1
|
Jakubek YA, Ma X, Stilp AM, Yu F, Bacon J, Wong JW, Aguet F, Ardlie K, Arnett DK, Barnes K, Bis JC, Blackwell T, Becker LC, Boerwinkle E, Bowler RP, Budoff MJ, Carson AP, Chen J, Cho MH, Coresh J, Cox NJ, de Vries PS, DeMeo DL, Fardo DW, Fornage M, Guo X, Hall ME, Heard-Costa N, Hidalgo B, Irvin MR, Johnson AD, Jorgenson E, Kenny EE, Kessler MD, Levy D, Li Y, Lima JAC, Liu Y, Locke AE, Loos RJF, Machiela MJ, Mathias RA, Mitchell BD, Murabito JM, Mychaleckyj JC, North KE, Orchard P, Parker SCJ, Pershad Y, Peyser PA, Pratte KA, Psaty BM, Raffield LM, Redline S, Rich SS, Rotter JI, Shah SJ, Smith JA, Smith AP, Smith A, Taub MA, Tiwari HK, Tracy R, Tuftin B, Bick AG, Sankaran VG, Reiner AP, Scheet P, Auer PL. Genomic and phenotypic correlates of mosaic loss of chromosome Y in blood. Am J Hum Genet 2025; 112:276-290. [PMID: 39809269 PMCID: PMC11866972 DOI: 10.1016/j.ajhg.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole-genome sequencing (WGS) of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program. We show that haplotype-based calling methods can be used with WGS data to successfully identify mLOY events. This approach enabled us to identify differences in mLOY frequencies across populations defined by genetic similarity, revealing a higher frequency of mLOY in the European (EUR) ancestry group compared to other ancestries. We identify multiple loci associated with mLOY susceptibility and show that subsets of human hematopoietic stem cells are enriched for the activity of mLOY susceptibility variants. Finally, we found that certain alleles on chromosome Y are more likely to be lost than others in detectable mLOY clones.
Collapse
Affiliation(s)
- Yasminka A Jakubek
- Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Xiaolong Ma
- Division of Biostatistics, Data Science Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Adrienne M Stilp
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Fulong Yu
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Jason Bacon
- Department of Computer Science, Department of Biological Sciences, University of Wisconsin Milwaukee, Milwaukee, WI, USA
| | - Justin W Wong
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | - Kathleen Barnes
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, School of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Tom Blackwell
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Lewis C Becker
- Department of Medicine, Division of Cardiology, Johns Hopkins Hospital, Johns Hopkins University of Medicine, Baltimore, MD, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Matthew J Budoff
- Department of Medicine, Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jiawen Chen
- Department of Biostatistics, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Josef Coresh
- NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David W Fardo
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Myriam Fornage
- University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiuqing Guo
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Michael E Hall
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nancy Heard-Costa
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Bertha Hidalgo
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marguerite Ryan Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew D Johnson
- Framingham Heart Study, Framingham, MA, USA; Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Daniel Levy
- Framingham Heart Study, Framingham, MA, USA; Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yun Li
- Department of Biostatistics, Department of Genetics, Department of Computer Science, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Joao A C Lima
- Department of Medicine, Division of Cardiology, Johns Hopkins Hospital, Johns Hopkins University of Medicine, Baltimore, MD, USA
| | - Yongmei Liu
- Duke University School of Medicine, Durham, NC, USA
| | | | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Rasika A Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Joanne M Murabito
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Peter Orchard
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Stephen C J Parker
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Yash Pershad
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, Department of Epidemiology, Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Susan Redline
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sanjiv J Shah
- Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Aaron P Smith
- Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, USA
| | - Albert Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Russell Tracy
- Departments of Pathology & Laboratory Medicine and Biochemistry, Larner College of Medicine at the University of Vermont, Colchester, VT, USA
| | - Bjoernar Tuftin
- Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Alexander G Bick
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA
| | | | - Paul Scheet
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul L Auer
- Division of Biostatistics, Data Science Institute, Medical College of Wisconsin, Milwaukee, WI, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
2
|
Bai Z, Huang C, Xu H, Wang Y, Liao Z, Shen P, Ni Z, Huangfu C, Sun D, Hu Y, Wang N, Zhang P, Zhou L, Zhou W, Gao Y. Cannabidiol restores hematopoietic stem cell stemness in mouse through Atf2-Lrp6 axis after acute irradiation. MedComm (Beijing) 2025; 6:e70092. [PMID: 39949985 PMCID: PMC11822450 DOI: 10.1002/mco2.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/18/2024] [Accepted: 12/16/2024] [Indexed: 02/16/2025] Open
Abstract
Bone marrow serves as the residence of hematopoietic stem cells and is recognized as one of the most radiosensitive tissues. Exposure to acute radiation leads to severe damage to bone marrow hematopoiesis which can be fatal, while few clinically applicable medication or specific therapeutic targets have been discovered. In this study, we found that the administration of cannabidiol significantly enhanced individual survival and restored the reconstitution capacity of bone marrow hematopoietic stem cells within 14 days after irradiation. Single-cell RNA sequencing analysis demonstrated that the expression levels of genes associated with stemness along with Wnt and BMP signaling pathways were restored by the cannabidiol treatment through the upregulation of Atf2, a transcription factor possessing multifunctional properties. Atf2 upregulation induced by cannabidiol treatment potentially upregulated the expression of Lrp6 to improve the stemness of hematopoietic stem cells. Further functional experiments validated the crucial role of Atf2 in regulating multilineage differentiation potential of bone marrow hematopoietic stem and progenitor cells. Overall, our findings provide evidence for a promising radioprotective function of cannabidiol and Atf2 as a candidate therapeutic target for acute radiation-induced hematopoietic injury, thereby paving the way for future research in the field.
