-F229V mutant were instead sensitive to disruption of the AQP2-S256 phosphorylation site. The serine/threonine kinase Rho-associated kinase (ROCK) was found to be involved in AQP2-S269 phosphorylation downstream of the V2R-R137L/C mutants. These findings might have clinical relevance for patients with nephrogenic syndrome of inappropriate antidiuresis.
Collapse
Affiliation(s)
- Maria Venneri
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Vanessa Vezzi
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Annarita Di Mise
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Marianna Ranieri
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Mariangela Centrone
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Grazia Tamma
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Giovanna Valenti
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
4
|
da Silva IV, Pimpão C, Paccetti-Alves I, Thomas SR, Barateiro A, Casini A, Soveral G. Blockage of aquaporin-3 peroxiporin activity by organogold compounds affects melanoma cell adhesion, proliferation and migration. J Physiol 2024; 602:3111-3129. [PMID: 38323926 DOI: 10.1113/jp284155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Aquaporin-3 (AQP3) is a membrane channel with dual aquaglyceroporin/peroxiporin activity, facilitating the diffusion of water, glycerol and H2O2 across cell membranes. AQP3 shows aberrant expression in melanoma and its role in cell adhesion, migration and proliferation is well described. Gold compounds were shown to modulate AQP3 activity with reduced associated toxicity, making them promising molecules for cancer therapy. In this study, we validated the phenotype resulting from AQP3-silencing of two melanoma cell lines, MNT-1 and A375, which resulted in decreased H2O2 permeability. Subsequently, the AQP3 inhibitory effect of a new series of organogold compounds derived from Auphen, a potent AQP3 inhibitor, was first evaluated in red blood cells (RBCs) that highly express AQP3, and then in HEK-293T cells with AQP3 overexpression to ascertain the compounds' specificity. The first screening in RBCs unveiled two organogold compounds as promising blockers of AQP3 permeability. Moderate reduction of glycerol permeability but drastic inhibition of H2O2 permeability was detected for some of the gold derivatives in both AQP3-overexpressing cells and human melanoma cell lines. Additionally, all compounds were effective in impairing cell adhesion, proliferation and migration, although in a cell type-dependent manner. In conclusion, our data show that AQP3 peroxiporin activity is crucial for melanoma progression and highlight organogold compounds as promising AQP3 inhibitors with implications in melanoma cell adhesion, proliferation and migration, unveiling their potential as anticancer drugs against AQP3-overexpressing tumours. KEY POINTS: AQP3 affects cellular redox balance. Gold compounds inhibit AQP3 permeability in melanoma cells. AQP3 is involved in cell adhesion, proliferation and migration of melanoma. Blockage of AQP3 peroxiporin activity impairs melanoma cell migration. Gold compounds are potential anticancer drug leads for AQP3-overexpressing cancers.
Collapse
Affiliation(s)
- Inês V da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Paccetti-Alves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Sophie R Thomas
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Andreia Barateiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Angela Casini
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
5
|
Bijelić A, Silovski T, Mlinarić M, Čipak Gašparović A. Peroxiporins in Triple-Negative Breast Cancer: Biomarker Potential and Therapeutic Perspectives. Int J Mol Sci 2024; 25:6658. [PMID: 38928364 PMCID: PMC11203578 DOI: 10.3390/ijms25126658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC) remains one of the most challenging subtypes since it is initially characterized by the absence of specific biomarkers and corresponding targeted therapies. Advances in methodology, translational informatics, genomics, and proteomics have significantly contributed to the identification of therapeutic targets. The development of innovative treatments, such as antibody-drug conjugates and immune checkpoint inhibitors, alongside chemotherapy, has now become the standard of care. However, the quest for biomarkers defining therapy outcomes is still ongoing. Peroxiporins, which comprise a subgroup of aquaporins, which are membrane pores facilitating the transport of water, glycerol, and hydrogen peroxide, have emerged as potential biomarkers for therapy response. Research on peroxiporins reveals their involvement beyond traditional channeling activities, which is also reflected in their cellular localization and roles in cellular signaling pathways. This research on peroxiporins provides fresh insights into the mechanisms of therapy resistance in tumors, offering potential avenues for predicting treatment outcomes and tailoring successful TNBC therapies.
Collapse
Affiliation(s)
- Anita Bijelić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Tajana Silovski
- Department of Oncology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Monika Mlinarić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Ana Čipak Gašparović
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| |
Collapse
|
6
|
Choi HS, Jang HJ, Kristensen MK, Kwon TH. TAZ is involved in breast cancer cell migration via regulating actin dynamics. Front Oncol 2024; 14:1376831. [PMID: 38774409 PMCID: PMC11106448 DOI: 10.3389/fonc.2024.1376831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/11/2024] [Indexed: 05/24/2024] Open
Abstract
Background Cancer metastasis is dependent on cell migration. Several mechanisms, including epithelial-to-mesenchymal transition (EMT) and actin fiber formation, could be involved in cancer cell migration. As a downstream effector of the Hippo signaling pathway, transcriptional coactivator with PDZ-binding motif (TAZ) is recognized as a key mediator of the metastatic ability of breast cancer cells. We aimed to examine whether TAZ affects the migration of breast cancer cells through the regulation of EMT or actin cytoskeleton. Methods MCF-7 and MDA-MB-231 cells were treated with siRNA to attenuate TAZ abundance. Transwell migration assay and scratch wound healing assay were performed to study the effects of TAZ knockdown on cancer cell migration. Fluorescence microscopy was conducted to examine the vinculin and phalloidin. Semiquantitative immunoblotting and quantitative real-time PCR were performed to study the expression of small GTPases and kinases. Changes in the expression of genes associated with cell migration were examined through next-generation sequencing. Results TAZ-siRNA treatment reduced TAZ abundance in MCF-7 and MDA-MB-231 breast cancer cells, which was associated with a significant decrease in cell migration. TAZ knockdown increased the expression of fibronectin, but it did not exhibit the typical pattern of EMT progression. TGF-β treatment in MDA-MB-231 cells resulted in a reduction in TAZ and an increase in fibronectin levels. However, it paradoxically promoted cell migration, suggesting that EMT is unlikely to be involved in the decreased migration of breast cancer cells in response to TAZ suppression. RhoA, a small Rho GTPase protein, was significantly reduced in response to TAZ knockdown. This caused a decrease in the expression of the Rho-dependent downstream pathway, i.e., LIM kinase 1 (LIMK1), phosphorylated LIMK1/2, and phosphorylated cofilin, leading to actin depolymerization. Furthermore, myosin light chain kinase (MLCK) and phosphorylated MLC2 were significantly decreased in MDA-MB-231 cells with TAZ knockdown, inhibiting the assembly of stress fibers and focal adhesions. Conclusion TAZ knockdown inhibits the migration of breast cancer cells by regulating the intracellular actin cytoskeletal organization. This is achieved, in part, by reducing the abundance of RhoA and Rho-dependent downstream kinase proteins, which results in actin depolymerization and the disassembly of stress fibers and focal adhesions.
