1
|
Peter A, Berneman ZN, Cools N. Cellular respiration in dendritic cells: Exploring oxygen-dependent pathways for potential therapeutic interventions. Free Radic Biol Med 2025; 227:536-556. [PMID: 39643130 DOI: 10.1016/j.freeradbiomed.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells crucial for initiating and regulating adaptive immune responses, making them promising candidates for therapeutic interventions in various immune-mediated diseases. Increasing evidence suggests that the microenvironment in which cells are cultured, as well as the milieu in which they perform their functions, significantly impact their immunomodulatory properties. Among these environmental factors, the role of oxygen in DC biology and its significance for both their in vitro generation and in vivo therapeutic application require investigation. Unlike the atmospheric oxygen level of 21 % commonly used in in vitro assays, physiological oxygen levels are much lower (3-9 %), and hypoxia (<1.3 %) is a prevalent condition of both healthy tissues and disease states. This mismatch between laboratory and physiological conditions underscores the critical need to culture and evaluate therapeutic cells under physiologically relevant oxygen levels to improve their translational relevance and clinical outcomes. This review explores the characteristic hallmarks of human DCs that are influenced by oxygen-dependent pathways, including metabolism, phenotype, cytokine secretion, and migration. Furthermore, we discuss the potential of manipulating oxygen levels to refine the generation and functionality of DCs for therapeutic purposes.
Collapse
Affiliation(s)
- Antonia Peter
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| |
Collapse
|
2
|
Fernandez E, Warde M, Manjarres-Raza I, Bobo-Jimenez V, Martinez-Luna M, Vicente-Gutierrez C, Garcia-Rodriguez D, Jimenez-Blasco D, Almeida A, Bolaños JP. Transcriptomic and metabolic signatures of neural cells cultured under a physiologic-like environment. J Biol Chem 2024; 300:107937. [PMID: 39476959 PMCID: PMC11742299 DOI: 10.1016/j.jbc.2024.107937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Cultured brain cells are used conventionally to investigate fundamental neurobiology and identify therapeutic targets against neural diseases. However, standard culture conditions do not simulate the natural cell microenvironment, thus hampering in vivo translational insight. Major weaknesses include atmospheric (21%) O2 tension and lack of intercellular communication, the two factors likely impacting metabolism and signaling. Here, we addressed this issue in mouse neurons and astrocytes in primary culture. We found that the signs of cellular and mitochondrial integrity were optimal when these cells were acclimated to grow in coculture, to emulate intercellular coupling, under physiologic (5%) O2 tension. Transcriptomic scrutiny, performed to elucidate the adaptive mechanism involved, revealed that the vast majority of differentially expressed transcripts were downregulated in both astrocytes and neurons. Gene ontology evaluation unveiled that the largest group of altered transcripts was glycolysis, which was experimentally validated by metabolic flux analyses. This protocol and database resource for neural cells grown under in vivo-like microenvironment may move forward the translation of basic into applied neurobiological research.
Collapse
Affiliation(s)
- Emilio Fernandez
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain; Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain; Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Moussa Warde
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain; Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain; Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Israel Manjarres-Raza
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain; Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain; Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Veronica Bobo-Jimenez
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain; Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
| | - Maria Martinez-Luna
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain
| | | | - Dario Garcia-Rodriguez
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain; Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain; Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Jimenez-Blasco
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain; Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain; Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Angeles Almeida
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain; Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain; Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain; Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Kes MMG, Berkers CR, Drost J. Bridging the gap: advancing cancer cell culture to reveal key metabolic targets. Front Oncol 2024; 14:1480613. [PMID: 39355125 PMCID: PMC11442172 DOI: 10.3389/fonc.2024.1480613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Metabolic rewiring is a defining characteristic of cancer cells, driving their ability to proliferate. Leveraging these metabolic vulnerabilities for therapeutic purposes has a long and impactful history, with the advent of antimetabolites marking a significant breakthrough in cancer treatment. Despite this, only a few in vitro metabolic discoveries have been successfully translated into effective clinical therapies. This limited translatability is partially due to the use of simplistic in vitro models that do not accurately reflect the tumor microenvironment. This Review examines the effects of current cell culture practices on cancer cell metabolism and highlights recent advancements in establishing more physiologically relevant in vitro culture conditions and technologies, such as organoids. Applying these improvements may bridge the gap between in vitro and in vivo findings, facilitating the development of innovative metabolic therapies for cancer.