Collapse
Affiliation(s)
- Zhijie Bai
- Beijing Institute of Radiation MedicineBeijingChina
| | - Congshu Huang
- College of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
| | - Huanhua Xu
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese MedicineJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Yuxin Wang
- Beijing Institute of Radiation MedicineBeijingChina
| | - Zebin Liao
- Beijing Institute of Radiation MedicineBeijingChina
| | - Pan Shen
- Beijing Institute of Radiation MedicineBeijingChina
| | - Zhexin Ni
- Beijing Institute of Radiation MedicineBeijingChina
| | | | - Dezhi Sun
- Beijing Institute of Radiation MedicineBeijingChina
| | - Yangyi Hu
- Beijing Institute of Radiation MedicineBeijingChina
| | | | | | - Lei Zhou
- Beijing Institute of Radiation MedicineBeijingChina
| | - Wei Zhou
- Beijing Institute of Radiation MedicineBeijingChina
| | - Yue Gao
- Beijing Institute of Radiation MedicineBeijingChina
- State Key Laboratory of Kidney DiseasesChinese PLA General HospitalBeijingChina
| |
Collapse
|
3
|
Feng C, Fan H, Tie R, Xin S, Chen M. Deciphering the evolving niche interactome of human hematopoietic stem cells from ontogeny to aging. Front Mol Biosci 2024; 11:1479605. [PMID: 39698109 PMCID: PMC11652281 DOI: 10.3389/fmolb.2024.1479605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Hematopoietic stem cells (HSC) reside within specialized microenvironments that undergo dynamic changes throughout development and aging to support HSC function. However, the evolving cell-cell communication networks within these niches remain largely unexplored. This study integrates single-cell RNA sequencing datasets to systematically characterize the HSC niche interactome from ontogeny to aging. We reconstructed single-cell atlases of HSC niches at different developmental stages, revealing stage-specific cellular compositions and interactions targeting HSC. During HSC maturation, our analysis identified distinct patterns of ligand-receptor interactions and signaling pathways that govern HSC emergence, expansion, and maintenance. HSC aging was accompanied by a decrease in supportive niche interactions, followed by an adaptive increase in interaction strength in old adult bone marrow. This complex aging process involved the emergence of interactions associated with inflammation, altered stem cell function, and a decline in the efficacy of key signaling pathways. Our findings provide a comprehensive understanding of the dynamic remodeling of the HSC niche interactome throughout life, paving the way for targeted interventions to maintain HSC function and promote healthy aging. This study offers valuable insights into the intricate cell-cell communication networks that govern HSC behavior and fate, with implications for hematological disorders and regenerative medicine.
Collapse
Affiliation(s)
- Cong Feng
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoyan Fan
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hematology-Oncology, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Saige Xin
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Bell I, Khan H, Stutt N, Horn M, Hydzik T, Lum W, Rea V, Clapham E, Hoeg L, Van Raay TJ. Nkd1 functions downstream of Axin2 to attenuate Wnt signaling. Mol Biol Cell 2024; 35:ar93. [PMID: 38656801 PMCID: PMC11244159 DOI: 10.1091/mbc.e24-02-0059-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
Wnt signaling is a crucial developmental pathway involved in early development as well as stem-cell maintenance in adults and its misregulation leads to numerous diseases. Thus, understanding the regulation of this pathway becomes vitally important. Axin2 and Nkd1 are widely utilized negative feedback regulators in Wnt signaling where Axin2 functions to destabilize cytoplasmic β-catenin, and Nkd1 functions to inhibit the nuclear localization of β-catenin. Here, we set out to further understand how Axin2 and Nkd1 regulate Wnt signaling by creating axin2gh1/gh1, nkd1gh2/gh2 single mutants and axin2gh1/gh1;nkd1gh2/gh2 double mutant zebrafish using sgRNA/Cas9. All three Wnt regulator mutants were viable and had impaired heart looping, neuromast migration defects, and behavior abnormalities in common, but there were no signs of synergy in the axin2gh1/gh1;nkd1gh2/gh2 double mutants. Further, Wnt target gene expression by qRT-PCR and RNA-seq, and protein expression by mass spectrometry demonstrated that the double axin2gh1/gh1;nkd1gh2/gh2 mutant resembled the nkd1gh2/gh2 phenotype demonstrating that Nkd1 functions downstream of Axin2. In support of this, the data further demonstrates that Axin2 uniquely alters the properties of β-catenin-dependent transcription having novel readouts of Wnt activity compared with nkd1gh2/gh2 or the axin2gh1/gh1;nkd1gh2/gh2 double mutant. We also investigated the sensitivity of the Wnt regulator mutants to exacerbated Wnt signaling, where the single mutants displayed characteristic heightened Wnt sensitivity, resulting in an eyeless phenotype. Surprisingly, this phenotype was rescued in the double mutant, where we speculate that cross-talk between Wnt/β-catenin and Wnt/Planar Cell Polarity pathways could lead to altered Wnt signaling in some scenarios. Collectively, the data emphasizes both the commonality and the complexity in the feedback regulation of Wnt signaling.
Collapse
Affiliation(s)
- Ian Bell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Haider Khan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Nathan Stutt
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Matthew Horn
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Teesha Hydzik
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Whitney Lum
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Victoria Rea
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Emma Clapham
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Lisa Hoeg
- Department of Bioinformatics, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
| | - Terence J. Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| |
Collapse
|
5
|
Jakubek YA, Ma X, Stilp AM, Yu F, Bacon J, Wong JW, Aguet F, Ardlie K, Arnett D, Barnes K, Bis JC, Blackwell T, Becker LC, Boerwinkle E, Bowler RP, Budoff MJ, Carson AP, Chen J, Cho MH, Coresh J, Cox N, de Vries PS, DeMeo DL, Fardo DW, Fornage M, Guo X, Hall ME, Heard-Costa N, Hidalgo B, Irvin MR, Johnson AD, Kenny EE, Levy D, Li Y, Lima JA, Liu Y, Loos RJF, Machiela MJ, Mathias RA, Mitchell BD, Murabito J, Mychaleckyj JC, North K, Orchard P, Parker SC, Pershad Y, Peyser PA, Pratte KA, Psaty BM, Raffield LM, Redline S, Rich SS, Rotter JI, Shah SJ, Smith JA, Smith AP, Smith A, Taub M, Tiwari HK, Tracy R, Tuftin B, Bick AG, Sankaran VG, Reiner AP, Scheet P, Auer PL. Genomic and phenotypic correlates of mosaic loss of chromosome Y in blood. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.16.24305851. [PMID: 38699360 PMCID: PMC11065036 DOI: 10.1101/2024.04.16.24305851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer's disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole genome sequencing of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program. This approach enabled us to identify differences in mLOY frequencies across populations defined by genetic similarity, revealing a higher frequency of mLOY in the European American (EA) ancestry group compared to those of Hispanic American (HA), African American (AA), and East Asian (EAS) ancestry. Further, we identified two genes ( CFHR1 and LRP6 ) that harbor multiple rare, putatively deleterious variants associated with mLOY susceptibility, show that subsets of human hematopoietic stem cells are enriched for activity of mLOY susceptibility variants, and that certain alleles on chromosome Y are more likely to be lost than others.