Collapse
Affiliation(s)
- Hong Seok Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
| | - Hyo-Ju Jang
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
| | - Mathilde K. Kristensen
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
- Faculty of Health, Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
| |
Collapse
|
7
|
Ernstsen CV, Ranieri M, Login FH, Mahmoud IK, Therkildsen JR, Valenti G, Praetorius H, Nørregaard R, Nejsum LN. Regulation of renal aquaporin water channels in acute pyelonephritis. Am J Physiol Cell Physiol 2024; 326:C1451-C1461. [PMID: 38525539 DOI: 10.1152/ajpcell.00308.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Acute pyelonephritis (APN) is most frequently caused by uropathogenic Escherichia coli (UPEC), which ascends from the bladder to the kidneys during a urinary tract infection. Patients with APN have been reported to have reduced renal concentration capacity under challenged conditions, polyuria, and increased aquaporin-2 (AQP2) excretion in the urine. We have recently shown increased AQP2 accumulation in the plasma membrane in cell cultures exposed to E. coli lysates and in the apical plasma membrane of inner medullary collecting ducts in a 5-day APN mouse model. This study aimed to investigate if AQP2 expression in host cells increases UPEC infection efficiency and to identify specific bacterial components that mediate AQP2 plasma membrane insertion. As the transepithelial water permeability in the collecting duct is codetermined by AQP3 and AQP4, we also investigated whether AQP3 and AQP4 localization is altered in the APN mouse model. We show that AQP2 expression does not increase UPEC infection efficiency and that AQP2 was targeted to the plasma membrane in AQP2-expressing cells in response to the two pathogen-associated molecular patterns (PAMPs), lipopolysaccharide and peptidoglycan. In contrast to AQP2, the subcellular localizations of AQP1, AQP3, and AQP4 were unaffected both in lysate-incubated cell cultures and in the APN mouse model. Our finding demonstrated that cellular exposure to lipopolysaccharide and peptidoglycan can trigger the insertion of AQP2 in the plasma membrane revealing a new regulatory pathway for AQP2 plasma membrane translocation, which may potentially be exploited in intervention strategies.NEW & NOTEWORTHY Acute pyelonephritis (APN) is associated with reduced renal concentration capacity and increased aquaporin-2 (AQP2) excretion. Uropathogenic Escherichia coli (UPEC) mediates changes in the subcellular localization of AQP2 and we show that in vitro, these changes could be elicited by two pathogen-associated molecular patterns (PAMPs), namely, lipopolysaccharide and peptidoglycan. UPEC infection was unaltered by AQP2 expression and the other renal AQPs (AQP1, AQP3, and AQP4) were unaltered in APN.
Collapse
Affiliation(s)
| | - Marianna Ranieri
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Isra K Mahmoud
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Giovanna Valenti
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
| | | | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Banerjee S, Smith IM, Hengen AC, Stroka KM. Methods for studying mammalian aquaporin biology. Biol Methods Protoc 2023; 8:bpad031. [PMID: 38046463 PMCID: PMC10689382 DOI: 10.1093/biomethods/bpad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Aquaporins (AQPs), transmembrane water-conducting channels, have earned a great deal of scrutiny for their critical physiological roles in healthy and disease cell states, especially in the biomedical field. Numerous methods have been implemented to elucidate the involvement of AQP-mediated water transport and downstream signaling activation in eliciting whole cell, tissue, and organ functional responses. To modulate these responses, other methods have been employed to investigate AQP druggability. This review discusses standard in vitro, in vivo, and in silico methods for studying AQPs, especially for biomedical and mammalian cell biology applications. We also propose some new techniques and approaches for future AQP research to address current gaps in methodology.
Collapse
Affiliation(s)
- Shohini Banerjee
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Ian M Smith
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Autumn C Hengen
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore MD 21201, United States
- Biophysics Program, University of Maryland, MD 20742, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore MD 21201, United States
| |
Collapse
|
9
|
Login FH, Nejsum LN. Aquaporin water channels: roles beyond renal water handling. Nat Rev Nephrol 2023; 19:604-618. [PMID: 37460759 DOI: 10.1038/s41581-023-00734-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 08/18/2023]
Abstract
Aquaporin (AQP) water channels are pivotal to renal water handling and therefore in the regulation of body water homeostasis. However, beyond the kidney, AQPs facilitate water reabsorption and secretion in other cells and tissues, including sweat and salivary glands and the gastrointestinal tract. A growing body of evidence has also revealed that AQPs not only facilitate the transport of water but also the transport of several small molecules and gases such as glycerol, H2O2, ions and CO2. Moreover, AQPs are increasingly understood to contribute to various cellular processes, including cellular migration, adhesion and polarity, and to act upstream of several intracellular and intercellular signalling pathways to regulate processes such as cell proliferation, apoptosis and cell invasiveness. Of note, several AQPs are highly expressed in multiple cancers, where their expression can correlate with the spread of cancerous cells to lymph nodes and alter the response of cancers to conventional chemotherapeutics. These data suggest that AQPs have diverse roles in various homeostatic and physiological systems and may be exploited for prognostics and therapeutic interventions.
Collapse
Affiliation(s)
- Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
10
|
Kirkegaard T, Riishede A, Tramm T, Nejsum LN. Aquaglyceroporins in Human Breast Cancer. Cells 2023; 12:2185. [PMID: 37681917 PMCID: PMC10486483 DOI: 10.3390/cells12172185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Aquaporins are water channels that facilitate passive water transport across cellular membranes following an osmotic gradient and are essential in the regulation of body water homeostasis. Several aquaporins are overexpressed in breast cancer, and AQP1, AQP3 and AQP5 have been linked to spread to lymph nodes and poor prognosis. The subgroup aquaglyceroporins also facilitate the transport of glycerol and are thus involved in cellular metabolism. Transcriptomic analysis revealed that the three aquaglyceroporins, AQP3, AQP7 and AQP9, but not AQP10, are overexpressed in human breast cancer. It is, however, unknown if they are all expressed in the same cells or have a heterogeneous expression pattern. To investigate this, we employed immunohistochemical analysis of serial sections from human invasive ductal and lobular breast cancers. We found that AQP3, AQP7 and AQP9 are homogeneously expressed in almost all cells in both premalignant in situ lesions and invasive lesions. Thus, potential intervention strategies targeting cellular metabolism via the aquaglyceroporins should consider all three expressed aquaglyceroporins, namely AQP3, AQP7 and AQP9.