Collapse
Affiliation(s)
- Marjolein M G Kes
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, Utrecht, Netherlands
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Celia R Berkers
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
4
|
Rogers ZJ, Colombani T, Khan S, Bhatt K, Nukovic A, Zhou G, Woolston BM, Taylor CT, Gilkes DM, Slavov N, Bencherif SA. Controlling Pericellular Oxygen Tension in Cell Culture Reveals Distinct Breast Cancer Responses to Low Oxygen Tensions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402557. [PMID: 38874400 PMCID: PMC11321643 DOI: 10.1002/advs.202402557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/11/2024] [Indexed: 06/15/2024]
Abstract
In oxygen (O2)-controlled cell culture, an indispensable tool in biological research, it is presumed that the incubator setpoint equals the O2 tension experienced by cells (i.e., pericellular O2). However, it is discovered that physioxic (5% O2) and hypoxic (1% O2) setpoints regularly induce anoxic (0% O2) pericellular tensions in both adherent and suspension cell cultures. Electron transport chain inhibition ablates this effect, indicating that cellular O2 consumption is the driving factor. RNA-seq analysis revealed that primary human hepatocytes cultured in physioxia experience ischemia-reperfusion injury due to cellular O2 consumption. A reaction-diffusion model is developed to predict pericellular O2 tension a priori, demonstrating that the effect of cellular O2 consumption has the greatest impact in smaller volume culture vessels. By controlling pericellular O2 tension in cell culture, it is found that hypoxia vs. anoxia induce distinct breast cancer transcriptomic and translational responses, including modulation of the hypoxia-inducible factor (HIF) pathway and metabolic reprogramming. Collectively, these findings indicate that breast cancer cells respond non-monotonically to low O2, suggesting that anoxic cell culture is not suitable for modeling hypoxia. Furthermore, it is shown that controlling atmospheric O2 tension in cell culture incubators is insufficient to regulate O2 in cell culture, thus introducing the concept of pericellular O2-controlled cell culture.
Collapse
Affiliation(s)
- Zachary J. Rogers
- Department of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | - Thibault Colombani
- Department of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | - Saad Khan
- Department of BioengineeringNortheastern UniversityBostonMA02115USA
| | - Khushbu Bhatt
- Department of Pharmaceutical SciencesNortheastern UniversityBostonMA02115USA
| | - Alexandra Nukovic
- Department of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | - Guanyu Zhou
- Department of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | | | - Cormac T. Taylor
- Conway Institute of Biomolecular and Biomedical Research and School of MedicineUniversity College DublinBelfieldDublinD04 V1W8Ireland
| | - Daniele M. Gilkes
- Department of OncologyThe Sidney Kimmel Comprehensive Cancer CenterThe Johns Hopkins University School of MedicineBaltimoreMD21321USA
- Cellular and Molecular Medicine ProgramThe Johns Hopkins University School of MedicineBaltimoreMD21321USA
- Department of Chemical and Biomolecular EngineeringThe Johns Hopkins UniversityBaltimoreMD21218USA
- Johns Hopkins Institute for NanoBioTechnologyThe Johns Hopkins UniversityBaltimoreMD21218USA
| | - Nikolai Slavov
- Department of BioengineeringNortheastern UniversityBostonMA02115USA
- Departments of BioengineeringBiologyChemistry and Chemical BiologySingle Cell Center and Barnett InstituteNortheastern UniversityBostonMA02115USA
- Parallel Squared Technology InstituteWatertownMA02472USA
| | - Sidi A. Bencherif
- Department of Chemical EngineeringNortheastern UniversityBostonMA02115USA
- Department of BioengineeringNortheastern UniversityBostonMA02115USA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Biomechanics and Bioengineering (BMBI)UTC CNRS UMR 7338University of Technology of CompiègneSorbonne UniversityCompiègne60203France
| |
Collapse
|
5
|
Alva R, Wiebe JE, Stuart JA. The effect of baseline O 2 conditions on the response of prostate cancer cells to hypoxia. Am J Physiol Cell Physiol 2024; 327:C97-C112. [PMID: 38646786 DOI: 10.1152/ajpcell.00155.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
The transcriptional response to hypoxia is largely regulated by the hypoxia-inducible factors (HIFs), which induce the expression of genes involved in glycolysis, angiogenesis, proliferation, and migration. Virtually all cell culture-based hypoxia experiments have used near-atmospheric (18% O2) oxygen levels as the baseline for comparison with hypoxia. However, this is hyperoxic compared with mammalian tissue microenvironments, where oxygen levels range from 2% to 9% O2 (physioxia). Thus, these experiments actually compare hyperoxia to hypoxia. To determine how the baseline O2 level affects the subsequent response to hypoxia, we cultured PC-3 prostate cancer cells in either 18% or 5% O2 for 2 wk before exposing them to hypoxia (∼1.1% pericellular O2) for 12-48 h. RNA-seq revealed that the transcriptional response to hypoxia was dependent on the baseline O2 level. Cells grown in 18% O2 before hypoxia exposure showed an enhanced induction of HIF targets, particularly genes involved in glucose metabolism, compared with cells grown in physioxia before hypoxia. Consistent with this, hypoxia significantly increased glucose consumption and metabolic activity only in cells previously cultured in 18% O2, but not in cells preadapted to 5% O2. Transcriptomic analyses also indicated effects on cell proliferation and motility, which were followed up by functional assays. Although unaffected by hypoxia, both proliferation and migration rates were greater in cells cultured in 5% O2 versus 18% O2. We conclude that an inappropriately hyperoxic starting condition affects the transcriptional and metabolic responses of PC-3 cells to hypoxia, which may compromise experiments on cancer metabolism in vitro.NEW & NOTEWORTHY Although human cell culture models have been instrumental to our understanding of the mechanisms involved in the cellular response to hypoxia, in virtually all experiments, cells are routinely cultured in near-atmospheric (∼18% O2) oxygen levels, which are hyperoxic relative to physiological conditions in vivo. Here, we show for the first time that cells cultured in physiological O2 levels (5% O2) respond differently to subsequent hypoxia than cells grown at 18%.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological SciencesBrock University, St. Catharines, Ontario, Canada