Collapse
|
6
|
You M, Liu J, Li J, Ji C, Ni H, Guo W, Zhang J, Jia W, Wang Z, Zhang Y, Yao Y, Yu G, Ji H, Wang X, Han D, Du X, Xu MM, Yu S. Mettl3-m 6A-Creb1 forms an intrinsic regulatory axis in maintaining iNKT cell pool and functional differentiation. Cell Rep 2023; 42:112584. [PMID: 37267102 DOI: 10.1016/j.celrep.2023.112584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/07/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023] Open
Abstract
N6-methyladenosine (m6A) methyltransferase Mettl3 is involved in conventional T cell immunity; however, its role in innate immune cells remains largely unknown. Here, we show that Mettl3 intrinsically regulates invariant natural killer T (iNKT) cell development and function in an m6A-dependent manner. Conditional ablation of Mettl3 in CD4+CD8+ double-positive (DP) thymocytes impairs iNKT cell proliferation, differentiation, and cytokine secretion, which synergistically causes defects in B16F10 melanoma resistance. Transcriptomic and epi-transcriptomic analyses reveal that Mettl3 deficiency disturbs the expression of iNKT cell-related genes with altered m6A modification. Strikingly, Mettl3 modulates the stability of the Creb1 transcript, which in turn controls the protein and phosphorylation levels of Creb1. Furthermore, conditional targeting of Creb1 in DP thymocytes results in similar phenotypes of iNKT cells lacking Mettl3. Importantly, ectopic expression of Creb1 largely rectifies such developmental defects in Mettl3-deficient iNKT cells. These findings reveal that the Mettl3-m6A-Creb1 axis plays critical roles in regulating iNKT cells at the post-transcriptional layer.
Collapse
Affiliation(s)
- Menghao You
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jingjing Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China; Department of Basic Medical Sciences, School of Medicine, Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, THU-PKU Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ce Ji
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haochen Ni
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenhui Guo
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiarui Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Weiwei Jia
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhao Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yajiao Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yingpeng Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guotao Yu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huanyu Ji
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaohu Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dali Han
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuguang Du
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Meng Michelle Xu
- Department of Basic Medical Sciences, School of Medicine, Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, THU-PKU Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Shuyang Yu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Wang J, Yang H, Ma X, Liu J, Li L, Chen L, Wei F. LRP6/filamentous-actin signaling facilitates osteogenic commitment in mechanically induced periodontal ligament stem cells. Cell Mol Biol Lett 2023; 28:7. [PMID: 36694134 PMCID: PMC9872397 DOI: 10.1186/s11658-023-00420-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Mechanotransduction mechanisms whereby periodontal ligament stem cells (PDLSCs) translate mechanical stress into biochemical signals and thereby trigger osteogenic programs necessary for alveolar bone remodeling are being deciphered. Low-density lipoprotein receptor-related protein 6 (LRP6), a Wnt transmembrane receptor, has been qualified as a key monitor for mechanical cues. However, the role of LRP6 in the mechanotransduction of mechanically induced PDLSCs remains obscure. METHODS The Tension System and tooth movement model were established to determine the expression profile of LRP6. The loss-of-function assay was used to investigate the role of LRP6 on force-regulated osteogenic commitment in PDLSCs. The ability of osteogenic differentiation and proliferation was estimated by alkaline phosphatase (ALP) staining, ALP activity assay, western blotting, quantitative real-time PCR (qRT-PCR), and immunofluorescence. Crystalline violet staining was used to visualize cell morphological change. Western blotting, qRT-PCR, and phalloidin staining were adopted to affirm filamentous actin (F-actin) alteration. YAP nucleoplasmic localization was assessed by immunofluorescence and western blotting. YAP transcriptional response was evaluated by qRT-PCR. Cytochalasin D was used to determine the effects of F-actin on osteogenic commitment and YAP switch behavior in mechanically induced PDLSCs. RESULTS LRP6 was robustly activated in mechanically induced PDLSCs and PDL tissues. LRP6 deficiency impeded force-dependent osteogenic differentiation and proliferation in PDLSCs. Intriguingly, LRP6 loss caused cell morphological aberration, F-actin dynamics disruption, YAP nucleoplasmic relocation, and subsequent YAP inactivation. Moreover, disrupted F-actin dynamics inhibited osteogenic differentiation, proliferation, YAP nuclear translocation, and YAP activation in mechanically induced PDLSCs. CONCLUSIONS We identified that LRP6 in PDLSCs acted as the mechanosensor regulating mechanical stress-inducible osteogenic commitment via the F-actin/YAP cascade. Targeting LRP6 for controlling alveolar bone remodeling may be a prospective therapy to attenuate relapse of orthodontic treatment.
Collapse
Affiliation(s)
- Jixiao Wang
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Huiqi Yang
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Xiaobei Ma
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Jiani Liu
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Lan Li
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Lei Chen
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Fulan Wei
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| |
Collapse
|
8
|
Yu K, Jiang Z, Miao X, Yu Z, Du X, Lai K, Wang Y, Yang G. circRNA422 enhanced osteogenic differentiation of bone marrow mesenchymal stem cells during early osseointegration through the SP7/LRP5 axis. Mol Ther 2022; 30:3226-3240. [PMID: 35642253 PMCID: PMC9552913 DOI: 10.1016/j.ymthe.2022.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/27/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022] Open
Abstract
Circular RNAs (circRNAs) play an important role in biological activities, especially in regulating osteogenic differentiation of stem cells. However, no studies have reported the role of circRNAs in early osseointegration. Here we identified a new circRNA, circRNA422, from rat bone marrow mesenchymal stem cells (BMSCs) cultured on sandblasted, large-grit, acid-etched titanium surfaces. The results showed that circRNA422 significantly enhanced osteogenic differentiation of BMSCs with increased expression levels of alkaline phosphatase, the SP7 transcription factor (SP7/osterix), and lipoprotein receptor-related protein 5 (LRP5). Silencing of circRNA422 had opposite effects. There were two SP7 binding sites on the LRP5 promoter, indicating a direct regulatory relationship between SP7 and LRP5. circRNA422 could regulate early osseointegration in in vivo experiments. These findings revealed an important function of circRNA422 during early osseointegration. Therefore, circRNA422 may be a potential therapeutic target for enhancing implant osseointegration.