Collapse
Affiliation(s)
- Teresa Kirkegaard
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (T.K.); (A.R.); (T.T.)
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Andreas Riishede
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (T.K.); (A.R.); (T.T.)
| | - Trine Tramm
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (T.K.); (A.R.); (T.T.)
- Department of Pathology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Lene N. Nejsum
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (T.K.); (A.R.); (T.T.)
| |
Collapse
|
11
|
Smith IM, Stroka KM. The multifaceted role of aquaporins in physiological cell migration. Am J Physiol Cell Physiol 2023; 325:C208-C223. [PMID: 37246634 PMCID: PMC10312321 DOI: 10.1152/ajpcell.00502.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Cell migration is an essential process that underlies many physiological processes, including the immune response, organogenesis in the embryo, and angiogenesis, as well as pathological processes such as cancer metastasis. Cells have at their disposal a variety of migratory behaviors and mechanisms that seem to be specific to cell type and the microenvironment. Research over the past two decades has elucidated the water channel protein family of aquaporins (AQPs) as a regulator of many cell migration-related processes, from physical phenomena to biological signaling pathways. The roles that AQPs play in cell migration are both cell type- and isoform-specific; thus, a large swath of information has accumulated as researchers seek to identify the responses across these distinct variables. There does not seem to be a universal role that AQPs play in cell migration; the complex interplay between AQPs and cell volume management, signaling pathway activation, and in a few identified circumstances, gene expression regulation, has shown the intricate, and perhaps paradoxical, role of AQPs in cell migration. The objective of this review is to provide an organized and integrated collection of recent work that has elucidated the many mechanisms by which AQPs regulate cell migration.NEW & NOTEWORTHY Research has elucidated the water channel protein family of aquaporins (AQPs) as a regulator of many cell migration-related processes, from physical phenomena to biological signaling pathways. The roles that AQPs play in cell migration are both cell type- and isoform-specific; thus, a large swath of information has accumulated as researchers seek to identify the responses across these distinct variables. This review compiles insights into the recent findings linking AQPs to physiological cell migration.
Collapse
Affiliation(s)
- Ian M Smith
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, United States
- Biophysics Program, University of Maryland, College Park, Maryland, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, Maryland, United States
| |
Collapse
|
12
|
Liu Y, Gao Q, Feng X, Chen G, Jiang X, Chen D, Yang Z. Aquaporin 9 is involved in CRC metastasis through DVL2-dependent Wnt/β-catenin signaling activation. Gastroenterol Rep (Oxf) 2023; 11:goad033. [PMID: 37360194 PMCID: PMC10287913 DOI: 10.1093/gastro/goad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Background Aquaporin 9 (AQP9) is permeable to water or other small molecules, and plays an important role in various cancers. We previously found that AQP9 was related to the efficacy of chemotherapy in patients with colorectal cancer (CRC). This study aimed to identify the role and regulatory mechanism of AQP9 in CRC metastasis. Methods The clinical significance of AQP9 was analysed by using bioinformatics and tissue microarray. Transcriptome sequencing, Dual-Luciferase Reporter Assay, Biacore, and co-immunoprecipitation were employed to demonstrate the regulatory mechanism of AQP9 in CRC. The relationship between AQP9 and CRC metastasis was verified in vitro and in vivo by using real-time cell analysis assay, high content screening, and liver metastasis models of nude mice. Results We found that AQP9 was highly expressed in metastatic CRC. AQP9 overexpression reduced cell roundness and enhanced cell motility in CRC. We further showed that AQP9 interacted with Dishevelled 2 (DVL2) via the C-terminal SVIM motif, resulting in DVL2 stabilization and the Wnt/β-catenin pathway activation. Additionally, we identified the E3 ligase neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) as a modulator regulating the ubiquitination and degradation of AQP9. Conclusions Collectively, our study revealed the important role of AQP9 in regulating DVL2 stabilization and Wnt/β-catenin signaling to promote CRC metastasis. Targeting the NEDD4L-AQP9-DVL2 axis might have therapeutic usefulness in metastatic CRC treatment.
Collapse
Affiliation(s)
| | | | | | - Guanxing Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Xuefei Jiang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, Guangdong, P. R. China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Daici Chen
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, Guangdong, P. R. China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zihuan Yang
- Corresponding author. Department of Clinical Laboratory, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China. Tel.: +86-20-38455491;
| |
Collapse
|
13
|
Ernstsen CV, Riishede A, Iversen AKS, Bay L, Bjarnsholt T, Nejsum LN. E-cadherin and aquaporin-3 are downregulated in wound edges of human chronic wounds. APMIS 2023. [PMID: 37267058 DOI: 10.1111/apm.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023]
Abstract
Chronic wounds are defined as wounds that fail to proceed through the normal phases of wound healing; a complex process involving different dynamic events including migration of keratinocytes in the epidermis. Chronic wounds are estimated to affect 1-2% of the human population worldwide and are a major socioeconomic burden. The prevalence of chronic wounds is expected to increase with the rising number of elderly and patients with diabetes and obesity, who are at high risk of developing chronic wounds. Since E-cadherin and the water channel aquaporin-3 are important for both skin function and cell migration, and aquaporin-3 is furthermore involved in wound healing of the skin demonstrated by impaired wound healing in aquaporin-3-null mice, we hypothesized that E-cadherin and aquaporin-3 expression may be dysregulated in chronic wounds. Therefore, we investigated the expression of E-cadherin and aquaporin-3 in biopsies from the edges of chronic wounds from human patients. This was accomplished by immunohistochemical stainings of E-cadherin and aquaporin-3 on serial sections followed by qualitative evaluation of staining patterns, which revealed low expression of both E-cadherin and aquaporin-3 at the wound edge. Future studies are needed to reveal if this downregulation is associated with the pathophysiology of chronic wounds.