| | - Jacob E Wiebe
- Department of Biological SciencesBrock University, St. Catharines, Ontario, Canada
| | - Jeffrey A Stuart
- Department of Biological SciencesBrock University, St. Catharines, Ontario, Canada
| |
Collapse
|
6
|
Carlson N, House CD, Tambasco M. Toward a Transportable Cell Culture Platform for Evaluating Radiotherapy Dose Modifying Factors. Int J Mol Sci 2023; 24:15953. [PMID: 37958936 PMCID: PMC10648285 DOI: 10.3390/ijms242115953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
The current tools for validating dose delivery and optimizing new radiotherapy technologies in radiation therapy do not account for important dose modifying factors (DMFs), such as variations in cellular repair capability, tumor oxygenation, ultra-high dose rates and the type of ionizing radiation used. These factors play a crucial role in tumor control and normal tissue complications. To address this need, we explored the feasibility of developing a transportable cell culture platform (TCCP) to assess the relative biological effectiveness (RBE) of ionizing radiation. We measured cell recovery, clonogenic viability and metabolic viability of MDA-MB-231 cells over several days at room temperature in a range of concentrations of fetal bovine serum (FBS) in medium-supplemented gelatin, under both normoxic and hypoxic oxygen environments. Additionally, we measured the clonogenic viability of the cells to characterize how the duration of the TCCP at room temperature affected their radiosensitivity at doses up to 16 Gy. We found that (78±2)% of MDA-MB-231 cells were successfully recovered after being kept at room temperature for three days in 50% FBS in medium-supplemented gelatin at hypoxia (0.4±0.1)% pO2, while metabolic and clonogenic viabilities as measured by ATP luminescence and colony formation were found to be (58±5)% and (57±4)%, respectively. Additionally, irradiating a TCCP under normoxic and hypoxic conditions yielded a clonogenic oxygen enhancement ratio (OER) of 1.4±0.6 and a metabolic OER of 1.9±0.4. Our results demonstrate that the TCCP can be used to assess the RBE of a DMF and provides a feasible platform for assessing DMFs in radiation therapy applications.
Collapse
Affiliation(s)
- Nicholas Carlson
- Department of Physics, San Diego State University, San Diego, CA 92182, USA;
| | - Carrie D. House
- Biology Department, San Diego State University, San Diego, CA 92182, USA;
| | - Mauro Tambasco
- Department of Physics, San Diego State University, San Diego, CA 92182, USA;
| |
Collapse
|
7
|
Rogers ZJ, Colombani T, Khan S, Bhatt K, Nukovic A, Zhou G, Woolston BM, Taylor CT, Gilkes DM, Slavov N, Bencherif SA. Controlling pericellular oxygen tension in cell culture reveals distinct breast cancer responses to low oxygen tensions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560369. [PMID: 37873449 PMCID: PMC10592900 DOI: 10.1101/2023.10.02.560369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Oxygen (O2) tension plays a key role in tissue function and pathophysiology. O2-controlled cell culture, in which the O2 concentration in an incubator's gas phase is controlled, is an indispensable tool to study the role of O2 in vivo. For this technique, it is presumed that the incubator setpoint is equal to the O2 tension that cells experience (i.e., pericellular O2). We discovered that physioxic (5% O2) and hypoxic (1% O2) setpoints regularly induce anoxic (0.0% O2) pericellular tensions in both adherent and suspension cell cultures. Electron transport chain inhibition ablates this effect, indicating that cellular O2 consumption is the driving factor. RNA-seq revealed that primary human hepatocytes cultured in physioxia experience ischemia-reperfusion injury due to anoxic exposure followed by rapid reoxygenation. To better understand the relationship between incubator gas phase and pericellular O2 tensions, we developed a reaction-diffusion model that predicts pericellular O2 tension a priori. This model revealed that the effect of cellular O2 consumption is greatest in smaller volume culture vessels (e.g., 96-well plate). By controlling pericellular O2 tension in cell culture, we discovered that MCF7 cells have stronger glycolytic and glutamine metabolism responses in anoxia vs. hypoxia. MCF7 also expressed higher levels of HIF2A, CD73, NDUFA4L2, etc. and lower levels of HIF1A, CA9, VEGFA, etc. in response to hypoxia vs. anoxia. Proteomics revealed that 4T1 cells had an upregulated epithelial-to-mesenchymal transition (EMT) response and downregulated reactive oxygen species (ROS) management, glycolysis, and fatty acid metabolism pathways in hypoxia vs. anoxia. Collectively, these results reveal that breast cancer cells respond non-monotonically to low O2, suggesting that anoxic cell culture is not suitable to model hypoxia. We demonstrate that controlling atmospheric O2 tension in cell culture incubators is insufficient to control O2 in cell culture and introduce the concept of pericellular O2-controlled cell culture.