Collapse
Affiliation(s)
- Ke Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xiaoyan Miao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Zhou Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xue Du
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Kaichen Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
9
|
Li J, Quan C, He YL, Cao Y, Chen Y, Wang YF, Wu LY. Autophagy regulated by the HIF/REDD1/mTORC1 signaling is progressively increased during erythroid differentiation under hypoxia. Front Cell Dev Biol 2022; 10:896893. [PMID: 36092719 PMCID: PMC9448881 DOI: 10.3389/fcell.2022.896893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
For hematopoietic stem and progenitor cells (HSPCs), hypoxia is a specific microenvironment known as the hypoxic niche. How hypoxia regulates erythroid differentiation of HSPCs remains unclear. In this study, we show that hypoxia evidently accelerates erythroid differentiation, and autophagy plays a pivotal role in this process. We further determine that mTORC1 signaling is suppressed by hypoxia to relieve its inhibition of autophagy, and with the process of erythroid differentiation, mTORC1 activity gradually decreases and autophagy activity increases accordingly. Moreover, we provide evidence that the HIF-1 target gene REDD1 is upregulated to suppress mTORC1 signaling and enhance autophagy, thereby promoting erythroid differentiation under hypoxia. Together, our study identifies that the enhanced autophagy by hypoxia favors erythroid maturation and elucidates a new regulatory pattern whereby autophagy is progressively increased during erythroid differentiation, which is driven by the HIF-1/REDD1/mTORC1 signaling in a hypoxic niche.
Collapse
|
10
|
mTOR is involved in LRP5-induced osteogenic differentiation of normal and aged periodontal ligament stem cells in vitro. J Mol Histol 2022; 53:793-804. [PMID: 36002678 DOI: 10.1007/s10735-022-10097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
Periodontal ligament stem cells (PDLSCs) plays an important role in tissue engineering. As the age increased, the cell viability and osteogenic differentiation of PDLSCs all decreased. Low density lipoprotein receptor related protein 5 (LRP5) was found to promote bone marrow mesenchymal stem cells osteogenic differentiation. Therefore, our study explored the effect of LRP5 on normal and aged PDLSCs and relative mechanism. Here, we found that the expression of LRP5 in PDLSCs of 24 week-old mice was decreased compared with PDLSCs of 5 week-old mice (n = 5). . LRP5 overexpression in PDLSCs increased the intensity of alkaline phosphatase and alizarin red staining, accompanied with upregulated the levels of RUNX family transcription factor 2, collagen type I, and β-Catenin. LRP5 knockdown displayed the opposite results in PDLSCs in vitro. LRP5 overexpression in aged PDLSCs restored part ability of osteogenic differentiation. Meantime, LRP5 increased the protein expression of phosphorylation of mammalian target of rapamycin (p-mTOR) in normal and aged PDLSCs. Immunofluorescence showed that LRP5 increased the accumulation of p-mTOR nucleus. The effect of LRP5 in promoting osteogenic differentiation of PDLSCs can be antagonized by mTOR inhibitor rapamycin. These findings suggest that LRP5 positively regulate osteogenic differentiation of normal and aged PDLSCs and may be a potential target for enlarging the application of PDLSCs in tissue regeneration.
Collapse
|
11
|
Yang Z, Liu J, Fu J, Li S, Chai Z, Sun Y. Associations between WNT signaling pathway-related gene polymorphisms and risks of osteoporosis development in Chinese postmenopausal women: a case-control study. Climacteric 2022; 25:257-263. [PMID: 34254535 DOI: 10.1080/13697137.2021.1941848] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 05/11/2021] [Accepted: 06/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The WNT signaling pathway is involved in the regulation of bone homeostasis, and the effect of WNT signaling pathway-related gene (WNT16 and LRP5) polymorphisms on osteoporosis risk among Chinese postmenopausal women is still unknown. Hence, we performed a case-control study to assess the association of WNT signaling pathway-related gene polymorphisms and osteoporosis risk. METHODS A total of 1026 women (515 osteoporosis patients and 511 controls) of postmenopausal age who were randomly sampled from Xi'an 630 Hospital (Shaanxi Province, China) were involved in this study. Seven genetic polymorphisms in WNT16 (rs3779381, rs3801387, rs917727 and rs7776725) and LRP5 (rs2291467, rs11228240 and rs12272917) were selected and genotyped using the Agena MassARRAY iPLEX system. The association of the genetic polymorphisms and osteoporosis risk was assessed by odds ratios and 95% confidence intervals. The multifactor dimensionality reduction (MDR) method was conducted to analyze single nucleotide polymorphism (SNP)-SNP interaction. RESULTS We found that LRP5 polymorphisms (rs2291467, rs11228240 and rs12272917) were significantly associated with a decreased risk of osteoporosis in homozygote, recessive and additive models (p < 0.05). Stratification analysis showed that LRP5 polymorphisms (rs2291467, rs11228240 and rs12272917) significantly decreased the osteoporosis risk in the subgroup of body mass index (BMI) ≤ 24 (p < 0.05) and that individuals carrying a heterozygote genotype of WNT16 polymorphisms (rs3779381, rs3801387, rs917727 and rs7776725) had a higher osteoporosis risk in the subgroup of BMI > 24 (p < 0.05). Two haplotypes (haplotype 1: rs3779381, rs3801387, rs917727 and rs7776725; haplotype 2: rs2291467 and rs11228240) were observed, yet only Trs2291467Trs11228240 and Crs2291467Crs11228240 had a strong association with a decreased risk of osteoporosis (p < 0.05). Additionally, MDR analysis revealed that LRP5 rs2291467 was the best model in single-locus MDR analysis. A seven-locus model including rs3779381-AG, rs7776725-TC, rs3801387-GA and rs917727-TC in WNT16 and rs11228240-CC, rs12272917-TC and rs2291467-CC in LRP5 was the best model in multiple-loci MDR analysis (p < 0.001). These two best models were the most significantly associated with osteoporosis risk. CONCLUSIONS Our findings suggested that WNT16 and LRP5 genetic polymorphisms are associated with osteoporosis risk among Chinese postmenopausal women.