Collapse
Affiliation(s)
| | - Andreas Riishede
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne Kristine S Iversen
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Lene Bay
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Bhend ME, Kempuraj D, Sinha NR, Gupta S, Mohan RR. Role of aquaporins in corneal healing post chemical injury. Exp Eye Res 2023; 228:109390. [PMID: 36696947 PMCID: PMC9975064 DOI: 10.1016/j.exer.2023.109390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/31/2022] [Accepted: 01/19/2023] [Indexed: 01/23/2023]
Abstract
Aquaporins (AQPs) are transmembrane water channel proteins that regulate the movement of water through the plasma membrane in various tissues including cornea. The cornea is avascular and has specialized microcirculatory mechanisms for homeostasis. AQPs regulate corneal hydration and transparency for normal vision. Currently, there are 13 known isoforms of AQPs that can be subclassified as orthodox AQPs, aquaglyceroporins (AQGPs), or supraquaporins (SAQPs)/unorthodox AQPs. AQPs are implicated in keratocyte function, inflammation, edema, angiogenesis, microvessel proliferation, and the wound-healing process in the cornea. AQPs play an important role in wound healing by facilitating the movement of corneal stromal keratocytes by squeezing through tight stromal matrix and narrow extracellular spaces to the wound site. Deficiency of AQPs can cause reduced concentration of hepatocyte growth factor (HGF) leading to reduced epithelial proliferation, reduced/impaired keratocyte migration, reduced number of keratocytes in the injury site, delayed and abnormal wound healing process. Dysregulated AQPs cause dysfunction in osmolar homeostasis as well as wound healing mechanisms. The cornea is a transparent avascular tissue that constitutes the anterior aspect of the outer covering of the eye and aids in two-thirds of visual light refraction. Being the outermost layer of the eye, the cornea is prone to injury. Of the 13 AQP isoforms, AQP1 is expressed in the stromal keratocytes and endothelial cells, and AQP3 and AQP5 are expressed in epithelial cells in the human cornea. AQPs can facilitate wound healing through aid in cellular migration, proliferation, migration, extracellular matrix (ECM) remodeling and autophagy mechanism. Corneal wound healing post-chemical injury requires an integrative and coordinated activity of the epithelium, stromal keratocytes, endothelium, ECM, and a battery of cytokines and growth factors to restore corneal transparency. If the chemical injury is mild, the cornea will heal with normal clarity, but severe injuries can lead to partial and/or permanent loss of corneal functions. Currently, the role of AQPs in corneal wound healing is poorly understood in the context of chemical injury. This review discusses the current literature and the role of AQPs in corneal homeostasis, wound repair, and potential therapeutic target for acute and chronic corneal injuries.
Collapse
Affiliation(s)
- Madeline E Bhend
- Department of Ophthalmology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; School of Medicine, University of South Carolina, Columbia, SC, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Duraisamy Kempuraj
- Department of Ophthalmology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Nishant R Sinha
- Department of Ophthalmology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Suneel Gupta
- Department of Ophthalmology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Rajiv R Mohan
- Department of Ophthalmology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
15
|
Edamana S, Login FH, Riishede A, Dam VS, Tramm T, Nejsum LN. The cell polarity protein Scribble is downregulated by the water channel aquaporin-5 in breast cancer cells. Am J Physiol Cell Physiol 2023; 324:C307-C319. [PMID: 36468842 DOI: 10.1152/ajpcell.00311.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast carcinomas originate from cells in the terminal duct-lobular unit. Carcinomas are associated with increased cell proliferation and migration, altered cellular adhesion, as well as loss of epithelial polarity. In breast cancer, aberrant and high levels of aquaporin-5 (AQP5) are associated with increased metastasis, poor prognosis, and cancer recurrence. AQP5 increases the proliferation and migration of cancer cells, and ectopic expression of AQP5 in normal epithelial cells reduces cell-cell adhesion and increases cell detachment and dissemination from migrating cell sheets, the latter via AQP5-mediated activation of the Ras pathway. Here, we investigated if AQP5 also affects cellular polarity by examining the relationship between the essential polarity protein Scribble and AQP5. In tissue samples from invasive lobular and ductal carcinomas, the majority of cells with high AQP5 expression displayed low Scribble levels, indicating an inverse relationship. Probing for interactions via a Glutathione S-transferase pull-down experiment revealed that AQP5 and Scribble interacted. Moreover, overexpression of AQP5 in the breast cancer cell line MCF7 reduced both size and circularity of three-dimensional (3-D) spheroids and induced cell detachment and dissemination from migrating cell sheets. In addition, Scribble levels were reduced. An AQP5 mutant cell line, which cannot activate Ras (AQP5S156A) signaling, displayed unchanged spheroid size and circularity and an intermediate level of Scribble, indicating that the effect of AQP5 on Scribble is, at least in part, dependent on AQP5-mediated activation of Ras. Thus, our results suggest that high AQP5 expression negatively regulates the essential polarity protein Scribble and thus, can affect cellular polarity in breast cancer.
Collapse
Affiliation(s)
- Sarannya Edamana
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Andreas Riishede
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Vibeke S Dam
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Trine Tramm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Aquaporins Display a Diversity in their Substrates. J Membr Biol 2023; 256:1-23. [PMID: 35986775 DOI: 10.1007/s00232-022-00257-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/13/2022] [Indexed: 02/07/2023]
Abstract
Aquaporins constitute a family of transmembrane proteins that function to transport water and other small solutes across the cell membrane. Aquaporins family members are found in diverse life forms. Aquaporins share the common structural fold consisting of six transmembrane alpha helices with a central water-transporting channel. Four such monomers assemble together to form tetramers as their biological unit. Initially, aquaporins were discovered as water-transporting channels, but several studies supported their involvement in mediating the facilitated diffusion of different solutes. The so-called water channel is able to transport a variety of substrates ranging from a neutral molecule to a charged molecule or a small molecule to a bulky molecule or even a gas molecule. This article gives an overview of a diverse range of substrates conducted by aquaporin family members. Prime focus is on human aquaporins where aquaporins show a wide tissue distribution and substrate specificity leading to various physiological functions. This review also highlights the structural mechanisms leading to the transport of water and glycerol. More research is needed to understand how one common fold enables the aquaporins to transport an array of solutes.