Collapse
Affiliation(s)
- Zachary J. Rogers
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Saad Khan
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Khushbu Bhatt
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Alexandra Nukovic
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Guanyu Zhou
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Benjamin M. Woolston
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Cormac T. Taylor
- Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Daniele M. Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21321, USA
- Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21321, USA
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nikolai Slavov
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Center and Barnett Institute, Northeastern University, Boston, MA 02115 USA
- Parallel Squared Technology Institute, Watertown, MA 02135 USA
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Biomechanics and Bioengineering (BMBI), UTC CNRS UMR 7338, University of Technology of Compiègne, Sorbonne University, 60203 Compiègne, France
| |
Collapse
|
8
|
Chettouh-Hammas N, Fasani F, Boileau A, Gosset D, Busco G, Grillon C. Improvement of Antioxidant Defences in Keratinocytes Grown in Physioxia: Comparison of 2D and 3D Models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6829931. [PMID: 37360501 PMCID: PMC10290565 DOI: 10.1155/2023/6829931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/25/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Keratinocytes prevent skin photoaging by ensuring the defence against oxidative stress, an excessive production of reactive oxygen species (ROS). They are localized within the epidermis where the oxygen level (1-3% O2), named physioxia, is low compared to other organs. Oxygen is essential for life but also generates ROS. Most of the in vitro studies on keratinocyte antioxidant capacities are performed under atmospheric oxygen, named normoxia, which is very far from the physiological microenvironment, thus submitting cells to an overoxygenation. The present study is aimed at investigating the antioxidant status of keratinocyte grown under physioxia in both 2D and 3D models. First, we show that the basal antioxidant profiles of keratinocytes display important differences when comparing the HaCaT cell line, primary keratinocytes (NHEK), reconstructed epidermis (RHE), and skin explants. Physioxia was shown to promote a strong proliferation of keratinocytes in monolayers and in RHE, resulting in a thinner epidermis likely due to a slowdown in cell differentiation. Interestingly, cells in physioxia exhibited a lower ROS production upon stress, suggesting a better protection against oxidative stress. To understand this effect, we studied the antioxidant enzymes and reported a lower or equivalent level of mRNA for all enzymes in physioxia conditions compared to normoxia, but a higher activity for catalase and superoxide dismutases, whatever the culture model. The unchanged catalase amount, in NHEK and RHE, suggests an overactivation of the enzyme in physioxia, whereas the higher amount of SOD2 can explain the strong activity. Taken together, our results demonstrate the role of oxygen in the regulation of the antioxidant defences in keratinocytes, topic of particular importance for studying skin aging. Additionally, the present work points out the interest of the choice of both the keratinocyte culture model and the oxygen level to be as close as possible to the in situ skin.
Collapse
Affiliation(s)
- Nadira Chettouh-Hammas
- Center for Molecular Biophysics UPR4301 CNRS, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Fabienne Fasani
- Center for Molecular Biophysics UPR4301 CNRS, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Amandine Boileau
- Center for Molecular Biophysics UPR4301 CNRS, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - David Gosset
- Center for Molecular Biophysics UPR4301 CNRS, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Giovanni Busco
- Center for Molecular Biophysics UPR4301 CNRS, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Catherine Grillon
- Center for Molecular Biophysics UPR4301 CNRS, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| |
Collapse
|
9
|
Elia E, Brownell D, Chabaud S, Bolduc S. Tissue Engineering for Gastrointestinal and Genitourinary Tracts. Int J Mol Sci 2022; 24:ijms24010009. [PMID: 36613452 PMCID: PMC9820091 DOI: 10.3390/ijms24010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The gastrointestinal and genitourinary tracts share several similarities. Primarily, these tissues are composed of hollow structures lined by an epithelium through which materials need to flow with the help of peristalsis brought by muscle contraction. In the case of the gastrointestinal tract, solid or liquid food must circulate to be digested and absorbed and the waste products eliminated. In the case of the urinary tract, the urine produced by the kidneys must flow to the bladder, where it is stored until its elimination from the body. Finally, in the case of the vagina, it must allow the evacuation of blood during menstruation, accommodate the male sexual organ during coitus, and is the natural way to birth a child. The present review describes the anatomy, pathologies, and treatments of such organs, emphasizing tissue engineering strategies.