Collapse
Affiliation(s)
- Z Yang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - J Liu
- Department of Internal Neurology, Inner Mongolia Medical University Affiliated Hospital, Hohhot, China
| | - J Fu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - S Li
- Department of Minimal Invasive Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical College, Hohhot, China
| | - Z Chai
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Y Sun
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
TCF-1: a maverick in T cell development and function. Nat Immunol 2022; 23:671-678. [PMID: 35487986 PMCID: PMC9202512 DOI: 10.1038/s41590-022-01194-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/22/2022] [Indexed: 02/01/2023]
Abstract
The T cell-specific DNA-binding protein TCF-1 is a central regulator of T cell development and function along multiple stages and lineages. Because it interacts with β-catenin, TCF-1 has been classically viewed as a downstream effector of canonical Wnt signaling, although there is strong evidence for β-catenin-independent TCF-1 functions. TCF-1 co-binds accessible regulatory regions containing or lacking its conserved motif and cooperates with other nuclear factors to establish context-dependent epigenetic and transcription programs that are essential for T cell development and for regulating immune responses to infection, autoimmunity and cancer. Although it has mostly been associated with positive regulation of chromatin accessibility and gene expression, TCF-1 has the potential to reduce chromatin accessibility and thereby suppress gene expression. In addition, the binding of TCF-1 bends the DNA and affects the chromatin conformation genome wide. This Review discusses the current understanding of the multiple roles of TCF-1 in T cell development and function and their mechanistic underpinnings.
Collapse
|
13
|
Zhou H, Zhang F, Wu Y, Liu H, Duan R, Liu Y, Wang Y, He X, Zhang Y, Ma X, Guan Y, Liu Y, Liang D, Zhou L, Chen Y. LRP5 regulates cardiomyocyte proliferation and neonatal heart regeneration by the AKT/P21 pathway. J Cell Mol Med 2022; 26:2981-2994. [PMID: 35429093 PMCID: PMC9097834 DOI: 10.1111/jcmm.17311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Affiliation(s)
- Huixing Zhou
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Fulei Zhang
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Yahan Wu
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Hongyu Liu
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Ran Duan
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Yuanyuan Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Jinzhou Medical University Liaoning Jinzhou China
| | - Yan Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Jinzhou Medical University Liaoning Jinzhou China
| | - Xiaoyu He
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Yuemei Zhang
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Xiue Ma
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Yi Guan
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Yi Liu
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Dandan Liang
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Research Units of Origin and Regulation of Heart Rhythm Chinese Academy of Medical Sciences Shanghai China
| | - Liping Zhou
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Yi‐Han Chen
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Research Units of Origin and Regulation of Heart Rhythm Chinese Academy of Medical Sciences Shanghai China
- Department of Pathology and Pathophysiology Tongji University School of Medicine Shanghai China
| |
Collapse
|
14
|
Abstract
TCF1 and its homologue LEF1 are historically known as effector transcription factors downstream of the WNT signalling pathway and are essential for early T cell development. Recent advances bring TCF1 into the spotlight for its versatile, context-dependent functions in regulating mature T cell responses. In the cytotoxic T cell lineages, TCF1 is required for the self-renewal of stem-like CD8+ T cells generated in response to viral or tumour antigens, and for preserving heightened responses to checkpoint blockade immunotherapy. In the helper T cell lineages, TCF1 is indispensable for the differentiation of T follicular helper and T follicular regulatory cells, and crucially regulates immunosuppressive functions of regulatory T cells. Mechanistic investigations have also identified TCF1 as the first transcription factor that directly modifies histone acetylation, with the capacity to bridge transcriptional and epigenetic regulation. TCF1 also has the potential to become an important clinical biomarker for assessing the prognosis of tumour immunotherapy and the success of viral control in treating HIV and hepatitis C virus infection. Here, we summarize the key findings on TCF1 across the fields of T cell immunity and reflect on the possibility of exploring TCF1 and its downstream transcriptional programmes as therapeutic targets for improving antiviral and antitumour immunity.
Collapse
|
15
|
Nie X, Wang H, Wei X, Li L, Xue T, Fan L, Ma H, Xia Y, Wang YD, Chen WD. LRP5 Promotes Gastric Cancer via Activating Canonical Wnt/β-Catenin and Glycolysis Pathways. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 192:503-517. [PMID: 34896072 DOI: 10.1016/j.ajpath.2021.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022]
Abstract
The overactivation of canonical Wnt/β-catenin pathway is one of the main cascades for the initiation, progression, and recurrence of most human malignancies. As an indispensable coreceptor for the signaling transduction of the canonical Wnt/β-catenin pathway, LRP5 is up-regulated and exerts a carcinogenic role in most types of cancer. However, its expression level and role in gastric cancer (GC) has not been clearly elucidated. The current work showed that LRP5 was overexpressed in GC tissues and the expression of LRP5 was positively associated with the advanced clinical stages and poor prognosis. Ectopic expression of LRP5 enhanced the proliferation, invasiveness, and drug resistance of GC cells in vitro, and accelerated the tumor growth in nude mice, through activating the canonical Wnt/β-catenin signaling pathway and up-regulating aerobic glycolysis, thus increasing the energy supply for GC cells. Additionally, the expression of LRP5 and glycolysis-related genes showed an obviously positive correlation in GC tissues. By contrast, the exact opposite results were observed when the endogenous LRP5 was silenced in GC cells. Collectively, these results not only reveal the carcinogenic role of LRP5 during GC development through activating the canonical Wnt/β-catenin and glycolysis pathways, but also provide a valuable candidate for the diagnosis and treatment of human GC.