Collapse
|
17
|
Levic DS, Bagnat M. Polarized transport of membrane and secreted proteins during lumen morphogenesis. Semin Cell Dev Biol 2023; 133:65-73. [PMID: 35307284 PMCID: PMC9481742 DOI: 10.1016/j.semcdb.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
A ubiquitous feature of animal development is the formation of fluid-filled cavities or lumina, which transport gases and fluids across tissues and organs. Among different species, lumina vary drastically in size, scale, and complexity. However, all lumen formation processes share key morphogenetic principles that underly their development. Fundamentally, a lumen simply consists of epithelial cells that encapsulate a continuous internal space, and a common way of building a lumen is via opening and enlarging by filling it with fluid and/or macromolecules. Here, we discuss how polarized targeting of membrane and secreted proteins regulates lumen formation, mainly focusing on ion transporters in vertebrate model systems. We also discuss mechanistic differences observed among invertebrates and vertebrates and describe how the unique properties of the Na+/K+-ATPase and junctional proteins can promote polarization of immature epithelia to build lumina de novo in developing organs.
Collapse
Affiliation(s)
- Daniel S Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
18
|
Edamana S, Pedersen SF, Nejsum LN. Aquaporin water channels affect the response of conventional anticancer therapies of 3D grown breast cancer cells. Biochem Biophys Res Commun 2023; 639:126-133. [PMID: 36481356 DOI: 10.1016/j.bbrc.2022.11.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Aquaporin (AQP) water channels facilitate water transport across cellular membranes and are essential in regulation of body water balance. Moreover, several AQPs are overexpressed or ectopically expressed in breast cancer. Interestingly, several in vitro studies have suggested that AQPs can affect the response to conventional anticancer chemotherapies. Therefore, we took a systematic approach to test how AQP1, AQP3 and AQP5, which are often over-/ectopically expressed in breast cancer, affect total viability of 3-dimensional (3D) breast cancer cell spheroids when treated with the conventional anticancer chemotherapies Cisplatin, 5-Fluorouracil (5-FU) and Doxorubicin, a Combination of the three drugs as well as the Combination plus the Ras inhibitor Salirasib. Total viability of spheroids overexpressing AQP1 were decreased by all treatments except for 5-FU, which increased total viability by 20% compared to DMSO treated controls. All treatments reduced viability of spheroids overexpressing AQP3. In contrast, only Doxorubicin, Combination and Combination + Salirasib reduced total viability of spheroids overexpressing AQP5. Thus, this study supports a significant role of AQPs in the response to conventional chemotherapies. Evaluating the role of individual proteins that contribute to resistance to chemotherapies is essential in advancing personalized medicine in breast carcinomas.
Collapse
Affiliation(s)
- Sarannya Edamana
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark
| | - Stine F Pedersen
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Universitetsparken 13, 2100, København Ø, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark.
| |
Collapse
|
19
|
Wang H, Zhang W, Ding Z, Xu T, Zhang X, Xu K. Comprehensive exploration of the expression and prognostic value of AQPs in clear cell renal cell carcinoma. Medicine (Baltimore) 2022; 101:e29344. [PMID: 36254092 PMCID: PMC9575724 DOI: 10.1097/md.0000000000029344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022] Open
Abstract
Aquaporins (AQPs) are a family of membrane water channels that facilitate the passive transport of water across the plasma membrane of cells in response to osmotic gradients created by the active transport of solutes. Water-selective AQPs are involved in tumor angiogenesis, invasion, metastasis and growth. However, the polytype expression patterns and prognostic values of eleven AQPs in clear cell Renal Cell Cancer (ccRCC) have yet to be filled. We preliminarily investigated the transcriptional expression, survival data and immune infiltration of AQPs in patients with renal cell cancer via the Oncomine database, Kaplan-Meier Plotter, UALCAN cancer database, and cBioPortal databases. The ethical approval was waived by the local ethics committee of Peking University People's Hospital for the natural feature of mine into databases. The mRNA expression of AQP1/2/3/4/5/6/7/11 was significantly decreased in ccRCC patients. Meanwhile, MIP and AQP1/2/4/6/7/8/9/11 are notably related to the clinical stage or pathological grade of ccRCC. Lower levels of AQP1/3/4/5/7/10 expression were related to worse overall survival (OS) in patients diagnosed with ccRCC. The AQP mutation rate was 25% in ccRCC patients, but genetic alterations in AQPs were unlikely to be associated with OS and disease free survival in ccRCC patients. In addition, the expression of AQP1, AQP3, AQP4 and AQP10 was positively correlated with immune cells, and the expression of AQP6, AQP7 and AQP11 was negatively correlated with immune cells. AQP9 had a strong and significantly positive correlation with multiple immune cells. Abnormal expression of AQPs in ccRCC indicated the prognosis and immunomodulatory state of ccRCC. Further study needs to be performed to explore AQPs as new biomarkers for ccRCC.
Collapse
Affiliation(s)
- Huanrui Wang
- Department of Urology, Peking University People's Hospital, Beijing, China
- Peking University Applied Lithotripsy Institute, Peking University, Beijing, China
- Urology and Lithotripsy Center, Peking University People's Hospital, Beijing, China
| | - Weiyu Zhang
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Zehua Ding
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Xiaopeng Zhang
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Kexin Xu
- Department of Urology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
20
|
Dai R, Tao R, Li X, Shang T, Zhao S, Ren Q. Expression profiling of mRNA and functional network analyses of genes regulated by human papilloma virus E6 and E7 proteins in HaCaT cells. Front Microbiol 2022; 13:979087. [PMID: 36188003 PMCID: PMC9515614 DOI: 10.3389/fmicb.2022.979087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Human papillomavirus (HPV) oncogenes E6 and E7 are essential for HPV-related cancer development. Here, we developed a cell line model using lentiviruses for transfection of the HPV16 oncogenes E6 and E7 and investigated the differences in mRNA expression during cell adhesion and chemokine secretion. Subsequently, RNA sequencing (RNA-seq) analysis was performed to explore the differences in mRNA expression. Compared to levels in the control group, 2,905 differentially expressed mRNAs (1,261 downregulated and 1,644 upregulated) were identified in the HaCaT-HPV16E6E7 cell line. To predict the functions of these differentially expressed genes (DEGs) the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were used. Protein–protein interactions were established, and the hub gene was identified based on this network. Real-time quantitative-PCR (RT-qPCR) was conducted to confirm the levels of 14 hub genes, which were consistent with the RNA-seq data. According to this, we found that these DEGs participate in the extracellular matrix (ECM), cell adhesion, immune control, and cancer-related signaling pathways. Currently, an increasing number of clinicians depend on E6/E7mRNA results to make a comprehensive judgment of cervical precancerous lesions. In this study, 14 hub genes closely related to the expression of cell adhesion ability and chemokines were analyzed in HPV16E6E7-stably expressing cell lines, which will open up new research ideas for targeting E6E7 in the treatment of HPV-related cancers.