Collapse
Affiliation(s)
- Elissa Elia
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - David Brownell
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 42282)
| |
Collapse
|
10
|
Sturm G, Monzel AS, Karan KR, Michelson J, Ware SA, Cardenas A, Lin J, Bris C, Santhanam B, Murphy MP, Levine ME, Horvath S, Belsky DW, Wang S, Procaccio V, Kaufman BA, Hirano M, Picard M. A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations. Sci Data 2022; 9:751. [PMID: 36463290 PMCID: PMC9719499 DOI: 10.1038/s41597-022-01852-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Aging is a process of progressive change. To develop biological models of aging, longitudinal datasets with high temporal resolution are needed. Here we report a multi-omics longitudinal dataset for cultured primary human fibroblasts measured across their replicative lifespans. Fibroblasts were sourced from both healthy donors (n = 6) and individuals with lifespan-shortening mitochondrial disease (n = 3). The dataset includes cytological, bioenergetic, DNA methylation, gene expression, secreted proteins, mitochondrial DNA copy number and mutations, cell-free DNA, telomere length, and whole-genome sequencing data. This dataset enables the bridging of mechanistic processes of aging as outlined by the "hallmarks of aging", with the descriptive characterization of aging such as epigenetic age clocks. Here we focus on bridging the gap for the hallmark mitochondrial metabolism. Our dataset includes measurement of healthy cells, and cells subjected to over a dozen experimental manipulations targeting oxidative phosphorylation (OxPhos), glycolysis, and glucocorticoid signaling, among others. These experiments provide opportunities to test how cellular energetics affect the biology of cellular aging. All data are publicly available at our webtool: https://columbia-picard.shinyapps.io/shinyapp-Lifespan_Study/.
Collapse
Affiliation(s)
- Gabriel Sturm
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Anna S Monzel
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Kalpita R Karan
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeremy Michelson
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah A Ware
- University of Pittsburgh, School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, 94305, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Céline Bris
- UMR CNRS 6015, INSERM U1083, MITOVASC, SFR ICAT, Université d'Angers, Angers, F-49000, France
- Department of Genetics, CHU Angers, Angers, F-49000, France
| | - Balaji Santhanam
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Michael P Murphy
- MRC-Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Morgan E Levine
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
- Altos Labs, San Diego, USA
| | - Steve Horvath
- Altos Labs, San Diego, USA
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Daniel W Belsky
- Department of Epidemiology & Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Shuang Wang
- Department of Biostatistics, Columbia University Irving Medical Center, New York, NY, USA
| | - Vincent Procaccio
- UMR CNRS 6015, INSERM U1083, MITOVASC, SFR ICAT, Université d'Angers, Angers, F-49000, France
- Department of Genetics, CHU Angers, Angers, F-49000, France
| | - Brett A Kaufman
- University of Pittsburgh, School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Michio Hirano
- Merritt Center and Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
- Merritt Center and Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
11
|
Adebayo AK, Nakshatri H. Modeling Preclinical Cancer Studies under Physioxia to Enhance Clinical Translation. Cancer Res 2022; 82:4313-4321. [PMID: 36169928 PMCID: PMC9722631 DOI: 10.1158/0008-5472.can-22-2311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Oxygen (O2) plays a key role in cellular homeostasis. O2 levels are tightly regulated in vivo such that each tissue receives an optimal amount to maintain physiologic status. Physiologic O2 levels in various organs range between 2% and 9% in vivo, with the highest levels of 9% in the kidneys and the lowest of 0.5% in parts of the brain. This physiologic range of O2 tensions is disrupted in pathologic conditions such as cancer, where it can reach as low as 0.5%. Regardless of the state, O2 tension in vivo is maintained at significantly lower levels than ambient O2, which is approximately 21%. Yet, routine in vitro cellular manipulations are carried out in ambient air, regardless of whether or not they are eventually transferred to hypoxic conditions for subsequent studies. Even brief exposure of hematopoietic stem cells to ambient air can cause detrimental effects through a mechanism termed extraphysiologic oxygen shock/stress (EPHOSS), leading to reduced engraftment capabilities. Here, we provide an overview of the effects of ambient air exposure on stem and non-stem cell subtypes, with a focus on recent findings that reveal the impact of EPHOSS on cancer cells.