Collapse
Affiliation(s)
- Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, P.R. China; Key Laboratory of Receptors-Mediated Gene Regulation, People's Hospital of Hebi, School of Medicine, Henan University, Kaifeng, P.R. China
| | - Haisheng Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, P.R. China
| | - Xiaoyun Wei
- Key Laboratory of Receptors-Mediated Gene Regulation, People's Hospital of Hebi, School of Medicine, Henan University, Kaifeng, P.R. China
| | - Lanqing Li
- Key Laboratory of Receptors-Mediated Gene Regulation, People's Hospital of Hebi, School of Medicine, Henan University, Kaifeng, P.R. China
| | - Ting Xue
- Key Laboratory of Receptors-Mediated Gene Regulation, People's Hospital of Hebi, School of Medicine, Henan University, Kaifeng, P.R. China
| | - Lili Fan
- Key Laboratory of Receptors-Mediated Gene Regulation, People's Hospital of Hebi, School of Medicine, Henan University, Kaifeng, P.R. China
| | - Han Ma
- Key Laboratory of Receptors-Mediated Gene Regulation, People's Hospital of Hebi, School of Medicine, Henan University, Kaifeng, P.R. China
| | - Yubing Xia
- Kaifeng Cancer Hospital, Kaifeng University, Kaifeng, P.R. China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, P.R. China; Key Laboratory of Receptors-Mediated Gene Regulation, People's Hospital of Hebi, School of Medicine, Henan University, Kaifeng, P.R. China.
| |
Collapse
|
16
|
Liu J, You M, Yao Y, Ji C, Wang Z, Wang F, Wang D, Qi Z, Yu G, Sun Z, Guo W, Liu J, Li S, Jin Y, Zhao T, Xue HH, Xue Y, Yu S. SRSF1 plays a critical role in invariant natural killer T cell development and function. Cell Mol Immunol 2021; 18:2502-2515. [PMID: 34522020 PMCID: PMC8545978 DOI: 10.1038/s41423-021-00766-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are highly conserved innate-like T lymphocytes that originate from CD4+CD8+ double-positive (DP) thymocytes. Here, we report that serine/arginine splicing factor 1 (SRSF1) intrinsically regulates iNKT cell development by directly targeting Myb and balancing the abundance of short and long isoforms. Conditional ablation of SRSF1 in DP cells led to a substantially diminished iNKT cell pool due to defects in proliferation, survival, and TCRα rearrangement. The transition from stage 0 to stage 1 of iNKT cells was substantially blocked, and the iNKT2 subset was notably diminished in SRSF1-deficient mice. SRSF1 deficiency resulted in aberrant expression of a series of regulators that are tightly correlated with iNKT cell development and iNKT2 differentiation, including Myb, PLZF, Gata3, ICOS, and CD5. In particular, we found that SRSF1 directly binds and regulates pre-mRNA alternative splicing of Myb and that the expression of the short isoform of Myb is substantially reduced in SRSF1-deficient DP and iNKT cells. Strikingly, ectopic expression of the Myb short isoform partially rectified the defects caused by ablation of SRSF1. Furthermore, we confirmed that the SRSF1-deficient mice exhibited resistance to acute liver injury upon α-GalCer and Con A induction. Our findings thus uncovered a previously unknown role of SRSF1 as an essential post-transcriptional regulator in iNKT cell development and functional differentiation, providing new clinical insights into iNKT-correlated disease.
Collapse
Affiliation(s)
- Jingjing Liu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Menghao You
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingpeng Yao
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ce Ji
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhao Wang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fang Wang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Di Wang
- grid.9227.e0000000119573309Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhihong Qi
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guotao Yu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Sun
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenhui Guo
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Juanjuan Liu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shumin Li
- grid.22935.3f0000 0004 0530 8290Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Jin
- grid.22935.3f0000 0004 0530 8290Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tianyan Zhao
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hai-Hui Xue
- grid.429392.70000 0004 6010 5947Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ USA
| | - Yuanchao Xue
- grid.9227.e0000000119573309Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shuyang Yu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Da Silva F, Zhang K, Pinson A, Fatti E, Wilsch‐Bräuninger M, Herbst J, Vidal V, Schedl A, Huttner WB, Niehrs C. Mitotic WNT signalling orchestrates neurogenesis in the developing neocortex. EMBO J 2021; 40:e108041. [PMID: 34431536 PMCID: PMC8488556 DOI: 10.15252/embj.2021108041] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
The role of WNT/β-catenin signalling in mouse neocortex development remains ambiguous. Most studies demonstrate that WNT/β-catenin regulates progenitor self-renewal but others suggest it can also promote differentiation. Here we explore the role of WNT/STOP signalling, which stabilizes proteins during G2/M by inhibiting glycogen synthase kinase (GSK3)-mediated protein degradation. We show that mice mutant for cyclin Y and cyclin Y-like 1 (Ccny/l1), key regulators of WNT/STOP signalling, display reduced neurogenesis in the developing neocortex. Specifically, basal progenitors, which exhibit delayed cell cycle progression, were drastically decreased. Ccny/l1-deficient apical progenitors show reduced asymmetric division due to an increase in apical-basal astral microtubules. We identify the neurogenic transcription factors Sox4 and Sox11 as direct GSK3 targets that are stabilized by WNT/STOP signalling in basal progenitors during mitosis and that promote neuron generation. Our work reveals that WNT/STOP signalling drives cortical neurogenesis and identifies mitosis as a critical phase for neural progenitor fate.