Collapse
Affiliation(s)
- Renjinming Dai
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ran Tao
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiu Li
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Shang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shixian Zhao
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qingling Ren
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Qingling Ren,
| |
Collapse
|
21
|
Bystrup M, Login FH, Edamana S, Borgquist S, Tramm T, Kwon TH, Nejsum LN. Aquaporin-5 in breast cancer. APMIS 2022; 130:253-260. [PMID: 35114014 PMCID: PMC9314690 DOI: 10.1111/apm.13212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 01/14/2023]
Abstract
The water channel aquaporin‐5 (AQP5) is essential in transepithelial water transport in secretory glands. AQP5 is ectopically overexpressed in breast cancer, where expression is associated with lymph node metastasis and poor prognosis. Besides the role in water transport, AQP5 has been found to play a role in cancer metastasis, migration, and proliferation. AQP5 has also been shown to be involved in the dysregulation of epithelial cell–cell adhesion; frequently observed in cancers. Insight into the underlying molecular mechanisms of how AQP5 contributes to cancer development and progression is essential for potentially implementing AQP5 as a prognostic biomarker and to develop targeted intervention strategies for the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Malte Bystrup
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Sarannya Edamana
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Signe Borgquist
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Trine Tramm
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Pathology, Aarhus University Hospital, Aarhus N, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
22
|
Bruun-Sørensen AS, Edamana S, Login FH, Borgquist S, Nejsum LN. Aquaporins in pancreatic ductal adenocarcinoma. APMIS 2021; 129:700-705. [PMID: 34582595 DOI: 10.1111/apm.13184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022]
Abstract
Aquaporins are water channel proteins facilitating passive transport of water across cellular membranes. Aquaporins are over- or ectopically expressed in a multitude of cancers, including pancreatic ductal adenocarcinoma, which is a highly aggressive cancer with low survival rate. Evidence suggests that aquaporins can affect multiple cellular processes involved in cancer development and progression including epithelial-mesenchymal transition, cellular migration, cell proliferation, invasion, and cellular adhesions. In pancreatic ductal adenocarcinoma, aquaporin-1, aquaporin-3, and aquaporin-5 are overexpressed and have been associated with metastatic processes and poor survival. Thus, aquaporin expression has been suggested as diagnostic markers and therapeutic targets in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Anne Sofie Bruun-Sørensen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Sarannya Edamana
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Signe Borgquist
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark
- Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
23
|
Traberg-Nyborg L, Login FH, Edamana S, Tramm T, Borgquist S, Nejsum LN. Aquaporin-1 in breast cancer. APMIS 2021; 130:3-10. [PMID: 34758159 DOI: 10.1111/apm.13192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022]
Abstract
The canonical function of aquaporin (AQP) water channels is to facilitate passive transport of water across cellular membranes making them essential in the regulation of body water homeostasis. Moreover, AQPs, including AQP1, have been found to be overexpressed in multiple cancer types, including breast cancer, where AQP1 overexpression is associated with poor prognosis. AQPs have been shown to affect cellular processes associated with cancer progression and spread including cell migration, angiogenesis, and proliferation. Moreover, AQPs can regulate levels of adhesion proteins at cell-cell junctions, a regulatory role, which is still largely unexplored in cancer. Understanding the molecular mechanisms of how AQP1 contributes to breast cancer progression and metastatic processes is essential to establish AQP1 as a biomarker and to develop targeted anticancer treatments for breast cancer patients. This mini-review focuses on the role of AQP1 in breast cancer.
Collapse
Affiliation(s)
- Laura Traberg-Nyborg
- Department of Clinical Medicine, Aarhus University, Aarhus N.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus C
| | | | | | - Trine Tramm
- Department of Clinical Medicine, Aarhus University, Aarhus N.,Department of Pathology, Aarhus University Hospital, Aarhus N
| | - Signe Borgquist
- Department of Clinical Medicine, Aarhus University, Aarhus N.,Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus N
| |
Collapse
|
24
|
Unexpected localization of AQP3 and AQP4 induced by migration of primary cultured IMCD cells. Sci Rep 2021; 11:11930. [PMID: 34099798 PMCID: PMC8185088 DOI: 10.1038/s41598-021-91369-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/13/2021] [Indexed: 12/18/2022] Open
Abstract
Aquaporin-2-4 (AQP) are expressed in the principal cells of the renal collecting duct (CD). Beside their role in water transport across membranes, several studies showed that AQPs can influence the migration of cells. It is unknown whether this also applies for renal CD cells. Another fact is that the expression of these AQPs is highly modulated by the external osmolality. Here we analyzed the localization of AQP2-4 in primary cultured renal inner medullary CD (IMCD) cells and how osmolality influences the migration behavior of these cells. The primary IMCD cells showed a collective migration behavior and there were no differences in the migration speed between cells cultivated either at 300 or 600 mosmol/kg. Acute increase from 300 to 600 mosmol/kg led to a marked reduction and vice versa an acute decrease from 600 to 300 mosmol/kg to a marked increase in migration speed. Interestingly, none of the analyzed AQPs were localized at the leading edge. While AQP3 disappeared within the first 2-3 rows of cells, AQP4 was enriched at the rear end. Further analysis indicated that migration induced lysosomal degradation of AQP3. This could be prevented by activation of the protein kinase A, inducing localization of AQP3 and AQP2 at the leading edge and increasing the migration speed.
Collapse
|
25
|
Edamana S, Login FH, Yamada S, Kwon TH, Nejsum LN. Aquaporin water channels as regulators of cell-cell adhesion proteins. Am J Physiol Cell Physiol 2021; 320:C771-C777. [PMID: 33625928 DOI: 10.1152/ajpcell.00608.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aquaporin (AQP) water channels facilitate passive transport of water across cellular membranes following an osmotic gradient. AQPs are expressed in a multitude of epithelia, endothelia, and other cell types where they play important roles in physiology, especially in the regulation of body water homeostasis, skin hydration, and fat metabolism. AQP dysregulation is associated with many pathophysiological conditions, including nephrogenic diabetes insipidus, chronic kidney disease, and congestive heart failure. Moreover, AQPs have emerged as major players in a multitude of cancers where high expression correlates with metastasis and poor prognosis. Besides water transport, AQPs have been shown to be involved in cellular signaling, cell migration, cell proliferation, and regulation of junctional proteins involved in cell-cell adhesion; all cellular processes which are dysregulated in cancer. This review focuses on AQPs as regulators of junctional proteins involved in cell-cell adhesion.