Collapse
Affiliation(s)
- Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Alva R, Gardner GL, Liang P, Stuart JA. Supraphysiological Oxygen Levels in Mammalian Cell Culture: Current State and Future Perspectives. Cells 2022; 11:3123. [PMID: 36231085 PMCID: PMC9563760 DOI: 10.3390/cells11193123] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Most conventional incubators used in cell culture do not regulate O2 levels, making the headspace O2 concentration ~18%. In contrast, most human tissues are exposed to 2-6% O2 (physioxia) in vivo. Accumulating evidence has shown that such hyperoxic conditions in standard cell culture practices affect a variety of biological processes. In this review, we discuss how supraphysiological O2 levels affect reactive oxygen species (ROS) metabolism and redox homeostasis, gene expression, replicative lifespan, cellular respiration, and mitochondrial dynamics. Furthermore, we present evidence demonstrating how hyperoxic cell culture conditions fail to recapitulate the physiological and pathological behavior of tissues in vivo, including cases of how O2 alters the cellular response to drugs, hormones, and toxicants. We conclude that maintaining physioxia in cell culture is imperative in order to better replicate in vivo-like tissue physiology and pathology, and to avoid artifacts in research involving cell culture.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | | | | | | |
Collapse
|
13
|
Nascimento-Filho CHV, Glinos AT, Jang Y, Goloni-Bertollo EM, Castilho RM, Squarize CH. From Tissue Physoxia to Cancer Hypoxia, Cost-Effective Methods to Study Tissue-Specific O 2 Levels in Cellular Biology. Int J Mol Sci 2022; 23:ijms23105633. [PMID: 35628446 PMCID: PMC9144419 DOI: 10.3390/ijms23105633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
The human body is endowed with an extraordinary ability to maintain different oxygen levels in various tissues and organs. The maintenance of physiological levels of oxygen is known as physoxia. The development of hypoxic conditions plays an important role in the biology of several pathologies, including cancer. In vitro studies using normal and neoplastic cells require that culture conditions be carried out under appropriate oxygen levels, either physoxic or hypoxic conditions. Such requirements are difficult to widely implement in laboratory practice, mainly due to the high costs of specialized equipment. In this work, we present and characterize a cost-effective method to culture cells under a range of oxygen levels using deoxidizing pouches. Our results show that physoxic and hypoxic levels using deoxidizing absorbers can be achieved either by implementing a gradual change in oxygen levels or by a regimen of acute depletion of oxygen. This approach triggers the activation of an epithelial-mesenchymal transition in cancer cells while stimulating the expression of HIF-1α. Culturing cancer cells with deoxidizing agent pouches revealed PI3K oncogenic pathway exacerbations compared to tumor cells growing under atmospheric levels of oxygen. Similar to the PI3K signaling disturbance, we also observed augmented oxidative stress and superoxide levels and increased cell cycle arrest. Most interestingly, the culture of cancer cells under hypoxia resulted in the accumulation of cancer stem cells in a time-dependent manner. Overall, we present an attractive, cost-effective method of culturing cells under appropriate physoxic or hypoxic conditions that is easily implementable in any wet laboratory equipped with cell culture tools.
Collapse
Affiliation(s)
- Carlos H. V. Nascimento-Filho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; (C.H.V.N.-F.); (A.T.G.); (Y.J.); (C.H.S.)
| | - Alexandra T. Glinos
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; (C.H.V.N.-F.); (A.T.G.); (Y.J.); (C.H.S.)
| | - Yeejin Jang
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; (C.H.V.N.-F.); (A.T.G.); (Y.J.); (C.H.S.)
| | - Eny M. Goloni-Bertollo
- Genetics and Molecular Biology Research Unit (UPGEM), Department of Molecular Biology, School of Medicine of São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil;
| | - Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; (C.H.V.N.-F.); (A.T.G.); (Y.J.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-0944, USA
- Correspondence:
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; (C.H.V.N.-F.); (A.T.G.); (Y.J.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-0944, USA
| |
Collapse
|
14
|
Duś-Szachniewicz K, Gdesz-Birula K, Zduniak K, Wiśniewski JR. Proteomic-Based Analysis of Hypoxia- and Physioxia-Responsive Proteins and Pathways in Diffuse Large B-Cell Lymphoma. Cells 2021; 10:cells10082025. [PMID: 34440794 PMCID: PMC8392495 DOI: 10.3390/cells10082025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/17/2023] Open
Abstract
Hypoxia is a common feature in most tumors, including hematological malignancies. There is a lack of studies on hypoxia- and physioxia-induced global proteome changes in lymphoma. Here, we sought to explore how the proteome of diffuse large B-cell lymphoma (DLBCL) changes when cells are exposed to acute hypoxic stress (1% of O2) and physioxia (5% of O2) for a long-time. A total of 8239 proteins were identified by LC–MS/MS, of which 718, 513, and 486 had significant changes, in abundance, in the Ri-1, U2904, and U2932 cell lines, respectively. We observed that changes in B-NHL proteome profiles induced by hypoxia and physioxia were quantitatively similar in each cell line; however, differentially abundant proteins (DAPs) were specific to a certain cell line. A significant downregulation of several ribosome proteins indicated a translational inhibition of new ribosome protein synthesis in hypoxia, what was confirmed in a pathway enrichment analysis. In addition, downregulated proteins highlighted the altered cell cycle, metabolism, and interferon signaling. As expected, the enrichment of upregulated proteins revealed terms related to metabolism, HIF1 signaling, and response to oxidative stress. In accordance to our results, physioxia induced weaker changes in the protein abundance when compared to those induced by hypoxia. Our data provide new evidence for understanding mechanisms by which DLBCL cells respond to a variable oxygen level. Furthermore, this study reveals multiple hypoxia-responsive proteins showing an altered abundance in hypoxic and physioxic DLBCL. It remains to be investigated whether changes in the proteomes of DLBCL under normoxia and physioxia have functional consequences on lymphoma development and progression.
Collapse
Affiliation(s)
- Kamila Duś-Szachniewicz
- Department of Clinical and Experimental Pathology, Institute of General and Experimental Pathology, Wrocław Medical University, Marcinkowskiego 1, 50-368 Wrocław, Poland; (K.G.-B.); (K.Z.)