Collapse
Affiliation(s)
| | - Kaiqing Zhang
- Division of Molecular EmbryologyDKFZHeidelbergGermany
| | - Anneline Pinson
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Edoardo Fatti
- Division of Molecular EmbryologyDKFZHeidelbergGermany
- Present address:
Department of BiologyInstitute of BiochemistryETH (Eidgenössische Technische Hochschule)ZürichSwitzerland
| | | | | | | | | | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Christof Niehrs
- Division of Molecular EmbryologyDKFZHeidelbergGermany
- Institute of Molecular Biology (IMB)MainzGermany
| |
Collapse
|
18
|
Desterke C, Bennaceur-Griscelli A, Turhan AG. EGR1 dysregulation defines an inflammatory and leukemic program in cell trajectory of human-aged hematopoietic stem cells (HSC). Stem Cell Res Ther 2021; 12:419. [PMID: 34294125 PMCID: PMC8296523 DOI: 10.1186/s13287-021-02498-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/24/2022] Open
Abstract
Background During aging, hematopoietic stem cells (HSC) lose progressively both their self-renewal and differentiation potential. The precise molecular mechanisms of this phenomenon are not well established. To uncover the molecular events underlying this event, we have performed a bioinformatics analysis of 650 single-cell transcriptomes. Methods Single-cell transcriptome analyses of expression heterogeneity, cell cycle, and cell trajectory in human cell compartment enriched in hematopoietic stem cell compartment were investigated in the bone marrow according to the age of the donors. Identification of aging-related nodules was identified by weighted correlation network analysis in this primitive compartment. Results The analysis of single-cell transcriptomes allowed to uncover a major upregulation of EGR1 in human-aged lineage−CD34+CD38− cells which present cell cycle dysregulation with reduction of G2/M phase according to less expression of CCND2 during S phase. EGR1 upregulation in aging hematopoietic stem cells was found to be independent of cell cycle phases and gender. EGR1 expression trajectory in aged HSC highlighted a signature enriched in hematopoietic and immune disorders with the best induction of AP-1 complex and quiescence regulators such as EGR1, BTG2, JUNB, and NR41A. Sonic Hedgehog-related TMEM107 transmembrane molecule followed also EGR1 cell trajectory. EGR1-dependent gene weighted network analysis in human HSC-associated IER2 target protein-specific regulators of PP2A activity, IL1B, TNFSF10 ligands, and CD69, SELP membrane molecules in old HSC module with immune and leukemogenic signature. In contrast, for young HSC which were found with different cell cycle phase progression, its specific module highlighted upregulation of HIF1A hypoxic factor, PDE4B immune marker, DRAK2 (STK17B) T cell apoptosis regulator, and MYADM myeloid-associated marker. Conclusion EGR1 was found to be connected to the aging of human HSC and highlighted a specific cell trajectory contributing to the dysregulation of an inflammatory and leukemia-related transcriptional program in aged human HSCs. EGR1 and its program were found to be connected to the aging of human HSC with dissociation of quiescence property and cell cycle phase progression in this primitive hematopoietic compartment. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02498-0.
Collapse
Affiliation(s)
| | - Annelise Bennaceur-Griscelli
- INSERM UA9, University Paris-Saclay, 94800, Villejuif, France.,ESTeam Paris Sud, INGESTEM National IPSC Infrastructure, University Paris-Saclay, 94800, Villejuif, France.,Division of Hematology, APHP-Paris Saclay University Hospitals, Le Kremlin Bicêtre 94275, 94800, Villejuif, France.,Faculty of Medicine, University Paris Saclay, 94275, Le Kremlin Bicêtre, France
| | - Ali G Turhan
- INSERM UA9, University Paris-Saclay, 94800, Villejuif, France. .,ESTeam Paris Sud, INGESTEM National IPSC Infrastructure, University Paris-Saclay, 94800, Villejuif, France. .,Division of Hematology, APHP-Paris Saclay University Hospitals, Le Kremlin Bicêtre 94275, 94800, Villejuif, France. .,Faculty of Medicine, University Paris Saclay, 94275, Le Kremlin Bicêtre, France.
| |
Collapse
|
19
|
Sun Z, Yao Y, You M, Liu J, Guo W, Qi Z, Wang Z, Wang F, Yuan W, Yu S. The kinase PDK1 is critical for promoting T follicular helper cell differentiation. eLife 2021; 10:61406. [PMID: 33595435 PMCID: PMC7889074 DOI: 10.7554/elife.61406] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/08/2021] [Indexed: 01/03/2023] Open
Abstract
The kinase PDK1 is a crucial regulator for immune cell development by connecting PI3K to downstream AKT signaling. However, the roles of PDK1 in CD4+ T cell differentiation, especially in T follicular helper (Tfh) cell, remain obscure. Here we reported PDK1 intrinsically promotes the Tfh cell differentiation and germinal center responses upon acute infection by using conditional knockout mice. PDK1 deficiency in T cells caused severe defects in both early differentiation and late maintenance of Tfh cells. The expression of key Tfh regulators was remarkably downregulated in PDK1-deficient Tfh cells, including Tcf7, Bcl6, Icos, and Cxcr5. Mechanistically, ablation of PDK1 led to impaired phosphorylation of AKT and defective activation of mTORC1, resulting in substantially reduced expression of Hif1α and p-STAT3. Meanwhile, decreased p-AKT also suppresses mTORC2-associated GSK3β activity in PDK1-deficient Tfh cells. These integrated effects contributed to the dramatical reduced expression of TCF1 and ultimately impaired the Tfh cell differentiation.
Collapse
Affiliation(s)
- Zhen Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingpeng Yao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Menghao You
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jingjing Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenhui Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhihong Qi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fang Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Meinsohn MC, Hughes CHK, Estienne A, Saatcioglu HD, Pépin D, Duggavathi R, Murphy BD. A role for orphan nuclear receptor liver receptor homolog-1 (LRH-1, NR5A2) in primordial follicle activation. Sci Rep 2021; 11:1079. [PMID: 33441767 PMCID: PMC7807074 DOI: 10.1038/s41598-020-80178-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Liver receptor homolog-1 (NR5A2) is expressed specifically in granulosa cells of developing ovarian follicles where it regulates the late stages of follicle development and ovulation. To establish its effects earlier in the trajectory of follicular development, NR5A2 was depleted from granulosa cells of murine primordial and primary follicles. Follicle populations were enumerated in neonates at postnatal day 4 (PND4) coinciding with the end of the formation of the primordial follicle pool. The frequency of primordial follicles in PND4 conditional knockout (cKO) ovaries was greater and primary follicles were substantially fewer relative to control (CON) counterparts. Ten-day in vitro culture of PND4 ovaries recapitulated in vivo findings and indicated that CON mice developed primary follicles in the ovarian medulla to a greater extent than did cKO animals. Two subsets of primordial follicles were observed in wildtype ovaries: one that expressed NR5A2 and the second in which the transcript was absent. Neither expressed the mitotic marker. KI-67, indicating their developmental quiescence. RNA sequencing on PND4 demonstrated that loss of NR5A2 induced changes in 432 transcripts, including quiescence markers, inhibitors of follicle activation, and regulators of cellular migration and epithelial-to-mesenchymal transition. These experiments suggest that NR5A2 expression poises primordial follicles for entry into the developing pool.