Collapse
Affiliation(s)
- Sarannya Edamana
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Soichiro Yamada
- Department of Biomedical Engineering, University of California, Davis, California
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
26
|
Zannetti A, Benga G, Brunetti A, Napolitano F, Avallone L, Pelagalli A. Role of Aquaporins in the Physiological Functions of Mesenchymal Stem Cells. Cells 2020; 9:2678. [PMID: 33322145 PMCID: PMC7763964 DOI: 10.3390/cells9122678] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Aquaporins (AQPs) are a family of membrane water channel proteins that control osmotically-driven water transport across cell membranes. Recent studies have focused on the assessment of fluid flux regulation in relation to the biological processes that maintain mesenchymal stem cell (MSC) physiology. In particular, AQPs seem to regulate MSC proliferation through rapid regulation of the cell volume. Furthermore, several reports have shown that AQPs play a crucial role in modulating MSC attachment to the extracellular matrix, their spread, and migration. Shedding light on how AQPs are able to regulate MSC physiological functions can increase our knowledge of their biological behaviours and improve their application in regenerative and reparative medicine.
Collapse
Affiliation(s)
- Antonella Zannetti
- Institute of Biostructure and Bioimaging, CNR, Via T. De Amicis 95, 80145 Naples, Italy;
| | - Gheorghe Benga
- Romanian Academy, Cluj-Napoca Branch, Strada Republicii 9, 400015 Cluj-Napoca, Romania;
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy;
| | - Francesco Napolitano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Veterinaria 1, 80137 Naples, Italy; (F.N.); (L.A.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Veterinaria 1, 80137 Naples, Italy; (F.N.); (L.A.)
| | - Alessandra Pelagalli
- Institute of Biostructure and Bioimaging, CNR, Via T. De Amicis 95, 80145 Naples, Italy;
- Department of Advanced Biomedical Sciences, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy;
| |
Collapse
|
27
|
Login FH, Palmfeldt J, Cheah JS, Yamada S, Nejsum LN. Aquaporin-5 regulation of cell-cell adhesion proteins: an elusive "tail" story. Am J Physiol Cell Physiol 2020; 320:C282-C292. [PMID: 33175575 DOI: 10.1152/ajpcell.00496.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aquaporins (AQPs) are water channels that facilitate transport of water across cellular membranes. AQPs are overexpressed in several cancers. Especially in breast cancer, AQP5 overexpression correlates with spread to lymph nodes and poor prognosis. Previously, we showed that AQP5 expression reduced cell-cell adhesion by reducing levels of adherens and tight-junction proteins (e.g., ZO-1, plakoglobin, and β-catenin) at the actual junctions. Here, we show that, when targeted to the plasma membrane, the AQP5 COOH-terminal tail domain regulated junctional proteins and, moreover, that AQP5 interacted with ZO-1, plakoglobin, β-catenin, and desmoglein-2, which were all reduced at junctions upon AQP5 overexpression. Thus, our data suggest that AQP5 mediates the effect on cell-cell adhesion via interactions with junctional proteins independently of AQP5-mediated water transport. AQP5 overexpression in cancers may thus contribute to carcinogenesis and cancer spread by two independent mechanisms: reduced cell-cell adhesion, a characteristic of epithelial-mesenchymal transition, and increased cell migration capacity via water transport.
Collapse
Affiliation(s)
- Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Joleen S Cheah
- Department of Biomedical Engineering, University of California, Davis, California
| | - Soichiro Yamada
- Department of Biomedical Engineering, University of California, Davis, California
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
28
|
D’Agostino C, Elkashty OA, Chivasso C, Perret J, Tran SD, Delporte C. Insight into Salivary Gland Aquaporins. Cells 2020; 9:cells9061547. [PMID: 32630469 PMCID: PMC7349754 DOI: 10.3390/cells9061547] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
The main role of salivary glands (SG) is the production and secretion of saliva, in which aquaporins (AQPs) play a key role by ensuring water flow. The AQPs are transmembrane channel proteins permeable to water to allow water transport across cell membranes according to osmotic gradient. This review gives an insight into SG AQPs. Indeed, it gives a summary of the expression and localization of AQPs in adult human, rat and mouse SG, as well as of their physiological role in SG function. Furthermore, the review provides a comprehensive view of the involvement of AQPs in pathological conditions affecting SG, including Sjögren's syndrome, diabetes, agedness, head and neck cancer radiotherapy and SG cancer. These conditions are characterized by salivary hypofunction resulting in xerostomia. A specific focus is given on current and future therapeutic strategies aiming at AQPs to treat xerostomia. A deeper understanding of the AQPs involvement in molecular mechanisms of saliva secretion and diseases offered new avenues for therapeutic approaches, including drugs, gene therapy and tissue engineering. As such, AQP5 represents a potential therapeutic target in different strategies for the treatment of xerostomia.
Collapse
Affiliation(s)
- Claudia D’Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Osama A. Elkashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; (O.A.E.); (S.D.T.)
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, 35516 Mansoura, Egypt
| | - Clara Chivasso
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; (O.A.E.); (S.D.T.)
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
- Correspondence: ; Tel.: +32-2-5556210
| |
Collapse
|
29
|
Hosoi K, Yao C, Hasegawa T, Yoshimura H, Akamatsu T. Dynamics of Salivary Gland AQP5 under Normal and Pathologic Conditions. Int J Mol Sci 2020; 21:ijms21041182. [PMID: 32053992 PMCID: PMC7072788 DOI: 10.3390/ijms21041182] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
AQP5 plays an important role in the salivary gland function. The mRNA and protein for aquaporin 5 (AQP5) are expressed in the acini from embryonic days E13-16 and E17-18, respectively and for entire postnatal days. Ligation-reopening of main excretory duct induces changes in the AQP5 level which would give an insight for mechanism of regeneration/self-duplication of acinar cells. The AQP5 level in the submandibular gland (SMG) decreases by chorda tympani denervation (CTD) via activation autophagosome, suggesting that its level in the SMG under normal condition is maintained by parasympathetic nerve. Isoproterenol (IPR), a β-adrenergic agonist, raised the levels of membrane AQP5 protein and its mRNA in the parotid gland (PG), suggesting coupling of the AQP5 dynamic and amylase secretion-restoration cycle. In the PG, lipopolysaccharide (LPS) is shown to activate mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signalings and potentially downregulate AQP5 expression via cross coupling of activator protein-1 (AP-1) and NF-κB. In most species, Ser-156 and Thr-259 of AQP5 are experimentally phosphorylated, which is enhanced by cAMP analogues and forskolin. cAMP-dependent phosphorylation of AQP5 does not seem to be markedly involved in regulation of its intracellular trafficking but seems to play a role in its constitutive expression and lateral diffusion in the cell membrane. Additionally, Ser-156 phosphorylation may be important for cancer development.