- Correspondence:
| | - Katarzyna Gdesz-Birula
- Department of Clinical and Experimental Pathology, Institute of General and Experimental Pathology, Wrocław Medical University, Marcinkowskiego 1, 50-368 Wrocław, Poland; (K.G.-B.); (K.Z.)
| | - Krzysztof Zduniak
- Department of Clinical and Experimental Pathology, Institute of General and Experimental Pathology, Wrocław Medical University, Marcinkowskiego 1, 50-368 Wrocław, Poland; (K.G.-B.); (K.Z.)
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| |
Collapse
|
15
|
Skovdahl HK, Gopalakrishnan S, Svendsen TD, Granlund AVB, Bakke I, Ginbot ZG, Thorsvik S, Flatberg A, Sporsheim B, Ostrop J, Mollnes TE, Sandvik AK, Bruland T. Patient Derived Colonoids as Drug Testing Platforms-Critical Importance of Oxygen Concentration. Front Pharmacol 2021; 12:679741. [PMID: 34054553 PMCID: PMC8156408 DOI: 10.3389/fphar.2021.679741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Treatment of inflammatory bowel disease (IBD) is challenging, with a series of available drugs each helping only a fraction of patients. Patients may face time-consuming drug trials while the disease is active, thus there is an unmet need for biomarkers and assays to predict drug effect. It is well known that the intestinal epithelium is an important factor in disease pathogenesis, exhibiting physical, biochemical and immunologic driven barrier dysfunctions. One promising test system to study effects of existing or emerging IBD treatments targeting intestinal epithelial cells (IECs) is intestinal organoids (“mini-guts”). However, the fact that healthy intestinal epithelium is in a physiologically hypoxic state has largely been neglected, and studies with intestinal organoids are mainly performed at oxygen concentration of 20%. We hypothesized that lowering the incubator oxygen level from 20% to 2% would recapitulate better the in vivo physiological environment of colonic epithelial cells and enhance the translational value of intestinal organoids as a drug testing platform. In the present study we examine the effects of the key IBD cytokines and drug targets TNF/IL17 on human colonic organoids (colonoids) under atmospheric (20%) or reduced (2%) O2. We show that colonoids derived from both healthy controls and IBD-patients are viable and responsive to IBD-relevant cytokines at 2% oxygen. Because chemokine release is one of the important immunoregulatory traits of the epithelium that may be fine-tuned by IBD-drugs, we also examined chemokine expression and release at different oxygen concentrations. We show that chemokine responses to TNF/IL17 in organoids display similarities to inflamed epithelium in IBD-patients. However, inflammation-associated genes induced by TNF/IL17 were attenuated at low oxygen concentration. We detected substantial oxygen-dependent differences in gene expression in untreated as well as TNF/IL17 treated colonoids in all donors. Further, for some of the IBD-relevant cytokines differences between colonoids from healthy controls and IBD patients were more pronounced in 2% O2 than 20% O2. Our results strongly indicate that an oxygen concentration similar to the in vivo epithelial cell environment is of essence in experimental pharmacology.
Collapse
Affiliation(s)
- Helene Kolstad Skovdahl
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU- Norwegian University of Science and Technology, Trondheim, Norway.,Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - Shreya Gopalakrishnan
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - Tarjei Dahl Svendsen
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - Atle van Beelen Granlund
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU- Norwegian University of Science and Technology, Trondheim, Norway.,Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingunn Bakke
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU- Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Zekarias G Ginbot
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - Silje Thorsvik
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU- Norwegian University of Science and Technology, Trondheim, Norway.,Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, NTNU- Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Arnar Flatberg
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU- Norwegian University of Science and Technology, Trondheim, Norway.,Central Administration, St Olavs Hospital, The University Hospital in Trondheim, Trondheim, Norway
| | - Bjørnar Sporsheim
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU- Norwegian University of Science and Technology, Trondheim, Norway.,Central Administration, St Olavs Hospital, The University Hospital in Trondheim, Trondheim, Norway
| | - Jenny Ostrop
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU- Norwegian University of Science and Technology, Trondheim, Norway.,Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - Tom Eirik Mollnes
- Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, NTNU- Norwegian University of Science and Technology, Trondheim, Norway.,Research Laboratory, Nordland Hospital, Bodø, Norway.,K.G. Jebsen Thrombosis Research and Expertise Centre, Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway.,Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Arne Kristian Sandvik
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU- Norwegian University of Science and Technology, Trondheim, Norway.,Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, NTNU- Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Torunn Bruland
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU- Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
16
|
Calvo Tardón M, Marinari E, Migliorini D, Bes V, Tankov S, Charrier E, McKee TA, Dutoit V, Dietrich PY, Cosset E, Walker PR. An Experimentally Defined Hypoxia Gene Signature in Glioblastoma and Its Modulation by Metformin. BIOLOGY 2020; 9:biology9090264. [PMID: 32887267 PMCID: PMC7563149 DOI: 10.3390/biology9090264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor, characterized by a high degree of intertumoral heterogeneity. However, a common feature of the GBM microenvironment is hypoxia, which can promote radio- and chemotherapy resistance, immunosuppression, angiogenesis, and stemness. We experimentally defined common GBM adaptations to physiologically relevant oxygen gradients, and we assessed their modulation by the metabolic drug metformin. We directly exposed human GBM cell lines to hypoxia (1% O2) and to physioxia (5% O2). We then performed transcriptional profiling and compared our in vitro findings to predicted hypoxic areas in vivo using in silico analyses. We observed a heterogenous hypoxia response, but also a common gene signature that was induced by a physiologically relevant change in oxygenation from 5% O2 to 1% O2. In silico analyses showed that this hypoxia signature was highly correlated with a perinecrotic localization in GBM tumors, expression of certain glycolytic and immune-related genes, and poor prognosis of GBM patients. Metformin treatment of GBM cell lines under hypoxia and physioxia reduced viable cell number, oxygen consumption rate, and partially reversed the hypoxia gene signature, supporting further exploration of targeting tumor metabolism as a treatment component for hypoxic GBM.