Collapse
Affiliation(s)
- Marie-Charlotte Meinsohn
- Centre de recherche en reproduction et fertilité, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 7C6, Canada
| | - Camilla H K Hughes
- Centre de recherche en reproduction et fertilité, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 7C6, Canada
| | - Anthony Estienne
- Centre de recherche en reproduction et fertilité, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 7C6, Canada
| | - Hatice D Saatcioglu
- Pediatric Surgical Research Laboratories, Simches Research Center, Massachusetts General Hospital, 185 Cambridge St., Boston, MA, 02114, USA
| | - David Pépin
- Pediatric Surgical Research Laboratories, Simches Research Center, Massachusetts General Hospital, 185 Cambridge St., Boston, MA, 02114, USA
| | - Raj Duggavathi
- Department of Animal Science, McGill University, 21111 Lakeshore Rd., MS1085, Ste-Anne de Bellevue, QC, H9X 3V9, Canada
| | - Bruce D Murphy
- Centre de recherche en reproduction et fertilité, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 7C6, Canada.
| |
Collapse
|
21
|
Soares-Lima SC, Pombo-de-Oliveira MS, Carneiro FRG. The multiple ways Wnt signaling contributes to acute leukemia pathogenesis. J Leukoc Biol 2020; 108:1081-1099. [PMID: 32573851 DOI: 10.1002/jlb.2mr0420-707r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/20/2020] [Accepted: 05/28/2020] [Indexed: 01/19/2023] Open
Abstract
WNT proteins constitute a very conserved family of secreted glycoproteins that act as short-range ligands for signaling with critical roles in hematopoiesis, embryonic development, and tissue homeostasis. These proteins transduce signals via the canonical pathway, which is β-catenin-mediated and better-characterized, or via more diverse noncanonical pathways that are β-catenin independent and comprise the planar cell polarity (PCP) pathway and the WNT/Ca++ pathways. Several proteins regulate Wnt signaling through a variety of sophisticated mechanisms. Disorders within the pathway can contribute to various human diseases, and the dysregulation of Wnt pathways by different molecular mechanisms is implicated in the pathogenesis of many types of cancer, including the hematological malignancies. The types of leukemia differ considerably and can be subdivided into chronic, myeloid or lymphocytic, and acute, myeloid or lymphocytic, leukemia, according to the differentiation stage of the predominant cells, the progenitor lineage, the diagnostic age strata, and the specific molecular drivers behind their development. Here, we review the role of Wnt signaling in normal hematopoiesis and discuss in detail the multiple ways canonical Wnt signaling can be dysregulated in acute leukemia, including alterations in gene expression and protein levels, epigenetic regulation, and mutations. Furthermore, we highlight the different impacts of these alterations, considering the distinct forms of the disease, and the therapeutic potential of targeting Wnt signaling.
Collapse
Affiliation(s)
- Sheila C Soares-Lima
- Epigenetics Group, Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Maria S Pombo-de-Oliveira
- Pediatric Hematology-Oncology Program Research Center, National Cancer Institute, Rio de Janeiro, Brazil
| | - Flávia R G Carneiro
- FIOCRUZ, Center of Technological Development in Health (CDTS), Rio de Janeiro, Brazil.,FIOCRUZ, Laboratório Interdisciplinar de Pesquisas Médicas-Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
He Q, Hong M, He J, Chen W, Zhao M, Zhao W. Isoform-specific involvement of Brpf1 in expansion of adult hematopoietic stem and progenitor cells. J Mol Cell Biol 2020; 12:359-371. [PMID: 31565729 PMCID: PMC7288741 DOI: 10.1093/jmcb/mjz092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/16/2019] [Accepted: 07/30/2019] [Indexed: 12/27/2022] Open
Abstract
Bromodomain-containing proteins are known readers of histone acetylation that regulate chromatin structure and transcription. Although the functions of bromodomain-containing proteins in development, homeostasis, and disease states have been well studied, their role in self-renewal of hematopoietic stem and progenitor cells (HSPCs) remains poorly understood. Here, we performed a chemical screen using nine bromodomain inhibitors and found that the bromodomain and PHD finger-containing protein 1 (Brpf1) inhibitor OF-1 enhanced the expansion of Lin-Sca-1+c-Kit+ HSPCs ex vivo without skewing their lineage differentiation potential. Importantly, our results also revealed distinct functions of Brpf1 isoforms in HSPCs. Brpf1b promoted the expansion of HSPCs. By contrast, Brpf1a is the most abundant isoform in adult HSPCs but enhanced HSPC quiescence and decreased the HSPC expansion. Furthermore, inhibition of Brpf1a by OF-1 promoted histone acetylation and chromatin accessibility leading to increased expression of self-renewal-related genes (e.g. Mn1). The phenotypes produced by OF-1 treatment can be rescued by suppression of Mn1 in HSPCs. Our findings demonstrate that this novel bromodomain inhibitor OF-1 can promote the clinical application of HSPCs in transplantation.
Collapse
Affiliation(s)
- Qiuping He
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Mengzhi Hong
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Jincan He
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Weixin Chen
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Meng Zhao
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Wei Zhao
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
23
|
The Role Played by Wnt/β-Catenin Signaling Pathway in Acute Lymphoblastic Leukemia. Int J Mol Sci 2020; 21:ijms21031098. [PMID: 32046053 PMCID: PMC7037748 DOI: 10.3390/ijms21031098] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is an aggressive hematologic neoplastic disorder that arises from the clonal expansion of transformed T-cell or B-cell precursors. Thanks to progress in chemotherapy protocols, ALL outcome has significantly improved. However, drug-resistance remains an unresolved issue in the treatment of ALL and toxic effects limit dose escalation of current chemotherapeutics. Therefore, the identification of novel targeted therapies to support conventional chemotherapy is required. The Wnt/β-catenin pathway is a conserved signaling axis involved in several physiological processes such as development, differentiation, and adult tissue homeostasis. As a result, deregulation of this cascade is closely related to initiation and progression of various types of cancers, including hematological malignancies. In particular, deregulation of this signaling network is involved in the transformation of healthy HSCs in leukemic stem cells (LSCs), as well as cancer cell multi-drug-resistance. This review highlights the recent findings on the role of Wnt/β-catenin in hematopoietic malignancies and provides information on the current status of Wnt/β-catenin inhibitors with respect to their therapeutic potential in the treatment of ALL.
Collapse
|