Collapse
Affiliation(s)
- Kazuo Hosoi
- Department of Molecular Oral Physiology, Division of Oral Science, Graduate School of Biomedical Sciences, Tokushima University, Tokushima-shi, Tokushima 770-8504, Japan; (C.Y.); (T.H.); (T.A.)
- Kosei Pharmaceutical Co., Ltd., Osaka-shi, Osaka 540–0039, Japan
- Correspondence: (K.H.); (H.Y.)
| | - Chenjuan Yao
- Department of Molecular Oral Physiology, Division of Oral Science, Graduate School of Biomedical Sciences, Tokushima University, Tokushima-shi, Tokushima 770-8504, Japan; (C.Y.); (T.H.); (T.A.)
| | - Takahiro Hasegawa
- Department of Molecular Oral Physiology, Division of Oral Science, Graduate School of Biomedical Sciences, Tokushima University, Tokushima-shi, Tokushima 770-8504, Japan; (C.Y.); (T.H.); (T.A.)
| | - Hiroshi Yoshimura
- Department of Molecular Oral Physiology, Division of Oral Science, Graduate School of Biomedical Sciences, Tokushima University, Tokushima-shi, Tokushima 770-8504, Japan; (C.Y.); (T.H.); (T.A.)
- Correspondence: (K.H.); (H.Y.)
| | - Tetsuya Akamatsu
- Department of Molecular Oral Physiology, Division of Oral Science, Graduate School of Biomedical Sciences, Tokushima University, Tokushima-shi, Tokushima 770-8504, Japan; (C.Y.); (T.H.); (T.A.)
- Field of Biomolecular Functions and Technology, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima-shi, Tokushima 770-8513, Japan
| |
Collapse
|
30
|
Park EJ, Jung HJ, Choi HJ, Jang HJ, Park HJ, Nejsum LN, Kwon TH. Exosomes co-expressing AQP5-targeting miRNAs and IL-4 receptor-binding peptide inhibit the migration of human breast cancer cells. FASEB J 2020; 34:3379-3398. [PMID: 31922312 DOI: 10.1096/fj.201902434r] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022]
Abstract
Aquaporin-5 (AQP5) plays a role in breast cancer cell migration. This study aimed to identify AQP5-targeting miRNAs and examine their effects on breast cancer cell migration through exosome-mediated delivery. Bioinformatic analyses identified miR-1226-3p, miR-19a-3p, and miR-19b-3p as putative regulators of AQP5 mRNA. Immunoblotting revealed a decrease of AQP5 protein abundance when each of these miRNAs was transfected into human breast cancer MDA-MB-231 cells. Quantitative real-time PCR demonstrated the reduction of AQP5 mRNA expression by the transfection of miR-1226-3p and a luciferase reporter assay revealed the reduction of AQP5 translation after the transfection of miR-19b-3p in MDA-MB-231 cells. Consistently, the transfection of each miRNA impeded cell migration. Pathway enrichment analyses showed that these three miRNAs regulate target genes, which were predominantly enriched in the gap junction pathway. For the efficient delivery of AQP5-targeting miRNAs to breast cancer cells, exosomes expressing both miRNAs and a peptide targeting interleukin-4 receptor, which is highly expressed in breast cancer cells, were bioengineered and their inhibitory effects on AQP5 protein expression and cell migration were demonstrated in MDA-MB-231 cells. Taken together, AQP5-regulating miRNAs are identified, which could be exploited for the inhibition of breast cancer cell migration via the exosome-mediated delivery.
Collapse
Affiliation(s)
- Eui-Jung Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hyo-Jung Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Hyo-Ju Jang
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Hye-Jeong Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
31
|
Holst MR, Nejsum LN. A versatile aquaporin-2 cell system for quantitative temporal expression and live cell imaging. Am J Physiol Renal Physiol 2019; 317:F124-F132. [PMID: 31091121 DOI: 10.1152/ajprenal.00150.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aquaporin-2 (AQP2) fine tunes urine concentration in response to the antidiuretic hormone vasopressin. In addition, AQP2 has been suggested to promote cell migration and epithelial morphogenesis. A cell system allowing temporal and quantitative control of expression levels of AQP2 and phospho-mimicking mutants has been missing, as has a system allowing expression of fluorescently tagged AQP2 for time-lapse imaging. In the present study, we generated and validated a Flp-In T-REx Madin-Darby canine kidney cell system for temporal and quantitative control of AQP2 and phospho-mimicking mutants. We verified that expression levels can be temporally and quantitatively controlled and that AQP2 translocated to the plasma membrane in response to elevated cAMP, which also induced S256 phosphorylation. The phospho-mimicking mutants AQP2-S256A and AQP2-S256D localized as previously described, primarily intracellular and to the plasma membrane, respectively. Induction of AQP2 expression in combination with transient, low expression of enhanced green fluorescent protein-tagged AQP2 enabled expression without aggregation and correct translocation in response to elevated cAMP. Interestingly, time-lapse imaging revealed AQP2-containing tubulating endosomes and that tubulation significantly decreased 30 min after cAMP elevation. This was mirrored by the phospho-mimicking mutants AQP2-S256A and AQP2-S256D, where AQP2-S256A-containing endosomes tubulated, whereas AQP2-S256D-containing endosomes did not. Thus, this cell system enables a multitude of cell-based assays warranted to provide deeper insights into the mechanisms of AQP2 regulation and effects on cell migration and epithelial morphogenesis.
Collapse
Affiliation(s)
- Mikkel R Holst
- Department of Clinical Medicine, Aarhus University , Aarhus , Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University , Aarhus , Denmark
| |
Collapse
|