Collapse
Affiliation(s)
- Marta Calvo Tardón
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland; (M.C.T.); (E.M.); (V.B.); (S.T.); (E.C.); (V.D.); (P.-Y.D.); (E.C.)
| | - Eliana Marinari
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland; (M.C.T.); (E.M.); (V.B.); (S.T.); (E.C.); (V.D.); (P.-Y.D.); (E.C.)
| | - Denis Migliorini
- Department of Oncology, Clinical Research Unit, Dubois Ferrière Dinu Lipatti Research Foundation, Geneva University Hospitals, 1205 Geneva, Switzerland;
| | - Viviane Bes
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland; (M.C.T.); (E.M.); (V.B.); (S.T.); (E.C.); (V.D.); (P.-Y.D.); (E.C.)
| | - Stoyan Tankov
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland; (M.C.T.); (E.M.); (V.B.); (S.T.); (E.C.); (V.D.); (P.-Y.D.); (E.C.)
| | - Emily Charrier
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland; (M.C.T.); (E.M.); (V.B.); (S.T.); (E.C.); (V.D.); (P.-Y.D.); (E.C.)
| | - Thomas A McKee
- Division of Clinical Pathology, Geneva University Hospitals, 1211 Geneva, Switzerland;
| | - Valérie Dutoit
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland; (M.C.T.); (E.M.); (V.B.); (S.T.); (E.C.); (V.D.); (P.-Y.D.); (E.C.)
| | - Pierre-Yves Dietrich
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland; (M.C.T.); (E.M.); (V.B.); (S.T.); (E.C.); (V.D.); (P.-Y.D.); (E.C.)
| | - Erika Cosset
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland; (M.C.T.); (E.M.); (V.B.); (S.T.); (E.C.); (V.D.); (P.-Y.D.); (E.C.)
| | - Paul R Walker
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland; (M.C.T.); (E.M.); (V.B.); (S.T.); (E.C.); (V.D.); (P.-Y.D.); (E.C.)
- Correspondence: ; Tel.: +41-223795079
| |
Collapse
|
17
|
DEAD Box Protein Family Member DDX28 Is a Negative Regulator of Hypoxia-Inducible Factor 2α- and Eukaryotic Initiation Factor 4E2-Directed Hypoxic Translation. Mol Cell Biol 2020; 40:MCB.00610-19. [PMID: 31907278 DOI: 10.1128/mcb.00610-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022] Open
Abstract
Hypoxia is a deficiency in oxygen delivery to tissues and is connected to physiological and pathophysiological processes such as embryonic development and cancer. The master regulators of oxygen homeostasis in mammalian cells are the heterodimeric hypoxia-inducible transcription factors 1 and 2 (HIF-1 and HIF-2, respectively). The oxygen-labile HIF-2α subunit has been implicated not only in transcription but also as a regulator of eukaryotic initiation factor 4E2 (eIF4E2)-directed hypoxic translation. Here, we have identified the DEAD box protein family member DDX28 as an interactor and negative regulator of HIF-2α that suppresses HIF-2α's ability to activate eIF4E2-directed translation. Stable silencing of DDX28 via short hairpin RNA (shRNA) in hypoxic human U87MG glioblastoma cells caused an increase of eIF4E2 binding to the m7GTP cap structure and the translation of eIF4E2 target mRNAs (including the HIF-2α mRNA itself). DDX28 depletion elevated nuclear and cytoplasmic HIF-2α protein, but HIF-2α transcriptional activity did not increase, possibly due to its already high nuclear abundance in hypoxic control cells. Depletion of DDX28 conferred a proliferative advantage to hypoxic, but not normoxic, cells. DDX28 protein levels are reduced in several cancers, including gliomas, relative to levels in normal tissue. Therefore, we uncover a regulatory mechanism for this potential tumor suppressor in the repression of HIF-2α- and eIF4E2-mediated translation activation of oncogenic mRNAs.
Collapse
|
18
|
Affiliation(s)
- Tslil Ast
- Broad Institute, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Vamsi K Mootha
- Broad Institute, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA, USA.
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|